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ABSTRACT

Computational imaging concepts based on integrated edge AI and neural sensor
concepts solve vision problems in an end-to-end, task-specific manner, by jointly
optimizing the algorithmic and hardware parameters to sense data with high in-
formation value. They yield energy, data, and privacy efficient solutions, but rely
on novel hardware concepts, yet to be scaled up. In this work, we present the first
truly end-to-end trained imaging pipeline that optimizes imaging sensor param-
eters, available in standard CMOS design methods, jointly with the parameters
of a given neural network on a specific task. Specifically, we derive an analytic,
differentiable approach for the sensor layout parameterization that allows for task-
specific, locally varying pixel resolutions. We present two pixel layout parame-
terization functions: rectangular and curvilinear grid shapes that retain a regular
topology. We provide a drop-in module that approximates sensor simulation given
existing high-resolution images to directly connect our method with existing deep
learning models. We show for two different downstream tasks, classification and
semantic segmentation, that network predictions benefit from learnable pixel lay-
outs. Moreover, we give a fully featured design for the hardware implementation
of the learned chip layout for a semantic segmentation task.

1 INTRODUCTION

Deep learning models have achieved impressive performance in a wide range of computer vision
tasks, including image classification, object detection, and semantic segmentation. Computational
imaging approaches go beyond the traditional paradigm in computer vision, which uses an image
as input, and jointly considers the image processing method and the image formation process per-
formed in a camera, comprising various hardware design and low-level, on-chip image processing
parameters. Recent approaches in deep computational imaging aim at a task-specific optimization
of image signal processing pipeline (ISP) parameters (Mosleh et al., 2020), various optical compo-
nents (Chang et al., 2018; Chang & Wetzstein, 2019; Chugunov et al., 2021; Metzler et al., 2020;
Sun et al., 2020; Tseng et al., 2021), or color filter layouts (Chakrabarti, 2016) in tandem with neural
network parameters in an end-to-end fashion.

While the trend toward high-resolution imagery remains unbroken, specifically mobile systems that
incorporate computer vision solutions are strongly focused on cost, energy, and resource efficiency,
as well as on data security. Therefore, another trend in deep computational imaging addresses new
hardware concepts that integrate edge AI and neural sensor concepts (Iturbe et al., 2023; Suo et al.,
2021; Martel & Wetzstein, 2021; Klinghoffer et al., 2022). These approaches also solve vision
problems in an end-to-end, task-specific manner, jointly optimizing the vision algorithm and the
imaging hardware parameters (Klinghoffer et al., 2022). Here, the primary goal is to sense data
with high information value useful for the final task (Suo et al., 2021; Iturbe et al., 2023), thus
minimizing energy and data communication requirements as well as the amount of captured data to
maximize privacy. While the integration of AI compute and sensing capabilities is a mid to long
term hardware development trend (Iturbe et al., 2023), it results in reduced amount of visual data
acquired without losing task performance. An example is the in-pixel-processing with a SCAMP-5
chip with 2562 px (Martel & Wetzstein, 2021).
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Our work is motivated by the hardware trend towards integrated AI compute and sensing capa-
bilities (Iturbe et al., 2023), but we investigate the option to use currently available parameters in
standard CMOS sensor design processes. We specifically focus on non-uniform and minimalistic
pixel layouts, i.e., the number, location, size, and, potentially, shape of pixels on the image sensor.
This objective is in line with the common practice to artificially decrease the image resolution at
the input for network training to adhere to memory constraints of the GPU. We make the flexibility
in pixel layout design accessible to deep learning, and propose a data-driven approach that opti-
mizes the pixel layout for a given task together with the neural network parameters in an end-to-end
fashion. We demonstrate, that various tasks, such as autonomous driving, benefit from specifically
optimized pixel layouts, especially if they induce a spatial bias, where certain image regions require
a higher pixel density than others regions. To the best of our knowledge, this is the first approach
for joint optimization of pixel layout and downstream tasks which is realizable by current hardware
limitations of sensors. We validate the effectiveness of our method on classification and semantic
segmentation tasks and demonstrate a significant improvement over baselines without significantly
depending on the specific network utilized to solve the task. Our contributions are as follows:

• We propose a differentiable, physically based sensor simulation framework, that allows
end-to-end gradient-based optimization of pixel layouts,

• A generic pixel layout parameterization that covers a large class of possible geometries,
including rectangular and free-form pixel shapes, while retaining the regular topology, usu-
ally required by downstream networks, and

• A drop-in module, that can approximate the sensor simulation given existing high-
resolution images and can thus be easily incorporated into existing deep-learning models.

• We show experimentally that tasks like semantic segmentation in autonomous driving can
benefit from non-uniform pixel layouts, and

• We give a fully featured chip design that realizes the learned chip layout for semantic
segmentation in autonomous driving.1

2 RELATED WORK

In this section, we discuss prior work that motivates the need for non-uniform pixel layouts, attempts
to end-to-end optimization of ISP pipelines for various downstream tasks involving optimizing sen-
sor parameters for image quality or learning effective downsampling, as well as superpixel-based
methods that end-to-end optimize superpixel generation and network parameter optimization.

Pixel Layout. In computer vision tasks like semantic segmentation, most methods employ an
“hour-glass model” like UNet (Ronneberger et al., 2015), PSPNet (Zhao et al., 2017), etc. to be
computationally efficient. Here, the information is first encoded as low-resolution feature maps and
then upsampled to image resolution for the downstream task at hand. However, this approach makes
the strong assumption that all regions in the image have equal information, thus equal importance.
In practice, this assumption does not hold as Jin et al. (2021) show that a network’s performance
can benefit from non-regular, learnable downsampling strategies. Jin et al. (2021), however, use a
fixed, high-resolution input image of 2Mpx and above for training and inference, whereas we aim
at optimizing the lowres input sensor layout for inference. Additionally, some early works argue
for non-regular pixel layouts due to their ability to improve super-resolution (Ben-Ezra et al., 2007)
or to provide better image representations as such (Kirsch, 2010).

End-to-end Optimization of the ISP pipeline. Some attempts have been made to jointly opti-
mize the ISP pipeline and network parameters (Mosleh et al., 2020; Jin et al., 2021; Marin et al.,
2019; Talebi & Milanfar, 2021). In their work, Mosleh et al. (2020) proposed a “hardware-in-the-
loop” method to jointly optimize the hardware ISP and network parameters as a multi-objective
problem using a 0th-order stochastic solver for perceptual image quality. Other prior work account
for the incident pixel radiance in an end-to-end optimization, which we also optimize to learn the
sensor’s pixel layout. Talebi & Milanfar (2021) use a “CNN-based resizer” to downsample high-
resolution images and then perform classification using deep learning-based recognition models and
jointly learn weights for the “resizer” and recognition model, which is extremely complex, is not
buildable as a sensor, and only performs uniform downsampling. Marin et al. (2019) proposed an
edge-based downsampling scheme that maps images to a non-uniform pixel layout with a focus on

1The manufacturable chip with non-uniform pixel layout is in the process of being submitted for fabrication.
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Figure 1: The overall pipeline for end-to-end learning of task-specific pixel layouts. R1 × R2 and
RGT

1 ×RGT
2 denote the resolution of the sensor and reference image resolution, respectively.

object boundaries, i.e., edges. They learn to sample with a higher resolution near object boundaries
and with lower resolution elsewhere. This helps in improving the computation cost while retaining
some task-essential information. Nonetheless, many tasks also require information from the object’s
interior, e.g., cancer cell detection. To overcome this drawback, Jin et al. (2021) proposed to learn
a deformed sampling density distribution used for downsampling a high-resolution image over a
non-uniform grid based on the network’s performance on the downstream task rather than the edge
vicinity. However, Jin et al. (2021); Marin et al. (2019) use a neural network on the high-resolution
image to predict a suitable pixel layout for each image individually, requiring the neural network
to operate on high-resolution data. On the contrary, our approach learns the hardware sensor lay-
out with the subsequent network operating on the produced low-resolution data only, considering
the full pixel radiance, not just a single sampling position. Our drop-in module can take existing
high-resolution images to approximate the incident radiance, allowing to optimize any network for
a limited resolution budget or to reduce the network’s size and inference time while keeping per-
formance as high as possible. In prior work Riad et al. (2022), similar approaches have been taken
by uniformly decreasing pixel resolution of the input images to reduce the network size until the
performance falls below a given lower bound. Our approach can thus be seen as a generalization of
Riad et al. (2022), integrating non-regular sampling schemes like Jin et al. (2021), while considering
the total intensity of the input image (as an approximation of the incident radiance to a sensor).

Superpixel-based Methods. Apart from learning sensor parameters for effective downsampling,
other approaches learn pixel grouping into larger superpixels and end-to-end optimizing to learn
this grouping and network parameters (Yu & Fan, 2021; Fey et al., 2018; Avelar et al., 2020). Yet,
all such approaches create image specific superpixels and are therefore not suitable for learning
a fixed image sensor layout. Moreover, as inspired by Chang et al. (2018); Chang & Wetzstein
(2019); Chugunov et al. (2021); Metzler et al. (2020); Mosleh et al. (2020); Sun et al. (2020); Tseng
et al. (2021) our objective rather is to optimize sensor parameters (or image downsampling) in a
photometrically correct way, i.e., considering the continuous acquisition of radiance at the pixel
level. Another related technique is hardware pixel binning (Zhang et al., 2018; Yoo et al., 2015;
Westra et al., 2009; Cho et al., 2014; Mennel et al., 2022), e.g., for reducing noise in low-light
situations. Commonly, these approaches apply uniform binning. While pixel binning can be used to
implement our non-uniform layouts in FPGA and allow modifications of the pixel layout without re-
manufacturing the sensor, the hardware resource and energy requirements remain unchanged. We,
therefore, designed a chip with an optimized pixel layout and plan to build it directly in silicon.

3 DIFFERENTIABLE SENSOR SIMULATION

As opposed to usual deep learning techniques, which pick a task-specific network architecture G to
make predictions G(I, ν) on input images I for parameters ν of the network, we propose to consider
the images I as functions I(θ, Li) of the incoming radiance Li as well as a parameter vector θ
that describes the diffeomorphic deformation of the pixel layout the image I is recorded with. This
naturally requires modeling a spatially continuous sensor simulation process that determines the
value of each pixel for a given deformation described by θ. As soon as the sensor model, i.e.,
the dependence of the recorded image I as a function of the deformation parameters θ and the
radiance Li is determined, we propose to jointly train our system for network as well as sensor
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system parameters by optimizing

min
θ,ν

E(Li,y)(L(G(I(θ, Li), ν), y)), (1)

where L is a suitable loss function to compare the network’s prediction to the desired prediction y.

Our overall approach for representing I as a function I(θ, Li) is depicted in Fig. 1. Assuming a
continuous radiance function (or a high resolution image) Li ∈ RRGT

1 ×RGT
2 as input, we perform

a sensor simulation (see Sec. 3.1) to capture the radiance hitting the individual pixels defined by
our pixel layout parameters (see Sec. 3.2). Our pixel layout is a continuous, bijective function ϕ
applied to a regular pixel grid that retains the pixel topology. Thus, the resulting, usually distorted
pixel layout can be fed to any network that accepts images as input. In case of a downstream
image-to-image network that uses an image-based loss function, we apply a back-warping, i.e. an
interpolation using ϕ−1, to resample the network’s output to the original image resolution. In case
of a classification network, no back-warping is required. As our pixel layout model is differentiable,
the optimal task-dependent pixel layout can be learned jointly with the network (see Sec. 3.3).

3.1 MEASUREMENT EQUATION

Here we present the image formation process, specifically the measurement on the sensor plane. We
denote pixels with the multi-index k = (k1, k2). An individual sensor pixel measures the energy Ek

of incoming radiance Li, integrated over all possible directions ω ∈ Ω ⊆ R2, locations p ∈ Ak ⊆
R2, time t ∈ [t0, t1] inside the exposure window and measurable wavelengths λ ∈ [λ0, λ1]:

Ek =

∫ λ1

λ0

∫ t1

t0

∫
Ω

∫
Ak

W (p, ω, t, λ)Li(p, ω, t, λ)dpdωdtdλ. (2)

Here, W is a weighting term that models the varying responsivity of the sensor w.r.t. the parameters,
like the location inside a pixel or sensitivity to specific wavelengths. The measured energy is then
further processed in an image signal processing pipeline (ISP) to compute an RGB value Ik ∈ R3.

For simplicity, we assume a static scene that is captured through a pinhole camera. Further, we
interpret the radiance function to be independent of the wavelength and instead output RGB values.
This allows us to directly compute Ik as the mean RGB value over the pixel area:

Ik =
1

vol(Ak)

∫
Ak

W (p)Li(p)dp (3)

Note, that it is often (implicitly) assumed that each pixel has unit area, ignoring the factor in front
of the integral. Since we want to model pixels of different sizes, we have to keep the normalization
factor. Generally, this normalization is part of the ISP that maps energies to RGB values.

3.2 PARAMETERIZING PIXEL LAYOUTS

In the following, we introduce a general framework to parameterize the pixel layouts. We set the full
sensor area to be the square region S = [−1, 1]2. As such, each pixel has its own domain Ak ⊂ S
and weighting function Wk. We assume pixels to be disjoint, except for their boundaries ∂Ak, and
their union to cover the whole sensor area, i.e., S =

⋃
Ak. We denote pixels from the standard,

uniform layout as Uk. In this case, the pixel boundaries match the parallel grid lines of the sensor,
i.e., for the sensor resolution R1, R2,

Uk =
[
2k1−R1

R1
, 2(k1+1)−R1

R1

]
×
[
2k2−R2

R2
, 2(k2+1)−R2

R2

]
. (4)

We now define a class of pixel layouts to be a parameterized deformation function ϕ : S × D → S,
where D ⊂ Rd is the set of possible parameters. We require the function ϕ(·, θ) to be bijective
and bi-Lipschitz, implying that ϕ and ϕ−1 are differentiable almost everywhere for fixed θ ∈ D.
We define the pixels under this layout as Ak(θ) = ϕ(Uk, θ), i.e., the image of the uniform pixel
area. The bijectivity constraint assures that the deformed pixels do not overlap and the overall pixel
number and topology is retained. Since ϕ is Lipschitz, neighboring pixels are mapped to neighboring
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(a) Single Pixel Deformation (b) Parameterizations

Figure 2: (a) Applying ϕ to a uniform pixel Uk yields the deformed pixel Ak. The flux integral
for gradient computation requires quantities on each boundary point r ∈ ∂Ak: The tangent ∂r

∂t , the
outward-pointing normal n̂, and the change of the boundary point with respect to the pixel layout
parameterization ∂r

∂θ . (b) The rectangular (top row) and curvilinear (bottom row) pixel layouts used
in this paper and their behavior under different parameters on a 20× 20 sensor.

pixels again and boundaries get mapped to boundaries, i.e., ∂Ak(θ) = ϕ(∂Uk, θ). The forward pass
of the image formation process, i.e. the pixel color is computed by a change of variables

Ik(θ) =
1

vol(Ak(θ))

∫
Ak(θ)

Wk(p, θ)Li(p)dp =

∫
Uk

Wk(ϕ(u, θ), θ)Li(ϕ(u, θ))|det Jϕ(u, θ)|du∫
Uk

|det Jϕ(u, θ)|du
(5)

Here Jϕ is the 2×2 Jacobian of ϕ with respect to the spatial arguments. Since the weighting function
may depend on the pixel layout, we explicitly added θ to its arguments.

Since rectangular pixels have an advantage in manufacturing the optimized layout in hardware, we
propose a simple deformation, that depends only on two parameters. Still, in our experiments, we
found that even such a simple pixel layout already leads to significant improvements. We consider
the deformation function given p = (p1, p2) ∈ S and θ = (θ1, θ2) ∈ (−1, 1)2, i.e.

ϕrect(p, θ) =

(
p1(θ1−1)

2θ1|p1|−θ1−1
p2(θ2−1)

2θ2|p2|−θ2−1

)
(6)

The parameters control the vertical and horizontal deformation strengths and, dependent on their
sign, move more pixels to the edges or the center of the sensor.

Currently, there exist no comprehensive hardware design constraints for pixel layout, but designs
beyond rectilinear ones are possible. We, therefore, exemplarily show that our method can also
handle curvilinear layouts with a circular version of Eq. (6) (see Fig. 2b, namely

ϕcurv(p, θ) =

(
p1(θ1−1)

2θ1||p||2−θ1−1
p2(θ2−1)

2θ2||p||2−θ2−1

)
if ||p||2 < 1, ϕcurv(p, θ) =

(
p1
p2

)
otherwise. (7)

3.3 END-TO-END OPTIMIZATION

Since the goal is to optimize the pixel layout for some downstream task, we will now explain how to
incorporate our pixel layout parameterization in a gradient-based optimization scheme. The pixel-
outputs of the sensor simulation Ik(θ) (see Eq. (5)) are processed by a neural network G. We
compute the gradient of a task-specific loss function L with respect to the sensor parameter θ by
applying the chain rule

∂L
∂θj

=
∑
k

∂L
∂Ik

∂Ik
∂θj

, (8)

where ∂L
∂Ik

can be computed via standard backpropagation.

In the following, we give an analytic expression for the second term, i.e. the derivative of a pixel
color with respect to the sensor layout. For brevity, we will drop the j subscript so that θ always
refers to a scalar value. However, the calculations can be easily vectorized.
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Starting from Eq. (5), applying the quotient rule yields

∂Ik
∂θ

=
∂

∂θ

(
1

vol(A(θ))

∫
Ak(θ)

Wk(p, θ)Li(p)dp

)
=:

∂

∂θ

f(θ)

g(θ)
=

∂f
∂θ (θ)g(θ)− f(θ)∂g∂θ (θ)

g(θ)2
. (9)

We explain the derivative of f , i.e., ∂f
∂θ = ∂

∂θ

∫
Ak(θ)

Wk(p, θ)Li(p)dp.

The derivative of the volume can be computed analogously. Since the integration domain itself
depends on θ, we can apply Reynold’s transport theorem (Flanders, 1973):

∂f

∂θ
=

∫
Ak(θ)

∂

∂θ
Wk(p, θ)Li(p)dp+

∮
∂Ak(θ)

Wk(r, θ)Li(r)⟨
∂r

∂θ
, n̂(r, θ)⟩ds

=: Qint(θ) +Qbound(θ)

(10)

The first integral can be easily computed by a change of variables like Eq. (5). The second integral
is the flux integral across ∂Ak, where r : [0, 1] → ∂Ak(θ) is an arbitrary piece-wise smooth param-
eterization of the boundary, ∂r

∂θ is the local change of the boundary point with respect to θ and n̂ is
the corresponding outward pointing unit normal vector. Since the boundary of Ak is the image of
the boundary of Uk under ϕ, a parameterization can be given by r(t, θ) = ϕ(γ(t), θ), where γ is a
parameterization of the square boundary of Uk. Furthermore, tangent vectors of r are the pushfor-
ward of tangent vectors of γ by ϕ, i.e., ṙ(t, θ) = Jϕγ̇(t, θ). Thus, we can compute the line element
ds = ||ṙ(t, θ)||dt and the normal (up to orientation) as

n̂(t, θ) =

(
ṙ2(t, θ)
−ṙ1(t, θ)

)
/||ṙ(t, θ)||2. (11)

The important quantities of the boundary integral are visualized in Fig. 2a. With this, we have all
ingredients to compute the derivative using Eq. (10). The interior integral Qint looks very similar
to the pixel color formula in Eq. (5) and can be efficiently computed by reusing radiance samples
from the forward pass. The boundary integral Qbound only requires sampling the border of the pixel,
which requires less samples, which can even be reused for neighboring pixels. Note, that applying
the divergence theorem on Qbound would transform it into another interior integral. However, in that
case we would also need to compute the gradients of Li with respect to the location on the sensor
plane. Using the formulation above, we do not require the availability of gradients of Li.

4 IMPLEMENTATION DETAILS

Simulation framework. We implement both, the forward and backward pass, using numerical
integration. We employ stratified Monte-Carlo integration to reduce possible aliasing artifacts that
could emerge from quadrature-based integration schemes. We make no assumptions on how Li is
calculated. In general, our method can be built on top of any existing rendering algorithm, as long
as it exposes a way to sample the radiance at given points on the image plane.

The main goal of our method is to enhance a downstream deep learning task, which generally re-
quires a substantial amount of training data. For many tasks, large and widely-used datasets are
available, whose effectiveness has been proven over time. We therefore decided to approximate the
radiance function Li with high-resolution real images, which we transform into a coarser image
using our differentiable sensor simulator. We use bilinear interpolation to sample the radiance at
arbitrary positions on the sensor plane. Furthermore, we set Wk to be constant, i.e. all points on a
pixel have the same sensitivity.

We feed the output of the sensor simulation directly to the downstream network, as if it were on a
uniform grid (see Fig. 1). In case the downstream network is solving an image-to-image task the
output of the network needs to be resampled in order to match the reference image pixel grid. We
give details on that case, as well as general implementation details in Appendix A.

Sensor Hardware. We give an overview of the general approach in designing rectilinear pixel
layouts using the learned layout for the specific application of semantic segmentation based on the
Cityscape dataset, see Fig. 4b. Note, that the sketched design approaches can, e.g., also be applied
to smaller base pixels, while non-rectilinear layouts require different procedures.
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θ = (0, 0) θ = (0.56, 0.38)

Uniform Learned

(a) MNIST Layouts

Rectangular

Curvilinear

(b) Segmentation Layouts

Figure 4: (a) Learned sensor layout for 4×4 MNIST classification. Top row: pixel layouts overlayed
over the original 28× 28 image. Bottom row: Simulated sensor output. The network fine-tuned on
the uniform layout wrongly classifies the image as a 7 while the end-to-end optimized network
classifies as a 4. (b) Learned rectangular and curvilinear pixel layouts for 256 × 128 segmentation
on Cityscapes with PSPNet (less pixels are shown for visualization purposes).

Figure 3: Base pixel (left) and non-uniform (right)
IC layouts for the sensor optimized for segmenta-
tion in Sec. 5.

We designed and laid out the image sensor us-
ing an 0.18µm XFAB CMOS image sensor pro-
cess. We select a typical 4-transistor active
pixel setting with a minimal transistor size of
0.35µm × 0.22µm, and a base pixel of 5µm ×
5µm. Fig 3 depicts the layout comprising pho-
todiode (red), the power supply (blue), the out-
put line (yellow), and the reset and transfer gate
(white), all shielded by a top metal layer. The
base pixel positions are rounded off to meet
0.18µm manufacturability, and the “free space”
for larger pixels is filled with photodiodes. The
smallest and largest pixel are 6.534µm×5.76µm and 17.91µm×10.26µm, respectively. The fill fac-
tor, which determines optical efficiency, without microlenses for the base pixel is 57%. It rises to
61.2% for the smallest pixel and to 83.42% for the largest pixel in the array. The entire array size is
2mm×1.4mm, which is fairly small. We expect a very small reduction in the overall intensity dy-
namic range due to the varying pixel size, which can be counteracted using a modified dual sampling
technique allowing for adaptive integration times. For further details, we refer to the supplementary
material.

The chip will be submitted for fabrication using XFAB’s XS018. The next downstream stages to
obtain an operative prototype camera comprise the finalization of the design, including its interface
circuits and tape-out, as well as testing of the chip’s functionality and the integration into a camera.

5 EXPERIMENTS

We conduct several experiments both for classification and semantic segmentation. For each exper-
iment, we compare a task-specific network with uniform sensor layout as the baseline to the same
network end-to-end trained with a learned sensor layout, which is fixed during inference and evalu-
ated on simulated data. Details on all training schemes and used network architectures can be found
in Appendix B.

MNIST classification. To illustrate the principle of our end-to-end sensor layout optimization, we
start with a toy example and optimize the layout for hand-written digit recognition on MNIST (Deng,
2012) with a sensor size of only 4 × 4 instead of the original 28 × 28 pixels. The digits in MNIST

7



Under review as a conference paper at ICLR 2024

Network PSPNet SegNeXt DeepLabV3plus
Layout Uniform ϕcurv ϕrect Uniform ϕrect

†ϕrect Uniform ϕrect
†ϕrect

mIoU 50.76 52.39 54.08 49.16 50.01 51.07 55.13 56.68 55.95
Acc. (%) 90.86 91.19 91.44 90.12 90.22 90.52 91.61 91.83 91.79

Table 1: Semantic segmentation results on Cityscapes dataset (Cordts et al., 2016) (256 × 128).
Fixed layout transferred from the optimal layout of PSPNet is indicated by †. Otherwise layouts
were trained from scratch. Bold indicates the best result for that network architecture.

Figure 5: Example segmentations from the Cityscapes (Cordts et al., 2016) test set with and without
learned sensor layouts at 256 × 128 resolution. The used deformation is ϕrect. To accommodate
the different pixel shapes, both variants were upsampled using nearest neighbor interpolation to
the ground truth resolution (2048 × 1024), as described in Appendix A. The learned pixel layout
achieves more accurate segmentations with objects detected that were otherwise missed by using the
uniform layout, especially in the vertical center of the image.

are always centered, so the hypothesis is that an optimized layout puts smaller pixels in the middle
in order to capture the higher information density. This is in contrast to more general datasets like
ImageNet (Deng et al., 2009), which aim to provide images from a distribution that is as wide
as possible and thus have little to no spatial bias. We apply the curvilinear layout ϕcurv whose
parameters we initialize with 0, i.e. we start the training with a uniform pixel layout.

Overall, the learned layout (Fig. 4a) achieves a testset accuracy of 90.90% and the uniform layout
only 83.63%. The layout confirms our hypothesis that smaller pixels in the center are advantageous
for classification on this specific dataset. Note that the visualization of the learned layout in Fig. 4a
is not what the network receives as input. The CNN has no notion of pixel shape and sensor layout,
and only “sees” a 4× 4 grid of pixel values.

Semantic segmentation. For a relevant practical example application, we evaluate the learned
pixel layouts under the task of semantic segmentation of urban street scenes on the Cityscapes
dataset (Cordts et al., 2016). The dataset contains 5000 high-resolution, densely annotated frames
with 19 object classes.

Unlike in more general segmentation tasks, street view images are taken in environments that share
many similarities between scenes and the distribution of object classes over the image plane is highly
non-uniform. For instance, often large parts of the image are occupied by empty streets or the sky,
while others have a higher density of different object classes. Thus, the segmentation task could
benefit from distributing pixels to areas of higher information density.

As baselines, we choose PSPNet (Zhao et al., 2017), SegNeXt (Guo et al., 2022) and
DeepLabV3+ (Chen et al., 2018). Again, we train the baseline with a fixed uniform pixel layout
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Resolution Method Accuracy θ

8× 8
ResNet18 86.60% -

ResNet18 + ϕrect 87.19% (0.32, 0.08)

16× 16
ResNet18 88.39% -

ResNet18 + ϕrect 88.62% (0.15, 0.03)

Table 2: Accuracy and pixel layouts for classification on the CelebA dataset (Liu et al., 2015).

and compare it to the same network architecture with a learnable layout. To assess if curvilinear or
rectangular layouts have an advantage over the other, we train variants with both. We also evaluate
if a layout optimized for one network can be transferred to another on the same task by transferring
the optimal rectangular layout from PSPNet to the other networks. More experiments on different
resolutions and per-class results can be found in Appendix C.

The learned layouts in Fig. 4b display a higher pixel density towards the horizon line. As expected,
fewer pixels are needed to detect the street and the sky. Perspective also dictates that objects far
away from the camera gather at the horizon and are smaller, thus requiring a finer pixel raster to
distinguish them. Interestingly, the sensor with the rectangular layout also learned to put slightly
more pixels towards the left and right edges. This might be due to the fact that there is often a higher
density of small objects on the sidewalks (people, poles, fences, vegetation) as opposed to the street
itself.The learned curvilinear layout does not show this horizontal non-uniformity. Although hard
to verify, an explanation for this could be that the deformation here is restricted to a circular region,
which means that the region at the sensor boundary can not be samples more densely.

The quantitative results in Tab. 1 show a clear advantage over the uniform layout on all tested res-
olutions. In all our experiments, the rectilinear layouts outperformed their curvilinear counterparts,
which might be because of their limited adaptability in the image corners. The layouts transferred
from PSPNet also achieve improved results, which indicates that the layouts are task specific rather
than network specific. Fig. 5 also shows encouraging results for the detection of small objects in the
image center. More learned layouts are visualized in Appendix D.

Multi-label classification. Finally, we evaluate our method on the multi-label classification of fa-
cial attributes on the CelebA dataset (Liu et al., 2015). Similarly to MNIST, the faces are in the
image center, so that a non-standard pixel layout could be advantageous. We fine-tune a ResNet18
pretrained on ImageNet on different resolutions over 15 epochs with rectilinear pixel layout. The
results in Tab. 2 show marginal improvements over the baselines. As expected, the network learns a
higher density in the image center. We conjecture that the joint prediction of 40 different attributes
(spatially spread over each face) is the reason for the comparably small improvements.

6 CONCLUSIONS

We present the first approach of a parameterizable and differentiable pixel layout that can be jointly
optimized with any downstream, task-specific network in an end-to-end fashion. This approach
allows going beyond fixed, regular pixel layouts that treat all regions of an image as equally impor-
tant, yielding task specific layouts on which the networks perform better than on regular grids. We
provide the generic concept of a differentiable sensor layout parameterization that retains a regular
topology and present two pixel layout parameterizations, i.e. rectangular and curvilinear grid shapes.
Our drop-in module allows applying the learnable pixel layout to existing high-resolution imagery,
and, thus, connecting our method to existing deep-learning pipelines. We show that network predic-
tions benefit from a learnable pixel layout for classification and segmentation tasks, and depict the
CMOS hardware design process for a rectilinear pixel layout.

Limitations. The proposed deformation functions are comparably simple and do not cover all task
preferences and require more investigation. In addition, not all tasks have a sufficient spatial bias,
i.e., a non-uniform distribution of objects of interest in the image plane to make non-uniform sensor
layouts advantageous. Moreover, a tighter integration of the sensor design parameters and their
(geometric) limits into the modeling of deformations is needed.

9
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7 ETHICS STATEMENT

We have carefully read the ICLR 2024 Code of Ethics and confirm that we adhere to it. The method
we propose in this paper is conceived to jointly optimize deep neural network models for computer
vision and the imaging sensor that records the input images, in order to benefit accuracy at lower
overall sensor resolution. This can have positive effects on power consumption and compute time.
However, since the proposed approach itself is fundamental research, it could in principle be used in
diverse application scenarios. To exemplify a use-case that benefits society, we focus in this paper on
semantic segmentation of street scenes, to potentially improve safety for example in driver assistance
systems or autonomously driving cars.The reduced number of pixel used to acquire regions with high
information density for the specific task, increases data privacy, as the acquisition of dispensable data
is prevented.

8 REPRODUCIBILITY STATEMENT

We provide implementation details in Appendix A and Appendix B and code in the supplementary
material. All code to reproduce results will be cleaned and made publicly available upon accep-
tance.
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A ADDITIONAL IMPLEMENTATION DETAILS

We implement our differentiable sensor as a custom PyTorch layer, which makes it easy to integrate
into already existing projects. The layer takes a high-resolution image as input and outputs an
image with the resolution of the simulated sensor. We use tanh to restrict the parameters to the
allowed range of (−1, 1)2. Since the behavior of the deformation function becomes nearly singular
at the borders, we restrict the permissible range a bit more to (−0.6, 0.6)2. This range already
allows for strong enough deformations in our experiments. We will make our implementation of
the differentiable sensor layer as well as code for reproducing the experiments shown in this paper
publicly available upon acceptance.

Even though we simulate non-uniform layouts, we interpret the output of the sensor layer as a
uniform grid, i.e., the output is just an image tensor in R3×R1×R2 without information about the
size and relative distance of neighboring pixels. Directly visualizing this output makes the image
look deformed (see Fig. 1). For instance, layouts with more pixels in the image center would result
in enlarged objects in the image center. We feed this deformed image directly into the downstream
network. Even though this seemingly violates the implicit assumption of convolutional layers that
all pixels have the same distance to their neighbors, our experiments show that we still achieve
significant improvements over baselines. Exploring more tailored solutions accounting for relative
pixel positions, like continuous CNNs, should be addressed in future research.

Special care has to be taken if the downstream network is solving an image-to-image task. In that
case, there is usually a one-to-one correspondence between input pixels and output pixels, like a
dense map of class probabilities for semantic segmentation. This means that a change in the pixel
layout of the input image has an immediate effect on the output image, which has to be taken into
account when computing the loss. This will, in general, be some form of distance to a reference
image given in uniform pixels. We therefore modify the loss function to properly account for pixel
area. To this end, we warp a uniform grid with the reference image resolution Rgt

1 × Rgt
2 via the

inverse pixel layout deformation ϕ−1 and sample the (deformed) output at these locations with
nearest-neighbor interpolation. The result is an un-deformed image with constant regions that match
the pixel layout defined by ϕ. We can now take the loss to the reference image as usual. Note, that
we only apply this resampling to the output of the downstream task while the network operates on
the deformed image and can thus take advantage of the non-uniform layout. These considerations
only apply to image-to-image tasks. If the output of a task does not depend on positions on the image
plane (for instance classification tasks), the loss function can be applied as-is without modifications.

B DETAILS ON ARCHITECTURES AND TRAINING PROCEDURES

In order to achieve the fairest possible comparisons, the uniform baselines and the learned layouts
share the exact same code (including training schemes and hyperparameters), except that the base-
lines have the sensor layout parameters frozen to 0, which is equivalent to a uniform layout. In
the following sections we will give more details for each experiment. We have no affiliations with
the authors of any mentioned Github repositories. All code will be made publically available upon
acceptance.

MNIST classification experiments The sensor layer output is fed into a small CNN consisting
of two convolutional layers with 32 and 64 channels, followed by a max pooling layer and two
fully connected layers with hidden dimension 128. We train the whole pipeline for 14 epochs with
Adam (Kingma & Ba, 2014) and a learning rate of 0.01. As a baseline, we compare against exactly
the same pipeline and training scheme, but with frozen uniform sensor parameters.

Semantic segmentation experiments PSPNet (Zhao et al., 2017) and PSANet (Zhao et al., 2018)
implementations are taken from https://github.com/hszhao/semseg and the training
follows the default configurations for cityscapes. For both we use a ResNet50 backbone. In general,
segmentation networks are trained and evaluated on patches of the high-resolution input images,
instead of downsampling them. Since our objective is to optimize the pixel layout over the whole
sensor plane, we instead feed the whole input to the network directly. This also means that we cannot
employ all data augmentation schemes from Zhao et al. (2017), namely random rotation, which we
disabled. This specific implementation requires all (network input resolutions + 1) to be divisible
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by 8, so we use resolutions of e.g. 257 × 129 instead of 256 × 128. This difference of 1 pixel is
negligible. We initialize all sensor parameters with 0 (uniform layout) and freeze them for the first
10 epochs to speed up convergence to reasonable network weights. In total we train each networks
for 200 epochs.

Implementations for SegNext (Guo et al., 2022) and DeepLabV3+ (Chen et al.,
2018) are taken from https://github.com/open-mmlab/mmsegmentation.
Again, we use the default configurations for Cityscapes. Namely, we use
the config files segnext mscan−t 1xb16−adamw−160k cityscapes−512x512.py and
deeplabv3plus r18b−d8 4xb2−80k cityscapes−512x1024.py as a base. Like for PSPNet we
made modifications to take the whole image as network inputs instead of working on patches
and removed data augmentation schemes that change the camera orientation. Apart from that, no
training scheme or network architecture changes were made.

CelebA multi-class classification We fine tune a ResNet18 pretrained on ImageNet provided by
torchvision for 15 epochs, a batch size of 64 with an Adam optimizer and a learning rate of 0.001.

C ADDITIONAL SEGMENTATION RESULTS

Per-class metrics We give per-class IoU results for the cityscapes testset in Table 4. We provide
additional experiments using PSANet (Zhao et al., 2018) as a backbone. Using a learned sensor
layout consistently leads to better performance compared to training the network with a uniform
layout.

Oracle performance As explained in the paper, we compare the predicted segmentation masks
with the ground truth segmentation by resampling the (non)-uniform network outputs to the higher
resolution GT masks. Thus, even perfect segmentation masks have an inherent error. An interesting
question is how this inherent error differs between the standard uniform layout and our learned
layouts.

To this end, we compute the theoretically best achievable error for each layout with the following
scheme. First, we encode the ground truth segmentation masks with one-hot vectors at each pixel
to get tensors of shape 19 × W × H , i.e. a tensor of class probabilities. Then we use our sensor
layout to downsample these tensors with the different sensor layouts. We convert the result back to
a segmentation mask by taking the channel index with the highest probability. Finally, this mask is
upsampled to the reference image resolution and evaluated as usual.

The result can be found in Tab. 3. While there seems to be an inherent advantage of the learned
layouts at lower resolutions, the highest attainable performance at 512× 256 becomes worse. Thus,
we hypothesize that the increased performance of our method in the paper mostly stems from the
deep learning model taking advantage of the increased resolution in areas of the sensor that are more
challenging.

Influence of pixel density on accuracy We compare the accuracy gain of our learned layouts
compared to the uniform baseline by computing the mean accuracy at every pixel positions. Fig. ??
exemplary shows the accuracy gain of the learned layouts with the PSPNet backbone. It can be seen
that the accuracy significantly increases in regions with higher pixel density, while only staying the
same or only slightly decreasing in low density regions. This is evidence that the learned layout
successfully puts higher density into regions that are otherwise hard for the network to discriminate
while putting less emphasis into easier areas (like the street).

Furthermore, the area of accuracy increase over the uniform layout seems to broaden in vertical
direction towards the left and right corners for the rectangular layout. This is an area that can not
easily be attended to by the curvilinear layout parameterization without high distortions.

D LEARNED LAYOUTS

We give visualizations of all learned layouts in the paper, namely for all segmentation networks in
Fig. 7 and classification networks in Fig. 10.
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(a) PSPNet + ϕrect (b) PSPNet + ϕcurv

Figure 6: Difference of per pixel accuracy in percentage points compared to the uniform layout for
256 × 128 PSPNet on Cityscapes. Values greater than 0 indicate image regions where the learned
layout performs better. The per pixel accuracies were computed as the average accuracy over the
whole test set. The corresponding layouts are overlaid and do not represent the actual resolution of
256× 128 for visualization purposes.

Resolution Layout mIoU (%) Acc. (%)

128× 64
Uniform 84.29 96.06
ϕcurv 84.69 96.13
ϕrect 85.02 96.16

256× 128
Uniform 90.71 97.57
ϕcurv 90.96 97.53
ϕrect 90.93 97.60

512× 256
Uniform 94.88 98.77
ϕcurv 94.83 98.73
ϕrect 94.39 98.66

Table 3: Theoretical best achievable performance with our learned layouts compared to uniform
layout. The learned layouts are the layouts we trained together with PSPNet on the cityscapes
dataset from our other experiments. While there is an inherent but small advantage of our learned
layout on lower resolutions, this advantage diminishes at the highest resolution.

Resolution Method road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike mIoU mIoU/GFLOP

128× 64
PSPNet 93.8 59.0 77.5 24.3 11.8 7.8 6.2 14.3 77.6 43.8 80.6 33.6 6.0 75.5 29.4 30.6 10.2 0.2 22.9 37.1 6.6
+ ϕcurv 94.2 60.9 77.4 23.4 11.5 7.1 6.6 13.5 77.7 46.2 80.3 33.1 8.2 76.3 20.2 31.2 11.8 10.2 23.8 37.6 6.7
+ ϕrect 94.5 62.5 78.3 28.5 16.7 7.3 5.2 15.5 78.2 48.4 80.2 35.7 8.3 78.4 39.0 35.3 3.1 5.1 29.2 39.4 7.0

256× 128

PSANet 95.8 69.0 83.5 32.6 27.7 18.7 22.4 36.5 84.0 54.2 87.4 50.0 22.8 84.8 43.0 47.9 32.7 19.3 46.6 50.4 2.0
+ ϕcurv 96.1 70.8 83.9 35.2 31.0 17.4 23.3 37.4 84.1 54.8 87.2 50.2 27.0 86.1 49.9 50.4 22.1 29.7 47.8 51.8 2.1
+ ϕrect 96.4 73.1 84.0 38.1 33.2 19.5 24.6 37.4 84.4 58.1 86.6 52.2 29.0 86.3 52.5 52.9 26.0 26.3 51.4 53.3 2.1
PSPNet 96.0 70.1 83.5 35.7 27.3 18.4 23.1 37.2 83.8 54.2 87.1 49.8 23.4 84.8 39.6 49.8 35.2 19.2 46.3 50.7 2.2
+ ϕcurv 96.3 71.9 83.7 39.9 29.3 17.5 22.2 36.7 84.0 55.8 86.6 51.3 28.7 86.2 59.1 51.2 20.6 25.4 49.0 52.4 2.3
+ ϕrect 96.6 73.2 84.1 39.2 34.0 19.6 24.1 37.9 84.2 57.2 86.5 52.6 30.7 86.4 59.1 54.2 34.7 23.0 50.4 54.2 2.4

SegNeXt 95.3 66.5 82.5 37.4 26.3 15.6 23.7 33.2 82.8 51.4 86.9 46.3 20.3 83.1 49.2 43.6 24.2 20.5 45.4 49.2 12.0
+ ϕrect 95.4 66.7 82.5 33.0 28.6 15.4 24.7 33.5 83.0 54.0 87.0 47.2 20.1 83.4 46.7 46.4 31.1 25.7 45.9 50.0 12.2
+ †ϕrect 95.8 69.4 82.7 42.1 31.6 16.7 22.7 31.0 82.8 53.0 84.8 47.6 23.9 84.5 53.2 48.7 27.7 23.8 48.5 51.1 12.5

DeepLabv3+ 96.5 71.8 84.6 42.5 32.1 27.7 27.4 40.7 84.6 51.6 89.8 53.5 28.6 86.5 45.7 61.2 45.9 30.0 46.8 55.1 2.5
+ ϕrect 96.1 73.3 84.6 42.3 32.3 27.2 26.4 40.4 84.9 55.1 89.2 54.9 32.7 87.5 56.7 63.4 49.7 30.2 49.7 56.7 2.6
+ †ϕrect 96.7 73.9 84.5 44.2 34.4 28.5 24.8 39.5 84.5 53.5 88.5 54.4 30.6 87.1 57.1 63.5 36.8 29.3 51.3 56.0 2.5

512× 256
PSPNet 97.2 77.9 88.4 48.7 44.7 37.3 47.3 59.6 88.7 58.8 91.7 65.6 42.0 90.4 56.0 74.0 48.2 36.2 62.8 64.0 0.71
+ ϕcurv 97.3 78.8 88.2 48.2 45.7 35.7 45.1 57.3 88.6 60.0 91.1 65.2 43.1 90.7 60.0 74.6 51.5 43.6 63.8 64.7 0.72
+ ϕrect 97.3 79.4 88.2 51.8 46.6 36.4 44.2 56.0 88.3 62.4 90.3 64.2 43.9 90.6 65.9 71.8 49.2 40.0 63.7 64.7 0.72

Table 4: Per-class results (IoU). For lower resolutions, the proposed approach allows improvements
over regular layouts for most classes, yet in particular for important classes of small objects such as
person (by almost 3%) or rider (up to 7%).
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Figure 7: Learned layouts for all segmentation experiments with PSPNet. The parameters are on top
of each layout. The resolution of the layouts is lowered for visualization purposes.

Figure 8: The corresponding sensor images to the layouts in Fig. 7, interpreted as being on a uniform
layout. This means regions with high pixel density are enlarged.

θ = (0.0344, 0.3188)

Figure 9: Pixel Layout for DeepLabv3+ with Layout learned from scratch.
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Figure 10: Learned layouts for the classification experiments on CelebA. Both layouts are at the
actual resolutions of 8× 8 and 16× 16

E IC LAYOUTS

We designed and layed out the image sensor using 0.18µm XFAB CMOS Image Sensor process.
Typical 4-transistor active pixel sensors used in most digital cameras were used. Transistors were
selected to be minimum size, which in this process is 0.35µm× 0.22µm. The transfer gate required
for correlated double sampling for fixed pattern and temporal noise removal is 0.8µm×1µm, due to
minimum size requirements imposed by the foundry. We designed a standard pixel of 5µm× 5µm,
which would have been a typical image sensors pixel. It is comparatively larger than the state of
the art; however, was designed to showcase the concept and hence this can be scaled down. In
Fig. 11, the red areas denote the photodiode, while the rest covered with the third and top metal
layer are the 4 transistors used to reset and read out the pixel. Power is provided using the third
metal in blue, while the top metal is only used for optical shielding. The output line is the long
running second metal, in yellow; while the reset and transfer gate are in first metal in white; while
the row select is in the third metal in blue. These base pixels were then placed at the starting point of
each coordinate, as predicted from analytical calculations and rounded off to the nearest 0.18µm, to
ensure manufacturability. The space between neighboring pixels was then filled with photodiodes of
different dimensions and merged with the photodiode of the base pixel, to lead to pixels of different
size. Despite starting with a large pixels, our entire array size is 2mm × 1.4mm, which is a fairly
small imaging chip.Furthermore, despite quantisation in pixel boundaries, each pixel is still fairly
individual compared to its nearest neighbors. The smallest pixel in the array is 6.534µm× 5.76µm,
showing a small addition to photodiode to the base pixel. The largest pixel is 17.91µm× 10.26µm,
showing a six times larger area than the base pixel. This would lead to a very small reduction in the
overall intensity dynamic range of the pixel; however, this should not affect typical natural world
scenes. If it does, one can use a modified dual sampling technique, wherein the larger pixels would
be read with a shorter integration time and the smaller pixels read with longer integration time. This
is feasible in the current array due to its random addressability. Furthermore, the row scanners,
column scanners, column readout circuits and the analogue to digital converters present in each
column is designed to match the pixel pitch of the base pixel. Hence, whenever these are controlling
larger pixels, space is left between neighboring row or column circuit to compensate for pixel sizes
while continuing the signal chain.

The layouts for different regions of the sensor (and thus different pixel shapes) can be seen in Fig. 12.
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Figure 11: Base Pixel
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Figure 12: IC layouts in different regions of the optimized sensor for the 256 × 128 Cityscapes
segmentation experiment. The base pixel (square region in the bottom left of each pixel) is always
the same size.
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