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Abstract
We present a new approach for incorporating hard physical constraints into reservoir computing
(RC). The goal of this work is to increase the reliability, trustworthiness, and generalizability of
RC by guaranteeing adherence to known physical laws, particularly while simulating high dimen-
sional systems such as spatiotemporal fluid flows. A reservoir is commonly implemented as a
single-layer recurrent neural network in which only the linear output layer is trained and all other
parameters are randomly initialized and fixed. Therefore, training a reservoir only involves solving
a least squares problem for the weights of the final layer, posing an excellent opportunity to analyt-
ically enforce hard constraints. We show that physical constraints, such as conservation laws and
boundary conditions, can be imposed in the training procedure and can be guaranteed to hold for
forecasting. We introduce physics enforced reservoir computing (PERC) in which the RC training
procedure is augmented with a linear homogeneous constraint defined by a linear operator. We then
demonstrate this method by enforcing conserved quantities in the Kuramoto–Sivashinsky system
and zero-divergence constraints (mass conservation) in the Kolmogorov flow. In both cases, we
enforce these constraints to near machine precision. We provide our code online here.
Keywords: Reservoir Computing, Constrained Optimization, Physical Constraints, Fluid Dynam-
ics, Forecasting

1. Introduction

High-dimensional dynamical systems with complex spatiotemporal features are prevalent across
many fields, such as numerical weather prediction, fluid dynamics, neuroscience, traffic manage-
ment, and economics. Simulated forecasts provide key insights needed for design, optimization, and
control of these systems. While numerical integration offers many benefits, including accuracy and
robustness, it is limited when there is incomplete knowledge of the physics. An increasing abun-
dance of data from real-world systems therefore motivates the development and use of data-driven
methods for time-series forecasting. Among these methods, reservoir computing (RC) (Jaeger and
Haas, 2004; Maass et al., 2002) has emerged as a powerful technique that yields accurate forecasts
of dynamic time-series with minimal training requirements (Vlachas et al., 2020; Lu et al., 2018;
Griffith et al., 2019). In this paper, we extend the RC method beyond its classical black-box setting
and present a novel approach for incorporating physical constraints into RC training.
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Recurrent neural network (RNN) reservoirs are known for their forecasting performance and
their ability to reconstruct consistent statistics of chaotic attractors (Lu et al., 2018). In the RC con-
text, training the model entails solving a least-squares minimization problem. In contrast with more
widely used nonlinear optimization methods, RC training avoids exploding or vanishing gradients
and other pitfalls of backpropagation. The current leading method for high-dimensional RC, known
as localization (Pathak et al., 2018a), involves training multiple reservoirs in parallel on data from
distinct but overlapping regions of the spatial domain. The method has been used to model the
1D Kuramoto-Sivashinsky equation (Pathak et al., 2018a; Vlachas et al., 2020) and several clima-
tological systems (Arcomano et al., 2020; Penny et al., 2022). The other leading RC method for
high-dimensional systems involves data compression (Pandey and Schumacher, 2020; Doan et al.,
2021b). Importantly, across all of these applications, the RC method is agnostic of the physics of
the underlying process that is being forecasted.

Incorporating physical knowledge into machine learning (ML) has been shown to increase data
efficiency, provide robustness to noise, and improve generalization of models (Ling et al., 2016;
Loiseau and Brunton, 2018; Karniadakis et al., 2021). Physics may be incorporated through hard
or soft constraints. Soft constraints often take the form of a “physics-informed” penalty in the loss
function (Raissi et al., 2019; Wang et al., 2021), while hard constraints typically require changes
to the ML architecture or optimization algorithm, resulting in near-exact enforcement of the con-
straints (Loiseau and Brunton, 2018; Finzi et al., 2021; Otto et al., 2024), but at the cost of a less
flexible implementation. Examples include energy-conserving Hamiltonian and Lagrangian neural
networks (Greydanus et al., 2019; Lutter et al., 2019; Zhong et al., 2020; Cranmer et al., 2020;
Zhong and Leonard, 2020), symmetry enforcement methods (Loiseau and Brunton, 2018; Ahmadi
and El Khadir, 2020; Finzi et al., 2021; Satorras et al., 2021; Yang et al., 2024; Otto et al., 2024),
and mass conserving neural networks for turbulence (Mohan et al., 2023; Tretiak et al., 2022).

Several recent efforts have implemented physical knowledge into RC. Approaches include fine-
tuning imperfect model predictions with RC (Pathak et al., 2018b), and using feedback control from
a physical model to adjust the reservoir connectivity matrix (Perrusquı́a and Guo, 2024). Physics-
informed echo state networks (PI-ESNs) (Doan et al., 2020, 2021a; Mammedov et al., 2022) im-
plement a physics-based loss term in the RC objective as a soft constraint in order to promote
physically-consistent forecasts. The loss is then tuned by first fitting the training data via ridge
regression, and then using this as an initial guess for an iterative L-BFGS-B (Byrd et al., 1995) op-
timization to fit the physical constraints. These works show that accounting for physical constraints
in RC improves forecasting performance across several benchmark systems.

The present work explores enforcing physics in RC through hard constraints, which enables
conservation laws to be enforced to machine precision in forecasts; see Fig. 1 for an overview
schematic. Thus, the physics are guaranteed to be enforced in the forecast regardless of noise,
amount of training samples, or out-of-distribution testing data as proven in Section 3. The primary
contributions of physics-enforced reservoir computing (PERC) are:

1. We formulate a constrained optimization problem to embed physical laws as linear, homoge-
neous constraints during RC training.

2. We develop an analytic solution in Section 3 and numerically show that the computational
implementation adds minimal overhead and doesn’t increase training time.

3. We show that conservation laws are enforced to machine precision in forecasts on two spa-
tiotemporal systems (Kuramoto–Sivashinsky in Section 4.1 and Kolmogorov flow in Sec-
tion 4.2).

2



PHYSICS-ENFORCED RESERVOIR COMPUTING

Figure 1: Physics-Enforced Reservoir Computing (PERC) architecture applied to 2D Kolmogorov flow.
Flow snapshots u(t) are projected into a recurrent reservoir r(t), evolved by sparse dynamics Wr. A linear
readout Wout trained via regularized regression to map reservoir states to flow trajectories. Future forecasts
û(t) are generated from projected reservoir states, optionally enforcing physical constraints during training.

2. Reservoir Computing (RC) Background

A reservoir is a driven dynamical system satisfying an “echo state” or “fading memory” prop-
erty (Nakajima and Fischer, 2021). The RC technique is used to train a reservoir system to ac-
complish a variety of machine learning tasks, leveraging the intrinsic input-output properties of the
system and bypassing the need for gradient-based optimization. In this paper, we focus on the prob-
lem of forecasting a time series u(t) ∈ RNu provided data for t ∈ {0, . . . , tf}. During training, the
dynamics of the reservoir state r(t) ∈ RNr are forced by the input data u(t):

r(t+ 1) = F (r(t),u(t)), t = 0, . . . , tf (1)

where F : RNr × RNu → RNr is a nonlinear, continuously differentiable function. The “echo
state” or “fading memory” property of the reservoir (1) is required for forecasting. This property
is guaranteed when a given reservoir map is sufficiently smooth and satisfies a uniform contraction
condition (Jaeger, 2007; Yildiz et al., 2012). When these conditions are satisfied, the reservoir
system (1) reaches generalized synchronization with its driving input, meaning that trajectories of
the coupled system converge to a manifold

MGS = {(r,u) s.t. r = G(u)} (2)

where G : RNu → RNr is a continuous function (Jaeger, 2007; Platt et al., 2021a; Ohkubo and
Inubushi, 2024). Typically,Nr > Nu and the reservoir equations (1) can be interpreted as lifting the
low-dimensional driving signal to a higher-dimensional state space. The mapG in (2) is conjectured
to be locally invertible (Lu and Bassett, 2020). The training step in the RC approach then involves
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Model Nr α β σWin σ λmax

Unconstrained RC (KS) 5,000 0.534 10−7 0.088 1.915 0.757
PERC (KS) 5,000 0.9 10−7 0.0439 0.857 0.429
Both Models (Kol. Flow) 20,000 0.6 10−7 1.6 0.084 0.8

Table 1: Hyperparameters (as determined via random search) used for the to unconstrained (UCRC)
and physics-enforced (PERC) reservoir models for both example systems

learning the local structure of G−1 : RNr → RNu from the relationship between the input time-
series U =

[
u(0) . . . u(tf )

]
∈ RNu×Nt and the output response time-series of the reservoir

stateR =
[
r(1) . . . r(tf + 1)

]
∈ RNr×Nt , assuming the coupled system is close to the manifold

MGS . It is known empirically that for sufficiently high-dimensional “well-behaved” reservoirs,
the local map G−1 is approximately linear. The training step in RC is then equivalent to finding a
matrix Wout ∈ RNu×Nr that approximately solves U = WoutR. Forecasting is then performed by
simulating a closed-loop autonomous reservoir system

r(t+ 1) = F (r(t),Woutr(t)), t = tf + 1, . . . (3)

with the predictions made from linear readouts of the reservoir state with the learned map,

û(t+ 1) =Woutr(t+ 1). (4)

Commonly used RC architectures include the echo state network (ESN) (Jaeger and Haas, 2004),
liquid state machine (Maass et al., 2002), and physical reservoir systems such as photonic de-
vices (Tanaka et al., 2019). In our numerical studies we use the ESN formulation, which adapts
a single hidden layer “Elman-style” RNN with a linear output (Elman, 1990). ESN equations read

r(t+ 1) = (1− α)r(t) + αf (Wrr(t) +Winu(t) + σ1) (5)

where f is a nonlinear activation function, α is the relative timescale between the ESN dynamics
and its driving signal, and σ is the strength of the bias vector. Win and Wr are initialized randomly
and fixed for the remainder of the problem. To control the strength of the input forcing, we draw
Win ∼ U(−σWin , σWin). Furthermore, the reservoir matrix is sampled Wr ∼ N (0, 1) with a matrix
density of ρWr = 0.01, then normalized to have spectral radius λmax. Although we choose γ = 0,
we still include it in this discussion to stay consistent with the RC literature. Following results
from (Platt et al., 2021b), the data is not normalized. A schematic of the training and forecasting a
process with an ESN reservoir and a 2D Kolmogorov flow is shown in Figure 1 and hyperparameters
are detailed in Table 1.

2.1. Unconstrained Ridge Regression

Training an RC first typically involves “spinning up” the reservoir for some amount of time γ in
order for the coupled system to converge to the generalized synchronization manifold (2). Therefore,
the training data should involve samples of u from times t ∈ [−(γ +Nt + 1), 0]1 and the forecast
begins at t = 0. While not strictly necessarily, spinup helps circumvent the initial synchronization

1. u(Nt +1) produces the first reservoir state after spinup. Since pairs are formed of reservoir state and next state of u,
u(Nt + 1) is not used in the least squares optimization.
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Constraint Type Example Field(s) / Systems What is U? What is C?
Zero divergence of
a vector field

Incompressible fluids,
magnetic fields

Fluid/magnetic vector
field

Finite difference
divergence stencil

Conserved
quantities

Atmospheric chemistry (Liu
et al., 2024)

Chemical element
reaction rates

Matrix containing
stoichiometric ratios

Boundary
conditions

Fluids (no-slip, periodic), heat
transfer (insulated BC),
Elasticity (fixed boundaries)

Fluid velocities/heat
fluxes/structural
displacements

Selection matrix that
chooses relevant
boundary points

Flux conditions Circuits (Kirchhoff’s Law),
pipe flow (mass conservation)

Electrical currents/pipe
flows in a network

Connectivity matrix of
network nodes

Symmetries Lie group symmetries (e.g.,
self-similarity, translational
invariance) (Otto et al., 2024)

State space respecting a
given spatial symmetry

Linear symmetry
operator

Table 2: Examples of systems where linear, homogeneous constraints of the form CU = 0 are applicable.

transient that may be present if the reservoir is not sufficiently contractive. After spinup, the U and
R matrices are formed and Tikhonov-regularized least-squares (Tikhonov et al., 1977), also known
as ridge regression with regularization strength β, is applied to learn a linear mapping between u
and r. Hence, training an RC requires solving the following optimization problem:

min
Wout

(
∥WoutR− U∥2F + β ∥Wout∥2F

)
. (6)

The problem is convex and admits a known analytical solution for the optimal readout matrix W ∗
out

W ∗
out = URT (RRT + βINr)

−1. (7)

3. PERC: Physics-Enforced Reservoir Computing

While (7) will find a global optimal solution, there are no guarantees that the learned mapping will
enforce any physical constraints. However, known constraints can be directly enforced in the RC
training optimization. We consider the problem of prescribing homogeneous, linear constraints that
are described by a user-defined matrix C ∈ RNc×Nu such that Cû(t) = 0 for all t. Examples
of such constraints include derivatives, integrals, or boundary conditions of the data u. Periodic
boundary conditions, for instance, can be enforced by creating a C that extracts and subtracts the
boundaries from u. Section 4.1 demonstrates an example where C is created to perform trapezoidal
integration to enforce conserved quantities in the Kuramoto–Sivashinsky equation. Likewise, Sec-
tion 4.2 demonstrates using a finite difference divergence stencil for C to enforce incompressiblity
in a fluid flow. Table 2 provides an overview of how this class of constraint applies more broadly.
To enforce linear constraints, the original ridge regression problem can now be modified:

min
Wout
∥WoutR− U∥2F + β ∥Wout∥2F (8)

subject to CWout = 0.

We refer to RC training with the constrained optimization problem (8) as physics enforced reservoir
computing (PERC). With a change of variables A = RT , B = UT , X =W T

out, (8) reads

min
X
∥AX −B∥2F + β∥X∥2F (9)

subject to CXT = 0.
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Theorem 1 (Solution to Constrained Optimization) Consider (9) where A ∈ RNt×Nr , B ∈
RNt×Nu , and C ∈ RNc×Nu . Let (·)−T denote an inverse followed by a transpose. Suppose C
has rank n and let k = Nu−n. Let CTP = QR̃ be a rank-revealing QR decomposition of CT with

Q =
[
Q1︸︷︷︸

Nu×n

| Q2︸︷︷︸
Nu×k

]
(10)

where Q2 is the silent portion of Q. The solution, denoted (·)∗, to the optimization problem is

(X∗)T = Q2Q
T
2B

TA(ATA+ βINr)
−T . (11)

Proof The constraint impliesXT is in the null space ofC. Q2 is a basis for this null space if the QR
decomposition is rank-revealing. Then, there is a Y ∈ RNr×k so that XT = Q2Y

T ; equivalently,

X = Y QT
2 . (12)

The optimization problem in (9) can now be written without the constraint

min
Y

h(Y ) = min
Y

∥∥AY QT
2 −B

∥∥2
F
+ β∥Y QT

2 ∥2F . (13)

As with ridge regression, this problem is convex and can be solved by finding Y ∗ such that∇Y h(Y
∗) =

0:

∇Y h(Y ) =
∂

∂Y

(
∥AY QT

2 −B∥2F
)
+

∂

∂Y

(
β∥Y QT

2 ∥2F
)

=
∂

∂Y

[
tr
(
(AY QT

2 −B)(AY QT
2 −B)T

)]
+ β

∂

∂Y

[
tr
(
(Y QT

2 )(Y Q
T
2 )

T
)]

∇Y g(Y
∗) = 0⇒ Y ∗ = 2AT (AY QT

2 −B)Q2 + 2βY QT
2Q2.

Noting that the columns of Q2 are orthonormal, QT
2Q2 simplifies to the identity, and the solution to

(9) is found to be similar to that of Tikhonov-regularized least squares with a change of variables.

(ATA+ βINr)Y
∗ = ATBQ2. (14)

Y ∗ can thus be determined via a linear solve, and (9) is solved by finding XT = Q2(Y
∗)T .

In Theorem 1 we derive a closed-form solution to the constrained optimization problem (9). In
the following Corollary we show that forecasts produced by PERC provably enforce the linear
constraint. This guarantee is general as it holds true for arbitrary choice of nonlinear function F in
the reservoir dynamics and is satisfied both during training and during forecasting.

Corollary 2 (PERC Guarantees Constraint Enforcement) Consider the problem of training a
closed-loop reservoir (3) with output readout û(t) defined by (4). Assume RRT + βINr is full rank
and define C,Q2 the same as Theorem 1. Then the quantity

W ∗
out = Q2(RR

T + βINr)
−1RUTQ2 (15)

solves the constrained optimization (8). For this choice of Wout, Cû(t) = 0 for all t = 0, 1, . . . .
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Proof The solution form (15) follows directly from Theorem 1 by plugging in A = RT , B = UT ,
X = (W ∗

out)
T . Recall that by definition of the output readout (4), û(t) = W ∗

outr(t). Then since
CW ∗

out = 0, it holds that Cû(t) = CW ∗
outr(t) = 0.

A summary of the PERC approach to reservoir training with the closed-form solution of Corol-
lary 2 can be found as Algorithm 1. We state the algorithm for a general reservoir F (1).

Algorithm 1 Physics-Enforced Reservoir Computing (PERC)
Require: Training data U ; Constraint matrix C; E equation F (r(t),u(t)); Hyperparameter β

1: Initialize reservoir state r← 0
2: for i = 1 to γ do
3: Let u← U [:, i]
4: Update reservoir state: r← F (r(t),u(t))
5: end for
6: Trim U : U ← U [:, γ :]
7: Initialize R← 0 ∈ RNr×Nt

8: for i = 1 to Nt − 1 do
9: Let u← U [:, i]

10: Update reservoir state: r← F (r(t),u(t))
11: R[:, i]← r
12: end for
13: Align U : U ← U [:, 1 :]
14: Compute rank of C: n← rank(C)
15: Perform QR decomposition on CT : Q, R̃, P ← QR(CT )
16: Extract null-space basis: Q2 ← Q[:, n :]
17: Solve regularized least-squares problem: (Y ∗)T ← solve(RRT + βI,RUTQ2)
18: Compute optimized weights: W ∗

out ← Q2(Y
∗)T

19: return W ∗
out

4. Numerical Examples

4.1. Imposing Integral Constraints in the Kuramoto–Sivashinsky (KS) Equation

The Kuramoto–Sivashinsky (KS) equation is a 4th order spatiotemporal system characterized by
chaotic shock formation induced by a nonlinear wave term. The 1D form of the KS equation is

ut + uxxxx + uxx + uux = 0. (16)

To collect training data for RC, the above system was discretized into 64 spatial points and evolved
through Nt = 1000 time steps using a fourth order exponential time-differencing (ETDRK4)
scheme (Kassam and Trefethen, 2005) with periodic boundary conditions and on a domain of
(0, L = 22). The first 800 steps are used for training and the final 200 for testing. The follow-
ing integral quantity is conserved in the KS system (Collet et al., 1993) and is used to formulate a
constraint error ϵ:

ϵ(t) =

∫ L

0
u(t, x)dx = 0. (17)

This integral can be numerically evaluated via the trapezoidal rule. Since the result of the integration
is a scalar, Nc = 1 and the constraint matrix simplifies to a row vector c of length Nu = 64. Hence,
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Figure 2: KS testing data (upper right panel), Unconstrained RC forecast error (lower right panel), PERC
forecast error (upper right panel), and cumulative constraint enforcement error as defined by (17) (lower right
panel).

the integral is approximated by the inner product ϵ ≈ cTu. After implementing both unconstrained
RC and PERC on the KS system with Nr = 5, 000, a comparison of the error in enforcing the
constraints is illustrated in Figure 2. As anticipated, PERC imposes the constraints to machine
precision, and achieves a constraint error many order of magnitude lower than the traditional RC.

Spatiotemporal plots of the testing data, RC forecasting results, and forecast error can also
be seen in Figure 2. Both methods diverge from the true trajectory just above 6 lyapunov times
(where the maximum lyapunov exponent is taken to be λ = 0.043 (Edson et al., 2019)). Despite
now training in a constrained space, the forecast of the PERC is unhampered in comparison to the
traditional RC. Qualitatively, PERC maintains the so-called “climate replication” property of RC
that make it a powerful tool for forecasting chaotic dynamics. The forecast horizon matches the
performance from the single reservoir results in (Pathak et al., 2018a); however, Pathak utilizes
a nonlinear readout from the linear combination of r and r2, doubling the number of trainable
parameters. Due to our use a a bias, that breaks the incompatible symmetry between tanh and KS
(Herteux and Räth, 2020), we only utilize a purely linear readout from r.

4.2. Imposing Zero-Divergence in Kolmogorov Flow

The Navier-Stokes Equations are the governing equations of fluid flow. For an incompressible,
Newtonian liquid, the mass and momentum continuity are described by (18) and (19) where u is the
fluid velocity field, p is the pressure, ρ is the density, and ν is the kinematic viscosity; gravity and
other body forces are neglected:

∇ · u = 0 (18)

ut + (u · ∇)u = −∇p
ρ

+ ν∇2u. (19)

Despite already making some assumptions about the type of fluid flow, these equations still
represent a set of complex, nonlinear, coupled partial differential equations (PDEs). Solving these
numerically can be prohibitively expensive due to the coupling of the pressure gradient ∇p and the
velocity field u. For 2D incompressible flow, this problem can be alleviated by transforming the
velocity field into a scalar field known as the stream function ψ defined in terms of x and y velocity
components u and v, respectively: u = ψy and v = −ψx. Lastly, the vorticity ω is defined as the

8
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curl of the velocity field ω = ∇ × u. Applying these substitutions to Equation 19 results in the
following time evolution equations:

ω = −∇2ψ (20a)

ωt = −ψyωx + ψxωy + ν∇2ω (20b)

0.0 0.5 1.0 1.5
Reservoir size Nr 1e4

0

200

400

W
al

l T
im

e 
(s

) PERC
Unconstrained RC

Figure 3: Empirically measured wall time for
training both PERC and unconstrained RC on
Kolmogorov flow across varying reservoir sizes.
Each time is averaged across 5 trials.

We investigate the Kolmogorov flow, which
is the Navier-Stokes equations on a doubly peri-
odic domain with constant wavenumber body forc-
ing (Yin et al., 2004; Dresdner et al., 2022). This
flow is solved with a pseudo-spectral solver (Lage-
mann et al., 2025) and a fourth order implicit/explicit
Runge-Kutta/Crank-Nicolson Scheme. We flatten
and stack the velocity fields from a 32 × 32 grid
to form U . Although this is a small grid for a
fluid simulation, the size of this spatiotemporal grid
(Nu = 32×32×2 = 2048) is rarely approached with
RC. Due to this formulation, the flow fields should
be divergence free, thus posing an excellent testbed
constraint for the PERC framework. To enforce the
RC output to be divergence free, the constraint definition matrix C approximates the divergence
operator ∇· and is set to a finite difference stencil of size 1024 × 2048. Therefore, C imposes one
constraint for every point in the domain. In this case, we use a second order Taylor approximation
for the derivatives. However, a spectral stencil can also be enforced given the periodic boundaries.

The size of the Kolmogorov state space is over an order of magnitude larger than that of KS;
therefore, the reservoir dimension was increased to Nr = 20, 000. The resulting forecasts for both
PERC and unconstrained RC methods are shown in (4). It is clear that the divergence of the PERC
forecast is enforced to be zero at every point in the domain, whereas the unconstrained RC forecast
fails to satisfy incompressibility.

The Kolmogorov flow is chaotic, and so both forecasts diverge from the nominal trajectory.
However, neither forecast is unstable and both qualitatively continue to exhibit climate replication.
We also empirically note that as Nr increases, the unconstrained RC and PERC forecasts converge
to each other. We infer that the extreme events, characterized by brief periods of high energy
dissipation, are the primary drivers causing the RC forecast to diverge. Extreme events have been
shown to be challenging to predict (Vela-Martı́n, 2024; Yuan and Lozano-Durán, 2024), and result
in massive changes to the Kolmogorov flow state. Hence, even a small over or under prediction of
an extreme event can hamper the forecast horizon substantially. We conclude that both RC models
are unable to sufficiently predict extreme events. Future efforts in forecasting Kolmogorov flow
should consider a focus on extreme events.

Finally, we confirm that PERC has negligible computational overhead compared to traditional
RC by plotting the wall times of training both algorithms over varying reservoir sizes in Figure 3.
C is sparse and its size is a constant for all values of Nr; therefore, computing its QR factorization
takes comparably minimal time. The result is a constrained algorithm with near identical runtime to
the unconstrained algorithm. While the sparsity of C is not guaranteed in general, it is very likely
that finite difference operators will be sparse and computational time will be minimally impacted.
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Figure 4: Unconstrained RC (UCRC) and PERC forecasts of the Kolmogorov flow fluid system stacked
below tiles of the simulated testing data. Each tile is the magnitude of the velocity across a 32× 32 domain.
Divergence fields are computed for each of the forecasts, and the PERC is shown to locally and globally
enforce zero-divergence to machine precision.

5. Conclusion

The proposed PERC algorithm enforces hard physical constraints of the formCu(t) = 0 to machine
precision with minimal impacts on training speed and forecast horizon. This constraint is enforced
in a single-step, analytic solve. We build on soft constraint algorithms, such as PI-ESNs (Doan
et al., 2020), to enable hard constraints that are guaranteed to hold in PERC forecasts. However,
PERC does not allow for a generalized differential constraint and only admits linear, homogeneous
constraints. Therefore, future works will focus on modifying the PERC algorithm to more readily
accept nonlinear, temporal, and non-homogeneuous constraints. Furthermore, parallel localiza-
tion (Pathak et al., 2018a) can be employed to enable physics-enforced large-scale RC predictions
of spatiotemporal systems to expand PERC’s tractability to a wider array of high dimensional prob-
lems. Preliminary results show improvement of forecast horizons for the Kolmogorov Flow while
using constraints, as long as the training and testing sets come from the same trajectory. However,
further robust hyperparameter tuning and model evaluation is required to draw a definitive conclu-
sion. In future work, we will also investigate whether enforcing hard constraints with PERC may
improve forecasting performance in optimized ESN architectures and in the low data limit, as has
been observed with other physics based approaches.
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