
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEIGHBORHOOD LEARNING IN WEIGHTED
BEEPING NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neighborhood Learning (NL) is a fundamental tool in Multiagent Systems (MAS).
The task is for each autonomous agent to learn, in parallel, some information (e.g.,
agent identifier, message, etc.) from every neighboring agent, according to some
notion of vicinity. NL thus requires communication among neighboring agents,
which is particularly challenging if agents are tiny devices with very limited ca-
pabilities (for instance, biological systems) and may interrupt each other. In this
work, we study how the speed of learning depends on the system topology. We
model the communication environment as a Weighted Beeping Network (WBN).
In a WBN, network nodes (one for each agent) communicate by deciding whether
to beep or stay silent – all the beeps are then scaled by weights on the correspond-
ing links, and a threshold function is applied at each idle node to check if they
heard a beep or not. We introduce a novel characteristic of a WBN topology,
called Maximum Average Influence (MaxAveInf), and we prove almost tight up-
per and lower bounds on the running time to accomplish NL task by a Multiagent
System, as a linear function of that characteristic. Although MaxAveInf is a global
characteristic and it could be as large as the number of all agents in some networks,
even with small neighborhoods, for networks with small value of MaxAveInf we
succeeded to give a provably-efficient nearly-optimal algorithmic solution.

1 INTRODUCTION

In this work, we study Neighborhood Learning (NL) in Multiagent Systems (MAS). To solve NL,
each agent must, in parallel, receive an information from every neighboring agent, according to
some notion of vicinity. Parallel NL is then a fundamental tool for typical computations in MAS
where agents must communicate with all neighbors (e.g., Ba et al. (2024); Chen et al. (2024); Du
et al. (2024); Li et al. (2024); Liu et al. (2024b)).

Smart agents’ systems are common in nature, and their environment is often harsh and
communication-restrictive, e.g., insect colonies, bird flocks, bacteria populations, and others (see
the recent survey by Liu et al. (2024a)). As a subfield of Swarm Intelligence, smart agents enable
a collective of organisms or entities to exhibit a whole-system intelligence. This is done by having
each member communicate and analyze (typically) simple “wireless” signals between peers.

One of the simplest classic models of ad hoc communication reflecting those natural mechanisms is
the Beeping Network (BN) Cornejo & Kuhn (2010); Afek et al. (2011; 2013). BNs are graphs where
a pair of nodes are neighbors if they can communicate directly (i.e., without relays), modeled with a
link between them. At any given time a node can either beep (emit some signal with no embedded
information but the presence of the signal) or listen. Beepers beep in an attempt to propagate infor-
mation, but listeners cannot distinguish between single and multiple beeps received simultaneously.

In this work, we extend the BN communication model to weighted graphs, which we call Weighted
Beeping Networks (WBN). In WBNs, an ordered pair of nodes is connected by a link if the weight
associated with that link is positive; here, weights on links model various environmental features
that influence the perceived strength of a beep. Notice that this modeling choice does not restrict
the scope of application of our study, since a non-existing link is simply a link with weight zero,
and nodes do not know link weights. Then, a beep from a beeper u is received by a listener v
depending on the influence of u on v (i.e., the weight of link (u, v)) with respect to the influence

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of other beepers.Accordingly, we define the NL problem restricted to influential neighbors, by set-
ting a parametric threshold σ for a neighbor to be influential that depends on the application.1 The
WBN model is a simple (weighted-graph based) yet fundamental (threshold for delivery of weighted
information, every info bit accounted for by some beep) MAS model. Many “richer” wireless com-
munication models, e.g., Radio Networks and SINR Kowalski et al. (2020); Kowalski & Mosteiro
(2025), can be implemented in WBN, whereas biological communication systems, e.g., bacteria
signaling Moreno-Gámez et al. (2023) can be abstracted by WBN using binary coding for different
communication molecules and specific threshold for combined influence (see Appendix A.2).

Our contribution and broader discussion. We study Neighborhood Learning in a MAS of n
agents under the WBN model, where each agent is installed in one network node. In particular, we
show how to design a provably efficient NL algorithm, run autonomously in parallel by agents.

Most importantly, we identify a characteristic of WBNs, which we call Maximum Average Influence
(MaxAveInf) and denote as W . The NL problem, similarly to almost all complex graph problems,
does not have a concise formula for exact number of rounds. E.g., time-related parameters (mixing,
covering, etc.) of random walks are only approximated by concise formulas, such as vertex/edge
expansion or conductance. We follow the same methodology and show mathematically that

W is a good approximation of the shortest solution to the (parallel) NL problem,
by showing that the ratio between the upper and lower bound is O(log2 n). More precisely, we
show in Sec. 3 that our NL algorithm locally propagates messages of length M in O(W log n ·
(M+ log n)) rounds on any topology graph G with MaxAveInf at most W (see Theorem 2). (Note
that the additive log n comes from attaching the node identifier to the message, and it subsumesM
for short messages, i.e., M = O(log n).) This bound holds with high probability, i.e., with error
polynomially small in n. For clarity, we present and analyze our algorithm in three steps: first we
present a simplified version of NL, called One-beep Local Broadcast (OBLB), in which only one bit
of information has to be delivered (i.e.,M = 1) – for settings where only W and a polynomial upper
bound on n are known, and all agents start execution simultaneously (Sec. 3.1); then we generalize
our techniques to NL (Sec. 3.2); and finally, we show how to remove the knowledge of W and
synchronization assumptions,

In Section 4, for OBLB we prove an almost matching lower bound of Ω(W) (see Theorem 3). This
lower bound automatically holds for NL, as a more general problem. To prove the lower bound, we
show an adversarial input on which any OBLB algorithm requires the claimed time. Motivated by
the topology of classic neural networks, we used a bipartite graph with certain weight function – we
conjecture that our approach could be further extended to other more specific network classes, such
as multi-layered networks2 or scale-free graphs. In fact, our extensive experimental study strongly
indicates that such lower bound applies to a variety of real-world and (commonly used) synthetic
topologies (e.g., grids or scale-free graphs).

Our technical results above have important implications on the efficiency of parallelization of Neigh-
borhood Learning. MaxAveInf is a global characteristic that could be as large as the number of all
agents, even if the influential neighborhoods (i.e., the sets of influential links connected to each
receiver) are small.3 Given the locality of the NL problem, one would expect to solve it fast in paral-
lel in small neighborhoods. However, our lower bound shows that executing NL in parallel may be
costly, even in networks with small degree (but with high MaxAveInf). To the best of our knowledge,
ours is the first theoretical analysis of upper and lower bounds for the NL in WBN model.

Additionally, in Appendix E, we include a thorough experimental evaluation of our algorithms on
two potential learning environments: social networks in the natural world (four datasets), on top
of which nano-devices could be deployed, and ad-hoc infrastructures (3D-grid, scale-free nets),
deployed possibly for other purposes, for instance, for simultaneous scanning and learning. Our
experiments show that our theoretical analysis is almost tight and constants hidden in the asymptotic
notation are reasonably small. We also show that performance of our algorithm is much better than
other algorithms (such as round-robin or periodic transmissions schedules with initial random shift).

1This threshold models a fundamental physical reality: signal detection requires sufficient signal-to-noise
ratio. Our specific threshold is normalized to 1, but it can be generalized to any constant.

2Multi-layered WBNs could be seen as beeping neural networks, similarly to spiking neural networks.
3E.g., a WBN where each node has only one influential link, and all remaining links have influence just

below the threshold.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 MODEL AND DEFINITIONS

2.1 MULTIAGENT SYSTEM MODEL

We consider a Multiagent System (MAS) formed by n autonomous agents, each installed on a node
of a Weighted Beeping Network (WBN). Nodes have communication and computational capabili-
ties, and each node is labeled with a unique ID of O(log n) bits. Time is discretized in slots, also
called rounds. In each slot a node may be either beeping, i.e., sending a beep,4 or listening. A time
slot is long enough to beep, or hear a beep if listening (see Sec. 2.2 for details), and possibly perform
one bit read/write/compare operation in local memory, which are assumed to take negligible time
with respect to the time required by the communication. When presenting main ideas, we assume
clock synchronization, but we also show how to get rid of this limitation later (Sec. 3.3 and App. C).

2.2 COMMUNICATION MODEL ON GENERAL BIDIRECTED WEIGHTED GRAPHS

Due to various reasons (communication interference, preference, etc.), the beep of a node may
be perceived differently by two other nodes. We model this communication phenomenon with an
influence function w : V × V → R+ ∪ {0} where V is the set of network nodes, and for any
x, y ∈ V , w(x, x) = 0 and w(x, y) = w(y, x). The network topology is modeled by a general
bidirected weighted graph G = (V,E), where E = {x, y|x, y ∈ V ∧ w(x, y) > 0} is the set of
bidirected links,5 and the weight function is the influence function defined above. An example of a
topology graph can be seen in Figure 1a. A link from beeper x ∈ V to listener y ∈ V is denoted as
(x, y), and the set of nodes beeping at time t is denoted as V (t). In each time slot, a listening node
may hear: silence if none of its neighbors in G beeps in this time slot, or a beep otherwise.

(a) (b)

Figure 1: Beeping communication model. Fig. (a) Example of WBN topology modeled by a bidi-
rected weighted graph, where weights correspond to influence, see Section 2.2. The arrows of each
bidirected link are omitted for clarity. Fig. (b) Example of the beep delivery concept, as defined in
Sec. 2.3. The depicted arrows point from the beeping nodes to their neighbors, while the remaining
arrows are omitted. Consider a time slot when nodes b, d, and e beep (in red) and a, f , and c listen.
Node a hears a single beep from e, hence this beep is also delivered to e from a (indicated in green).
Node f also hears a beep, caused by its two beeping neighbors: b, with influence 0.2, and e, with
influence 1.2; hence, the beep from e is delivered to f (indicated in green) while the beep from b is
not. Node c also hears a beep, caused by its three beeping neighbors: b, with influence 1.3, node e,
with influence 0.2, and d, with influence 1; as a result, no beep from any neighbor is delivered to c.

2.3 NEIGHBORHOOD LEARNING AND SIMPLIFIED OBLB PROBLEM

We start with the following definitions. For any constant σ ≥ 1, called influence threshold, let
Eσ ⊆ E be the subset of links with influence at least σ, that is Eσ = {(x, y) ∈ E|w(x, y) ≥ σ}.
We call these links influential.6

4Some kind of a signal, such as radio, light, sound, etc.
5Even though the weight is the same in both directions, we use bidirected links to be able to specify the direc-

tion of communication when needed. Graph G can be arbitrary – weight 0 means no edge in E (no influence).
6Influence is defined as a link attribute because a given beeper may have different influence on different

neighboring listeners. Nevertheless, given that influence is a concept of beepers on listeners, we also refer to
the influence of (or on) nodes for clarity of exposition.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 1. Given a constant σ ≥ 1 and a WBN with set of influential links Eσ where each
node holds a message, the Neighborhood Learning Problem is solved in Γ time slots if, for each
influential link (x, y) ∈ Eσ , by the end of slot Γ node y has learned the ID and message of node x
by analyzing the sequence of beep/silence heard.

The threshold σ restricts learning only to neighbors connected by links in Eσ . Nevertheless, nodes
with lower influence are still around and may interfere with the reception of information from influ-
ential neighbors (see the delivery condition below).

In order to design and analyze efficient algorithms for Neighborhood Learning, we introduce a
simpler problem. The main concept here is a “delivery of a beep” from x to y (with w(x, y) >
σ), which describes a situation when node y heard a beep while node x beeped, but also that the
influence of the other beepers on y was small. More formally, we say that a beep from node x was
delivered to node y in some time slot t, if the following happened in time slot t:

(Delivery Condition:) x beeped, y listened, and the aggregated influence on y of
all other beepers in V (t) was less than 1 (i.e.

∑
z∈V (t):z ̸=x w(z, y) < 1).

Figure 1b illustrates an example of delivery. Note that y may not recognize whether the heard beep
was actually a delivery of a beep from x, yet assuring that such deliveries occur eventually is an
important intermediate goal to achieve.

The simplified version of the main problem is as follows:
Definition 2. Given a constant σ ≥ 1 and a WBN with set of influential links Eσ , the One-beep
Local Broadcast (OBLB) Problem is solved in Γ time slots if, for each influential link (x, y) ∈ Eσ ,
by the end of slot Γ a beep has been delivered from x to y.

2.4 MAXAVEINF METRIC FUNCTION OF ALGORITHMS

We measure algorithmic performance in time slots as a function of |Eσ| and the following charac-
terization function of a WBN, called Maximum Average Influence (MaxAveInf):

W = max
E′⊆Eσ

1

|E′|
∑

(x,y)∈E′

∑
(z,y)∈E

w(z, y) .

MaxAveInf is the maximum cumulative influence the receiver of an average link in any subset of
Eσ (links with influence above threshold) can experience, from the transmitters of all other links.
Increasing the parameter σ we restrict the information to be learned (neighborhoods may shrink),
but we may learn it faster as W is monotonically non-increasing with growing σ. In Figure 1 for
example, setting σ = 1 means that only 4 links have to deliver information (beeps). Nevertheless,
links with smaller influence may still deliver some “false beeps” that the algorithm has to mitigate.

The analysis of our Neighborhood Learning algorithms holds with high probability (whp), i.e., with
probability at least 1 − nc for some arbitrary constant c > 0. This constant could scale up by in-
creasing the constant factor embedded in the asymptotic formula (on the number of beeping rounds).

3 ALGORITHMIC UPPER BOUND

We first present and analyze a solution to the simplified one-beep version of Neighborhood Learning,
called One-beep Local Broadcast as in Definition 2 (Sec. 3.1). Next, we generalize it to any NL
input (Sec. 3.2). Extensions of our algorithms are given in Sec. 3.3, and full versions of sketched
proofs are in the Appendix.

3.1 ONE-BEEP LOCAL BROADCAST

Consider the following One-beep Local Broadcast algorithm:

In each time slot, each node beeps with probability p ≤ 1
4W .

The following analysis shows correctness and upper bound on the running time of this algorithm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Lemma 1. Consider any subset of links E′
σ ⊆ Eσ , such that for each (x, y) ∈ E′

σ node x beeps
with probability p ≤ 1/(4W) and the remaining nodes are idle. Then, the expected number of links
in E′

σ where a beep is delivered is at least |E′
σ|(1− p)p/4.

Proof sketch: For a given local broadcast protocol, let Xx(t) be a random variable indicat-
ing whether node x ∈ V beeps at time t, and let Xx,y(t) be a random variable indicating
whether a beep from x was delivered to y at time t. To prove the lemma, we need to show:
E
(∑

(x,y)∈E′
σ
Xx,y(t)

)
≥ |E′

σ|(1− p)p/4.

By linearity of expectation, for M = {(x, y) ∈ E′
σ|
∑

z∈V (t) w(z, y) ≤ 2W} :

E
(∑

(x,y)∈E′
σ

Xx,y(t)
)
=

∑
(x,y)∈M

E (Xx,y(t)) +
∑

(x,y)∈E′
σ\M

E (Xx,y(t)) ≥
∑

(x,y)∈M

E (Xx,y(t))

=
∑

(x,y)∈M

Pr(Xx,y(t) = 1) =
∑

(x,y)∈M

Pr(Xx,y(t) = 1|Xx(t) = 1 ∧Xy(t) = 0) · p(1− p) .

Recall that, for any (x, y) ∈ E, the conditions to deliver a beep from node x to node y at time t are:
Xy(t) = 0, and w(x, y) ·Xx(t) ≥ σ, and

∑
z∈V (t):z ̸=x w(z, y)Xz(t) < 1. From the conditions to

deliver a beep and by Markov inequality,7 we bound complementary event:

Pr
(
Xx,y(t) = 0|Xx(t) = 1∧Xy(t) = 0

)
= Pr

(∑
z∈V (t):z ̸=x

w(z, y)Xz(t) ≥ 1
)
≤ p

∑
z∈V (t)

w(z, y) .

By upper bounding
∑

z∈V (t) w(z, y) ≤ 2W (by definition of M) and p ≤ 1/(4W) (by the condition
of the lemma), we get Pr (Xx,y(t) = 0|Xx(t) = 1 ∧Xy(t) = 0) ≤ 1/2. Putting them all together,

we have that E
(∑

(x,y)∈E′
σ
Xx,y(t)

)
≥

∑
(x,y)∈M

(
1
2 · p(1− p)

)
≥ |M |p(1− p)/2.

To conclude the proof, it remains to show that |M | ≥ |E′
σ|/2. It follows from the Pigeonhole

principle applied to W = maxE′⊆Eσ

1
|E′|

∑
(x,y)∈E′

∑
z∈V (t) w(z, y), in which the complementary

set E′
σ \M = {(x, y) ∈ E′

σ|
∑

z∈V (t) w(z, y) > 2W} must have at most |E′
σ|/2 elements.

Theorem 1. For p ≤ 1
4W , One-beep Local Broadcast can be solved

in O(W log |Eσ|) time slots whp.

Proof. Consider an execution of a One-beep Local Broadcast protocol. Let E(t)
σ ⊆ Eσ be the set

of links with influence at least σ where a beep was not delivered before the beginning of time slot
t = 1, 2, That is, E(1)

σ = Eσ . By Lemma 1, for p ≤ 1/(4W) we have that for any t ≥ 1 it is
E
(
|Et+1

σ |
∣∣|Et

σ| = i
)
≤ (1− (1− p)p/4)i .

Then, it is: E
(
|E(t+1)

σ |
)
≤

|Eσ|∑
i=0

Pr(|E(t)
σ | = i)(1− (1− p)p/4)i

= (1− (1− p)p/4)E
(
|E(t)

σ |
)
= (1− (1− p)p/4)t|Eσ| .

Notice for the latter inequality that transmitters do not need to switch off because in Lemma 1 the
influence is added over all neighbors, regardless of whether a beep has been delivered already or not.

On the other hand, by Markov inequality, the probability that One-beep Local Broadcast has not
been solved at the beginning of time slot t+ 1 is

Pr
(
|E(t+1)

σ | ≥ 1
)
≤ E

(
|E(t+1)

σ |
)
≤ (1− (1− p)p/4)t|Eσ| .

Fixing t = (4/((1− p)p)) ln(n|Eσ|), which is in O(W log n), we have that

Pr
(
|E(t+1)

σ | ≥ 1
)
≤

(
1− (1− p)p

4

) 4
(1−p)p

ln(n|Eσ|)

|Eσ| ≤
1

eln(n|Eσ|)
|Eσ| = 1/n .

Thus, the claim of the theorem follows.
7Note that Markov inequality does not require independence of the random variables (see

Thm. 3.1 in Mitzenmacher & Upfal (2005)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Neighborhood Learning algorithm, pseudo-code for a node v

Input (upper bounds on) parameters n,W,M
τ ← upper bound on time computed locally in analysis of Theorem 1, based on given n,W
αv ← beeping pattern computed according to the definition of αv in the main text
for i = 1, 2, . . . , τ do

if Random(1/(4W)) = 1 then
node v beeps in the 2 log n+M rounds of the super-round i according to pattern αv

else
node v stays silent and records the feedback in the 2 log n+M rounds of the

super-round i into string βv,i

for i = 1, 2, . . . , τ do
if βv,i is valid then

node v locally (no beeping round is needed) decodes βv,i into a pair of ID and message

Output decoded pairs (without redundancies), each containing node ID and message

3.2 NEIGHBORHOOD LEARNING (NL)

In this section, we generalize the algorithm and analysis from Section 3.1 to Neighborhood Learning
(Definition 1). It is run locally and autonomously by each node v. The input contains, apart of the
identifier of node v (given by a binary string of length log n) and an input message: the number
of nodes n, the maximum average influence W , and the maximum size of a messageM. In Sec-
tion 3.3 we show how to get rid of assumptions of known W and synchronization, and relaxing the
requirement of knowing n to only a polynomial upper bound on n.

Algorithm’s structure. The pseudo-code of the Neighborhood Learning algorithm is given in Al-
gorithm 1. The algorithm partitions rounds into consecutive windows of time, called super-rounds,
each of length 2 log n +M, whereM is the maximum length of a message sent. The number of
super-rounds, denoted by τ , is computed as in the time analysis of the One-beep Local Broadcast al-
gorithm in Theorem 1. The algorithm also uses a random generator Random(1/(4W)) that produces
1 with probability 1/(4W), and 0 otherwise.

Super-round i. In the beginning of a super-round i, each node v performs local ac-
tion as in round i of the One-beep Local Broadcast algorithm (see Section 3.1). It uses
the random generator. If the decision is to beep, then it beeps in its ith super-round
according to the following beeping pattern, denoted αv:

• if there is bit 1 in position j of ID of node v, it beeps and stay silent in rounds 2j − 1 and
2j of its super-round, resp.

• if there is bit 0 in position j of ID of node v, it stay silent and beeps in rounds 2j − 1 and
2j of its super-round, resp.

• in rounds 2 log n + 1, . . . , 2 log n +M of its super-round, node v beeps according to the
bit representation of its message (i.e., it beeps for bit 1 and stays silent for bit 0); if there
are less thanM bits in the message, it piggybacks the message with the 0’s until the end of
the super-round.

If, however, the decision is not to beep, node v stays silent during the whole super-round i and
records the received sequence of beep/silence into a binary string βv,i.

We call a super-round i valid for node v if v has been listening during the super-round and its
recorded feedback βv,i has the following property: the number of 1’s in the first 2 log n positions of
βv,i is exactly log n.

Final decoding. At the end of Algorithm 1, node v decodes each βv,i of a valid super-round i:

• if there are bits 10 at positions 2j − 1, 2j, for j ≤ log n, it decodes bit 1 and puts it at
position j of the decoded ID;

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• if there are bits 01 at positions 2j − 1, 2j, for j ≤ log n, it decodes bit 0 and puts it at
position j of the decoded ID;

• in round 2 log n+ j, for j ≤M, node v decodes 1 and puts it in position j of the decoded
message if it heard a beep, and decodes 0 if there was a silence.

Then, node v puts pairs, containing decoded ID and message, to its output, removing redundancies.

Algorithm analysis. We call a neighbor of node v influential if the link between them is influential.

Lemma 2. If there is only one influential neighbor of a node v choosing to beep in the considered
super-round i, and the aggregated influence on v from other neighbors in this super-round is smaller
than 1, then node v correctly decodes the other node’s ID and message from sequence βv,i at the
end of the algorithm.

Proof. The crucial observation is that if there is only one influential neighbor of v that chooses to
beep in the super-round i, say node v∗, and the aggregated influence from other neighbors of v is
smaller than 1, then the operations of beeping according to pattern αv∗ is directly received by v, in
the sense that βv,i = αv∗ . In such case, observe that decoding is the actual reversed operation to
encoding the pattern (i.e., reversed to creating pattern αv∗), and in this sense can uniquely decode
the ID of v∗ (based on the first 2 log n bits of sequence βv,i) and the message of v∗ (based on the
remainingM bits of the sequence).

Lemma 3. If two or more influential neighbors of a node v beep in the beginning of a super-round
i, then node v ignores the information received in this super-round in sequence βv,i.

Proof. It follows from the fact that v can recognize that at least two of its influential neighbors
beeped, or that the aggregated influence from other neighbors is at least 1, by analyzing the first
2 log n rounds of this super-round. More precisely, among these bits, there would be more than
log n beeps in these rounds, while in the case of one influential neighbor and aggregated influence
of others smaller than 1 there should be exactly log n beeps in the received sequence βv,i.

Theorem 2. For p ≤ 1/(4W), Neighborhood Learning can be solved in O(W log n · (log n+M))
time slots whp.

Proof. We combine Theorem 1 with Lemma 2 to conclude that for any node v and any of its influ-
ential neighbors v∗, there is a super-round i when v∗ is the only influential neighbor of v that beeps,
and the aggregated influence of other neighbors of v is smaller than 1. Thus, the ID and message of
v∗ are correctly decoded by v at the end of the algorithm.

Lemma 3 implies that node v correctly ignores information that could come from more than one
influential neighbor or be “too noisy” by aggregated influence of others – node v correctly recognize
it as non-valid.

The number of rounds is τ · (2 log n +M). By Theorem 1, which analysis is used to compute τ ,
and by asymptotic |Eσ| = Θ(n), the total number of time slots is O(W log n · (log n+M)).

3.3 EXTENSIONS AND DROPPING OFF SOME LIMITATIONS

Our main algorithm in Sec. 3.2 can be extended in the following ways – see details in Appendix C.

Arbitrary (unknown) W and only polynomial upper bound on n. The algorithm only needs a
polynomial upper bound on n, as n occurs under logarithm in the formula on MaxAveInf in The-
orem 2. The algorithm could be transformed into one without the need of knowing W in advance,
by doubling estimates of W , using acknowledgments and stopping condition. The number of steps
increases only by a constant factor.

For the sake of our experiments in Appendix E, we designed a stochastic estimation of W , which
is quite accurate on the tested inputs, without significant affectance on algorithm performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

De-synchronized systems. Due to a relatively simple structure and various checking mechanisms
in our algorithm, it can be extended to de-synchronized setting (with clock shifts) by using the known
synchronizing methods for beeping networks, see e.g., the recent work by De Marco & Kowalski
(2025). These methods require only a constant overhead, and transform algorithms with structures
similar to ours from fully synchronized into de-synchronized solutions.

Dynamic weights and noise. Noise and other physical conditions are captured by link weights. Al-
though NL cannot be solved in WBN under fully dynamic weights, it could if dynamicity is limited.

4 LOWER BOUND

In this section we prove that any Neighborhood Learning algorithm takes at least Ω(W) beeping
rounds in some WBN. In fact, even a simplified One-beep version of the problem requires such
number of beeping rounds in some networks.

In the analysis of this section we will show an adversarial WBN that requires the claimed running
time. The network topology of such WBN is a complex bipartite graph (non-existing links corre-
spond to weight 0 between the end nodes).

We start with a technical lemma (with detailed proof and additional figures in Appendix D), followed
by the main theorem.
Lemma 4. Consider a WBN with a complete bipartite topology graph (B,L,E), where B is a set
of beepers, L a set of listeners, E = {(b, ℓ)|b ∈ B ∧ ℓ ∈ L}, and |B| = |L|. The network is
embedded in a metric space with distance function d : B × L → R+. The influence function is
w(b, ℓ) = dmin/d(b, ℓ) for all (b, ℓ) ∈ E, where dmin is the smallest length among all links in E.

Consider some link (b′, ℓ′) ∈ E and a set of links E ⊂ E such that (b′, ℓ′) /∈ E . Then, if it is possible
to deliver a beep in each link (b, ℓ) ∈ E in one time slot, it is

∑
(b,ℓ)∈E w(b, ℓ

′) ∈ O(1).

Proof sketch: To prove the claim we split the set of links E into distant and close with respect to
listener ℓ′. For the set Eclose of close links, we upper bound the influence of their beepers on ℓ′

simply by |Eclose| (since each link has influence at most 1), and we bound |Eclose| by a constant
using a geometric argument and the fact that a beep is delivered through every link in Eclose. For
the set Edist of distant links, we bound the influence of their beepers on ℓ′, by their influence on a
listener at shortest distance from ℓ′. We bound the latter by a constant using a geometric argument
and the fact that a beep is delivered through every link in E . The details follow.

Let 2r be the shortest distance from any listener in E to listener ℓ′. Let Eclose = {(b, ℓ) ∈
E|d(b, ℓ′) ≤ r}, that is the set of links (b, ℓ) ∈ E whose beeper b is within distance r from lis-
tener ℓ′. We bound first the influence of close beepers on ℓ′ as∑

(b,ℓ)∈ Eclose

w(b, ℓ′) =
∑

(b,ℓ)∈ Eclose

dmin

d(b, ℓ′)
≤ |Eclose| < 4 . (1)

The latter inequality can be proved using a geometric argument (whose boundary case is illustrated
in Figure 3a in the Appendix), and the conditions for successful delivery of a beep.

We now bound the influence of beepers in Edist = E \ Eclose on listener ℓ′ as follows.∑
(b,ℓ)∈ Edist

w(b, ℓ′) =
∑

(b,ℓ)∈ Edist

dmin

d(b, ℓ′)
< 6 , (2)

where the latter inequality can be also proved using a geometric argument (whose boundary case
is illustrated in Figure 3b in the Appendix), and the conditions for successful delivery of a beep.
Combining the bounds in Equations 1 and 2, the claim follows.

Theorem 3. There exists a WBN and influence function such that, to solve the Neighborhood Learn-
ing problem, Ω(W) time slots are required with probability 1, where W is the MaxAveInf.

Proof. We prove the claim showing an adversarial WBN where even One-beep Local Broadcast
in a subset of links requires the claimed running time. Specifically, consider a complete bipartite

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

WBN (B,L,E) as required by Lemma 4. Let the nodes be labeled as B = {b1, b2, . . . , bn} and
L = {ℓ1, ℓ2, . . . , ℓn}, for some n > 1. Nodes are placed in space so that, for some dmin > 0 and
for all i, j ∈ [n], if i ̸= j it is d(bi, ℓj) > dmin, or otherwise it is d(bi, ℓj) = dmin, and every beeper
(resp. listener) has the same distribution of influence among its outgoing (resp. incoming) links (see
a deployment example in Figure 2).

Figure 2: Example of adversarial network for n = 6.

Under the above definition the influence threshold is 1 and the set of influential links is E1 =
{(bi, ℓi)|i ∈ [n]}. Recall that W = maxE′⊆E1

1
|E′|

∑
(b,ℓ)∈E′

∑
(b′,ℓ)∈E w(b′, ℓ).

Given that all listeners have the same influence distribution among their incoming links, the whole
set E1 maximizes W , that is

W =
1

n

∑
(b,ℓ)∈E1

∑
(b′,ℓ)∈E

w(b′, ℓ) =
1

n
n

∑
(b,ℓ)∈E1

w(b, ℓ1) = 1 +
∑

(b,ℓ)∈E1\{(b1,ℓ1)}

w(b, ℓ1) .

The middle equality is true because all listeners have the same distribution of influence among its
incoming links. Let T (E1) be the number of time slots needed to solve One-beep Local Broadcast
on E1 by some protocol P . Applying Lemma 4 to each time slot of the execution of P , we have that
for link (b1, ℓ1) ∈ E it is

∑
(b,ℓ)∈E1\{(b1,ℓ1)} w(b, ℓ1) ∈ O(T (E1)). The latter holds regardless of

whether P uses randomization or not. Thus, replacing, we get W ∈ O(T (E1)) with probability 1,
and the claim follows.

5 DISCUSSION AND OPEN DIRECTIONS

We showed, using formal analysis, that the complexity of Neighborhood Learning in WBN net-
works is nearly-linearly proportional to the newly introduced characteristic – MaxAveInf. Such
characteristic is global, and its range may span from a constant to the number n of all agents, de-
pending on the weighted network (even if neighborhoods are small). Our lower bound shows that
executing Neighborhood Learning in parallel may be costly even in networks with small degree (but
with high MaxAveInf). On the other hand, for networks with small MaxAveInf (which was also
the case in most of the considered nature-driven and synthetic datasets, see Section E.3), we give a
provably-efficient nearly-optimal algorithmic solution. Our theoretical bounds achieve a gap of at
most (M + log n) log n between the upper bound (for messages of length M) and lower bounds
(for single-bit messages). That means that our upper bound is nearly-optimal for systems with short
messagesM∈ O(log n), yielding a gap of O(log2 n). That is, our algorithm is well scalable. Ap-
pendix E contains experimental analysis confirming our theoretical results on diverse nature-driven
and synthetic datasets. Our algorithm also outruns other competitors.

Interesting open problems include: the study of more complex nature-inspired models in the WBN
framework (including binary encoding of more complex model features), more complex learning
problems, the relation between the influence threshold σ and the MaxAveInf W , and provably accu-
rate estimation methods of the latter. We conjecture that our general lower bound could be improved
for specific graph topologies, e.g., for (nearly-) uniform degree graphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement. This paper contains all the details of our theoretical study, including
the presentation of our algorithms, pseudocodes, and upper and lower bound proofs. Due to space
constraints, the details of certain proofs have been relegated to Appendix B and D, as well as the
details of algorithmic extensions to Appendix C. A full description of our extensive experimental
study can be found in Appendix E, including citations to the publicly available datasets tested, as
well as to an anonymous repository where we uploaded all the code and input/output data. Further
details on experimental part, such as our computational platform, are included in the reproducibility
section of Appendix E.

REFERENCES

Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv Bar-Joseph. A
biological solution to a fundamental distributed computing problem. Science, 331(6014):183–
185, 2011.

Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and Fabian
Kuhn. Beeping a maximal independent set. Distributed computing, 26(4):195–208, 2013.

Eyjólfur I Ásgeirsson, Magnús M Halldórsson, and Tigran Tonoyan. Universal framework for wire-
less scheduling problems. In 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Yanwen Ba, Xuan Liu, Xinning Chen, Hao Wang, Yang Xu, Kenli Li, and Shigeng Zhang.
Cautiously-optimistic knowledge sharing for cooperative multi-agent reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17299–17307,
2024.

Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and Diego Di Bernardo. How to
infer gene networks from expression profiles. Molecular systems biology, 3(1), 2007.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Joffroy Beauquier, Janna Burman, Fabien Dufoulon, and Shay Kutten. Fast beeping protocols for
deterministic mis and (δ+ 1)-coloring in sparse graphs. In IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications, pp. 1754–1762. IEEE, 2018.

Jingdi Chen, Tian Lan, and Carlee Joe-Wong. Rgmcomm: Return gap minimization via discrete
communications in multi-agent reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17327–17336, 2024.

Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Distributed
Computing: 24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-15,
2010. Proceedings 24, pp. 148–162. Springer, 2010.

Peter Davies. Optimal message-passing with noisy beeps. In Proceedings of the 2023 ACM Sympo-
sium on Principles of Distributed Computing, pp. 300–309, 2023.

Gianluca De Marco and Dariusz R. Kowalski. Ultra-resilient superimposed codes: Near-optimal
construction and applications. In 52nd International Colloquium on Automata, Languages, and
Programming, ICALP 2025, July 8-11, 2025, Aarhus, Denmark, volume 334 of LIPIcs, pp. 65:1–
65:20, 2025.

Shihao Dong, Tao Lin, James C Nieh, and Ken Tan. Social signal learning of the waggle dance in
honey bees. Science, 379(6636):1015–1018, 2023.

Xiao Du, Yutong Ye, Pengyu Zhang, Yaning Yang, Mingsong Chen, and Ting Wang. Situation-
dependent causal influence-based cooperative multi-agent reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17362–17370, 2024.

Alexander Fanghänel, Thomas Kesselheim, and Berthold Vöcking. Improved algorithms for latency
minimization in wireless networks. In 36th International Colloquium on Automata, Languages
and Programming (ICALP), pp. 447–458. Springer Berlin Heidelberg, 2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexander Fanghänel, Thomas Kesselheim, and Berthold Vöcking. Improved algorithms for latency
minimization in wireless networks. Theoretical Computer Science, 412(24):2657 – 2667, 2011.

Josh A Firth and Ben C Sheldon. Experimental manipulation of avian social structure reveals seg-
regation is carried over across contexts. Proceedings of the Royal Society B: Biological Sciences,
282(1802):20142350, 2015.

W Claiborne Fuqua, Stephen C Winans, and E Peter Greenberg. Quorum sensing in bacteria: the
luxr-luxi family of cell density-responsive transcriptional regulators. Journal of bacteriology, 176
(2):269–275, 1994.

Michael Y Galperin. Bacterial signal transduction network in a genomic perspective. Environmental
microbiology, 6(6):552–567, 2004.

Stefanie Gazda, Swami Iyer, Timothy Killingback, Richard Connor, and Solange Brault. The impor-
tance of delineating networks by activity type in bottlenose dolphins (tursiops truncatus) in cedar
key, florida. Royal Society Open Science, 2(3):140263, 2015.

Magnús M. Halldórsson and Roger Wattenhofer. Wireless communication is in apx. In Proc. of the
36th International Colloquium on Automata, Languages and Programming (ICALP), pp. 525–
536, 2009.

Magnús M. Halldórsson and Roger Wattenhofer. Wireless Network Algorithmics, pp. 141–160.
Springer International Publishing, Cham, 2019. ISBN 978-3-319-91908-9.

Thomas Kesselheim. Dynamic packet scheduling in wireless networks. In Proc. of the 31st Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 281–
290, 2012.

Thomas Kesselheim and Berthold Vöcking. Distributed contention resolution in wireless networks.
In Proc. of the 24th International Symposium on Distributed Computing (DISC), volume 6343 of
Lecture Notes in Computer Science, pp. 163–178. Springer-Verlag, Berlin, 2010.

Dariusz R Kowalski and Miguel A Mosteiro. On the complexity of deterministic distributed wire-
less link scheduling. In Proceedings of the 45th IEEE International Conference on Distributed
Computing Systems. IEEE, 2025. To appear.

Dariusz R. Kowalski, Miguel A. Mosteiro, and Tevin Rouse. Dynamic multiple-message broadcast:
bounding throughput in the affectance model. In 10th ACM International Workshop on Founda-
tions of Mobile Computing, FOMC 2014, Philadelphia, PA, USA, August 11, 2014, pp. 39–46,
2014.

Dariusz R Kowalski, Miguel A Mosteiro, and Krutika Wadhwa. Generic framework for optimization
of local dissemination in wireless networks. In International Conference on Networked Systems,
pp. 244–260. Springer, 2020.

Dariusz R. Kowalski, Miguel A. Mosteiro, and Kevin Zaki. Dynamic multiple-message broad-
cast: Bounding throughput in the affectance model. Theory Comput. Syst., 67(4):825–
854, 2023. doi: 10.1007/S00224-023-10131-1. URL https://doi.org/10.1007/
s00224-023-10131-1.

Chao Li, Yupeng Zhang, Jianqi Wang, Yujing Hu, Shaokang Dong, Wenbin Li, Tangjie Lv, Changjie
Fan, and Yang Gao. Optimistic value instructors for cooperative multi-agent reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17453–
17460, 2024.

Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph neural
networks in epidemic modeling. arXiv preprint arXiv:2403.19852, 2024a.

Zeyang Liu, Lipeng Wan, Xinrui Yang, Zhuoran Chen, Xingyu Chen, and Xuguang Lan. Imagine,
initialize, and explore: An effective exploration method in multi-agent reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17487–17495,
2024b.

11

https://doi.org/10.1007/s00224-023-10131-1
https://doi.org/10.1007/s00224-023-10131-1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Danielle P Mersch, Alessandro Crespi, and Laurent Keller. Tracking individuals shows spatial
fidelity is a key regulator of ant social organization. Science, 340(6136):1090–1093, 2013.

Melissa B Miller and Bonnie L Bassler. Quorum sensing in bacteria. Annual Reviews in Microbiol-
ogy, 55(1):165–199, 2001.

Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press,
2005.

Stefany Moreno-Gámez, Michael E Hochberg, and GS Van Doorn. Quorum sensing as a mechanism
to harness the wisdom of the crowds. Nature communications, 14(1):3415, 2023.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.
https://networkrepository.com.

Christopher M Waters and Bonnie L Bassler. Quorum sensing: cell-to-cell communication in bac-
teria. Annu. Rev. Cell Dev. Biol., 21(1):319–346, 2005.

APPENDIX

A LIMITATIONS, ADDITIONAL MOTIVATION AND OTHER RELATED WORK

A.1 LIMITATIONS OF OUR WORK

From a theoretical perspective, we considered one of the simplest models of ad hoc environment
with communication by beeping, WBN. We used a minimum set of model assumptions, but still
we took into account weighted interactions and threshold function to separate hearing a beep from
silence. Thus, our results could be transformed to more complex models and real datasets of ad hoc
environments. Such transformations are, however, not straightforward and require further studies,
depending on the complexity of the considered variant of the communication model. For instance,
when applying our algorithm to the bee colony environment, one needs to take into account that
bees communicate using complex signals called “waggle dance”; it could be encoded into a binary
sequence, see Dong et al. (2023), however a future study should take into account that not every
binary sequence represents a valid waggle dance (i.e., recognized by bees).

A.2 APPLICATIONS OF WBN TO BETTER UNDERSTANDING COLLECTIVE INTELLIGENCE OF
BACTERIA

Our WBN model can be seen as an abstraction of chemical communication mechanisms used by
bacteria. Specifically, in quorum sensing Moreno-Gámez et al. (2023) bacteria release/sense some
autoinducers (≡ beeps) to the intercellular space. Upon reaching a threshold concentration (≡
influence threshold), autoinducers trigger cascades of signal transduction which regulate processes
such as biofilm formation, virulence, competence and sporulation Miller & Bassler (2001); Fuqua
et al. (1994); Waters & Bassler (2005). Cooperation among bacteria as a multi-cellular (multiagent)
system has been here for billions of years. A connection between WBN and bacteria colonies
may lead to a better understanding of their collective intelligence, as well as interactions with (and
collaborative influence to) surrounding cells of other organisms. For instance, next step could be
to extend the WBN model to different types of beeps in order to model even more complex signal
transduction processes (see Galperin (2004)).

A.3 OTHER RELATED WORK

A related problem of local broadcast has been recently studied in simple beeping networks (without
weights and thresholds), although there is still a polynomial (in terms of the maximum node degree)
gap between the best known upper and lower bounds’ formulas, see Beauquier et al. (2018); Davies
(2023) resp.

From a technical perspective, the closest related work is on link scheduling in wireless networks.
The similarities include: ad hoc network structure and potential impact of one node communication

12

https://networkrepository.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

to the other. However, the problem of link scheduling is focused on realization of specific known
links (typically, one link per node), unlike in Neighborhood Learning where the information needs to
be propagated via all (unknown) links with sufficiently large influence. Also, the wireless commu-
nication is focused on avoiding interference, while in WBN we want to “strengthen” the information
beeped via links of large influence.

The closest wireless Link Scheduling under interference related works Halldórsson & Wat-
tenhofer (2009); Fanghänel et al. (2009; 2011); Kesselheim & Vöcking (2010); Kesselheim
(2012); Ásgeirsson et al. (2017); Halldórsson & Wattenhofer (2019) correspond to the Signal-to-
Interference-and-Noise-Ration (SINR) interference model. They use a few different characteristics,
called affectance, and their impact to link scheduling performance, see e.g., Halldórsson & Wat-
tenhofer (2009). The generalized affectance model was introduced and used only in the context
of one-hop communication, more specifically, to Link Scheduling by Kesselheim et al. Kesselheim
(2012); Kesselheim & Vöcking (2010). In Kowalski et al. (2014; 2023), the one-hop affectance
characteristic was generalized, called the maximum average tree-layer affectance, to be applicable
to multi-hop communication tasks such as broadcast, together with another characteristic, called the
maximum path affectance. In a more recent summary Halldórsson & Wattenhofer (2019) of work in
Wireless Networks over the last decade theoretical studies of Link Scheduling are overviewed.

B FULL PROOF OF LEMMA 1 FROM SECTION 3.1

Proof. For a given local broadcast protocol, let Xx(t) be a random variable indicating whether node
x ∈ V beeps at time t, and let Xx,y(t) be a random variable indicating whether a beep from x was
delivered to y at time t. In terms of this notation, the claim to prove is

E

 ∑
(x,y)∈E′

σ

Xx,y(t)

 ≥ |E′
σ|(1− p)p/4.

By linearity of expectation, we have that

E

 ∑
(x,y)∈E′

σ

Xx,y(t)

 =
∑

(x,y)∈E′
σ

E (Xx,y(t)) . (3)

Let M ⊆ E′
σ be the set M = {(x, y) ∈ E′

σ|
∑

z∈V (t) w(z, y) ≤ 2W}. Then we can re-write
Equation 3 as

E

 ∑
(x,y)∈E′

σ

Xx,y(t)

 =
∑

(x,y)∈M

E (Xx,y(t)) +
∑

(x,y)∈E′
σ\M

E (Xx,y(t))

≥
∑

(x,y)∈M

E (Xx,y(t)) . (4)

On the other hand recall that, for any (x, y) ∈ E, the conditions to deliver a beep from node x to
node y at time t are Xy(t) = 0, w(x, y)Xx(t) ≥ σ, and

∑
z∈V (t):z ̸=x w(z, y)Xz(t) < 1. Then, we

have that

E (Xx,y(t)) = Pr(Xx,y(t) = 1)

= Pr(Xx(t) = 1) · Pr(Xy(t) = 0) · Pr(Xx,y(t) = 1|Xx(t) = 1 ∧Xy(t) = 0)

= p(1− p)Pr(Xx,y(t) = 1|Xx(t) = 1 ∧Xy(t) = 0).

Replacing the latter in Equation 4, we have that

E

 ∑
(x,y)∈E′

σ

Xx,y(t)

 ≥ p(1− p)
∑

(x,y)∈M

Pr(Xx,y(t) = 1|Xx(t) = 1 ∧Xy(t) = 0)

= p(1− p)
∑

(x,y)∈M

(1− Pr(Xx,y(t) = 0|Xx(t) = 1 ∧Xy(t) = 0)) . (5)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

From the conditions to deliver a beep we have that, for any (x, y) ∈M , it is

Pr (Xx,y(t) = 0|Xx(t) = 1 ∧Xy(t) = 0) = Pr

 ∑
z∈V (t):z ̸=x

w(z, y)Xz(t) ≥ 1

 .

And by Markov inequality 8,

Pr (Xx,y(t) = 0|Xx(t) = 1 ∧Xy(t) = 0) ≤ E

 ∑
z∈V (t):z ̸=x

w(z, y)Xz(t)


=

∑
z∈V (t):z ̸=x

w(z, y)p ≤ p
∑

z∈V (t)

w(z, y).

Replacing in the latter that
∑

z∈V (t) w(z, y) ≤ 2W (by definition of M) and that p ≤ 1/(4W) (by
the condition of the lemma), it is

Pr (Xx,y(t) = 0|Xx(t) = 1 ∧Xy(t) = 0) ≤ 1/2.

Replacing the latter in Equation 5, we have that

E

 ∑
(x,y)∈E′

σ

Xx,y(t)

 ≥ |M |p(1− p)/2. (6)

Finally, we lower bound |M | as follows. Recall that

W = max
E′⊆Eσ

1

|E′|
∑

(x,y)∈E′

∑
z∈V (t)

w(z, y),

and that
M = {(x, y) ∈ E′

σ|
∑

z∈V (t)

w(z, y) ≤ 2W}.

Then, by Pigeonhole principle, it is |M | ≥ |E′
σ|/2. Replacing in Equation 6, the claim of the lemma

follows.

C DETAILS ON EXTENSIONS OF THE MAIN ALGORITHM, FROM SECTION 3.3

Arbitrary (unknown) W and only polynomial upper bound on n. First, observe that in the
algorithm we only need a polynomial upper bound on n, as n occurs under logarithm in the formula
on MaxAveInf in Theorem 2.

The impact of an estimation of the actual parameter W could be, hypothetically, more significant, as
the number of learning rounds depends linearly on W (see Thm. 2 and later Thm. 3). Our algorithm
could be transformed into one without the need of knowing W in advance, by using doubling esti-
mates of W (i.e., we keep running our algorithm for parameters W being subsequent powers of 2)
until no delivery. The main property that makes it feasible is described in Lemma 3 – receiving
agents can recognize whether the current communication attempt comes from one agent (which is
desired) or more than one (in which case, the received sequence of beeps can be ignored, hence –
no delivery). Additionally, acknowledgments of successful transmissions have to be implemented:
by repeating the same algorithm, but this time with messages being acknowledgments of previously
received messages. Note that this method increases the number of steps only by a constant factor.

For the sake of our experiments in Appendix E, we designed a stochastic estimation of W , which
is quite accurate on the tested inputs, without significant affectance on algorithm performance.

8Notice that Markov inequality does not require independence of the random variables (see Theorem 3.1
in Mitzenmacher & Upfal (2005)).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

De-synchronized systems. Due to a relatively simple structure and various checking mechanisms
in our algorithm, it can be extended to de-synchronized settings (with clock shifts) by using the
known synchronizing methods for beeping networks, see e.g., the recent work De Marco & Kowalski
(2025). These methods require only a constant overhead, and transform algorithms with structures
similar to ours (i.e., main loop iterating a preamble code and message) from fully synchronized into
de-synchronized solutions.

Additional comments on asynchrony. There are natural multiagent environments where the en-
tities have an initial phase of synchronization followed by synchronous interactions. For instance,
bacteria communicate with each other through a process called quorum sensing, using chemical sig-
nals to coordinate group behaviors. This communication allows them to sense population density
and synchronize activities like biofilm formation, virulence, and bioluminescence.

We also note that full asynchrony (i.e., when a single beep cycle of one agent could correspond to
several beeps of other agent(s)) is a challenging question, left to future work, because even at starting
point it requires defining the feedback based not just on the current set of transmitters, but actually
on transmitting sequences (of potentially different lengths) of many simultaneously active agents.
From a practical perspective, since we account for every single communication bit in the beeping
model, clock drifts and asynchrony would imply that entities try to communicate using different
frequencies, which does not typically happen in natural or applied systems, and if it happens, it
typically implies no successful communication means.

More precisely, our model is a low-level information-theoretical model. Unlike a vast majority
approaches, e.g., federated or distributed learning, which operate at high layers of the protocol stack
(and thus have to deal with asynchrony), our approach models low-layer algorithms. By analogy to
communication protocols’ stack, our algorithmic approach combines coding (physical layer) with
overcoming negative influence (link layer), and our goal was to characterize efficiency of learning
at such low (information) level. While clock shifts are natural phenomena for low-level protocols,
asynchrony (as understood in classic distributed computing/learning) is not. The reason is that
asynchrony at low level would mean in fact different frequency, which in case of both artificial
wireless networks and biological networks is typically considered non-compatible. For instance,
while codes could be applied to higher-level asynchronous algorithms in distributed computing,
the codes themselves are typically designed and analyzed as synchronous objects (i.e., with fixed
position indexing by subsequent integers).

Dynamic weights and noise. In our model, physical conditions, such as noise, are embedded
in link weights. The question of fluctuating physical conditions then boils down to how dynamic
weights impact the complexity of NL. Under arbitrary dynamicity, NL is not computable in a MAS
such as a WBN: if neighborhoods may change in every round, the computation must have taken at
most one round. This observation yields that NL could be defined for restricted dynamic settings,
for instance, if weights change only every so many rounds, or changes are driven by a stochastic
process with bounded deviation. Our algorithms can be applied to such settings as well, as long as
weights are locally static (or nearly static, in the sense that at any time point, their MaxAveInf does
not exceed a given upper bound) during the execution of the algorithm. This is because Lemma 1
still holds for any single round of such dynamic model, while the way it is used in the final proofs
of Theorem 1 and Theorem 2 is independent on specific values of weights but depends only the
upper bound on MaxAveInf. More dynamic scenarios, e.g., when MaxAveInf of current weights
may oscillate, are left as a challenging open problem. Note that our lower bound (for static weights)
automatically extends to dynamic scenarios, and thus gives a point of reference to the future study
of more dynamic scenarios.

D FULL PROOF OF LEMMA 4 FROM SECTION 4

Proof. To prove the claim we split the set of links E into distant and close with respect to listener
ℓ′. For the set Eclose of close links, we upper bound the influence of their beepers on ℓ′ simply
by |Eclose| (since each link has influence at most 1), and we bound |Eclose| by a constant using a
geometric argument and the fact that a beep is delivered through every link in Eclose. For the set
Edist of distant links, we bound the influence of their beepers on ℓ′, by their influence on a listener

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

at shortest distance from ℓ′. We bound the latter by a constant using a geometric argument and the
fact that a beep is delivered through every link in E . The details follow.

Let 2r be the shortest distance from any listener in E to listener ℓ′. Let Eclose = {(b, ℓ) ∈
E|d(b, ℓ′) ≤ r}, that is the set of links (b, ℓ) ∈ E whose beeper b is within distance r from lis-
tener ℓ′.

We bound first the influence of close beepers on ℓ′ as∑
(b,ℓ)∈ Eclose

w(b, ℓ′) =
∑

(b,ℓ)∈ Eclose

dmin

d(b, ℓ′)
≤ |Eclose| . (7)

We now bound |Eclose| as follows. Fix a link (b′′, ℓ′′) ∈ Eclose. The aggregated influence of the
other links in Eclose on listener ℓ′′ is∑

(b,ℓ)∈ Eclose\{(b′′,ℓ′′)}

w(b, ℓ′′) =
∑

(b,ℓ)∈ Eclose\{(b′′,ℓ′′)}

dmin

d(b, ℓ′′)
. (8)

The equality in the latter is due to the graph being complete bipartite. The boundary case of the
following geometric argument is illustrated in Figure 3a.

(a) Distance bound d(b, ℓ′′) ≤ 3d(b′′, ℓ′′), for
some link (b′′, ℓ′′) ∈ Eclose, which yields∑

(b,ℓ)∈Eclose
w(b, ℓ′) < 4 using that a beep is de-

livered through link (b′′, ℓ′′).

(b) Distance bound d(b, ℓ′′) ≤ 3d(b, ℓ′), for some
link (b′′, ℓ′′) ∈ E whose listener is at shortest dis-
tance 2r of ℓ′, which yields

∑
(b,ℓ)∈ Edist

w(b, ℓ′) <

6 using that a beep is delivered through link (b′′, ℓ′′).

Figure 3: Illustration of distance bounds.

Given that b′′ is within distance at most r of ℓ′ (because (b′′, ℓ′′) ∈ Eclose), and ℓ′′ is within distance
at least 2r from ℓ′ (because 2r is the shortest distance from any listener in E to ℓ′), the length of
(b′′, ℓ′′) is at least r (i.e. r ≤ d(b′′, ℓ′′)). Also, given that b and b′′ are both within distance r of
ℓ′ (because (b, ℓ) ∈ Eclose and (b′′, ℓ′′) ∈ Eclose), we have that b is within distance 2r of b′′ (i.e.
d(b, b′′) ≤ 2r). Combining and using the triangle inequality, we have that

d(b, ℓ′′) ≤ d(b, b′′) + d(b′′, ℓ′′) ≤ 2r + d(b′′, ℓ′′) ≤ 3d(b′′, ℓ′′) .

Replacing in Equation 8,∑
(b,ℓ)∈ Eclose\{(b′′,ℓ′′)}

w(b, ℓ′′) ≥ |Eclose| − 1

3

dmin

d(b′′, ℓ′′)
=
|Eclose| − 1

3
w(b′′, ℓ′′) . (9)

On the other hand, given that a beep is delivered through each link in E , in particular a beep is
delivered through link (b′′, ℓ′′). Therefore, using the conditions for successful delivery we know
that ∑

(b,ℓ)∈ Eclose\{(b′′,ℓ′′)}

w(b, ℓ′′) < w(b′′, ℓ′′) .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Replacing the latter in Equation 9, it is (|Eclose| − 1)w(b′′, ℓ′′)/3 < w(b′′, ℓ′′), that is, |Eclose| < 4.
Replacing in Equation 7, we get ∑

(b,ℓ)∈ Eclose

w(b, ℓ′) < 4. (10)

We now bound the influence of beepers in Edist = E \ Eclose on listener ℓ′. We have that∑
(b,ℓ)∈ Edist

w(b, ℓ′) =
∑

(b,ℓ)∈ Edist

dmin

d(b, ℓ′)
. (11)

The equality in the latter is due to the graph being complete bipartite. The boundary case of the
following geometric argument is illustrated in Figure 3b.

Let (b′′, ℓ′′) ∈ E be a link such that ℓ′′ is a listener at shortest distance 2r from listener ℓ′. By
triangle inequality, for any (b, ℓ) ∈ Edist, it is d(b, ℓ′′) ≤ d(b, ℓ′) + d(ℓ′, ℓ′′) = d(b, ℓ′) + 2r.
Given that, for any (b, ℓ) ∈ Edist, it is r ≤ d(b, ℓ′), we have that d(b, ℓ′′) ≤ 3d(b, ℓ′). Replacing
d(b, ℓ′) ≥ d(b, ℓ′′)/3 in Equation 11, we get∑

(b,ℓ)∈ Edist

w(b, ℓ′) ≤
∑

(b,ℓ)∈ Edist

3dmin

d(b, ℓ′′)
= 3

∑
(b,ℓ)∈ Edist

w(b, ℓ′′)

≤ 3

w(b′′, ℓ′′) +
∑

(b,ℓ)∈ Edist\{(b′′,ℓ′′)}

w(b, ℓ′′)

 .

Given that a beep is delivered through each link in E , in particular it is delivered through
(b′′, ℓ′′). Hence, by the condition to have a beep delivered through the link (b′′, ℓ′′), it is∑

(b,ℓ)∈ Edist\{(b′′,ℓ′′)} w(b, ℓ
′′) < 1. On the other hand, it is w(b′′, ℓ′′) ≤ 1 because for the in-

put topology used in this proof all w(·, ·) are at most 1. Replacing in the latter we get∑
(b,ℓ)∈ Edist

w(b, ℓ′) < 6 . (12)

Combining the bounds in Eqs. 10 and 12 the claim follows.

E EXPERIMENTAL EVALUATION

To evaluate experimentally the performance of our algorithm we have considered real-world social
networks (extracted from nature) on top of which nano-devices could be deployed, and to comple-
ment those we also considered ad-hoc infrastructures, which could be deployed for instance for 3D
scanning and learning simultaneously.

All input datasets used in our simulations are either publicly available in Rossi & Ahmed (2015), or
in our anonymous private repository in https://anonymous.4open.science/r/OBLB-A8F8/, where we
also include all code and output files. The latter repository will be de-anonymized upon publication
of this work.

For natural environments, we studied performance for four datasets: a population of birds Firth &
Sheldon (2015), a colony of ants Mersch et al. (2013), a population of dolphins Gazda et al. (2015),
and a mouse gene regulatory network derived from analyzing gene expression profiles Bansal et al.
(2007). For the latter we extracted various subgraphs (as detailed in Table 1) to process the original
dataset (|E| ≈ 14.5M). These inputs are representative of different network sizes (in nodes and
links) and weights.

Link weights in those datasets correspond to the probability or frequency of interaction for each pair
of individuals. Conceptually, these weights match our definition of influence, because an individual
a that meets more frequently another individual b “influences” more the behavior of b. In the rest of
the section we use influence and weight indistinctively.

These natural datasets observe an exponential distribution of weights, biased towards small proba-
bilities/frequencies (as in many natural interactions). Given that the threshold for influential links

17

https://anonymous.4open.science/r/OBLB-A8F8/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

is σ ≥ 1, and that the distributions are biased towards small values, we normalized all weights to a
range [0, 10].

The real-world datasets were downloaded from the public repository in Rossi & Ahmed (2015) at

• Birds: https://networkrepository.com/aves-wildbird-network.php

• Ants: https://networkrepository.com/insecta-ant-colony6-day04.php

• Dolphins: https://networkrepository.com/mammalia-dolphin-florida-forage.php.

• Genes: https://networkrepository.com/bio-mouse-gene.php.

dataset |V | |E| original weights normalized
to range

birds: Firth & Sheldon (2015) 202 11900 half-weight index in [0, 1] [0, 10]
ants: Mersch et al. (2013) 164 10300 interaction count in [1, 97] [0, 10]
dolphins: Gazda et al. (2015) 190 1100 interaction count in [1, 7] [0, 10]
genes: Bansal et al. (2007) 1000 90881 probabilistic interaction [0, 10]

2000 258909
3000 432239
4000 563033
5000 675129

synthetic scale-free network 1000 3994 exp. dist. in [0, 1] [0, 10]
2000 7994
3000 11994
4000 15994
5000 19994

synthetic 3D grid 216 1078 exp. dist. in [0, 1]
[0, 2i],

i = [0, 7]

Table 1: Networks evaluated. Half-weight index = probability that two individuals are observed
together given that one has been seen. Interaction count = number of times in spatial proximity
within the time span of data collection.

dataset σ wlimit

birds: Firth & Sheldon (2015) 5, 4.8, 4.6, . . . , 1 5, 6, . . . , 10
ants: Mersch et al. (2013) 3, 2.8, 2.6, . . . , 1 4, 5, . . . , 10
dolphins: Gazda et al. (2015) 5, 4.8, 4.6, . . . , 1 6, 7, . . . , 10
genes: Bansal et al. (2007) 5, 4, . . . , 1 10
synthetic scale-free network 1.5, 1.3, 1.1 10
synthetic 3D grid 1.5, 1.3, 1.1 none

Table 2: Simulation parameters.

To complement our real-world scenarios, we also evaluated two ad-hoc networks: a scale-
free network and a 3D-topology. To generate the scale-free network we used the preferen-
tial attachment model of Barabási & Albert (1999), obtaining various input graphs with |V | =
1000, 2000, 3000, 4000, 5000 and |E| = 3994, 7994, 11994, 15994, 19994 respectively. For the sec-
ond we created a 3D-grid of 6 × 6 × 6 vertices placing a node in each intersection, which yields
|V | = 216 and |E| = 1078. Weights were defined following an exponential distribution similar
to the nature datasets. Specifically, for in the 3D grid each weight was drawn uniformly at random
a number in (i, i + 0.1] with probability 1/2i, for each i = 0, 0.1, . . . , 0.9; and for the scale-free
network we used a random exponential distribution with rate parameter 5.

The main characteristics of the networks evaluated and the parameter values chosen are listed in
Tables 1 and 2 respectively.

18

https://networkrepository.com/aves-wildbird-network.php
https://networkrepository.com/insecta-ant-colony6-day04.php
https://networkrepository.com/mammalia-dolphin-florida-forage.php
https://networkrepository.com/bio-mouse-gene.php

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.1 HOW TO COMPUTE W

For the datasets evaluated, MaxAveInf W is unknown. Computing W exactly would be prohibitively
time consuming because it requires to maximize some average over all subsets of influential links.
Our algorithm can be extended to handle the issue implementing an exponential search of W (dou-
bling estimates), as explained in Appendix C. Nevertheless, to focus on the algorithmic dependency
on W and Eσ , we developed experimentally an estimation method, which is an interesting prob-
lem on its own. Namely, for each input dataset, we estimated W randomly sampling the set of
influential links in size and content. To improve accuracy, we repeated this estimate 200 times,
keeping the largest W obtained. An appropriate number of times to repeat the calculation, so that
the chosen value (200) yields an accurate estimation, was experimentally determined trying increas-
ing numbers until convergence is reached. As seen in Figure 4 for some of our inputs, the estimate
converges rapidly even with a much smaller number of repetitions 9.

Figure 4: MaxAveInf estimate versus number of repetitions of the estimation for all datasets studied.

Another challenge is how to obtain various inputs with different W values (based on the same
dataset) so that we can evaluate the dependency of time on W . For the genes dataset, we addressed
this challenge using decreasing values of σ from an initial larger value (σlimit ≤ 10) down to 1.
A changing σ results in a changing |Eσ| (the number of influential links), which possibly yields a
changing W (see the definition of W in Section 2.4). For the birds, ants, and dolphins datasets, we
additionally used subsets of links of the input graph, adding only the links with weight up to some
limit wlimit, from some wlimit ≥ σlimit up to the maximum weight 10. The latter handles the case
where the distribution of weights is such that the end points of links with large weight have also large
weighted degree (e.g. ants dataset). Then, starting with a large σlimit (hence, small |Eσ|) would not
change significantly W , even for larger |Eσ|. For the synthetic datasets (i.e., 3D-grid and scale-free
networks) on the other hand, we induced the increasing values of W adding a multiplicative factor of
1, 2, 4, . . . , f to the weights, where f = 128 for the 3D grid and f = 8 for the scale-free networks,
for σ = 1.5, 1.3, and 1.1. All those ranges were determined experimentally to attain enough variety
of values of W .

For the values of W obtained, we evaluated the performance of our One-beep Local Broadcast
(OBLB) algorithm as defined in Section 3. Evaluating OBLB is enough for the purpose of eval-
uating the dependency of our Neighborhood Learning algorithm on W , because the overhead of
Neighborhood Learning with respect to OBLB is only logarithmic on n (for messages of logarith-
mic size).

E.2 BASELINE ALGORITHMS

To the best of our knowledge, there is no other One-beep Local Broadcast (or Neighborhood Learn-
ing) algorithm that runs in the beeping model. Thus, for experimental comparison with other so-
lutions, we considered an algorithm in which nodes start execution with random delays in [n], and
then beep with a period equal to their own ID, which we call the Periodic algorithm. We tested both
algorithms on the same inputs and parameter combinations. The results are shown in Figures 5, 6,
and 7.

9Notice that our goal in this work is not to provide a provable, and/or decentralized, estimator for the
MaxAveInf - which is an interesting open question on its own.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

One may ask why not using a simple round-robin schedule which would solve the problem in time n.
The shortcoming of such approach of course is that for a massive network the running time would be
very slow, which is intuitively unnecessary for a local computation problem such as Neighborhood
Learning. Moreover, a round-robin algorithm would require the nodes to know the global time and
n. Nevertheless, the question that follows is how OBLB’s running time scales with n in practice. To
answer that question we evaluated OBLB experimentally on a synthetic 3D-grid as defined above but
with growing sides 6, 7, . . . , 15, thus n = 63, 73, . . . , 153. Weights were defined with an exponential
distribution on [0, 10] biased to small values as before. To maintain W and |Eσ| “stable” under a
growing n we set σ = 1 initially, increasing it by 0.5 each time that we increased n. The result was
that during the whole simulation W and |Eσ| oscillated but stayed within the ranges [10, 22] and
[402, 692] respectively, with n growing monotonically from 216 to 3375. The results are shown in
Figure 8.

To measure running time we counted rounds of communication until a beep was delivered in all
influential links. All executions were repeated 20 times for each parameter combination. The seed
for all random samples was 31277847.

E.3 DISCUSSION OF RESULTS

The results of our experiments show that performance of our OBLB in practice is similar or better
than the theoretical bound, whereas the Periodic algorithm is worse than the same bound. We also
show that OBLB running time is independent of n. We have illustrated our results in box-and-
whisker charts to show the statistical behavior 10 (recall that each execution was repeated 20 times).
Notice that, in comparison with network size, our datasets comprise a variety of W values, from
comparable with |V | (ants) to very small (all others for original weights).

The charts for the birds dataset in Figure 5a show on the left that, as W grows, the performance
of OBLB gets much better than 4W log |Eσ| (with the upper quartile of the former smaller than
the lower quartile of the latter), whereas on the right we can see that the Periodic algorithm per-
forms similar or worse than the same function. Similar observations apply to the dolphins dataset
in Figure 5b, where in fact the difference in favor of OBLB is larger. For the ants and mouse genes
datasets, we can see in Figures 6a and 6b respectively much better performance of OBLB (left)
than the theoretical 4W log |Eσ| time, whereas the Periodic algorithm (right) took more than 30000
rounds for most parameter combinations.

The performance on synthesized topologies, scale-free networks and 3D grids, can be seen in Fig-
ure 7, where the same observations apply: the running time of OBLB is almost always below
4W log |Eσ| (with a larger difference as W grows), while the running time of the Periodic algo-
rithm is above (many times above 30000 rounds, when we stopped the simulation).

For the evaluation of the dependency of OBLB on n, we can see in Figure 8 that indeed it is in-
dependent (as the theoretical analysis showed). That is, for n growing monotonically from 216 to
3375 the average running time of OBLB oscillated within a range of [330, 580]. That oscillation is
due to the oscillation of W and |Eσ|, which can be seen in the plot of the theoretical 4W log |Eσ|
included for comparison in the same chart.

E.4 REPRODUCIBILITY OF EXPERIMENTS

The nature-extracted datasets are publicly available in the repositories cited above.
All synthesized datasets are included in an anonymous private repository at
https://anonymous.4open.science/r/OBLB-A8F8/ and will be made publicly available upon
publication of the paper.

The simulators of OBLB and Periodic algorithms were coded in Java language, compiled in the
Java SE Runtime Environment (build 1.8.0 121-b13), and executed in a Java HotSpot 64-Bit Server
VM (build 25.121-b13, mixed mode). All code is included in an anonymous private repository at
https://anonymous.4open.science/r/OBLB-A8F8/ and will be made publicly available upon publica-
tion of the paper.

10Although it is not random, the theoretical bound of 4W log |Eσ| sometimes varies for fixed W when |Eσ|
changes.

20

https://anonymous.4open.science/r/OBLB-A8F8/
https://anonymous.4open.science/r/OBLB-A8F8/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Birds population dataset.

(b) Dolphins population dataset.

Figure 5: Experimental results on nature-extracted datasets in comparison with OBLB theoretical
running time of 4W log |Eσ|. Left: OBLB Algorithm, right: Periodic algorithm. Statistical behavior
over 20 executions for each parameter combination. All executions capped at 30000 rounds. That
is, datapoints shown at 30000 rounds in fact indicate a running time of ≥ 30000 rounds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Ant colony dataset.

(b) Mouse genes dataset (|V | = 1000, |E| = 90881 shown, larger graphs produced similar results.).

Figure 6: Experimental results on nature-extracted datasets in comparison with OBLB theoretical
running time of 4W log |Eσ|. Left: OBLB Algorithm, right: Periodic algorithm. Statistical behavior
over 20 executions for each parameter combination. All executions capped at 30000 rounds. That
is, datapoints shown at 30000 rounds in fact indicate a running time of ≥ 30000 rounds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) 3D grid dataset.

(b) Scale-free network dataset (|V | = 1000, |E| = 3994 shown, larger graphs produced similar results.).

Figure 7: Experimental results on synthetic topologies in comparison with OBLB theoretical run-
ning time of 4W log |Eσ|. Left: OBLB Algorithm, right: Periodic algorithm. Statistical behavior
over 20 executions for each parameter combination. All executions capped at 30000 rounds. That
is, datapoints shown at 30000 rounds in fact indicate a running time of ≥ 30000 rounds.

Figure 8: Experimental results on a synthetic 3D-grid topology showing that OBLB running time is
independent of n. The OBLB theoretical running time of 4W log |Eσ| is included to observe that
the oscillation of OBLB running time is due to the oscillation of W and |Eσ|. Statistical behavior
over 20 executions for each parameter combination.

23

	Introduction
	Model and Definitions
	Multiagent System Model
	Communication Model on General Bidirected Weighted Graphs
	Neighborhood Learning and Simplified OBLB Problem
	MaxAveInf Metric Function of Algorithms

	Algorithmic Upper Bound
	One-beep Local Broadcast
	Neighborhood Learning (NL)
	Extensions and Dropping Off Some Limitations

	Lower Bound
	Discussion and Open Directions
	Limitations, Additional Motivation and Other Related Work
	Limitations of our work
	Applications of WBN to Better Understanding Collective Intelligence of Bacteria
	Other Related Work

	Full Proof of Lemma 1 from Section 3.1
	Details on Extensions of the Main Algorithm, from Section 3.3
	Full Proof of Lemma 4 from Section 4
	Experimental Evaluation
	How to compute W
	Baseline algorithms
	Discussion of results
	Reproducibility of Experiments

