Under review as a conference paper at ICLR 2026

NEIGHBORHOOD LEARNING IN WEIGHTED
BEEPING NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neighborhood Learning (NL) is a fundamental tool in Multiagent Systems (MAS).
The task is for each autonomous agent to learn, in parallel, some information (e.g.,
agent identifier, message, etc.) from every neighboring agent, according to some
notion of vicinity. NL thus requires communication among neighboring agents,
which is particularly challenging if agents are tiny devices with very limited ca-
pabilities (for instance, biological systems) and may interrupt each other. In this
work, we study how the speed of learning depends on the system topology. We
model the communication environment as a Weighted Beeping Network (WBN).
In a WBN, network nodes (one for each agent) communicate by deciding whether
to beep or stay silent — all the beeps are then scaled by weights on the correspond-
ing links, and a threshold function is applied at each idle node to check if they
heard a beep or not. We introduce a novel characteristic of a WBN topology,
called Maximum Average Influence (MaxAvelnf), and we prove almost tight up-
per and lower bounds on the running time to accomplish NL task by a Multiagent
System, as a linear function of that characteristic. Although MaxAvelnf is a global
characteristic and it could be as large as the number of all agents in some networks,
even with small neighborhoods, for networks with small value of MaxAvelnf we
succeeded to give a provably-efficient nearly-optimal algorithmic solution.

1 INTRODUCTION

In this work, we study Neighborhood Learning (NL) in Multiagent Systems (MAS). To solve NL,
each agent must, in parallel, receive an information from every neighboring agent, according to
some notion of vicinity. Parallel NL is then a fundamental tool for typical computations in MAS
where agents must communicate with all neighbors (e.g., Ba et al.|(2024); |Chen et al.| (2024)); [Du
et al.| (2024); L1 et al.| (2024)); [Liu et al.| (2024Db)).

Smart agents’ systems are common in nature, and their environment is often harsh and
communication-restrictive, e.g., insect colonies, bird flocks, bacteria populations, and others (see
the recent survey by [Liu et al.|(2024a)). As a subfield of Swarm Intelligence, smart agents enable
a collective of organisms or entities to exhibit a whole-system intelligence. This is done by having
each member communicate and analyze (typically) simple “wireless” signals between peers.

One of the simplest classic models of ad hoc communication reflecting those natural mechanisms is
the Beeping Network (BN)|Cornejo & Kuhn|(2010);/Afek et al.| (2011} 2013). BNs are graphs where
a pair of nodes are neighbors if they can communicate directly (i.e., without relays), modeled with a
link between them. At any given time a node can either beep (emit some signal with no embedded
information but the presence of the signal) or listen. Beepers beep in an attempt to propagate infor-
mation, but listeners cannot distinguish between single and multiple beeps received simultaneously.

In this work, we extend the BN communication model to weighted graphs, which we call Weighted
Beeping Networks (WBN). In WBNSs, an ordered pair of nodes is connected by a link if the weight
associated with that link is positive; here, weights on links model various environmental features
that influence the perceived strength of a beep. Notice that this modeling choice does not restrict
the scope of application of our study, since a non-existing link is simply a link with weight zero,
and nodes do not know link weights. Then, a beep from a beeper u is received by a listener v
depending on the influence of u on v (i.e., the weight of link (u,v)) with respect to the influence

Under review as a conference paper at ICLR 2026

of other beepers.Accordingly, we define the NL problem restricted to influential neighbors, by set-
ting a parametric threshold o for a neighbor to be influential that depends on the application]'| The
WBN model is a simple (weighted-graph based) yet fundamental (threshold for delivery of weighted
information, every info bit accounted for by some beep) MAS model. Many “richer” wireless com-
munication models, e.g., Radio Networks and SINR |Kowalski et al.[(2020); [Kowalski & Mosteiro
(2025), can be implemented in WBN, whereas biological communication systems, e.g., bacteria
signaling [Moreno-Gamez et al.| (2023) can be abstracted by WBN using binary coding for different
communication molecules and specific threshold for combined influence (see Appendix [A.2)).

QOur contribution and broader discussion. We study Neighborhood Learning in a MAS of n
agents under the WBN model, where each agent is installed in one network node. In particular, we
show how to design a provably efficient NL algorithm, run autonomously in parallel by agents.

Most importantly, we identify a characteristic of WBNs, which we call Maximum Average Influence
(MaxAvelnf) and denote as WW. The NL problem, similarly to almost all complex graph problems,
does not have a concise formula for exact number of rounds. E.g., time-related parameters (mixing,
covering, etc.) of random walks are only approximated by concise formulas, such as vertex/edge
expansion or conductance. We follow the same methodology and show mathematically that

W is a good approximation of the shortest solution to the (parallel) NL problem,

by showing that the ratio between the upper and lower bound is O(log2 n). More precisely, we
show in Sec. [3| that our NL algorithm locally propagates messages of length M in O(W logn -
(M +log n)) rounds on any topology graph G with MaxAvelnf at most W (see Theorem[2). (Note
that the additive log n comes from attaching the node identifier to the message, and it subsumes M
for short messages, i.e., M = O(logn).) This bound holds with high probability, i.e., with error
polynomially small in n. For clarity, we present and analyze our algorithm in three steps: first we
present a simplified version of NL, called One-beep Local Broadcast (OBLB), in which only one bit
of information has to be delivered (i.e., M = 1) — for settings where only W and a polynomial upper
bound on 7 are known, and all agents start execution simultaneously (Sec. [3.I); then we generalize
our techniques to NL (Sec. [3.2); and finally, we show how to remove the knowledge of W and
synchronization assumptions,

In Section for OBLB we prove an almost matching lower bound of (W) (see Theorem . This
lower bound automatically holds for NL, as a more general problem. To prove the lower bound, we
show an adversarial input on which any OBLB algorithm requires the claimed time. Motivated by
the topology of classic neural networks, we used a bipartite graph with certain weight function — we
conjecture that our approach could be further extended to other more specific network classes, such
as multi-layered networkf] or scale-free graphs. In fact, our extensive experimental study strongly
indicates that such lower bound applies to a variety of real-world and (commonly used) synthetic
topologies (e.g., grids or scale-free graphs).

Our technical results above have important implications on the efficiency of parallelization of Neigh-
borhood Learning. MaxAvelnf is a global characteristic that could be as large as the number of all
agents, even if the influential neighborhoods (i.e., the sets of influential links connected to each
receiver) are smallE] Given the locality of the NL problem, one would expect to solve it fast in paral-
lel in small neighborhoods. However, our lower bound shows that executing NL in parallel may be
costly, even in networks with small degree (but with high MaxAvelnf). To the best of our knowledge,
ours is the first theoretical analysis of upper and lower bounds for the NL in WBN model.

Additionally, in Appendix [E| we include a thorough experimental evaluation of our algorithms on
two potential learning environments: social networks in the natural world (four datasets), on top
of which nano-devices could be deployed, and ad-hoc infrastructures (3D-grid, scale-free nets),
deployed possibly for other purposes, for instance, for simultaneous scanning and learning. Our
experiments show that our theoretical analysis is almost tight and constants hidden in the asymptotic
notation are reasonably small. We also show that performance of our algorithm is much better than
other algorithms (such as round-robin or periodic transmissions schedules with initial random shift).

!This threshold models a fundamental physical reality: signal detection requires sufficient signal-to-noise
ratio. Our specific threshold is normalized to 1, but it can be generalized to any constant.

*Multi-layered WBNs could be seen as beeping neural networks, similarly to spiking neural networks.

3E.g., a WBN where each node has only one influential link, and all remaining links have influence just
below the threshold.

Under review as a conference paper at ICLR 2026

2 MODEL AND DEFINITIONS

2.1 MULTIAGENT SYSTEM MODEL

We consider a Multiagent System (MAS) formed by n autonomous agents, each installed on a node
of a Weighted Beeping Network (WBN). Nodes have communication and computational capabili-
ties, and each node is labeled with a unique ID of O(logn) bits. Time is discretized in slots, also
called rounds. In each slot a node may be either beeping, i.e., sending a beepﬂ or listening. A time
slot is long enough to beep, or hear a beep if listening (see Sec.[2.2]for details), and possibly perform
one bit read/write/compare operation in local memory, which are assumed to take negligible time
with respect to the time required by the communication. When presenting main ideas, we assume
clock synchronization, but we also show how to get rid of this limitation later (Sec.[3.3]and App.[C).

2.2 COMMUNICATION MODEL ON GENERAL BIDIRECTED WEIGHTED GRAPHS

Due to various reasons (communication interference, preference, etc.), the beep of a node may
be perceived differently by two other nodes. We model this communication phenomenon with an
influence function w : V x V. — R* U {0} where V is the set of network nodes, and for any
z,y € V,w(x,z) = 0 and w(z,y) = w(y,x). The network topology is modeled by a general
bidirected weighted graph G = (V, E), where E = {z,y|z,y € V A w(zx,y) > 0} is the set of
bidirected linksE] and the weight function is the influence function defined above. An example of a
topology graph can be seen in Figure[Ia] A link from beeper = € V to listener y € V' is denoted as
(z,y), and the set of nodes beeping at time ¢ is denoted as V' (¢). In each time slot, a listening node
may hear: silence if none of its neighbors in G beeps in this time slot, or a beep otherwise.

0.3 c

(a) (b)

Figure 1: Beeping communication model. Fig. (a) Example of WBN topology modeled by a bidi-
rected weighted graph, where weights correspond to influence, see Section The arrows of each
bidirected link are omitted for clarity. Fig. (b) Example of the beep delivery concept, as defined in
Sec.[2.3] The depicted arrows point from the beeping nodes to their neighbors, while the remaining
arrows are omitted. Consider a time slot when nodes b, d, and e beep (in red) and a, f, and c listen.
Node a hears a single beep from e, hence this beep is also delivered to e from a (indicated in green).
Node f also hears a beep, caused by its two beeping neighbors: b, with influence 0.2, and e, with
influence 1.2; hence, the beep from e is delivered to f (indicated in green) while the beep from b is
not. Node c also hears a beep, caused by its three beeping neighbors: b, with influence 1.3, node e,
with influence 0.2, and d, with influence 1; as a result, no beep from any neighbor is delivered to c.

2.3 NEIGHBORHOOD LEARNING AND SIMPLIFIED OBLB PROBLEM

We start with the following definitions. For any constant o > 1, called influence threshold, let

E, C FE be the subset of links with influence at least o, that is E, = {(z,y) € E|lw(z,y) > o}.
We call these links influential 0|

4Some kind of a signal, such as radio, light, sound, etc.

SEven though the weight is the same in both directions, we use bidirected links to be able to specify the direc-
tion of communication when needed. Graph G can be arbitrary — weight 0 means no edge in E' (no influence).

®Influence is defined as a link attribute because a given beeper may have different influence on different
neighboring listeners. Nevertheless, given that influence is a concept of beepers on listeners, we also refer to
the influence of (or on) nodes for clarity of exposition.

Under review as a conference paper at ICLR 2026

Definition 1. Given a constant ¢ > 1 and a WBN with set of influential links E, where each
node holds a message, the Neighborhood Learning Problem is solved in ' time slots if, for each
influential link (x,y) € E,, by the end of slot T node y has learned the ID and message of node x

by analyzing the sequence of beep/silence heard.

The threshold o restricts learning only to neighbors connected by links in E,. Nevertheless, nodes
with lower influence are still around and may interfere with the reception of information from influ-
ential neighbors (see the delivery condition below).

In order to design and analyze efficient algorithms for Neighborhood Learning, we introduce a
simpler problem. The main concept here is a “delivery of a beep” from x to y (with w(z,y) >
o), which describes a situation when node y heard a beep while node = beeped, but also that the
influence of the other beepers on y was small. More formally, we say that a beep from node x was
delivered to node y in some time slot ¢, if the following happened in time slot ¢:

(Delivery Condition:) x beeped, y listened, and the aggregated influence on y of
all other beepers in V(t) was less than 1 (i.e. 3, cy (4,2, w(2,y) < D).

Figure |1 b|illustrates an example of delivery. Note that y may not recognize whether the heard beep
was actually a delivery of a beep from x, yet assuring that such deliveries occur eventually is an
important intermediate goal to achieve.

The simplified version of the main problem is as follows:

Definition 2. Given a constant 0 > 1 and a WBN with set of influential links E,, the One-beep
Local Broadcast (OBLB) Problem is solved in T time slots if, for each influential link (x,y) € E,,
by the end of slot T a beep has been delivered from x to y.

2.4 MAXAVEINF METRIC FUNCTION OF ALGORITHMS

We measure algorithmic performance in time slots as a function of |E,| and the following charac-
terization function of a WBN, called Maximum Average Influence (MaxAvelnf):

1
W = nax 2 Z Z w(z,y) .

(z,y)EL’ (2,y)EE

MaxAvelnf is the maximum cumulative influence the receiver of an average link in any subset of
E, (links with influence above threshold) can experience, from the transmitters of all other links.
Increasing the parameter o we restrict the information to be learned (neighborhoods may shrink),
but we may learn it faster as W is monotonically non-increasing with growing o. In Figure (1] for
example, setting ¢ = 1 means that only 4 links have to deliver information (beeps). Nevertheless,
links with smaller influence may still deliver some “false beeps” that the algorithm has to mitigate.

The analysis of our Neighborhood Learning algorithms holds with high probability (whp), i.e., with
probability at least 1 — n® for some arbitrary constant ¢ > 0. This constant could scale up by in-
creasing the constant factor embedded in the asymptotic formula (on the number of beeping rounds).

3 ALGORITHMIC UPPER BOUND

We first present and analyze a solution to the simplified one-beep version of Neighborhood Learning,
called One-beep Local Broadcast as in Definition [2] (Sec. 3.1). Next, we generalize it to any NL
input (Sec. [3.2). Extensions of our algorithms are given in Sec. [3.3] and full versions of sketched
proofs are in the Appendix.

3.1 ONE-BEEP LOCAL BROADCAST
Consider the following One-beep Local Broadcast algorithm:
In each time slot, each node beeps with probability p < ﬁ .

The following analysis shows correctness and upper bound on the running time of this algorithm.

Under review as a conference paper at ICLR 2026

Lemma 1. Consider any subset of links E!. C E,, such that for each (x,y) € E. node x beeps
with probability p < 1/(4W) and the remaining nodes are idle. Then, the expected number of links
in B! where a beep is delivered is at least |E.|(1 — p)p/4.

Proof sketch: For a given local broadcast protocol, let X, (¢) be a random variable indicat-
ing whether node € V beeps at time ¢, and let X, ,(¢) be a random variable indicating
whether a beep from x was delivered to y at time t. To prove the lemma, we need to show:

E (S oues, Xoult)) 2 B4 = p)p/4.

By linearity of expectation, for M = {(z,y) € E;|>_ oy w(z,y) <2W}:

E(Y X)) = Y B+ Y EX®)= > E(X.,®)

(z,y)EE! (z,y)eM (z,y)eE!\M (z,y)eM
= Y PrXu,(t)=1)= > Pr(X,,t)=1X.(t)=1AX,(t)=0)-p(l-p).
(z,y)eM (z,y)eM

Recall that, for any (z,y) € E, the conditions to deliver a beep from node x to node y at time ¢ are:
Xy(t) =0, and w(z,y) - Xy(t) = 0, and 3_ oy (4.2, w(2,y) X:(t) < 1. From the conditions to

deliver a beep and by Markov inequality we bound complementary event:

Pr(Xey (1) = 01X, (6) = 10X, () =0) = Pr(> w(zp)Xa®)21) <p 3 w(zy).
z€V (t):z#x z€V (1)

By upper bounding }©_ () w(z,y) < 2W (by definition of M) and p < 1/(4W) (by the condition

of the lemma), we get Pr (X, ,(t) = 0/X;(t) = 1 A X, (¢) = 0) < 1/2. Putting them all together,

To conclude the proof, it remains to show that |[M| > |E’|/2. It follows from the Pigeonhole
principle applied to W = maxg/c g, ﬁ > (eayerr 2omev(n Wz y), in which the complementary

set B, \ M = {(z,y) € Eg| X,y w(z,y) > 2W} must have at most | E7 | /2 elements. O

1

Theorem 1. For p < W

< One-beep Local Broadcast can be solved
in O(W log |E|) time slots whp.

Proof. Consider an execution of a One-beep Local Broadcast protocol. Let E((,t) C FE, be the set
of links with influence at least o where a beep was not delivered before the beginning of time slot

t=1,2,.... Thatis, E,(Tl) = FE,. By Lemma for p < 1/(4W) we have that for any ¢ > 1 it is
E ([ESY||IEL =) < (1— (1 —p)p/4)i.

I, |
Then, itis: E (|E§t+1>|) <3 Pr(IEY| = i)(1 - (1 - p)p/4)i
1=0

= (1= (L =p)p/VE (|EL]) = (1 = (1= p)p/4)'| B |

Notice for the latter inequality that transmitters do not need to switch off because in Lemma [I] the
influence is added over all neighbors, regardless of whether a beep has been delivered already or not.

On the other hand, by Markov inequality, the probability that One-beep Local Broadcast has not
been solved at the beginning of time slot £ 4 1 is

Pr(IES9 2 1) < B (IESH]) < (10— (1= p)p/4)'| Bl
Fixing t = (4/((1 — p)p)) In(n|E,|), which is in O(W log n), we have that

i In(n|E,|)
(t+1) (I =pp\ T 1 _
Pr (|EU | > 1) < (1 —1 |E,| < SIS |Es| = 1/n.

Thus, the claim of the theorem follows. O

"Note that Markov inequality does not require independence of the random variables (see
Thm. 3.1 inMitzenmacher & Upfal (2005)).

Under review as a conference paper at ICLR 2026

Algorithm 1: Neighborhood Learning algorithm, pseudo-code for a node v

Input (upper bounds on) parameters n, W, M
T < upper bound on time computed locally in analysis of Theorem[I] based on given n, W
a, < beeping pattern computed according to the definition of «,, in the main text
fori=1,2,...,7do
if Random(1/(4W)) = 1 then

L node v beeps in the 2log n + M rounds of the super-round ¢ according to pattern a,

else
node v stays silent and records the feedback in the 2logn + M rounds of the
super-round ¢ into string 3, ;

fori—1,2,...,7do
if B, is valid then
| node v locally (no beeping round is needed) decodes /3, ; into a pair of ID and message

Oiltput decoded pairs (without redundancies), each containing node ID and message

3.2 NEIGHBORHOOD LEARNING (NL)

In this section, we generalize the algorithm and analysis from Section[3.1]to Neighborhood Learning
(Definition[T). It is run locally and autonomously by each node v. The input contains, apart of the
identifier of node v (given by a binary string of length logn) and an input message: the number
of nodes n, the maximum average influence W, and the maximum size of a message M. In Sec-
tion [3.3] we show how to get rid of assumptions of known W and synchronization, and relaxing the
requirement of knowing n to only a polynomial upper bound on n.

Algorithm’s structure. The pseudo-code of the Neighborhood Learning algorithm is given in Al-
gorithm|[I] The algorithm partitions rounds into consecutive windows of time, called super-rounds,
each of length 2logn + M, where M is the maximum length of a message sent. The number of
super-rounds, denoted by 7, is computed as in the time analysis of the One-beep Local Broadcast al-
gorithm in Theorem|1} The algorithm also uses a random generator Random(1/(4W)) that produces
1 with probability 1/(4W), and 0 otherwise.

Super-round :. In the beginning of a super-round 4, each node v performs local ac-
tion as in round ¢ of the One-beep Local Broadcast algorithm (see Section [3.I). It uses
the random generator. If the decision is to beep, then it beeps in its ith super-round
according to the following beeping pattern, denoted o.,,:

* if there is bit 1 in position j of ID of node v, it beeps and stay silent in rounds 25 — 1 and
27 of its super-round, resp.

» if there is bit O in position j of ID of node v, it stay silent and beeps in rounds 25 — 1 and
27 of its super-round, resp.

e inrounds 2logn + 1,...,2logn + M of its super-round, node v beeps according to the
bit representation of its message (i.e., it beeps for bit 1 and stays silent for bit 0); if there
are less than M bits in the message, it piggybacks the message with the 0’s until the end of
the super-round.

If, however, the decision is not to beep, node v stays silent during the whole super-round ¢ and
records the received sequence of beep/silence into a binary string /3, ;.

We call a super-round i valid for node v if v has been listening during the super-round and its
recorded feedback (3, ; has the following property: the number of 1’s in the first 2 log n positions of
By,i is exactly log n.

Final decoding. At the end of Algorithm node v decodes each (3, ; of a valid super-round i:

* if there are bits 10 at positions 25 — 1,27, for j < logn, it decodes bit 1 and puts it at
position j of the decoded ID;

Under review as a conference paper at ICLR 2026

* if there are bits 01 at positions 25 — 1,27, for j < logn, it decodes bit 0 and puts it at
position j of the decoded ID;

* inround 2logn + j, for j < M, node v decodes 1 and puts it in position j of the decoded
message if it heard a beep, and decodes 0 if there was a silence.

Then, node v puts pairs, containing decoded ID and message, to its output, removing redundancies.

Algorithm analysis. We call a neighbor of node v influential if the link between them is influential.

Lemma 2. [f there is only one influential neighbor of a node v choosing to beep in the considered
super-round i, and the aggregated influence on v from other neighbors in this super-round is smaller
than 1, then node v correctly decodes the other node’s ID and message from sequence [3, ; at the
end of the algorithm.

Proof. The crucial observation is that if there is only one influential neighbor of v that chooses to
beep in the super-round ¢, say node v*, and the aggregated influence from other neighbors of v is
smaller than 1, then the operations of beeping according to pattern a.,~ is directly received by v, in
the sense that 3, ; = c,~. In such case, observe that decoding is the actual reversed operation to
encoding the pattern (i.e., reversed to creating pattern «,«), and in this sense can uniquely decode
the ID of v* (based on the first 2logn bits of sequence /3, ;) and the message of v* (based on the
remaining M bits of the sequence). O

Lemma 3. If two or more influential neighbors of a node v beep in the beginning of a super-round
1, then node v ignores the information received in this super-round in sequence f3,, ;.

Proof. 1t follows from the fact that v can recognize that at least two of its influential neighbors
beeped, or that the aggregated influence from other neighbors is at least 1, by analyzing the first
2logn rounds of this super-round. More precisely, among these bits, there would be more than
log n beeps in these rounds, while in the case of one influential neighbor and aggregated influence
of others smaller than 1 there should be exactly log n beeps in the received sequence 3, ;. O

Theorem 2. Forp < 1/(4W), Neighborhood Learning can be solved in O(W logn - (logn + M))
time slots whp.

Proof. We combine Theorem [I] with Lemma 2] to conclude that for any node v and any of its influ-
ential neighbors v*, there is a super-round ¢ when v* is the only influential neighbor of v that beeps,
and the aggregated influence of other neighbors of v is smaller than 1. Thus, the ID and message of
v* are correctly decoded by v at the end of the algorithm.

Lemma [3] implies that node v correctly ignores information that could come from more than one
influential neighbor or be “too noisy” by aggregated influence of others — node v correctly recognize
it as non-valid.

The number of rounds is 7 - (2logn + M). By Theorem |1} which analysis is used to compute T,
and by asymptotic |E,| = ©(n), the total number of time slots is O(W logn - (logn + M)). O

3.3 EXTENSIONS AND DROPPING OFF SOME LIMITATIONS

Our main algorithm in Sec. [3.2] can be extended in the following ways — see details in Appendix [C|

Arbitrary (unknown) W and only polynomial upper bound on n. The algorithm only needs a
polynomial upper bound on n, as n occurs under logarithm in the formula on MaxAvelnf in The-
orem 2] The algorithm could be transformed into one without the need of knowing W in advance,
by doubling estimates of W, using acknowledgments and stopping condition. The number of steps
increases only by a constant factor.

For the sake of our experiments in Appendix |[El we designed a stochastic estimation of W, which
is quite accurate on the tested inputs, without significant affectance on algorithm performance.

Under review as a conference paper at ICLR 2026

De-synchronized systems. Due to a relatively simple structure and various checking mechanisms
in our algorithm, it can be extended to de-synchronized setting (with clock shifts) by using the known
synchronizing methods for beeping networks, see e.g., the recent work by |De Marco & Kowalski
(2025). These methods require only a constant overhead, and transform algorithms with structures
similar to ours from fully synchronized into de-synchronized solutions.

Dynamic weights and noise. Noise and other physical conditions are captured by link weights. Al-
though NL cannot be solved in WBN under fully dynamic weights, it could if dynamicity is limited.

4 LOWER BOUND

In this section we prove that any Neighborhood Learning algorithm takes at least (W) beeping
rounds in some WBN. In fact, even a simplified One-beep version of the problem requires such
number of beeping rounds in some networks.

In the analysis of this section we will show an adversarial WBN that requires the claimed running
time. The network topology of such WBN is a complex bipartite graph (non-existing links corre-
spond to weight 0 between the end nodes).

We start with a technical lemma (with detailed proof and additional figures in Appendix[D)), followed
by the main theorem.

Lemma 4. Consider a WBN with a complete bipartite topology graph (B, L, E), where B is a set
of beepers, L a set of listeners, E = {(b,0)|b € BA{ € L}, and |B| = |L|. The network is
embedded in a metric space with distance function d : B x L — RT. The influence function is
w(b, €) = dmin/d(b,?) for all (b,£) € E, where dyiy is the smallest length among all links in E.

Consider some link (b, ') € E and a set of links E C E such that (', ") ¢ E. Then, if it is possible
to deliver a beep in each link (b, {) € € in one time slot, itis 3, y)cc w(b, ') € O(1).

Proof sketch: To prove the claim we split the set of links £ into distant and close with respect to
listener ¢’. For the set £.jyse Of close links, we upper bound the influence of their beepers on ¢’
simply by |E.iose| (since each link has influence at most 1), and we bound |E.;,sc| by a constant
using a geometric argument and the fact that a beep is delivered through every link in &.,s.. For
the set £y;4¢ of distant links, we bound the influence of their beepers on ¢, by their influence on a
listener at shortest distance from ¢/. We bound the latter by a constant using a geometric argument
and the fact that a beep is delivered through every link in £. The details follow.

Let 2r be the shortest distance from any listener in £ to listener ¢'. Let Eupse = {(b,€) €
E|d(b,€') < r}, that is the set of links (b,¢) € £ whose beeper b is within distance r from lis-
tener /. We bound first the influence of close beepers on ¢’ as

dmin
Sowey= Y d(b,ef)§‘501058|<4' (1)

(bve)e Eclose (b7£)€ Eclose

The latter inequality can be proved using a geometric argument (whose boundary case is illustrated
in Figure [3a]in the Appendix), and the conditions for successful delivery of a beep.

We now bound the influence of beepers in Eg;5t = € \ Eciose 0on listener ¢ as follows.

Soowb)= Y d‘é“i;) <6,)

(b,0)€ Easst (b,0)€ Eaist

where the latter inequality can be also proved using a geometric argument (whose boundary case
is illustrated in Figure |3bjin the Appendix), and the conditions for successful delivery of a beep.
Combining the bounds in Equations [I|and 2] the claim follows. O

Theorem 3. There exists a WBN and influence function such that, to solve the Neighborhood Learn-
ing problem, Q(W) time slots are required with probability 1, where W is the MaxAvelnf.

Proof. We prove the claim showing an adversarial WBN where even One-beep Local Broadcast
in a subset of links requires the claimed running time. Specifically, consider a complete bipartite

Under review as a conference paper at ICLR 2026

WBN (B, L, E) as required by Lemma Let the nodes be labeled as B = {by,bs,...,b,} and
L = {l1,4s,...,¢,}, for some n > 1. Nodes are placed in space so that, for some di, > 0 and
foralli,j € [n],if ¢ # jitis d(b;, 4;) > dmin, Or otherwise it is d(b;, £;) = dmin, and every beeper
(resp. listener) has the same distribution of influence among its outgoing (resp. incoming) links (see
a deployment example in Figure[2)).

Figure 2: Example of adversarial network for n = 6.

Under the above definition the influence threshold is 1 and the set of influential links is F; =
{(b“ 62)|Z S [n]} Recall that W = maxg/C g, ﬁ Z(b’Z)GEl Z(b’,é)GE UJ(b/, Z)

Given that all listeners have the same influence distribution among their incoming links, the whole
set &1 maximizes W, that is

LY Y wn=ta Y wh=1+ Y wbh).

(b Z)EEl b/ f)EE (b e SN (b,z)EEl\{(bl}Zl)}

The middle equality is true because all listeners have the same distribution of influence among its
incoming links. Let 7'(E7) be the number of time slots needed to solve One-beep Local Broadcast
on E by some protocol P. Applying Lemmafd]to each time slot of the execution of P, we have that
for link (b1, £1) € Eitis 30, pyep\ (by,e0)) W(bs €1) € O(T'(E1)). The latter holds regardless of

whether P uses randomization or not. Thus, replacing, we get W € O(T'(E;)) with probability 1,
and the claim follows. O

5 DISCUSSION AND OPEN DIRECTIONS

We showed, using formal analysis, that the complexity of Neighborhood Learning in WBN net-
works is nearly-linearly proportional to the newly introduced characteristic — MaxAvelnf. Such
characteristic is global, and its range may span from a constant to the number n of all agents, de-
pending on the weighted network (even if neighborhoods are small). Our lower bound shows that
executing Neighborhood Learning in parallel may be costly even in networks with small degree (but
with high MaxAvelnf). On the other hand, for networks with small MaxAvelnf (which was also
the case in most of the considered nature-driven and synthetic datasets, see Section[E.3)), we give a
provably-efficient nearly-optimal algorithmic solution. Our theoretical bounds achieve a gap of at
most (M + logn) logn between the upper bound (for messages of length M) and lower bounds
(for single-bit messages). That means that our upper bound is nearly-optimal for systems with short
messages M € O(logn), yielding a gap of O(log® n). That is, our algorithm is well scalable. Ap-
pendix [E| contains experimental analysis confirming our theoretical results on diverse nature-driven
and synthetic datasets. Our algorithm also outruns other competitors.

Interesting open problems include: the study of more complex nature-inspired models in the WBN
framework (including binary encoding of more complex model features), more complex learning
problems, the relation between the influence threshold o and the MaxAvelnf W, and provably accu-
rate estimation methods of the latter. We conjecture that our general lower bound could be improved
for specific graph topologies, e.g., for (nearly-) uniform degree graphs.

Under review as a conference paper at ICLR 2026

Reproducibility statement. This paper contains all the details of our theoretical study, including
the presentation of our algorithms, pseudocodes, and upper and lower bound proofs. Due to space
constraints, the details of certain proofs have been relegated to Appendix [B|and [D] as well as the
details of algorithmic extensions to Appendix [C] A full description of our extensive experimental
study can be found in Appendix [E] including citations to the publicly available datasets tested, as
well as to an anonymous repository where we uploaded all the code and input/output data. Further
details on experimental part, such as our computational platform, are included in the reproducibility
section of Appendix

REFERENCES

Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv Bar-Joseph. A
biological solution to a fundamental distributed computing problem. Science, 331(6014):183—
185, 2011.

Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and Fabian
Kuhn. Beeping a maximal independent set. Distributed computing, 26(4):195-208, 2013.

Eyjolfur I Asgeirsson, Magniis M Halld6rsson, and Tigran Tonoyan. Universal framework for wire-
less scheduling problems. In 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Yanwen Ba, Xuan Liu, Xinning Chen, Hao Wang, Yang Xu, Kenli Li, and Shigeng Zhang.
Cautiously-optimistic knowledge sharing for cooperative multi-agent reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17299-17307,
2024.

Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and Diego Di Bernardo. How to
infer gene networks from expression profiles. Molecular systems biology, 3(1), 2007.

Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509-512, 1999.

Joffroy Beauquier, Janna Burman, Fabien Dufoulon, and Shay Kutten. Fast beeping protocols for
deterministic mis and (6+ 1)-coloring in sparse graphs. In IEEE INFOCOM 2018-1EEE Confer-
ence on Computer Communications, pp. 1754-1762. IEEE, 2018.

Jingdi Chen, Tian Lan, and Carlee Joe-Wong. Rgmcomm: Return gap minimization via discrete
communications in multi-agent reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17327-17336, 2024.

Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Distributed
Computing: 24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-15,
2010. Proceedings 24, pp. 148—162. Springer, 2010.

Peter Davies. Optimal message-passing with noisy beeps. In Proceedings of the 2023 ACM Sympo-
sium on Principles of Distributed Computing, pp. 300-309, 2023.

Gianluca De Marco and Dariusz R. Kowalski. Ultra-resilient superimposed codes: Near-optimal
construction and applications. In 52nd International Colloquium on Automata, Languages, and
Programming, ICALP 2025, July 8-11, 2025, Aarhus, Denmark, volume 334 of LIPIcs, pp. 65:1—
65:20, 2025.

Shihao Dong, Tao Lin, James C Nieh, and Ken Tan. Social signal learning of the waggle dance in
honey bees. Science, 379(6636):1015-1018, 2023.

Xiao Du, Yutong Ye, Pengyu Zhang, Yaning Yang, Mingsong Chen, and Ting Wang. Situation-
dependent causal influence-based cooperative multi-agent reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17362-17370, 2024.

Alexander Fanghénel, Thomas Kesselheim, and Berthold Vocking. Improved algorithms for latency
minimization in wireless networks. In 36th International Colloquium on Automata, Languages
and Programming (ICALP), pp. 447-458. Springer Berlin Heidelberg, 2009.

10

Under review as a conference paper at ICLR 2026

Alexander Fanghénel, Thomas Kesselheim, and Berthold Vocking. Improved algorithms for latency
minimization in wireless networks. Theoretical Computer Science, 412(24):2657 — 2667, 2011.

Josh A Firth and Ben C Sheldon. Experimental manipulation of avian social structure reveals seg-
regation is carried over across contexts. Proceedings of the Royal Society B: Biological Sciences,
282(1802):20142350, 2015.

W Claiborne Fuqua, Stephen C Winans, and E Peter Greenberg. Quorum sensing in bacteria: the
luxr-luxi family of cell density-responsive transcriptional regulators. Journal of bacteriology, 176
(2):269-275, 1994.

Michael Y Galperin. Bacterial signal transduction network in a genomic perspective. Environmental
microbiology, 6(6):552-567, 2004.

Stefanie Gazda, Swami Iyer, Timothy Killingback, Richard Connor, and Solange Brault. The impor-
tance of delineating networks by activity type in bottlenose dolphins (tursiops truncatus) in cedar
key, florida. Royal Society Open Science, 2(3):140263, 2015.

Magniis M. Halldérsson and Roger Wattenhofer. Wireless communication is in apx. In Proc. of the
36th International Colloquium on Automata, Languages and Programming (ICALP), pp. 525-
536, 2009.

Magniis M. Halldérsson and Roger Wattenhofer. Wireless Network Algorithmics, pp. 141-160.
Springer International Publishing, Cham, 2019. ISBN 978-3-319-91908-9.

Thomas Kesselheim. Dynamic packet scheduling in wireless networks. In Proc. of the 31st Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 281—
290, 2012.

Thomas Kesselheim and Berthold Vocking. Distributed contention resolution in wireless networks.
In Proc. of the 24th International Symposium on Distributed Computing (DISC), volume 6343 of
Lecture Notes in Computer Science, pp. 163—178. Springer-Verlag, Berlin, 2010.

Dariusz R Kowalski and Miguel A Mosteiro. On the complexity of deterministic distributed wire-
less link scheduling. In Proceedings of the 45th IEEE International Conference on Distributed
Computing Systems. IEEE, 2025. To appear.

Dariusz R. Kowalski, Miguel A. Mosteiro, and Tevin Rouse. Dynamic multiple-message broadcast:
bounding throughput in the affectance model. In 10th ACM International Workshop on Founda-
tions of Mobile Computing, FOMC 2014, Philadelphia, PA, USA, August 11, 2014, pp. 39-46,
2014.

Dariusz R Kowalski, Miguel A Mosteiro, and Krutika Wadhwa. Generic framework for optimization
of local dissemination in wireless networks. In International Conference on Networked Systems,
pp. 244-260. Springer, 2020.

Dariusz R. Kowalski, Miguel A. Mosteiro, and Kevin Zaki. Dynamic multiple-message broad-
cast: Bounding throughput in the affectance model. Theory Comput. Syst., 67(4):825—
854, 2023. doi: 10.1007/S00224-023-10131-1. URL https://doi.org/10.1007/
s00224-023-10131-1.

Chao Li, Yupeng Zhang, Jianqi Wang, Yujing Hu, Shaokang Dong, Wenbin Li, Tangjie Lv, Changjie
Fan, and Yang Gao. Optimistic value instructors for cooperative multi-agent reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17453—
17460, 2024.

Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph neural
networks in epidemic modeling. arXiv preprint arXiv:2403.19852, 2024a.

Zeyang Liu, Lipeng Wan, Xinrui Yang, Zhuoran Chen, Xingyu Chen, and Xuguang Lan. Imagine,
initialize, and explore: An effective exploration method in multi-agent reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17487-17495,
2024b.

11

https://doi.org/10.1007/s00224-023-10131-1
https://doi.org/10.1007/s00224-023-10131-1

Under review as a conference paper at ICLR 2026

Danielle P Mersch, Alessandro Crespi, and Laurent Keller. Tracking individuals shows spatial
fidelity is a key regulator of ant social organization. Science, 340(6136):1090-1093, 2013.

Melissa B Miller and Bonnie L Bassler. Quorum sensing in bacteria. Annual Reviews in Microbiol-
0gy, 55(1):165-199, 2001.

Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press,
2005.

Stefany Moreno-Gamez, Michael E Hochberg, and GS Van Doorn. Quorum sensing as a mechanism
to harness the wisdom of the crowds. Nature communications, 14(1):3415, 2023.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.
https://networkrepository.com.

Christopher M Waters and Bonnie L Bassler. Quorum sensing: cell-to-cell communication in bac-
teria. Annu. Rev. Cell Dev. Biol., 21(1):319-346, 2005.

APPENDIX

A LIMITATIONS, ADDITIONAL MOTIVATION AND OTHER RELATED WORK

A.1 LIMITATIONS OF OUR WORK

From a theoretical perspective, we considered one of the simplest models of ad hoc environment
with communication by beeping, WBN. We used a minimum set of model assumptions, but still
we took into account weighted interactions and threshold function to separate hearing a beep from
silence. Thus, our results could be transformed to more complex models and real datasets of ad hoc
environments. Such transformations are, however, not straightforward and require further studies,
depending on the complexity of the considered variant of the communication model. For instance,
when applying our algorithm to the bee colony environment, one needs to take into account that
bees communicate using complex signals called “waggle dance”; it could be encoded into a binary
sequence, see Dong et al.| (2023), however a future study should take into account that not every
binary sequence represents a valid waggle dance (i.e., recognized by bees).

A.2 APPLICATIONS OF WBN TO BETTER UNDERSTANDING COLLECTIVE INTELLIGENCE OF
BACTERIA

Our WBN model can be seen as an abstraction of chemical communication mechanisms used by
bacteria. Specifically, in quorum sensing |Moreno-Gamez et al. (2023) bacteria release/sense some
autoinducers (= beeps) to the intercellular space. Upon reaching a threshold concentration (=
influence threshold), autoinducers trigger cascades of signal transduction which regulate processes
such as biofilm formation, virulence, competence and sporulation [Miller & Bassler| (2001); |[Fuqua
et al.| (1994); |Waters & Bassler| (2005). Cooperation among bacteria as a multi-cellular (multiagent)
system has been here for billions of years. A connection between WBN and bacteria colonies
may lead to a better understanding of their collective intelligence, as well as interactions with (and
collaborative influence to) surrounding cells of other organisms. For instance, next step could be
to extend the WBN model to different types of beeps in order to model even more complex signal
transduction processes (see|Galperin| (2004)).

A.3 OTHER RELATED WORK

A related problem of local broadcast has been recently studied in simple beeping networks (without
weights and thresholds), although there is still a polynomial (in terms of the maximum node degree)
gap between the best known upper and lower bounds’ formulas, see Beauquier et al.| (2018)); |Davies
(2023)) resp.

From a technical perspective, the closest related work is on link scheduling in wireless networks.
The similarities include: ad hoc network structure and potential impact of one node communication

12

https://networkrepository.com

Under review as a conference paper at ICLR 2026

to the other. However, the problem of link scheduling is focused on realization of specific known
links (typically, one link per node), unlike in Neighborhood Learning where the information needs to
be propagated via all (unknown) links with sufficiently large influence. Also, the wireless commu-
nication is focused on avoiding interference, while in WBN we want to “strengthen” the information
beeped via links of large influence.

The closest wireless Link Scheduling under interference related works Halldérsson & Wat-
tenhofer| (2009); [Fanghinel et al.| (2009; 2011)); |[Kesselheim & Vocking| (2010); |[Kesselheim
(2012); Asgeirsson et al.| (2017); Halldérsson & Wattenhofer (2019) correspond to the Signal-to-
Interference-and-Noise-Ration (SINR) interference model. They use a few different characteristics,
called affectance, and their impact to link scheduling performance, see e.g., Halldorsson & Wat-
tenhofer| (2009). The generalized affectance model was introduced and used only in the context
of one-hop communication, more specifically, to Link Scheduling by Kesselheim et al. [Kesselheim
(2012); [Kesselheim & Vocking| (2010). In [Kowalski et al.| (2014; 2023), the one-hop affectance
characteristic was generalized, called the maximum average tree-layer affectance, to be applicable
to multi-hop communication tasks such as broadcast, together with another characteristic, called the
maximum path affectance. In a more recent summary Halldorsson & Wattenhofer| (2019) of work in
Wireless Networks over the last decade theoretical studies of Link Scheduling are overviewed.

B FULL PROOF OF LEMMA 1 FROM SECTION 3.1

Proof. For a given local broadcast protocol, let X, (¢) be a random variable indicating whether node
x € V beeps at time ¢, and let X, ,(¢) be a random variable indicating whether a beep from x was
delivered to y at time ¢. In terms of this notation, the claim to prove is

E Z Xey(t) | = |EG|(1 - p)p/4.
(zy)eEy

By linearity of expectation, we have that

El > Xo,t)] = D> E(X.,01). 3)

(z,y)€E, (z,y)€E,

Let M C E7 be the set M = {(2,y) € E5| >, cv@ w(zy) < 2W} Then we can re-write
Equation [3]as

E| Y X)) = Y EX,0)+ > EXu®)

(z,y)EE] (z.y)eM (z,y)EEL\M

> E(Xay(1). @)

(z,y)eM
On the other hand recall that, for any (x,y) € E, the conditions to deliver a beep from node z to
node y at time ¢ are X, (t) = 0, w(z, y) X5 (1) = o, and }°_ v ()., w(2,y)X=(t) < 1. Then, we
have that
E (X, (1) = Pr(X,,(t) = 1)
= PrOG(0) = 1) Pr(0) = 0)- Pr(X
= D1 = p)Pr(Xey (6) = 11X(0) =

Replacing the latter in Equation 4] we have that

El > Xoy)| 2p—p) Y Pr(Xe,(t)=1X.(t) = 1AX,(t) =0)
(z,y)€E], (z,y)EM
=p(1—p) > (1=Pr(Xe,(t)=0/X.(t) = 1A X,(t) =0)). (5
(z,y)eM

13

Under review as a conference paper at ICLR 2026

From the conditions to deliver a beep we have that, for any (z,y) € M, itis

Pr(X,,(t) = 0|X,(t) = 1A X,(t) =0) = Pr > wlzyXa(t) =1
z€V (t):z#x

And by Markov inequality

Pr(X,,(t) =0|X,(t) =1AX,(t) =0) < E > w(zy)X.a(t)

K

z€V(t):z#x
= > wyp <p Yy, w(z
z€V (t):z#x zeV(t)

Replacing in the latter that ZzeV(t) w(z,y) < 2W (by definition of M) and that p < 1/(4W) (by
the condition of the lemma), it is

Pr (X, () =0/X,(t) =1AX,(t) =0) <1/2.

Replacing the latter in Equation 5] we have that

El Y Xou) | = IMp(1—p)/2. 6)
(z,y)EE!,

Finally, we lower bound | M| as follows. Recall that

W:E’CE |E’ Z Z

(z,y)EE’ z€V (t)

and that

M={(z,y) € Ey|) w(zy) <2W}.
z€V ()

Then, by Pigeonhole principle, itis [M| > |E/, | /2. Replacing in Equation[6] the claim of the lemma
follows. J

C DETAILS ON EXTENSIONS OF THE MAIN ALGORITHM, FROM SECTION [3.3]

Arbitrary (unknown) W and only polynomial upper bound on n. First, observe that in the
algorithm we only need a polynomial upper bound on n, as n occurs under logarithm in the formula
on MaxAvelnf in Theorem 21

The impact of an estimation of the actual parameter ¥ could be, hypothetically, more significant, as
the number of learning rounds depends linearly on W (see Thm. [2]and later Thm. [3). Our algorithm
could be transformed into one without the need of knowing W in advance, by using doubling esti-
mates of W (i.e., we keep running our algorithm for parameters W being subsequent powers of 2)
until no delivery. The main property that makes it feasible is described in Lemma [3] - receiving
agents can recognize whether the current communication attempt comes from one agent (which is
desired) or more than one (in which case, the received sequence of beeps can be ignored, hence —
no delivery). Additionally, acknowledgments of successful transmissions have to be implemented:
by repeating the same algorithm, but this time with messages being acknowledgments of previously
received messages. Note that this method increases the number of steps only by a constant factor.

For the sake of our experiments in Appendix [E| we designed a stochastic estimation of W, which
is quite accurate on the tested inputs, without significant affectance on algorithm performance.

8Notice that Markov inequality does not require independence of the random variables (see Theorem 3.1
in|Mitzenmacher & Uptal| (2005)).

14

Under review as a conference paper at ICLR 2026

De-synchronized systems. Due to a relatively simple structure and various checking mechanisms
in our algorithm, it can be extended to de-synchronized settings (with clock shifts) by using the
known synchronizing methods for beeping networks, see e.g., the recent work De Marco & Kowalski
(2025). These methods require only a constant overhead, and transform algorithms with structures
similar to ours (i.e., main loop iterating a preamble code and message) from fully synchronized into
de-synchronized solutions.

Additional comments on asynchrony. There are natural multiagent environments where the en-
tities have an initial phase of synchronization followed by synchronous interactions. For instance,
bacteria communicate with each other through a process called quorum sensing, using chemical sig-
nals to coordinate group behaviors. This communication allows them to sense population density
and synchronize activities like biofilm formation, virulence, and bioluminescence.

We also note that full asynchrony (i.e., when a single beep cycle of one agent could correspond to
several beeps of other agent(s)) is a challenging question, left to future work, because even at starting
point it requires defining the feedback based not just on the current set of transmitters, but actually
on transmitting sequences (of potentially different lengths) of many simultaneously active agents.
From a practical perspective, since we account for every single communication bit in the beeping
model, clock drifts and asynchrony would imply that entities try to communicate using different
frequencies, which does not typically happen in natural or applied systems, and if it happens, it
typically implies no successful communication means.

More precisely, our model is a low-level information-theoretical model. Unlike a vast majority
approaches, e.g., federated or distributed learning, which operate at high layers of the protocol stack
(and thus have to deal with asynchrony), our approach models low-layer algorithms. By analogy to
communication protocols’ stack, our algorithmic approach combines coding (physical layer) with
overcoming negative influence (link layer), and our goal was to characterize efficiency of learning
at such low (information) level. While clock shifts are natural phenomena for low-level protocols,
asynchrony (as understood in classic distributed computing/learning) is not. The reason is that
asynchrony at low level would mean in fact different frequency, which in case of both artificial
wireless networks and biological networks is typically considered non-compatible. For instance,
while codes could be applied to higher-level asynchronous algorithms in distributed computing,
the codes themselves are typically designed and analyzed as synchronous objects (i.e., with fixed
position indexing by subsequent integers).

Dynamic weights and noise. In our model, physical conditions, such as noise, are embedded
in link weights. The question of fluctuating physical conditions then boils down to how dynamic
weights impact the complexity of NL. Under arbitrary dynamicity, NL is not computable in a MAS
such as a WBN: if neighborhoods may change in every round, the computation must have taken at
most one round. This observation yields that NL could be defined for restricted dynamic settings,
for instance, if weights change only every so many rounds, or changes are driven by a stochastic
process with bounded deviation. Our algorithms can be applied to such settings as well, as long as
weights are locally static (or nearly static, in the sense that at any time point, their MaxAvelnf does
not exceed a given upper bound) during the execution of the algorithm. This is because Lemma [I|
still holds for any single round of such dynamic model, while the way it is used in the final proofs
of Theorem (1| and Theorem [2] is independent on specific values of weights but depends only the
upper bound on MaxAvelnf. More dynamic scenarios, e.g., when MaxAvelnf of current weights
may oscillate, are left as a challenging open problem. Note that our lower bound (for static weights)
automatically extends to dynamic scenarios, and thus gives a point of reference to the future study
of more dynamic scenarios.

D FuLL PROOF OF LEMMA 4 FROM SECTION 4

Proof. To prove the claim we split the set of links £ into distant and close with respect to listener
¢'. For the set E.ose Of close links, we upper bound the influence of their beepers on ¢’ simply
by |Eciose| (since each link has influence at most 1), and we bound |E.,se| by a constant using a
geometric argument and the fact that a beep is delivered through every link in &.,s.. For the set
Eaist Of distant links, we bound the influence of their beepers on ¢/, by their influence on a listener

15

Under review as a conference paper at ICLR 2026

at shortest distance from ¢/. We bound the latter by a constant using a geometric argument and the
fact that a beep is delivered through every link in £. The details follow.

Let 2r be the shortest distance from any listener in & to listener ¢/. Let Eupse = {(b,€) €
E|d(b,€') < r}, that is the set of links (b,¢) € £ whose beeper b is within distance r from lis-
tener £’.

We bound first the influence of close beepers on ¢’ as

/ dmin
Z w(b,é) = Z d(b,[’) < Igclose‘ . (7

(b,0)€ Eciose (b,)€ Eciose

We now bound |E.jse| as follows. Fix a link (b”,¢") € E.pse- The aggregated influence of the
other links in £.,4e on listener £ is

drnin
> w(b, 0") = > INGE (8)

(b7z)€ gclOSE\{(b” 75”)} (b,[) € Eclose \{ (b” ,E”)}

The equality in the latter is due to the graph being complete bipartite. The boundary case of the
following geometric argument is illustrated in Figure [3a]

>r
/b I
:"‘>‘Zr 2r
=
>2r
(a) Distance bound d(b,£") < 3d(b",¢"), for (b) Distance bound d(b, £") < 3d(b,£’), for some

some link (b”,0") € Eupse, which yields link (b”,¢") € & whose listener is at shortest dis-

Y yesn,.. Wb £') < 4 using that a beep is de- taana 2rof £, whicvh yie?ds 2 (bt)e Eaist w(b,//é’)/’<
livered through link (b”, £"). 6 using that a beep is delivered through link (6", £").

Figure 3: Illustration of distance bounds.

Given that b is within distance at most r of ¢/ (because (b, £") € Egjpse), and £ is within distance
at least 2r from ¢’ (because 27 is the shortest distance from any listener in £ to £), the length of
(v, 0") is at least r (i.e. r < d(b”,£")). Also, given that b and b are both within distance r of
¢’ (because (b,£) € Ecpose and (b, 0") € Ecose), we have that b is within distance 2r of b (i.e.
d(b,b") < 2r). Combining and using the triangle inequality, we have that

d(b7 g/l) S d(b7 bl/) + d(b//7€//) S 27" _|_ d(b”,f”) S 3d(b”,€”) .
Replacing in Equation 8]

|gclose| -1 dmin ‘gclose| -1
> w(b, £7) > = s w®’ 0"y (9)
(0.0)€ Ecros\{(b",£")} ’

On the other hand, given that a beep is delivered through each link in &, in particular a beep is
delivered through link (b”,¢”). Therefore, using the conditions for successful delivery we know
that
w(b, ") <w®",0") .
(b,0)€ Ecrose \{(07,£7)}

16

Under review as a conference paper at ICLR 2026

Replacing the latter in Equation [9) it is (|Exose| — 1)w(b”,£7)/3 < w(b”,£"), that is, |Egose| < 4.
Replacing in Equation[7] we get

> wb) <4 (10)
(b7l)€ gclose
We now bound the influence of beepers in Ey;s¢ = € \ Ecose 0On listener ¢/. We have that

Sowh)= Y d?;“i;). (1n

(b,0)e Eqist (b,)€ Eqist

The equality in the latter is due to the graph being complete bipartite. The boundary case of the
following geometric argument is illustrated in Figure [3b]

Let (b”,0") € &£ be a link such that ¢” is a listener at shortest distance 2r from listener ¢'. By
triangle inequality, for any (b,4) € Egist, it is d(b,€") < d(b,€') + d(¢', ") = d(b,¢') + 2r.
Given that, for any (b,£) € Egise, itisr < d(b, '), we have that d(b, £"") < 3d(b,¢). Replacing
d(b,¢") > d(b,¢")/3 in Equation|[L1] we get

Yoowhd) < > dg(‘blmljjj) =3 > wb!)

(b,6)€ Eaist (b,6)€ Eaist (b,6)€ Eaist

IN

3w, ") + > w(b, £")
(b,0)€ Eqist \{(b”,£)}
Given that a beep is delivered through each link in &, in particular it is delivered through

(t,¢"). Hence, by the condition to have a beep delivered through the link (b”,¢"), it is
D)€ Easa\ (0,0 Wb, ") < 1. On the other hand, it is w(b”,¢”) < 1 because for the in-

put topology used in this proof all w(-, -) are at most 1. Replacing in the latter we get

> wb) <6. (12)
(b,Z)E Edist
Combining the bounds in Egs. [I0]and[T2]the claim follows. O

E EXPERIMENTAL EVALUATION

To evaluate experimentally the performance of our algorithm we have considered real-world social
networks (extracted from nature) on top of which nano-devices could be deployed, and to comple-
ment those we also considered ad-hoc infrastructures, which could be deployed for instance for 3D
scanning and learning simultaneously.

All input datasets used in our simulations are either publicly available in|Rossi & Ahmed| (2015), or
in our anonymous private repository in https://anonymous.4open.science/r/OBLB-A8F8/, where we
also include all code and output files. The latter repository will be de-anonymized upon publication
of this work.

For natural environments, we studied performance for four datasets: a population of birds [Firth &
Sheldon| (2015)), a colony of ants|Mersch et al.|(2013)), a population of dolphins|Gazda et al.| (2015)),
and a mouse gene regulatory network derived from analyzing gene expression profiles Bansal et al.
(2007). For the latter we extracted various subgraphs (as detailed in Table 1)) to process the original
dataset (|E| ~ 14.5M). These inputs are representative of different network sizes (in nodes and
links) and weights.

Link weights in those datasets correspond to the probability or frequency of interaction for each pair
of individuals. Conceptually, these weights match our definition of influence, because an individual
a that meets more frequently another individual b “influences” more the behavior of b. In the rest of
the section we use influence and weight indistinctively.

These natural datasets observe an exponential distribution of weights, biased towards small proba-
bilities/frequencies (as in many natural interactions). Given that the threshold for influential links

17

https://anonymous.4open.science/r/OBLB-A8F8/

Under review as a conference paper at ICLR 2026

is 0 > 1, and that the distributions are biased towards small values, we normalized all weights to a
range [0, 10].

The real-world datasets were downloaded from the public repository in Rossi & Ahmed|(2015)) at
* Birds: https://networkrepository.com/aves-wildbird-network.php
* Ants: https://networkrepository.com/insecta-ant-colony6-day0O4.php
* Dolphins: https://networkrepository.com/mammalia-dolphin-florida-forage.php.

* Genes: https://networkrepository.com/bio-mouse-gene.php.

dataset \4 |E| original weights n(t)rmahzed
o0 range

birds: [Firth & Sheldon[(2015) | 202 11900 | half-weight index in [0, 1] 0,10
ants: [Mersch et al.[(2013) 164 | 10300 | interaction countin [1,97] 0,10
dolphins: |Gazda et al.(2015) 190 1100 interaction count in [1, 7] 0,10
genes: |[Bansal et al.| (2007) 1000 | 90881 probabilistic interaction 0,10

2000 | 258909

3000 | 432239

4000 | 563033

5000 | 675129
synthetic scale-free network | 1000 | 3994 exp. dist. in [0, 1] [0,10]

2000 7994

3000 | 11994

4000 | 15994

5000 | 19994
synthetic 3D grid 216 1078 exp. dist. in [0, 1] ; [9’ [20]’7}

Table 1: Networks evaluated. Half-weight index = probability that two individuals are observed
together given that one has been seen. Interaction count = number of times in spatial proximity
within the time span of data collection.

dataset | o | Wiimit
birds: [Firth & Sheldon|(2015) | 5,4.8,4.6,...,1 | 5,6,...,10
ants: Mersch et al.| (2013) 3,2.8,2.6,...,1 | 4,5,...,10
dolphins: |Gazda et al.|(2015) | 5,4.8,4.6,...,1 | 6,7,...,10
genes: [Bansal et al.| (2007) 5,4,...,1 10
synthetic scale-free network 1.5,1.3,1.1 10
synthetic 3D grid 1.5,1.3,1.1 none

Table 2: Simulation parameters.

To complement our real-world scenarios, we also evaluated two ad-hoc networks: a scale-
free network and a 3D-topology. To generate the scale-free network we used the preferen-
tial attachment model of Barabasi & Albert (1999), obtaining various input graphs with V| =
1000, 2000, 3000, 4000, 5000 and |E/| = 3994, 7994, 11994, 15994, 19994 respectively. For the sec-
ond we created a 3D-grid of 6 x 6 X 6 vertices placing a node in each intersection, which yields
|[V| = 216 and |E| = 1078. Weights were defined following an exponential distribution similar
to the nature datasets. Specifically, for in the 3D grid each weight was drawn uniformly at random
a number in (4,7 + 0.1] with probability 1/2¢, for each i = 0,0.1,...,0.9; and for the scale-free
network we used a random exponential distribution with rate parameter 5.

The main characteristics of the networks evaluated and the parameter values chosen are listed in
Tables[T|and 2] respectively.

18

https://networkrepository.com/aves-wildbird-network.php
https://networkrepository.com/insecta-ant-colony6-day04.php
https://networkrepository.com/mammalia-dolphin-florida-forage.php
https://networkrepository.com/bio-mouse-gene.php

Under review as a conference paper at ICLR 2026

E.1 How TO COMPUTE W

For the datasets evaluated, MaxAvelnf W is unknown. Computing W exactly would be prohibitively
time consuming because it requires to maximize some average over all subsets of influential links.
Our algorithm can be extended to handle the issue implementing an exponential search of W (dou-
bling estimates), as explained in Appendix [C} Nevertheless, to focus on the algorithmic dependency
on W and E,, we developed experimentally an estimation method, which is an interesting prob-
lem on its own. Namely, for each input dataset, we estimated W randomly sampling the set of
influential links in size and content. To improve accuracy, we repeated this estimate 200 times,
keeping the largest W obtained. An appropriate number of times to repeat the calculation, so that
the chosen value (200) yields an accurate estimation, was experimentally determined trying increas-
ing numbers until convergence is reached. As seen in Figure] for some of our inputs, the estimate
converges rapidly even with a much smaller number of repetitions

W estimate vs. # iterations W estimate vs. # iterations
18 900

16 —— o 800
14 700
12 600
10 P 500
S

8 F‘ ° 400
300

200

100
 aud

[50 100 150 200 250 300 0 50 100 150 200 250 300

on s o

—e—birds dataset —e—dolphins dataset —e—ants dataset —e—3D grid dataset

Figure 4: MaxAvelnf estimate versus number of repetitions of the estimation for all datasets studied.

Another challenge is how to obtain various inputs with different W values (based on the same
dataset) so that we can evaluate the dependency of time on W. For the genes dataset, we addressed
this challenge using decreasing values of o from an initial larger value (0j;mi: < 10) down to 1.
A changing o results in a changing |E,| (the number of influential links), which possibly yields a
changing W (see the definition of W in Section 2.4). For the birds, ants, and dolphins datasets, we
additionally used subsets of links of the input graph, adding only the links with weight up to some
limit Wy, from some Wit > Trimie Up to the maximum weight 10. The latter handles the case
where the distribution of weights is such that the end points of links with large weight have also large
weighted degree (e.g. ants dataset). Then, starting with a large 07;,,;; (hence, small |E,|) would not
change significantly W, even for larger | E,; |. For the synthetic datasets (i.e., 3D-grid and scale-free
networks) on the other hand, we induced the increasing values of W adding a multiplicative factor of
1,2,4, ..., f to the weights, where f = 128 for the 3D grid and f = 8 for the scale-free networks,
for o = 1.5,1.3, and 1.1. All those ranges were determined experimentally to attain enough variety
of values of W.

For the values of W obtained, we evaluated the performance of our One-beep Local Broadcast
(OBLB) algorithm as defined in Section 3. Evaluating OBLB is enough for the purpose of eval-
uating the dependency of our Neighborhood Learning algorithm on W, because the overhead of
Neighborhood Learning with respect to OBLB is only logarithmic on n (for messages of logarith-
mic size).

E.2 BASELINE ALGORITHMS

To the best of our knowledge, there is no other One-beep Local Broadcast (or Neighborhood Learn-
ing) algorithm that runs in the beeping model. Thus, for experimental comparison with other so-
lutions, we considered an algorithm in which nodes start execution with random delays in [n], and
then beep with a period equal to their own ID, which we call the Periodic algorithm. We tested both
algorithms on the same inputs and parameter combinations. The results are shown in Figures [5] [6]
and[7l

Notice that our goal in this work is not to provide a provable, and/or decentralized, estimator for the
MaxAvelnf - which is an interesting open question on its own.

19

Under review as a conference paper at ICLR 2026

One may ask why not using a simple round-robin schedule which would solve the problem in time n.
The shortcoming of such approach of course is that for a massive network the running time would be
very slow, which is intuitively unnecessary for a local computation problem such as Neighborhood
Learning. Moreover, a round-robin algorithm would require the nodes to know the global time and
n. Nevertheless, the question that follows is how OBLB’s running time scales with n in practice. To
answer that question we evaluated OBLB experimentally on a synthetic 3D-grid as defined above but
with growing sides 6,7, ..., 15, thusn = 63,73, ..., 15%. Weights were defined with an exponential
distribution on [0, 10] biased to small values as before. To maintain W and |E,| “stable” under a
growing n we set 0 = 1 initially, increasing it by 0.5 each time that we increased n. The result was
that during the whole simulation W and |E,| oscillated but stayed within the ranges [10, 22] and
[402, 692] respectively, with n growing monotonically from 216 to 3375. The results are shown in

Figure([§]

To measure running time we counted rounds of communication until a beep was delivered in all
influential links. All executions were repeated 20 times for each parameter combination. The seed
for all random samples was 31277847.

E.3 DISCUSSION OF RESULTS

The results of our experiments show that performance of our OBLB in practice is similar or better
than the theoretical bound, whereas the Periodic algorithm is worse than the same bound. We also
show that OBLB running time is independent of n. We have illustrated our results in box-and-
whisker charts to show the statistical behaviorm (recall that each execution was repeated 20 times).
Notice that, in comparison with network size, our datasets comprise a variety of W values, from
comparable with |V| (ants) to very small (all others for original weights).

The charts for the birds dataset in Figure [5a| show on the left that, as W grows, the performance
of OBLB gets much better than 4W log | E,;| (with the upper quartile of the former smaller than
the lower quartile of the latter), whereas on the right we can see that the Periodic algorithm per-
forms similar or worse than the same function. Similar observations apply to the dolphins dataset
in Figure [5Sb| where in fact the difference in favor of OBLB is larger. For the ants and mouse genes
datasets, we can see in Figures [6a] and [6b] respectively much better performance of OBLB (left)
than the theoretical 4W log | E,; | time, whereas the Periodic algorithm (right) took more than 30000
rounds for most parameter combinations.

The performance on synthesized topologies, scale-free networks and 3D grids, can be seen in Fig-
ure [/} where the same observations apply: the running time of OBLB is almost always below
4W log | E,| (with a larger difference as W grows), while the running time of the Periodic algo-
rithm is above (many times above 30000 rounds, when we stopped the simulation).

For the evaluation of the dependency of OBLB on n, we can see in Figure [§| that indeed it is in-
dependent (as the theoretical analysis showed). That is, for n growing monotonically from 216 to
3375 the average running time of OBLB oscillated within a range of [330, 580]. That oscillation is
due to the oscillation of W and |E, |, which can be seen in the plot of the theoretical 4W log | E, |
included for comparison in the same chart.

E.4 REPRODUCIBILITY OF EXPERIMENTS

The nature-extracted datasets are publicly available in the repositories cited above.
All synthesized datasets are included in an anonymous private repository at
https://anonymous.4open.science/r/OBLB-A8F8/ and will be made publicly available upon
publication of the paper.

The simulators of OBLB and Periodic algorithms were coded in Java language, compiled in the
Java SE Runtime Environment (build 1.8.0_121-b13), and executed in a Java HotSpot 64-Bit Server
VM (build 25.121-b13, mixed mode). All code is included in an anonymous private repository at
https://anonymous.4open.science/r/OBLB-A8F8/ and will be made publicly available upon publica-
tion of the paper.

10 Although it is not random, the theoretical bound of 4W log | E,,| sometimes varies for fixed W when | E, |
changes.

20

https://anonymous.4open.science/r/OBLB-A8F8/
https://anonymous.4open.science/r/OBLB-A8F8/

Under review as a conference paper at ICLR 2026

3000 35000
2500 30000
25000
2000
20000
£ 1500 H
H H
- 15000
1000
5 + 10000
e >
o >
500
. 5000
]
=3
-
o 0 Ot mmx mmx EEX i* e =
34.30712641 35.97521878 46.35940089 61.62414364 34.30712641 39.22500591 54.99426744 67.67412935
32.09061092 35.18417074 39.22500591 54.99426744 67.67412935 32.09061092 35.18417074 46.35940089 61.62414364
w w
M OBLB algorithm M 4W log [Eo] M Periodic algorithm I 4W log [Ea]
(a) Birds population dataset.
4500 35000
4000
30000 —
3500
25000
3000 X
x
., 2500 —_ N 20000
¢ g
2000 15000
X
*
1500 >
10000
> =
1000 3¢
< 5000
500
i L. * -
e 5 i el
0 0
78.57142857 84.28571429 88.57142857 70 78.57142857 84.28571429 88.57142857
68.57142857 75.71428571 8571428571 68.57142857 77.14285714 80 85.71428571

w

M 0BLB algorithm I 4W log [Eo|

w

B Periodic algorithm B 4W log [E|

(b) Dolphins population dataset.

Figure 5: Experimental results on nature-extracted datasets in comparison with OBLB theoretical
running time of 4W log | E,;|. Left: OBLB Algorithm, right: Periodic algorithm. Statistical behavior
over 20 executions for each parameter combination. All executions capped at 30000 rounds. That
is, datapoints shown at 30000 rounds in fact indicate a running time of > 30000 rounds.

21

Under review as a conference paper at ICLR 2026

14000 35000
12000 ‘ B O O O O O O S
10000 x‘ 25000

. i
oo / Hy, o0

x X
6000 xxXxxxxxxxrxxxxxxx * | 15000
x
X X X i ‘ 1 x
00 e o *** ? I*x * 10000 *#tiﬁx**
X x 1 X % X XXX

2000 5000 x

rounds.
rounds.

X X
X 3¢ X 3¢ X XXX XXX X % x

0

°

2823985533828 833288R2 23 3BT YN8 R8I R °8 8303283885858
SREI888BERLNR8TL83TES 58 SESNYSBE-R8BL5958 -SRI REBRESB8E
3803828882 3885838%:3 8 R S R N IR R R E R R RS L R R]
IERI SN 8338308583358 g2 IeRITNEIReL8NE8850R8R825588838282%
BCrYRIRRoR883°8358%88 g5 23850 0RRIC 3383333538352 82828255
8558833853233 5R8833%8 23 BERB8I858 0I5 ;P8 REB B8 88 888K ornad
533I%BB3I383PB538ITIEE {8 5392338883835 883 R85 2 YgER
__________________________________ bR CEITIRLLOLTO o000 OLERRRRRI INRINR
w w
W OBLB algorithm M 4W log [Eo| M OBLB algorithm I 4W log [Eo]

(a) Ant colony dataset.

7000 35000

o000 x 000 x x — x x .
5000 * 25000
x

g 4000 * 20000
H = ,
g x
& 5000 ok ®ox [] 15000

DI i
2000 ¢ € i % i 10000

* * - »*

o
X % % % X % X X X X x x

1000 5000

rounds

*

0 0
B R e S St O JURC I e)
Sy 61@;1- pRy o8 @ o o o e P

> ©
«F o
% @ K =

@ D P g o ®
G0 8 00 37 o g e
@ g @8 oI 8 (T 0P (F (1 e

w w

©% @ ®°

O P (S 1
® & * e

M 0BLB aigorthm B 4W log [E5 W Periodic aigorithm I 4W log [Eo|

(b) Mouse genes dataset (|V| = 1000, | E| = 90881 shown, larger graphs produced similar results.).

Figure 6: Experimental results on nature-extracted datasets in comparison with OBLB theoretical
running time of 4W log | E;|. Left: OBLB Algorithm, right: Periodic algorithm. Statistical behavior
over 20 executions for each parameter combination. All executions capped at 30000 rounds. That
is, datapoints shown at 30000 rounds in fact indicate a running time of > 30000 rounds.

22

Under review as a conference paper at ICLR 2026

9000 35000
8000 *
30000 x X% X g X X
7000
25000
6000
20000
» 5000)
$ x> £
g g

10000

x

4000 15000
x

3000 x

X x X
2000 x xi
x x x
« b 4 5000 X
1000 x; X
X XK %
B R FXA T L xx I x
0 35O R ROU RO RO 0 X e X x VRV2 VR RV RVE VR VA MOMOMMM KK KKK KX
L LR L L R R A R F L R e RSB R BNy 3950522538898
PR3 BICLRE8BRE YRR B8 B358938823853 PR3 nB8 8L 8NBR3ISERBITLBYSSE89] 8
el EB8I8 S e bt a8 3 B83RE-85R BT B8 S 23883808803 883858¢9 2
SRR R RN PRI R I i SREIES9Ee8 g8 858 ¢8cgz8act
GRNERERBE:83828 838858 5888R8858558% B8R gI s R0 RRReNEL 8508033888552
LOAFANRROTIAOT il ONOOIBNRCOAEFOES NS PR NI NN CFN VLIS NONGIBE B e caa ®
N ’BhncoorarNNE CERRRRNBTIALBEEETER A soraaNTodeeed EEEEERERE R E e
w w
W OBLB algorithm Ml 4W log |Ea| W Periodic algorithm W 4W log [Eq|
12000 35000
x
10000 XX 30000 XX KK KKK KKK KK x XXXI x
000 25000
[g 20000
x X XX 15000
10000 x
5000
ﬂx)(\')(\(-)(x‘)‘\)(xxﬂxﬂKﬂxx’(x
P LS D RS DAL DD LR R ELEDAND S
TSI TN TIFT S FEES T EFTITEF S
Ve v e e VeI L PP B B
w w
W OBLB aigorithm [l 4W log |Eo| W Periodic algorithm [l 4W log |Eo|

(b) Scale-free network dataset (|V'| = 1000, | E| = 3994 shown, larger graphs produced similar results.).

Figure 7: Experimental results on synthetic topologies in comparison with OBLB theoretical run-
ning time of 4W log |E,,|. Left: OBLB Algorithm, right: Periodic algorithm. Statistical behavior
over 20 executions for each parameter combination. All executions capped at 30000 rounds. That
is, datapoints shown at 30000 rounds in fact indicate a running time of > 30000 rounds.

900
800

o X
700 _

X X
600

T X =

500 m
w @
300

200

rounds

o

100

216 343 512 729 1000 1331 1728 2197 2744 3375

n

[l OBLB algorithm [l 4W log |Eo|

Figure 8: Experimental results on a synthetic 3D-grid topology showing that OBLB running time is
independent of n. The OBLB theoretical running time of 4W log | E, | is included to observe that
the oscillation of OBLB running time is due to the oscillation of W and |E,|. Statistical behavior
over 20 executions for each parameter combination.

23

	Introduction
	Model and Definitions
	Multiagent System Model
	Communication Model on General Bidirected Weighted Graphs
	Neighborhood Learning and Simplified OBLB Problem
	MaxAveInf Metric Function of Algorithms

	Algorithmic Upper Bound
	One-beep Local Broadcast
	Neighborhood Learning (NL)
	Extensions and Dropping Off Some Limitations

	Lower Bound
	Discussion and Open Directions
	Limitations, Additional Motivation and Other Related Work
	Limitations of our work
	Applications of WBN to Better Understanding Collective Intelligence of Bacteria
	Other Related Work

	Full Proof of Lemma 1 from Section 3.1
	Details on Extensions of the Main Algorithm, from Section 3.3
	Full Proof of Lemma 4 from Section 4
	Experimental Evaluation
	How to compute W
	Baseline algorithms
	Discussion of results
	Reproducibility of Experiments

