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Abstract

We introduce Wonderful Team, a multi-agent Vision Large Language Model (VLLM) frame-
work for executing high level robotic planning in a zero-shot regime. In our context, zero-shot
high-level planning means that for a novel environment, we provide a VLLM with an image
of the robot’s surroundings and a task description, and the VLLM outputs the sequence of
actions necessary for the robot to complete the task. Unlike previous methods for high-level
visual planning for robotic manipulation, our method uses VLLMs for the entire planning
process, enabling a more tightly integrated loop between perception, control, and planning.
As a result, Wonderful Team’s performance on a real-world semantic and physical planning
tasks often exceeds methods that rely on separate vision systems. For example, we see an
average 40% success-rate improvement on VimaBench over prior methods such as NLaP, an
average 30% improvement over Trajectory Generators on tasks from the Trajectory Gen-
erator paper including drawing and wiping a plate, and an average 70% improvement over
Trajectory Generators on a new set of semantic reasoning tasks including environment re-
arrangement with implicit linguistic constraints. We hope these results highlight the rapid
improvements of VLLMs in the past year, and motivate the community to consider VLLMs
as an option for some high-level robotic planning problems in the future.

1 Introduction

High-level robotic planning is a difficult task to pin down. It requires an extensive knowledge of the physical
world. If planning is to be done via language instructions, it also requires a semantic understanding of the
language itself, and how the objects in the environment relate to sometimes vague linguistic instructions.
Consider, for example, the task “Pick up the object to the right of the grapes and put it in the box.” To solve
this task, we need to identify ‘the object to the right of the grapes,’ which is a non-trivial visual relationship
inference problem. We also need to consider the implicit constraints of the environment. For example, if the
box has a lid and is currently closed, we need to infer that the lid must first be removed before proceeding
with the task.

Recently, Large Language Models (LLMs) have emerged as an enticing pathway for achieving high-level
robotic planning. LLMs already have a built-in world model, including priors over object names and
relative relationships. They also have the ability to understand and parse semantic meaning from language
instructions. Several promising pipelines exist for converting language commands to high-level robotics
plans Kwon et al. (2024). Typically, if vision-based planning is required, these pipelines make use of an
off-the-shelf vision encoder such as LangSAM or OWL-ViT that finds objects in an environment and delivers
their coordinates in pixel space. While this is a great idea in theory, we find that, in practice, such reliance
on an external vision system often results in pipelines that are brittle and unable to recover from mistakes
originating in the visual system.

In this paper, we consider the problem of using Visual Large Language Models (VLLMs) to generate
action-level robotics plans directly from environmental images. Compared to prior works, we find having
VLLMs as the backbone of both planning and grounding in the pipeline to have several advantages. First,
VLLMs combine the semantic reasoning power of language models with robust visual understanding,
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Figure 1: Comparison of high-level planning approaches for a color-matching fruit placement task. MOKA’s
planned trajectory (b) shows several limitations: its unverified high-level plan generates suboptimal subgoals
due to the lack of self correction (step 2 treating grape as green) and shows misalignment between VLLM-
generated targets and visual grounding. For instance, at step 3, it identifies the orange fruit to be the ‘orange
area’, and at step 4, it fails to properly pick the green apple due to not specifying the color. We discuss
more on comparision with MOKA in Appendix F.4.

bridging the traditional gap between high-level planning and visual grounding. Thus, they do not struggle
with commands such as “pick the orange and place it in the orange area.” The model can read the
environment image and understand implicitly to treat the orange square as the orange area instead of the
orange fruit, although both can be considered “orange area” without context. More importantly, VLLMs
enable self-correction at both the planning and perception levels. For planning, if the initial high-level plan
overlooks environmental constraints, VLLMs can identify these errors and suggest corrective actions. For
perception, while traditional vision models fail permanently when objects cannot be found, our VLLM-based
perception module can refine its search strategy through reasoning about alternative viewpoints and object
appearances. This ability to self-correct improves success rates on real-world spatial and semantic planning
tasks by approximately 80% versus a baseline GPT-4o model with no self-correction, with many tasks going
from a 0% success rate to a 100% success rate after self-correction is introduced.

Our contributions can be summarized as follows

• Zero-Shot Coordinate-Level Control in Complex Robotics Tasks: Our system operates without
any prior training, fine-tuning, or environment-specific prompts, successfully handling diverse tasks in
both simulated and real-world environments.

• Developed a Multi-Agent VLLM Framework to Overcome Previous Limitations in High-
Level Robotic Planning from Language Instructions: We have developed a novel multi-agent
structure within a single VLLM, where specialized agents collaboratively handle various aspects of high
level robotic planning, from sequential position generation to location estimation. By integrating per-
ception and action, and employing a divide-and-conquer approach with reflection capabilities, we address
the shortcomings of previous models, including issues with context-aware object identification, precise
localization, and handling multiple instances of the same object.

• Empirical Validation through Extensive Experiments and Ablation Studies: We validate our
framework with comprehensive experiments in both simulation (VIMABench) and real-world settings,
including spatial planning tasks from Trajectory Generators and a new set of semantic reasoning real-
world robotics tasks. Our results show significant performance improvements over existing methods on
problems related to physical task planning. Interestingly, these improvements are also present when
comparing against planning methods that require training. We also conduct thorough ablation studies to
examine the effects of different agents and configurations, highlighting the critical role of the multi-agent
system in achieving optimal performance.

Demonstration videos of the robotic policies in action, along with the code and prompts, can be accessed on
our project website .
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2 Motivating Examples

Developing robotic systems that can understand and execute planning over complex manipulation tasks
remains a significant challenge, particularly when dealing with uncommon objects and abstract visual at-
tributes. Existing frameworks often employ a Large Language Model (LLM) as a text planner combined
with a separate vision model (e.g., CLIP, OWL-ViT, LangSAM, GroundingDINO) to perceive the environ-
ment. While this modular approach seems logical, it faces critical limitations when handling less common
objects, interpreting abstract visual relationships, or reasoning about semantic properties - challenges where
our integrated approach shows significant improvements over prior methods.

2.1 Can an LLM as a Planner with a Separate Vision Model Find Objects?

Not Always. There are limitations at both the planning and perception levels, which are both intimately
ralted.

At the planning level, non-vision LLMs cannot generate meaningful plans for ambiguous prompts that rely on
environmental context. For example, consider the task: “Rank the fruits from most expensive to cheapest.”
Without visual input to identify the fruits and their prices, the LLM cannot accurately rank them, nor
generate useful queries for the vision model.

At the perception level, vision models also have limitations in context-aware perception. A notable prior
work is the Trajectory Generator (Kwon et al., 2024), which uses GPT as a text planner and LangSAM as
the vision model. In this approach, GPT extracts the objects to segment from the task prompt and passes
them to LangSAM for object identification and segmentation. As illustrated in Figure 2, LangSAM fails
to correctly identify or segment all intended objects based on the prompt. While this example highlights
several challenges inherent in using separate vision models for complex tasks, it does not capture the full
scope of limitations, which are discussed in detail below:

1. Difficulty with Less Common and Non-Segmented Objects: LangSAM struggles to identify uncommon
objects (e.g., robot grippers, box lids) and abstract regions that cannot be clearly segmented. When objects
are less prominent in the scene or when boundaries are not well-defined, LangSAM fails to provide accurate
identification or spatial understanding.

2. Misinterpretation of Spatial and Positional Instructions: LangSAM often misinterprets vague spatial
instructions like “pick up the rightmost object” due to its lack of precise spatial reasoning. In multi-instance
scenarios, positional references like “the middle can” are challenging because the model frequently miscounts
objects, leading to incorrect identification.

3. Lack of Contextual Awareness and Differentiation: LangSAM lacks the contextual understanding neces-
sary to distinguish between relevant objects for manipulation and other elements in the scene. For instance,
it may mistakenly select parts of the robot arm itself, failing to identify the intended target due to a lack of
contextual awareness.

Figure 2: Examples of LangSAM’s detection failures in simulated environments. The bolded text within the
prompts represents the objects extracted by GPT and passed to LangSAM.
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Can These Issues Be Fixed? Not within the current framework. Even with enhanced reasoning and
replanning, we are unable to fully address LangSAM’s limitations because the LLM lacks the capability to
detect, notice, or correct errors originating from the seperate vision model.

However, recent advancements in VLLMs present a potential solution, as they are designed to handle both
visual reasoning and context understanding. This brings us to the question:

2.2 Could simply replacing LangSAM with a VLLM resolve these issues?

The answer to this question is ‘no.’ While replacing LangSAM with a VLLM may improve context compre-
hension, the resulting system fails to match the precision that LangSAM already provides. And thus the
substitution is largely a wash. There are a few reasons for this.

1. Imprecise Spatial Understanding: Recent VLLMs can generate more accurate approximate locations, but
they still lack the precision required for effective robotic manipulation. In our ablation experiments, 90%
of the coordinates were close to the target (Table 13), yet only 33% (GPT-4o) were accurate enough to be
directly actionable (Table 12).

2. Difficulty with Complex Instructions: Tasks that require understanding spatial relationships or handling
multiple objects can overwhelm the reasoning capabilities.

However, while experimenting with using VLLMs to generate high-level plans, we had an interesting obser-
vation: VLLMs often know they’re wrong. And they can often diagnose their own errors.

For example, when asked to locate a cluster of grapes, the model may initially provide an imprecise answer,
but can correct it when prompted to reassess (see Figure 3). Table 14 shows GPT-4o’s 97% success in
classifying bounding boxes, highlighting its self-assessment abilities. This suggests VLLMs can iteratively
refine outputs, even from initially imprecise coordinates.

Figure 3: An example of multiple VLLMs working together to recognize and correct an error in object
positioning upon review.

Even more interesting than this first observation, we also noticed that VLLMs often know how to
iteratively self-correct errors in their perception. Over several iterations, they can improve their
estimation of an object’s position, moving closer to the correct target (see Figure 4). This process of an
LLM iteratively refine its outputs based on feedback is known as reflection.

Figure 4: An VLLM improving its estimation of the grapes’ position over several iterations.

Thus, we arrive at our main thesis. While naively using a VLLM for high-level robotic planning is often
insufficient, the effectiveness of VLLMs for high-level robotic planning can be improved substantially if we
leverage their self-correction capabilities in a structured way.
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3 Wonderful Team

Building on insights from the previous section, we propose a novel pipeline for high-level physical task
planning in robotics that leverages specialized agents, each responsible for a distinct part of the reasoning
process within a structured framework. By combining the strengths of Vision-Language Models (VLLMs)
and breaking down complex tasks into manageable components, each agent can focus on a specific role,
resulting in more precise and reliable high-level planning. As illustrated in Figure 6, our multi-agent
framework defines the distinct roles of each agent, the flow of information from high-level tasks to low-level
actions, and their collaborative efforts in executing tasks effectively.

We discuss the role of each team member and the flow of information between them below. Simpli-
fied prompts and more details on the implementation and workflow for each team member can be found in
Appendix B. Full prompts are available in the project’s codebase .

Figure 5: Overview of the major components of the Wonderful Team. Each part of the pipeline receives
different levels of input, with a unique scope and specialization within the project. The agents collaboratively
handle tasks ranging from high-level planning and logical verification to precise spatial reasoning and memory
management, ensuring robust and efficient execution.

Each agent in our system is designed to address specific challenges in high level planning for physical ma-
nipulation tasks. For example, in Figure 6(b), when the robot is instructed to “put the banana into the
box,” the initial plan generated by the Supervisor agent often overlooks obstacles like the box’s lid. This is
where the Verification agent plays a critical role. Its reflection process involves reviewing the subgoal plan,
checking for potential issues such as physical constraints or incomplete steps, and cross-referencing this plan
with the current state of the environment. If an issue, like the lid blocking access to the box, is detected,
the Verification agent raises this concern to the Supervisor. This early feedback allows the system to refine
the plan before executing any action.

The Grounding team then takes over to refine the coordinates for each target, ensuring precise and collision-
free movements. The Mover and Checker agents collaborate through an iterative process of adjusting posi-
tional groundings. Figure 4 provides an example of the Grounding team in action. The separation of tasks
into a multi-agent system proves advantageous, as it allows each agent to focus on its distinct responsibil-
ities with varying levels of access to critical information. For a detailed discussion on the benefits of this
multi-agent approach, refer to Appendix F.3.3.

Are all parts of the Wonderful Team necessary? Ablation studies reveal that all components of the
Wonderful Team are essential. Removing memory agents leads to failures, such as mistaking irrelevant objects
for targets, while omitting grounding members results in inaccurate coordinates. A supervisor-only setup
works for simple tasks but fails with complex ones, lacking precision and corrective processes. Appendix D
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provides detailed analysis, and Table 11 in the appendix shows the impact on success rates when specific
agents are removed. Appendix B shows the information flow from one agent to the next within the team.

(a) This figure illustrates the agent roles and information flow within our pipeline, moving from high-level tasks
to low-level actions. The blue bars indicate each agent’s level of information access. For instance, the Grounding
Manager has a broad overview, encompassing both the task and subgoals, while the Mover and Checker agents focus
only on specific details within their target areas, without managing the entire task context.

(b) A symbolic example illustrating the framework in (a).

Figure 6: Illustration of our multi-agent framework and a symbolic example showcasing agent roles, infor-
mation flow, and collaborative task execution.

4 Related Work

High-Level Planning with Predefined Task Modules: Many methods focus on high-level planning
using LLMs or VLLMs, decomposing tasks into subtasks but relying on predefined task modules or APIs
for action execution, which are not directly executable without prior knowledge or training (Hu et al., 2023;
Huang et al., 2022b; Liang et al., 2023).
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Low-Level Coordinate Generation with Separate Vision Models: Other approaches generate low-
level coordinates using separate vision models for perception, often relying on predefined or fine-tuned vision
APIs. While leveraging off-the-shelf models like Convolutional Neural Networks (CNNs)(Ichter et al., 2022;
Mees et al., 2023), CLIP(Bucker et al., 2023; Huang et al., 2022c), Vision Transformer (ViT) variants (Huang
et al., 2023b; Stone et al., 2023; Jiang et al., 2023), or LangSAM (Kwon et al., 2024) has shown promise in
zero-shot capabilities, these methods still face limitations. The reliance on separate perception systems can
fail to fully capture the environmental context required for precise planning and action generation.

Recent advancements in robotics and artificial intelligence have integrated Large Language Models (LLMs)
and Vision-Language Models (VLMs) into robotic systems. Our work builds upon and differs from several
key areas in this evolving landscape.

Foundation Models in Robotics: Foundation models, trained on vast internet-scale datasets, have
demonstrated strong zero-shot capabilities across various tasks. LLMs like GPT-3 (Brown et al., 2020),
LLaMA (Touvron et al., 2023), and ChatGPT have excelled in generating human-like text, understanding
natural language instructions, and performing extensive reasoning and planning. VLMs extend these capa-
bilities by incorporating visual understanding. In robotics, these models offer the potential to endow robots
with real-world priors and advanced reasoning abilities without extensive task-specific training.

Language Models Empowering Robotics: Prior work has leveraged natural language to enhance robotic
learning and adaptation. Early approaches equipped agents with learned language embeddings, requiring
large amounts of training data (Bing et al., 2023; Jiang et al., 2023). Others focused on connecting language
instructions with low-level action primitives to solve long-horizon tasks (Hu et al., 2023; Huang et al., 2022b;
Liang et al., 2023). While effective in specific contexts, these methods often struggle to generalize to new
tasks without retraining. Foundation VLA models like RT-1 (Brohan et al., 2022), RT-2 (Brohan et al.,
2023), and OpenVLA (Kim et al., 2024) have advanced versatile robotic systems, but they still require
significant training to achieve robust performance across diverse tasks. Additionally, from a system design
perspective, directly mapping vision to action embeddings in these approaches is less intuitive compared to
breaking down the problem into interpretable subtasks or subgoals, making it harder to intuitively reason
about and improve the system’s behavior.

Zero-Shot and Few-Shot Approaches: Recent studies have explored zero-shot and few-shot solutions
for robotic planning and manipulation tasks (Huang et al., 2022a; Liang et al., 2023; Huang et al., 2022b;c;
Zeng et al., 2023; Singh et al., 2023; Vemprala et al., 2023; Gu et al., 2023). These approaches aim to handle
unseen scenarios without prior training, primarily focusing on high-level planning. However, they often rely
on predefined programs or external modules for control, limiting their adaptability in dynamic or complex
environments.

Vision-Language Models for Localization: PIVOT (Nasiriany et al., 2024) addresses enabling VLMs
to localize actionable points without fine-tuning on task-specific data. Their approach centers on localization
through visual question answering, with minimal focus on planning—similar to the role of our Grounding
Team. Unlike our method, which integrates both localization and planning within a multi-agent framework,
PIVOT primarily addresses localization without managing complex, long-horizon tasks. In PIVOT, a single
agent iteratively selects action points, whereas our approach employs multiple agents with distinct roles for
refining and verifying actions. A detailed comparison is provided in Appendix F.2.

Language Models as Zero-Shot Trajectory Generators and MOKA: Recent works by Kwon et al.
(2024) and Fang et al. (2024) demonstrate the use of pre-trained large language models (LLMs) for gener-
ating affordance-based, point-level subgoal trajectories. Both approaches rely on dedicated object detection
systems that use a combination of GroundingDINO and SAM to extract object information, which informs
LLM-based planning. These methods employ LLMs to generate executable Python scripts that define the
robot’s trajectory. In contrast, our approach fundamentally differs by leveraging the same vision large lan-
guage model for perception to seamlessly integrate planning and grounding without depending on external
modules. We provide detailed comparisons in Appendices F.3 and F.4.

Natural Language as Policies: Concurrent with our work, Natural Language as Policies (NLaP) (Mikami
et al., 2024) developed a few-shot, end-to-end model for coordinate-level action prediction. Their approach
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involves providing a one-shot example, either from the same task or a closely related one, rather than
adopting a zero-shot paradigm. Unlike our method, which integrates both grounding and planning within
a multi-agent framework, NLaP focuses less on grounding and directly uses system information from the
environment, bypassing the need to extract coordinates from images using VLMs. NLaP serves as one of
the baselines in our experiments, and a detailed comparison is presented in Appendix F.1.

Our Contribution in Context: Our work differs from prior approaches by proposing a zero-shot, single-
model, multi-agent system that integrates high-level planning and low-level action execution within a unified
VLLM framework. By eliminating the need for external vision encoders and predefined action modules, our
method achieves greater adaptability and precision in dynamic environments.

5 Experimental Results

In this section, we evaluate the performance of Wonderful Team across a diverse set of tasks that challenge
various aspects of robotic reasoning and manipulation. We address key elements of robotics, including
multimodal reasoning, contextual decision-making, and complex spatial planning. Our experiments are
categorized into three main groups, each designed to tackle specific challenges while contributing to the
broader evaluation of the system’s capabilities.

1) Multimodal Reasoning (17 Tasks in Simulated VIMABench)

2) Implicit Goal Inference (3 Custom Real-world Tasks)

3) Spatial Planning (4 Real-world Tasks Adapted from Trajectory Generator)

5.1 Multimodal Reasoning - Simulated VIMABench

To assess our approach’s ability to understand multimodal prompts, reason through abstract concepts, and
follow constraints, we tested it on all 17 tasks from VIMABench (Jiang et al., 2023). Unlike traditional
robotics benchmarks, VIMABench offers a broad range of objects and task types (see Figure 7), requiring
advanced scene understanding, multimodal comprehension, and precise planning for manipulation.

Figure 7: Key Challenges in VIMABench (Jiang et al., 2023): (a) Manipulating uncommon objects and
textures, (b) Interpreting multimodal prompts with abstract nouns and adjectives, (c) Executing constraint
satisfaction tasks, and (d) Handling Spatial Relations and Sequential Dependencies.
We evaluated all 17 tasks in VIMABench, categorized into four main task suites as defined by Jiang et al.
(2023), each targeting distinct robotic capabilities:

1) Simple Object Manipulation: pick-and-place and rotate tasks using multimodal prompts that combine
images and text.

2) Novel Concept Grounding: Tasks with abstract terms like “kobar” (see Figure 7(b)), testing the
agent’s ability to understand and act on novel concepts.

3) Visual Constraint Satisfaction: Manipulating objects while adhering to specific constraints not easily
segmentable, such as avoiding certain areas (see Figure 7(c)).
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4) Visual Reasoning: Higher-level reasoning tasks that involve understanding object properties and main-
taining state, such as “put the object that was previously at its west ...” (see Figure 7(d)).

5.2 Implicit Goal Inference - Real Robots

To evaluate our framework’s reasoning abilities and visual context understanding in real-world settings, we
designed a set of Implicit Goal Inference Tasks, each with four variations, to assess the system’s capacity
for long-horizon reasoning and context-aware high-level instructions interpretation (see Figure 8).

We evaluated our method on three real-world tasks:

1) Fruit Placement: The robot is asked to place each fruit in a color-matched area across various setups
using the same general prompt. This task challenges the system to infer the desired placement and sometimes
also to identify and correct any initially misplaced fruits (see Figure 8(a)).

2) Superhero Companions: The robot is tasked with placing fruits and snacks based on color similarity,
requiring it to identify objects and make suitable matches, even with non-exact color matches, multi-colored
objects, and cases where no clear match is available. (see Figure 8(b)).

3) Fruit Price Ranking: The robot is tasked with ranking fruits by price. This challenges the system to
interpret visual discount information, apply comparative reasoning, and execute precise ranking to correctly
order the fruits (see Figure 8(c)).

All tasks require the system to interpret high-level prompts, perform contextual reasoning, and execute
multi-step actions to achieve the implicit goal state based on the provided instructions.

Figure 8: Examples of Ambiguous Instruction & Contextual Reasoning Tasks: (a) Fruit Placement, (b)
Superhero Companions, and (c) Fruit Price Ranking.

5.3 Spatial Planning - Real Robots

To further challenge our system, we introduced tasks that require precise planning and subgoal management.
These tasks test the agent’s ability to produce accurate action sequences and handle dependencies carefully.
(see Figure 9).

Figure 9: Examples of Complex Planning Tasks.

We evaluated our method on four real-world tasks:

1) Shaking the Bottle: The agent grasps a bottle, shakes it in the air, and places it back on the table.
(see Figure 9(a)).
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2) Drawing a Five-Pointed Star: The agent holds a marker and draws a five-pointed star on a notebook.
This task demands very precise path planning for both lowering the marker to the paper and accurately
tracing the star’s points (see Figure 9(b)).

3) Wiping the Plate with Sponge: The agent cleans a plate using a sponge. This task involves coordi-
nating the sponge’s movement to cover the entire surface of the plate (see Figure 9(c)).

4) Opening a Bottle Cap: The agent grasps a bottle and unscrews its cap (see Figure 9(d)).

All four tasks require the robot to generate accurate intermediate subgoals, carefully plan and execute actions
within spatial contexts.

5.4 Results and Discussion

In VIMABench (Jiang et al., 2023), we compared Wonderful Team against the following methods: (1)
Trajectory Generator(Kwon et al., 2024), which uses an LLM for planning and LangSAM for perception; (2)
Natural Language as Policies (NLaP) (Mikami et al., 2024), which employs one-shot prompting and directly
accesses ground-truth coordinates, bypassing perception; and (3) Ablations Replacing the Grounding Team,
where we replace the multi-agent Grounding Team with a single VLLM for inferring object coordinates
directly and a separate vision-language model, OWL-ViT.

(a) Comparison with Baseline Methods. Grey boxes highlight areas of reduced complexity attributable
to the framework’s inherent design. This reduction should be factored into the interpretation of results.
It is important to note that LangSAM is a variant that integrates GroundingDino and SAM, so both the
Trajectory Generator and MOKA leverage the same base models for perception tasks.

(b) Examples of prompts: text vs. multimodal. Multimodal prompts require visual under-
standing, making them more challenging than text prompts that rely on ground-truth data.

(c) Performance on VIMABench tasks. Wonderful Team achieves strong results across all task domains. Performance
declines when the Grounding Team is removed or replaced.

Figure 10: Overall comparison and results on VIMABench tasks.

Table 10(a) outlines each method’s characteristics, including zero-shot versus one-shot settings, prompt types,
and the modules used for planning and perception. Methods without vision rely on text prompts rather than
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the more complex multimodal prompts (Figure 10(b)). Notably, NLaP employs one-shot examples in its
prompting and directly uses the ground truth state coordinates from the environment, entirely bypassing the
perception challenge and, therefore, any comparisons must be made carefully. Due to this lack of perception
capability, we can only compare with NLaP in the simulated tasks.

As shown in Figure 10(c), Wonderful Team outperforms baselines across all VIMABench tasks. The Ground-
ing Team and multi-agent structure are crucial; removing or replacing them significantly reduces performance.
Methods like Trajectory Generator and our ablation with a separate VLM struggle to detect uncommon ob-
jects and lack nuanced reasoning for detection and manipulation. Even with perfect localization (as in
NLaP), complex long-horizon planning remains challenging without the multi-agent structure, leading to
misinterpretations and errors (Appendix F.1). Ablation studies (Appendix D) confirm the importance
of each component in Wonderful Team.

Figure 11: Success rates of Wonderful Team and Trajectory Generator on real-world tasks involving ambigu-
ous instruction tasks and spatial planning tasks.

Implicit Goal Inference Tasks In real robot tasks with more general instructions (e.g., placing fruits
based on color), as shown in Figure 11, Wonderful Team achieved a 100% success rate, while Trajectory
Generator significantly struggled due to its separation of reasoning and vision. Trajectory Generator relies
on an LLM to extract information from the text prompt, which requires explicit instructions. When multiple
objects from the same category (e.g., various fruits) were present without specific identifiers, it failed to
distinguish between them. Using only “fruit” as the identifier for LangSAM, it could extract the coordinates
of all fruits but could not proceed without knowing each fruit’s identity and color. Since the LLM lacks
grounding knowledge and only has access to these coordinates, it fails to perform meaningful reasoning,
resulting in ineffective planning and ultimately causing the low success rate.

Spatial Planning Tasks In real robot spatial planning tasks (e.g., drawing a star), as illustrated in
Figure 11, Wonderful Team performed comparably or slightly better, benefiting from the Verification Agent
ensuring trajectories were within correct spatial boundaries. The Verification Agent checked the planned
paths against workspace constraints (e.g., notebook to draw the star on). Both methods exhibited similar
failure modes, often due to depth camera sensor inaccuracies affecting tasks requiring height precision (e.g.,
particularly problematic for opening a bottle cap). These inaccuracies led to errors in estimating the z-axis
position, highlighting areas for future improvement in sensor integration and error correction.

6 Further Discussions

6.1 Comparison with Training-Based Methods

In recent years, the machine learning community has often seen new LLMs exceed the performance of previous
generation fine-tuned models in zero-shot settings, despite the latter’s advantage of task-specific tuning. To
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explore this trend in the context of visual LLMs and robotics, we compare Wonderful Team with several
methods that were at least partially fine-tuned on high-level planning robotics tasks.

In particular, we compare against: 1) VIMA Jiang et al. (2023) and 2) Instruct2Act Huang et al. (2023a).
In Table 1, we consistently see that the advantage of fine-tuning loses out to having a more powerful VLLM.

Ours VIMA-200M (L3) Instruct2Act

Visual Reasoning Zero-Shot Domain Fine-Tuned Mask
R-CNN Pre- and Post-Processing

Task Execution Zero-Shot BC Offline Learning Pre-defined API + One-Shot
Ex

Success Rate (%) 91.25 88.71 79.67

Table 1: Comparison with non-zero-shot Methods on VIMABench Tasks. Success rates are averaged across
the same tasks considered in figure 10(c)

6.2 Limitations: Where does Wonderful Team struggle?

Limited 3D Reasoning and Partial Observability: While the integration of depth cameras allows
Wonderful Team to capture 3D data, its reasoning and planning are still largely confined to 2D space. This
limitation hinders tasks that require precise manipulation along the height axis or a full understanding
of 3D spatial relationships. Additionally, it struggles with partial observability, often leading to incorrect
interpretations of spatial relationships.

Real-Time Adaptation and Error Recovery: Although the Replanning Agent is designed to address
failures post-execution, the framework could be improved with real-time dynamic error detection to catch
issues immediately. However, reprocessing parts of or the entire task can be computationally expensive
and sometimes impractical, requiring careful system design. This limitation is particularly important in
navigation tasks or rapidly changing dynmaic environments, where constant replanning can be costly and
reduce applicability. Improving the system’s robustness to environmental variations and enhancing real-time
error recovery remain key areas for future work.

High-Level Task Planning: We want to stress that we have only considered high level physical task
planning in this paper. Robotics is an exceptionally broad area, and we can not make claims about the
effectiveness of our methods on problems such as visual navigation or low-level kinematic control. We
have also considered 3D manipulation environments exclusively, and do not make any claims about the
applicability of these methods to other domains.
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A Things are Moving Extremely Fast

While it is readily apparent to everyone that LLM progress has been rapid since 2021, it is perhaps less
apparent how rapidly these capabilities are influencing robotics. The initial version of this project, which was
started in 2022, was largely dead in the water, because VLLMs at the time struggled greatly to understand
their environment. In the past year, VLLMs have improved rapidly, which has allowed them to make
substantial progress on robotics environments. To better understand this progress, we took Wonderful Team
and changed the language model to earlier VLLMs. The results roughly track the average performance our
system has been able to obtain over time.

(a) Improvement of VLLMs on robotics tasks over time.

(b) Ability of VLLMs to generate at least one valid subgoal.

Figure 12: Progress of VLLMs in robotics, presenting the success rates evaluated on VIMABench tasks, the
same benchmarks used in Figure 10(c), highlighting the impact of each modification.

As we can see, the capabilities of these underlying vision-language models are improving at a blistering
pace. Suppose we instead consider a slightly easier problem: the ability of Wonderful Team with VLLMs
to generate at least one valid subgoal, which shows the system is working to some extent but perhaps lacks
more refined planning ability. In Figure 12(b), we see that here too the improvements have been rapid.
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In the Appendix E, we examine the impact of this rapid progress on the grounding team in particular, and
show that older VLLMs often struggled to draw bounding boxes with any regularity, suggesting they lacked
the fidelity needed for fine-grained robotic control.
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B Prompt and Implementation Details

In this section, we detail the implementation of the Wonderful Team framework, focusing on the prompts
used by the agents and their workflows. These prompts demonstrate how each agent fulfill specific roles,
enabling the execution of complex tasks in unstructured environments. For reproducibility and further
experimentation, the full prompts are available in our codebase . The Wonderful Team framework introduces
a novel multi-agent VLLM-based approach for zero-shot high-level robotic planning, where specialized agents
collaborate to decompose complex tasks into manageable components while ensuring cohesive objectives.
This section outlines the overall architecture, agent roles, planning pipeline, and coordination mechanisms
to provide a comprehensive understanding of the framework.

B.1 Multi-Agent Architecture

We adopt a multi-agent approach to address long-horizon, multi-step robotics tasks because traditional single-
agent frameworks often suffer from scope overload, where a single agent must manage diverse task stages
with different focus, leading to reduced effectiveness. By dividing the problem into smaller, specialized sub-
tasks, each agent focuses on a specific role, such as planning, grounding, or intermediate validation, ensuring
more precise and efficient handling of each step. Each agent also stores their previous input and output
to their own internal memory to maintain context-awareness and scope consistency when working on tasks.
The agents collaborate by sharing information and verifying intermediate outputs, which minimizes errors
and enhances robustness. With this multi-agent approach, we highlight several characteristics:

• Specialized functionality: Dividing responsibilities among agents tailored to specific roles ensures
efficient task execution, as no single agent is burdened with managing every aspect of the process.

• Internal memory: Agents equipped with memory capabilities can make consistent, context-aware
decisions, leading to higher-quality outcomes.

• Different scope of information: Assigning different scopes to each agent allows them to concen-
trate on their specific objectives without being distracted by irrelevant details, such as a high-level
agent focusing on strategic planning without managing low-level execution and vice versa.

B.2 Wonderful Team Pipeline

Our framework operates through three primary stages: high-level planning, coordinate-level target location
grounding, and low-level action generation. A memory agent collects outputs of other agents across all stages
and maintains a system memory of important task-relevant information.

B.2.1 High-Level Planning

The high-level planning phase involves iterative refinement between the Supervisor and Verification
agents, as outlined in Algorithm 1.

Input: Task Prompt (text, image, or both), Environment Observation (image)
Output: Initial Plan, Target Subgoal Object/Area

The Supervisor focuses on high-level objectives and proposes plans with subgoals. The Verification agent
evaluates the plan for feasibility and logic, checking for issues such as collision risks, physical constraints,
and missing prerequisites. In each iteration, the Verification agent raises specific concerns about subgoals
and tracks its feedback and completed checks using internal memory to avoid redundancy. The Supervisor
revises the plan based on the Verification agent’s feedback. This process repeats until the Verification agent
approves the plan, ensuring it meets all constraints.
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Table 2: A simplified prompt for Supervisor agent proposing high-level plans.

You are the supervisor creating and modifying a robotics plan.
Your focus should be on overall task-level objectives, providing guidelines and
direction for other agents. Low-level grounding and control details are not
within your scope of concern.
Here is the task: {task prompt}
Here is the environment: {env}
(If feedback is applicable) Here are the questions raised by the verification
agent on potential issues based on your previous plan.
Please output a high-level plan consisting of a list of subgoals.

Table 3: A simplified prompt for Verification agent verifying high-level plans.

You are a verification agent responsible for checking the feasibility of a
robotics task plan and giving feedback for revision if applicable.
Your sole objective is to ensure the plan itself is logical and achievable.
Here is the current plan: {plan}
Here is the environment: {env}
Check for these potential issues:
1. Collision avoidance
2. Physical constraints
3. Missing prerequisite steps
Please output APPROVED or feedback for plan revision.

Algorithm 1 High-Level Planning
Given: Task prompt T , Environment observation E
Output: Verified plan P , Target objects/areas list L

1: P ← Supervisor.CreatePlan(T, E)
2: while not approved do
3: feedback ← Verification.Verify(P | T, E)
4: if feedback is approved then
5: break
6: else
7: P ← Supervisor.Revise(P | feedback, E)
8: end if
9: end while

10: L← Supervisor.ExtractTargets(P )
11: return P, L

B.2.2 Coordinate-Level Target Location Grounding

The Grounding Team has three agents: the Manager, the Mover, and the Checker, to identify action points
for targets in an environment based on a verified plan. For each target, the Manager observe the entire
environment image and initializes a bounding box. To streamline their tasks, the Mover and Checker agents
are provided with a zoomed-in image centered on the bounding box rather than the entire environment
image, minimizing distractions from irrelevant details. The Checker then evaluates the bounding box image
for feedback and approval. If the bounding box is not approved, the Mover revises the bounding box based
on feedback, and the process repeats until approval is obtained. Once approved, the Manager determines an
action point within the bounding box, and it is added to the final set of action points. Details are shown in
Algorithm 2.
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Table 4: A simplified prompt for Grounding Team Manager agent estimating initial bounding boxes.

You are the manager of the grounding team.
With full visibility of the scope, tasks, and subgoals, your task is to guide
two workers who refine your approximate guesses of target locations into precise
bounding boxes using zoomed-in views. When the two workers have finalized the
box, you choose an action point based on the task and plan, considering context
like pushing in a direction or picking up an object.
Here is the environment: {env}
Here is the verified plan: {plan}
Here is the current object/area we are working on: {target}
Please give an approximate starting point and bounding box.

Table 5: A simplified prompt for Grounding Team Mover agent adjusting bounding boxes.

You are an agent responsible for adjusting bounding box location and dimensions,
ensuring bounding boxes are accurately positioned and sized for precise object
manipulation tasks.
Your adjustments must be meaningful and significant before the final version is
concluded.
Here is the object you are working on: {object}
Here is the current bounding box: {bounding box specification}
Here is the object: {zoomed-in image around current bounding box}
Please propose a revision.

Table 6: A simplified prompt for Grounding Team Checker agent evaluating bounding boxes.

You are responsible for verifying the accuracy and alignment of bounding boxes
for objects of interest.
Collaborating with another agent who proposes revisions, you evaluate whether
the suggested changes improve the current bounding box. Additionally, you decide
when no more adjustments are needed for a bounding box for final output
Here is the object you are working on: {object}
Here is the revision: {bounding box before and after revision}
Please determine if the revision for the bounding box is acceptable; if it is
acceptable, you have to then decide if it no longer needs further revision.

Table 7: A simplified prompt for Grounding Team Manager agent selecting action points.

Your task is to analyze the image and task requirements to identify an
appropriate point of action based on the task’s characteristics. Ensure the
chosen point aligns with the plan objectives and key object properties.
Here is the object: {zoomed-in environment}
Here is the revised plan: {plan}
Here is the current object/area we are working on: {target}
Please give the action point.

20



Under review as submission to TMLR

Algorithm 2 Coordinate-Level Target Location Grounding
Given: Target objects/areas L, Environment E, Verified Plan P
Output: Action points A

1: for target t in L do
2: bboxt ← Manager.InitializeBox(t, E, P )
3: while not approved do
4: feedback ← Checker.Verify(bboxt)
5: if feedback is approved then
6: break
7: end if
8: bboxt ← Mover.Revise(bboxt)
9: end while

10: at ← Manager.DetermineActionPoint(bboxt, P )
11: A← A ∪ {at}
12: end for
13: return A

B.2.3 Low-Level Action Generation

In the final stage, the Supervisor agent consults the system memory maintained by the memory agent and
converts the verified plan P and action points A into low-level commands. These commands form the
executable action sequence, ensuring alignment with the spatial and temporal constraints in the plan and
grounding information. The Supervisor is tasked with this step because each agent operates within its own
scope and maintains an internal memory of its specific inputs and outputs. Other agents are focused on
their specialized roles and responsibilities unrelated to the overall task objectives. In contrast, the Supervisor
has been consistently managing the high-level task throughout the process, ensuring continuity and focus.
With the finalized grounding information readily available, the Supervisor can efficiently generate the action
sequence based on the plan it previously produced, ensuring no critical constraints or details from the system
memory are lost.

Table 8: A simplified prompt for Supervisor agent generating actions.

You have access to a system memory containing all essential task-relevant
information summarized from the multi-agent workflow, along with a top-view image
of the environment. Your task is to translate this information into a sequence
of actions that align with the plan subgoals.
Here is the memory: {memory}
Here is the environment: {env}
Please convert to the final plan.
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C Experimental Details

C.1 Evaluation Protocol

All experiments were conducted with consistency and rigor to accurately assess our framework’s performance.

• Multimodal Reasoning & Constraint Manipulation: Each task was executed in 10 runs,
allowing only a single attempt per run. An open-loop, single-attempt evaluation protocol was
employed to ensure fair comparisons with existing methods and to effectively evaluate the capabilities
of the multi-agent framework.

• Ambiguous Instruction & Contextual Reasoning: Each task was performed in 2 runs for each
of the 4 variations with varying difficulty. For instance, increasing the number of price tags for fruit
ranking. An open-loop, single-attempt evaluation protocol was used to consistently measure the
system’s ability to interpret and execute ambiguous instructions.

• Spatial Planning & Execution: Each task was carried out in 5 runs under a closed-loop evaluation
protocol, permitting up to three replanning attempts. This method assesses the system’s ability to
manage complex planning, handle unforeseen challenges, and execute multi-step procedures with
precision and coordination.

C.2 Multimodal Reasoning - Simulated VIMABench

VIMABench features 17 tabletop manipulation tasks, including pick-and-place and push, with various com-
binations of objects, textures, and initial configurations. It includes 29 objects with 17 RGB colors and 65
image textures, many of which are uncommon in other robotics tasks, making them ideal for testing our
approach. We selected VIMABench because it presents a significant variety of objects and textures compared
to traditional environments with easily detectable items. This requires advanced scene understanding and
careful planning for successful manipulation. VIMABench also includes multimodal prompts with images
and textual instructions, creating a complex and realistic testing environment that necessitates reasoning
and long-horizon planning.

C.2.1 Task Details

Simple Object Manipulation: Tasks such as “put ⟨object⟩ into ⟨container⟩,” where each prompt image
corresponds to a single object. These tasks test the basic pick-and-place capabilities of the system.

Novel Concept Grounding: Tasks with abstract terms like “fax” and “blicket” paired with images, testing
the agent’s ability to internalize and act upon newly introduced concepts quickly.

Visual Constraint Satisfaction: Tasks that require the robot to perform actions like pushing objects
while adhering to specific constraints, such as not exceeding certain boundaries or avoiding designated areas.
These tasks test the system’s safety and precision in manipulation.

Visual Reasoning: Tasks involving higher-level reasoning skills, such as “move all objects with the same
textures into ⟨location⟩,” and visual memory tasks like “put ⟨object⟩ in ⟨location⟩ and then restore them
to their original position.” These tasks assess the framework’s ability to reason about object properties and
maintain state over multiple actions.
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Figure 13: Examples of tasks in VIMAbench Tasks(Jiang et al., 2023).

C.2.2 Full Experimental Results

In the main paper, we presented results from a selective number of tasks within four categories out of the
17 VIMABench tasks. This was due to the nature of some tasks not being optimal for visual testing. For
instance, the twist task requires the robot to determine the precise degree of rotation from before and after
images, a challenge without prior training on such tasks.

In Table 9, we present the full experimental results across all 17 tasks of VIMABench. VIMABench defines
six main categories of tasks, which are separated in the table by alternating grey and white blocks. From
top to bottom, these categories are: Simple Object Manipulation, Visual Goal Reaching, Novel Concept
Grounding, One-shot Video Imitation, Visual Constraint Satisfaction, and Visual Reasoning.

Table 9: Success Rates Across All VIMABench Tasks

Task Num VIMA 200M Instruct2Act NLaP (w/o CoT) NLaP TG MOKA Ours

1: Visual Manipulation 99 91 93 100 60 20 100

2: Scene Understanding 100 81 60 67 40 20 100

3: Rotate 100 98 93 93 80 0 100

*4: Rearrange 97 79 52 73 - 0 80

*5: Rearrange then Restore 54.5 72 25 73 - 0 70

6: Novel Adjective 100 82 13 43 10 10 70

7: Novel Noun 99 88 8 80 0 10 100

*8: Novel Adjective and Noun - - - - - 20 60

*9: Twist 17.5 - - - - 0 50

*10: Follow Motion - 35 0 12 - 0 10

*11: Follow Order 90.5 72 0 0 - 0 0

12: Without Exceeding 93 68 17 47 10 0 90

*13: Without Touching - 0 0 3 - 0 40

*14: Same Texture - 80 3 71 - 0 100

15: Same Shape 97.5 78 10 80 0 0 100

16: Manipulate Old Neighbor 46 64 8 20 0 0 90

17: Pick in Order then Restore 43.5 85 10 30 0 0 90

Note: Tasks marked with a star (*) were excluded from Figure 10(c), but their results are included in this
table for completeness.
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Reasons for Task Exclusion in Figure 10(c): Tasks marked with a star (*) were excluded from the
main paper’s results for the following reasons:

1. Nature of Tasks: Certain categories, such as Visual Goal Reaching (Tasks 4 and 5) and One-shot
Video Imitation (Tasks 10 and 11), were excluded because they are not ideal for evaluating Vision-Language
Learning Model (VLLM) capabilities without additional task-specific prompting.

For example, Figure 14 illustrates Task 11 in the One-shot Video Imitation category, where several consec-
utive frames serve as “goal scenes.” Without task-specific prompting or training, it becomes challenging to
infer the required actions between frames, as there is no single definitive solution.

Figure 14: Comparison between images without and with ticks for positional reference.

Consider the transition from Frame 1 to Frame 2 in the example above: - One possible approach involves
moving the yellow “O” onto the red “O.” - Alternatively, another approach might first remove the red “O”
and then place the yellow “O” in the same position.

For methods capable of processing multimodal prompts, these tasks require additional tools or workflows,
such as detailed explanations of the relationships between consecutive frames (e.g., treating them as a
continuous video with specific temporal assumptions). This adds complexity to zero-shot evaluation, making
task-specific prompting necessary to infer inter-frame relationships. While task-specific prompting could
improve performance, it falls outside the scope of our research. Consequently, evaluations presented in
Table 9 were conducted using standardized prompts.

For methods that do not support multimodal inputs, textual prompts for these tasks are often insufficient.
They lack the spatial and temporal context necessary to infer relationships, making it difficult to interpret
frame-based tasks correctly.

Tasks requiring such inferences include Tasks 4, 5, 9, 10, 11, and 17.

2. Missing Baseline Results: Tasks 8, 9, 13, and 14 were excluded due to the absence of baseline results
for comparison.

A comprehensive list of tasks, along with video illustrations, is available at this link .

C.3 Implicit Goal Inference - Real Robots

C.3.1 Task Details

As discussed in Section 5, we evaluated our method on three real-world tasks. This section provides more
examples of the diverse scenes used for each task.

Fruit Placement: The robot is given a random set of fruits and areas of different colors. The prompt is:

“Place each fruit in the area that matches its color, if such an area exists.”

Some scenarios included fruits with no matching color or mismatched colors.

Superhero Companions: The robot is provided with fruits and snacks of different colors and three bins
designated for different superheroes. The prompt is:
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“Fruits and snacks of similar color make perfect companions. Distribute the unmatched items
from the top left corner to the superheroes to help each of them have companion pairs.”

Fruit Price Ranking: Various fruits with price tags are presented to the robot. The prompt is:

“Based on the price tags and any discounts on the fruits, rank them from the most expensive to
the cheapest and place them in the corresponding bowl.”

To further challenge its visual and reasoning skills, we added promotional discounts on top of the original
price tags.

(a) Fruit Placement (b) Superhero Companions (c) Fruit Price Ranking

Figure 15: Examples of task environments: (a) Fruit Placement, (b) Superhero Companions, (c) Fruit Price
Ranking.

C.3.2 Robot Setup

For our real-world experiments, we used the UFactory xArm 7, a versatile robotic arm with 7 degrees of
freedom, a maximum payload of 3.5 kg, and a reach of 700 mm. It was controlled via the xArm Controller
using Python and ROS, allowing seamless integration with our multi-agent system. The robot was equipped
with a 2-finger gripper for manipulating various objects. The experiments were conducted on a standard
laboratory workbench with predefined task areas, and the robot was calibrated before each experiment to
ensure accurate positioning and movement. Our framework mapped the relative displacement of the target
position to the robot arm and the pixel coordinates used by the framework, enabling precise picking and
placing actions.

For the visual input, we set up a camera directly above the predefined task area, as the robot itself does not
come equipped with one. This setup provided a clear and consistent view of the workspace, allowing the
VLLM to interpret the environment accurately and plan actions effectively.

C.3.3 Results

Our real robot experiments demonstrated that our framework successfully completed all three tasks 100%
of the time. Note that we did not modify any of the prompt or pipeline moving from simulated
VIMABench environment to the tasks on the real robot. It was surprising to us how robust the reasoning and
planning capabilities of Wonderful Team are. This section provides qualitative results from these experiments,
illustrated in Figures 16, 17, and 18. These figures highlight specific aspects of the tasks, illustrating the
effectiveness of our framework. It is important to note that these results only reflect the work of the planning
team. The role of the grounding team, locating objects and determining their positions, is crucial for the
successful execution of these plans.

In the fruit placement task (Figure 16), we present the final execution plan to illustrate the structure of
a complete plan. Due to the straightforward nature of the task, this figure does not include the reasoning
process. For the superhero companions and fruit price ranking tasks (Figures 17 and 18), we emphasize the
reasoning process and omit the block for the complete final plan for the sake of conciseness. The final plans
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Figure 16: Example Execution on Fruit Placement Task

Figure 17: Example Execution on Superhero Companions Task

Figure 18: Example Execution on Fruit Price Ranking Task

for these tasks are similar in structure to the fruit placement task, essentially combining the substeps in the
execution sequence at the bottom of the figures.

Videos of the experiments and actual execution can be viewed here .

C.4 Spatial Planning - Real Robots

C.4.1 Task Details

This section provides further insight into the spatial planning tasks performed by the Wonderful Team in
real-world environments. Each task required precise planning, knowledge of spatial boundaries, and the
ability to handle multiple subgoals to complete successfully. Here, we present visual results for each task
and discuss the inherent difficulties.
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(a) Shaking the Bottle: The task requires the agent to accurately grasp the bottle, perform a shaking motion, and
place it back. This involves understanding the correct trajectory for shaking in the 3D space.

(b) Drawing a Star: The complexity arises from the need to generate the star’s points accurately within the frame of
the notebook and trace them.

(c) Wiping the Plate: This task involves covering the majority of the surface area of the plate uniformly. It requires
planning the path for the sponge to ensure most of the plate is cleaned.

(d) Opening a Bottle Cap: A delicate task that demands precise rotation and grasping control.

Figure 19: Visualization of the spatial planning tasks: (a) Shaking the Bottle, (b) Drawing a Star, (c)
Wiping the Plate, (d) Opening a Bottle Cap. Each task requires detailed planning and context-aware
decision-making.

These tasks were particularly challenging due to the requirement for the Supervisor agent to have a deep
understanding of both spatial and sequential dependencies. For example, the ’Drawing a Star’ task required
the Supervisor to generate the star’s points by writing and calling additional Python functions, ensuring
precise path planning for drawing. Similarly, other tasks demanded careful subgoal management and context-
aware decision-making to achieve successful outcomes.

C.4.2 Robot Setup

For our real-world experiments, we used the Franka Emika Panda robot, a 7-degree-of-freedom robotic arm
controlled using ROS. We used an Intel RealSense D435 camera positioned above the workspace to extract
visual and depth information.

For top-view D-RGB images, the camera was mounted directly above the predefined task area, as the robot
itself does not come equipped with an onboard camera. This setup provided a clear and consistent view
of the workspace, allowing the VLLM to accurately interpret spatial relationships and plan actions. The
depth information was especially valuable for tasks that required accurate height estimation and object
manipulation.
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D Ablation Studies: Are All Parts of Wonderful Team Necessary?

In this section, we present an ablation study to isolate and evaluate the contributions of our proposed
hierarchical prompting mechanism relative to the capabilities of gpt-4o itself. The objective is to determine
the extent to which the hierarchical prompting enhances system performance beyond what gpt-4o alone can
achieve.

We systematically remove or modify various components of our system, such as the Verification Agent and
the Box Checking Agent, to observe their individual impacts on performance. This process helps to identify
the specific contributions of each component within the hierarchical framework.

The study addresses the following key questions:

• How significant is the hierarchical prompting mechanism in improving system performance compared
to gpt-4o alone?

• What are the individual contributions of the agents to the system’s accuracy and efficiency?

• How does the removal or modification of these components affect performance metrics?

Figure 20: Workflow: Complete

Figure 20 shows the workflow of the complete framework of Wonderful Team. We also provide the full prompt
and example input and output corresponding to this workflow chart in Appendix D for more concrete details.

We systematically removed or modified various components of our system, such as the Verification Agent and
the Box Checking Agent, to observe their individual impacts on performance. This approach helps identify
the specific contributions of each component within the hierarchical framework.

The study addresses the following key questions:
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• How significant is the hierarchical prompting mechanism in improving system performance compared
to GPT-4o alone?

• What are the individual contributions of the agents to the system’s accuracy and efficiency?

• How does the removal or modification of these components affect performance metrics?

Figure 20 shows the workflow of the complete framework of Wonderful Team. Detailed prompts, input
examples, and output corresponding to this workflow can be found in Appendix D.

To isolate the effects, we tested the following configurations:

• 1: Removing the Verification Agent: Without the Verification Agent, the system directly
used the supervisor’s initial set of subgoals as the final output. This led to errors, as there was no
reflection to refine subgoals based on real-time feedback.

• 2: Removing the Box Checking Agent: The Box Checking Agent evaluates proposed revisions
by the Box Mover for improvements and final output quality. When removed, the Box Mover had
to perform self-checks, resulting in less accurate outcomes due to the lack of a secondary verification
layer.

• 3: Removing Both the Verification and Box Moving Agents: The system relied solely on
the initial bounding box identified by the Grounding Manager, skipping the iterative refinement
process and leading to suboptimal action points.

• 4: Removing the Box Checking Agent and Box Moving Agent: The initial grounding
position was used directly without any further verification or adjustments, significantly affecting the
robot’s ability to select precise action points.

• 5: Removing the Verification Agent, Box Checking Agent, and Box Moving Agent:
The supervisor operated independently, approximating coordinates directly from the image without
hierarchical feedback or bounding box identification, resulting in reduced accuracy and adaptability
in task execution.

• 6: Removing the Grounding Team: The supervisor generated plans and extracted targets
without identifying bounding boxes, leading to a decline in precision for coordinate-level actions.

• 7: Removing the Verification Agent and Grounding Team: The supervisor handled all
steps, from planning to coordinate generation. Without the Grounding Team, the system relied on
rough estimations for actionable points, reducing overall accuracy.

• 8: Removing the Memory Agent: The Memory Agent selectively stores important information
to reduce hallucinations and aid in complex, long-horizon tasks. Its removal had a lesser impact on
simpler tasks but proved crucial for maintaining key information in more complex scenarios involving
multiple subgoals.

In summary, our settings considered can be summarized in Table 10.
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Table 10: Settings Summary

Setting Number Supervisor Verification (G) Manager (G) Checker (G) Mover Memory

1 ✓ ✗ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✗ ✓ ✓

3 ✓ ✗ ✓ ✗ ✓ ✓

4 ✓ ✓ ✓ ✗ ✗ ✓

5 ✓ ✗ ✓ ✗ ✗ ✓

6 ✓ ✓ ✗ ✗ ✗ ✓

7 ✓ ✗ ✗ ✗ ✗ ✓

8 ✓ ✓ ✓ ✓ ✓ ✗

Table 11 shows the results of the main tasks from the four primary task suites used in our comparison in
Figure 10(c).

Table 11: Success Rates Across Different Settings

Task Num Complete 1 2 3 4 5 6 7 8

1: Visual Manipulation 100 100 80 80 60 50 50 70 100

2: Scene Understanding 100 70 60 60 60 70 60 20 100

3: Rotate 100 60 80 60 70 30 40 80 100

6: Novel Adjective 70 30 20 0 30 0 10 0 50

7: Novel Noun 100 60 80 60 40 20 20 20 70

12: Without Exceeding 90 10 20 10 0 0 10 10 40

15: Same Shape 100 10 10 10 0 0 0 20 60

16: Manipulate Old Neighbor 90 30 40 20 10 0 10 0 50

17: Pick in Order then Restore 90 0 0 0 0 0 0 0 40

Generally speaking, tasks with higher task numbers are typically more complex, involving longer horizons
and requiring more sophisticated reasoning. The verification and memory agents are particularly beneficial
in complex environments with multiple subgoals. Removing them from the framework often results in failure
modes such as treating irrelevant distractor objects as task objects or misidentifying arbitrary empty spaces
as target locations.

Omitting grounding members tends to lead to less accurate coordinates, which can impact performance.
Even for simple tasks without long-horizon planning, the lack of precise grounding can hinder task execution
and result in suboptimal outcomes.

Interestingly, the simplest version, where only a supervisor is used, achieved decent success rates on simpler
tasks. This could be due to the framework’s reduced complexity with fewer components. Simpler tasks
usually involve only two or three task objects and locations, making them manageable by the supervisor.
There is also a higher probability of guessing an actionable location for larger objects. However, failure modes
in this setting include the lack of precise location identification and partially incorrect or infeasible plan.
When tasks become more complicated, the absence of corrective processes often leads to failure, especially
when hallucination is common.
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D.1 Understanding What Each Part of Wonderful Team Does

Below, we give a summary of this section, summarizing the responsibilities of each team member and how
the overall system suffers if we remove them. This shows the relative strength of the multi-agent approach,
and how when working together the team members can compliment each other’s strengths.
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Supervisor

Responsibility Receive the initial task, develop a
plan for carrying out the task
including subgoals. Verify the plan is
followed and send the final actions to
the robot.

Prompt You have received a multimodal robotic
task description in the form of a
combination of text and images, followed
by a top-view and a front-view image of
the environment. Your task is to
interpret this combination of text and
images and output a plan with key
subgoals.….[more details about
environment and specific goals]

Input A textual description of the task and
an image of the environment.

Output A subplan of steps that should be
followed to achieve a goal. After the
subplan is executed, this agent
returns the final actions the agent
should take.

What Happens without it? If we replace the multi-agent framework
with a flat single agent structure,
success on all tasks in VimaBench fall
dramatically. For simple tasks like
Visual manipulation, this fall is from
100% to 70%. For complex tasks like “Pick
in Order and Restore” success goes from
90% to 0%. Similar results are seen on
the real robot.

The key advantage of the multi-agent
framework is that it can self-correct in
sub-loops, protecting against
hallucination or bad initial estimation.
Single agent methods such as NLaP and
PIVOT often struggle with precise object
manipulation and visual reasoning.
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Grounding Team

Responsibility Identify the location of objects
in the environment. Tell the
robot the correct action points
(points where it should center
its gripper when interacting with
objects)

Prompt You are an agent that plays a crucial
role in a multi-agent robotic system,
responsible for accurately identify
coordinates of target locations and
objects in a robotic environment….[more
details about environment and specific
goals]

Input A high-level plan, a top-view
images with x and y axis ticks,
and a specific object of interest
to identify

Output Thought process. Final (x, y, z)
location of object center points.

What Happens without it? The agent can not corre
ctly identify the location of objects
in the scene, leading to imprecise
actions.

Consequently, on simple visual
manipulation, success falls from 100%
to 50%.

The grounding team is important
because it can iteratively improve
upon its estimate of the location of
key objects in the environment. Normal
VLLM estimates of key points are
noisy. But the model is capable of
self-correcting initial estimates by
looping with the grounding team. This
is not possible with a single agent
structure.
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Memory Agent

Responsibility Managing a memory dictionary,
which has locations of key
objects in the environment, and
past plan for object
manipulations provided by the
supervisor.

Prompt You will receive a system memory
dictionary, an agent's name, a response
from that agent, and a context of this
response generated by the agent itself.
Your task is to determine if this
information is relevant to successful
task execution. If so, summarize and
update system memory of this information.

Input Memory dictionary, output from
other agents, context of
generated outputs.

Output Thought process, Updated memory
dictionary with locations of key
objects from the prompt.

What Happens without it? Tasks such as “pick in order then
restore,” rely on memories of previous
actions. Without memorizing the order
of previous actions, success rates on
these tasks fall from 90% to 40%.

In general, the performance on most
tasks suffer because the agent
struggles to remember where it is in
task execution. The supervisor becomes
burdened trying to remember this
information and suffers from
hallucinations.
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Verification Agent

Responsibility Analyze the high-level plan
provided by the supervisor,
paying attention to potential
environmental hazards. Especially
consider feasability. Ask
informative or clarifying
questions.

Prompt You are an agent that plays a crucial
role in a multi-agent robotic system,
responsible for verifying a given
high-level plans with each subgoal for
the successful execution of robotic tasks
in a specific environment.
[more details about environment]

Input High level plan from the supervisor.
Image of the environment.

Output Either a clarification question or
concern related to the feasibility of
the generated plan, or approval to
execute the plan.

What Happens without it? In “Without Exceeding,” if there is no
Verification Agent then the supervisor
often fails to consider where it must
stop the sweeping action. The
supervisors instructions are also
overly ambiguous about how many
objects need to be moved, even though
this is explicitly in the task
command!

If we give the LLM the ability to
self-verify with the Verification
agent, then success on Without
Exceeding increases from 10% to 90%
because the agent double checks its
ambiguities and corrects them. Similar
effects are observed in Scene
Understanding and Rotate, where
success rises from 70% to 100% and 60%
to 100% respectively upon the
inclusion of the Verification Agent.
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E Ablation Studies: VLLMs’ Spatial Reasoning Limitations and Potentials

E.1 Evaluating VLLM’s Spatial Understanding

We aim to answer the question: How capable are VLLMs at finding accurate actionable position
coordinates?

We set up a toy tabletop environment with various colored and shaped objects placed on a grey table mat,
with a single target object (a circle) used to calculate deviation. An example of the environment is shown
in Figure 21.

Figure 21: Toy Environment Illustration

We prompt different VLLMs to provide actionable coordinates for the target object, using the overlaid pixel
coordinates as a reference. Our goal is to determine whether the coordinates generated by VLLMs are
directly usable for action generation and execution.

E.1.1 Experimental Setup

We tested three state-of-the-art VLLMs:

• GPT-4o

• GPT-4-turbo-vision

• Claude-3-opus

Each model was asked to provide the coordinates of the target object based on the given image with pixel
coordinates.

E.1.2 Results

Are the coordinates directly usable? Using this simple environment, we want to answer this question
we asked earlier concretely. Although actual robotics environments can look much more complicated visually,
we can get an idea of the performance of these models. Any point with deviations from the circle center
smaller than the circle radius is considered actionable (lies on the circle for picking).
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Table 12: Success Rates of Directly Usable Coordinates

Model Success Rate (%)

GPT-4o 33

GPT-4-turbo-vision 5

Claude-3-opus 4

We can see from Table 12 that earlier models have a very low success rate. Even with the very strong
GPT-4o model, directly using the generated coordinates, even with a perfect plan, can only achieve a 33%
success rate, which is far from optimal, not to mention the simple nature of this task.

E.1.3 Deviation Analysis

Are the coordinates at least somewhat close to the target objects?

Although the generated coordinates might not be directly usable for action generation, we wondered if
the coordinates are at least informative and close to the target objects for further refinements. In the toy
environment, we illustrate the circle of 3 times the radius of the original target circle (the radius of the target
circle is always 50 here). This seems to be a good definition of being close in the environment. However, we
tried different thresholds to see a fuller picture, as shown in Table 13.

Figure 22: Illustration of the definition of “close to” (3× radius) target objects.

Table 13: Deviation Analysis of Generated Coordinates

Model ≤ 3× radius (%) ≤ 4× radius (%)

GPT-4o 89 97

GPT-4-turbo-vision 46 68

Claude-3-opus 19 58

From the table, we can see that although not directly actionable, the proposed coordinates of GPT-4o are
of pretty good quality and can be refined with improvements. They are mostly around the target objects,
indicating great potential for further refinement and effective use in real-world tasks.

E.2 Evaluating VLLMs’ Error Recognition and Correction

Given that VLLMs have the power to estimate positions, can we build a framework that can self-
improve? A major component needed here is an agent to check or modify the proposed coordinates. In
many robotics tasks, the goal of position finding starts with identifying a bounding box around objects.
Suppose we have some proposed bounding box for the object of interest. To further improve upon the initial
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version, VLLMs need to know if a bounding box is good enough, or if it is completely wrong and should
restart from generating a new one instead of modifying the current one. The question we ask is: Are the
VLLMs capable of visually examining and evaluating proposed coordinates?

Figure 23: Bounding Box Types: 1) Perfect Bounding Box, 2) Slightly Off, 3) Completely Off - Wrong
Target, 4) Completely Off

E.2.1 Experimental Setup

To test this ability, we randomly generated 4 types of bounding boxes around the circle of interest. Examples
are shown in 23. The types are:

1. Perfect Bounding Box: The bounding box is correctly placed around the target.

2. Slightly Off: The bounding box is close but not perfectly aligned with the target.

3. Completely Off - Wrong Target: The bounding box is around a different object.

4. Completely Off - Around: The bounding box is sampled around the target (within 4× radius) but is
far enough and significantly misplaced, not touching or including the target at all.

Specifically, we give the model a randomly generated bounding box and use the following prompt

“In the given plot, You are tasked with checking if a bounding box should be accepted, accepted with
revision, or rejected.
Follow these guidelines to determine whether to accept, advise, or reject the new bounding box:
Criteria:
- **Accept**: If the bounding box covers the target object well without much extra space, pretty much a
perfect bounding box
- **Revision Needed**: If the bounding box covers at least a small part of the desired object, but more
precision is needed
- **Reject**: If the bounding box is completely irrelevant and does not even touch the desired object
The target object is: [color] circular object.
Your output should be in the following text format. Do not include anything else in your output. This
means no reasoning process, no json-like format, no explanation, no other types of texts.
**Output Format:**
Accept Or
Revision Needed
Or
Reject”
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E.2.2 Results

Table 14: Success Rates of Classifying Bounding Boxes

Model Success Rate (%)
GPT-4o 97

GPT-4-turbo-vision 72
Claude-3-opus 33

From Table 14 and 15, we can see that GPT-4o demonstrated a very strong ability to examine and decide
whether a bounding box is good enough just by visual inspection. This capability opens up new possibilities
for self-refinements using current VLLMs. Even in cases where initial coordinate generation is not perfect,
incorporating a checker as an additional layer of safety along the pipeline can iteratively improve coordinate
accuracy until a satisfactory result is achieved.

gpt-4o gpt-4-turbo claude-3-opus
Ground Truth Accept Revision Reject Accept Revision Reject Accept Revision Reject
Perfect 25 0 0 18 6 1 22 2 1
Slightly Off 1 24 0 0 24 1 19 4 2
Completely Off - Around 0 2 23 0 11 14 23 0 2
Completely Off - Wrong Object 0 0 25 0 9 16 19 1 5
Total 100 100 100

Table 15: Evaluation of Grounding Box Decisions by GPT-4o, GPT-4-turbo, and Claude-3-Opus Against
Ground Truth Across 100 Examples (4 Ground Truth Classes, 25 Examples Each).

In previous tests with Claude-3-opus, the checker often hallucinated during tasks, making it unreliable.
For instance, when a bad bounding box is accepted, it not only leads to unsuccessful execution but also
confuses the agent itself or other agents in a multi-agent system. This level of complete hallucination is
very detrimental. However, in cases where a slightly off bounding box is accepted or a completely off box is
sent for revision, it can still be corrected by later parts of the workflow. As shown in Table 15, this level of
complete hallucination is predominantly seen in Claude-3-opus outputs. In contrast, the strong performance
of GPT-4o suggests that a more reliable approach is now feasible.
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F Comparison with Other Methods

F.1 Replicating Natural Language as Policies Using gpt-4o

In Section 5, we presented experimental results of the Natural Language as Policies (NLaP) system as
reported in the original paper (Mikami et al., 2024). Their implementation utilized gpt-3.5, whereas our
method leverages the more advanced gpt-4o. To ensure a fair comparison, this section presents the results
of replicating the NLaP system using gpt-4o.

However, since NLaP does not provide their codebase or the full prompt, including images and object
information for the one-shot examples used, we attempted to recreate their framework by writing one-shot
examples for each task with human-labeled coordinates and object names according to the framework shown
in Figure 1 of their paper. For the one-shot prompt, we closely followed and mimicked their provided prompt
examples in Table V.

Figure 24: Workflow of Natural Language as Policies by Mikami et al. (2024)
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While implementing their framework, we realized that NLaP does not use the framework to extract
coordinate information. Instead, the extracted coordinates are provided and given to the LLM. The
authors did not mention how the coordinates were extracted; the only job of the LLM is to incorporate the
coordinates into a detailed final plan. This approach is not a fair comparison to our framework because
using the VLLM to extract accurate, actionable coordinates is the more challenging part of this task.

Since the authors did not mention how the coordinates were extracted, and from our previous exploration,
using off-the-shelf trained object extraction models such as OWL-ViT did not perform well on VIMABench
(Figure 10(c) shows this fact), we assume that NLaP used information as accurate as human-extracted data.
We tried two versions of implementation for this: 1) using gpt-4o to extract this information in the same
format, and 2) using ground truth information. For the second approach, we used the ground truth object
names from the environment and the ground truth coordinates by mapping the environment state to the
pixel coordinate scale. Note that although this approach does not offer a fair comparison to our method,
we implemented it to understand how well the planning component performs and to replicate their original
results. However, it is important to keep this major difference in mind when interpreting the results.
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Figure 25: Example - Original Framework of NLaP

Another significant difference between their framework and ours is that the planning component of NLaP
does not use any visual information, as shown in Figure 25. In the extraction part, information on objects and
their coordinates is derived from visual data, either by human labeling, VLLM, or another model. During the
planning phase, the LLM only has access to the textual information. This explains why there wouldn’t be a
significant difference between using gpt-4o and gpt-3.5-turbo, as gpt-3.5-turbo is already very proficient at
planning, and the planning part of the framework would not benefit substantially from switching to gpt-4o.

In our implementation of NLaP using gpt-4o for both coordinate extraction and action sequence generation,
however, we added the corresponding visual information of both the extracted information and the one-shot
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example to facilitate the understanding of VLLM of the environment. The idea of our implementation of
this added vision version is shown in Figure 26.

Figure 26: Example - Framework of NLaP with Visual Information Added
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Another difference in our experimental evaluation between our method and Natural Language as Policies is
that NLaP directly takes the system information of objects for multi-modal prompts. For instance, see an
example in Figure 27. In some VIMABench tasks, the prompts can be made multi-modal, and parts of the
prompts, usually objects, are not described by words but by images. We used this version of the prompt
without any text information for these parts in our evaluation to test the robustness on multi-modal tasks.
However, in NLaP, they used the system text information on the shape and texture instead of visual data.

Figure 27: Illustration of the Difference in Multi-modal Prompts: This figure shows the variation in how
prompts are constructed between our method and the NLaP system. Our method uses visual information
(images) for object description, while NLaP uses system-generated shape and texture information.

One last difference between our methods is that in their prompt, a one-shot example is given. Examples
can be viewed in Table V of their paper. The example simply illustrates a typical thought process of a
successful execution. They used different examples for different tasks, and during our experiments, we found
that sometimes the tasks can be overly similar to the actual task in terms of reasoning, object shape, even
object number. For instance, in simpler scenes with two objects, the final desired output is always putting
object 3 into object 4 or vice versa. Examples like this may sometimes provide unintended hints that could
over-simplify the task.

Table 16: Success Rates Across Different Settings

Task Num gpt-4o + gpt-4o gpt-4o + ground truth gpt-3.5 + ground truth NLaP Reported Ours

1: Visual Manipulation 20 100 100 100 100

3: Rotate 30 100 90 93 100

6: Novel Adjective 10 80 60 43 70

7: Novel Noun 40 100 80 80 100

15: Same Shape 0 10 70 80 100

16: Manipulate Old Neighbor 0 60 20 20 90

In Table 16, we present the results of our ablation studies. We used a ‘+’ sign to denote the combination
of settings for planning and coordinate extraction, respectively. For example, ‘gpt-4o + gpt-4o’ represents
the setting where we used gpt-4o to extract scene information (as shown by the red box in Figure 24), while
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‘gpt-4o + ground truth’ means that we directly fed the language model with the actual coordinates and
system object names.

From the results, we can see that the comparable version of NLaP, where both planning and grounding
are done by the VLLM, barely succeeds on VIMABench tasks, even on simple, one-step tasks. It performs
significantly worse compared to our method. The failure modes are often caused by both shortcomings in
planning and inaccuracies in the position-finding step. In their original implementation, where coordinate-
level information is directly gathered from the environment system instead of by a zero-shot VLLM model,
switching from gpt-3.5-turbo to gpt-4o achieves slightly better results. This improvement is likely due to
gpt-4o’s enhanced reasoning capabilities, which are beneficial for more complex tasks, such as identifying
multiple old neighbors that require reasoning about relationships.

However, since their implementation primarily relies on textual information extracted from the previous
steps rather than vision information during the reasoning phase, the gain from switching to gpt-4o, which
excels in vision understanding, is limited. As a result, gpt-4o under the NLaP framework still struggles with
tasks involving identifying objects of similar shape. A common failure mode is its insistence that no object
has a similar shape.

These results further show that the multi-agent structure is crucial for our system’s overall perfor-
mance. Even with perfect system output for localization used by Natural Language as Policies, long-horizon
planning with complex reasoning remains challenging without the self-corrective multi-agent structure.
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F.2 Comparison with PIVOT

PIVOT (Iterative Visual Prompting Elicits Actionable Knowledge for VLMs) focuses on localization through
visual question answering, with minimal emphasis on planning—similar to the role of our grounding team
within our hierarchical framework. PIVOT (Nasiriany et al., 2024) introduces an innovative approach to
enabling VLMs to localize actionable points or actions by progressively shrinking the action distribution
and resampling. The process begins by sampling a set of actions from the action space, which are then
mapped onto a 2D image. A VLM is used to select the most promising actions from this set. Based on these
selections, a new action distribution is created, and the process is repeated over a fixed number of iterations
to refine the actions further.

In their robotic environment implementation, PIVOT handles two versions of localization: one involves
finding a multi-dimensional relative Cartesian (x, y, z) coordinate in the action space, and the other involves
finding a pixel coordinate in the pixel action space—similar to our approach in VIMABench, where control
is based on pixel coordinates rather than relative Cartesian coordinates. For action mapping, PIVOT maps
actions to a final endpoint, effectively aligning with the pixel coordinate localization method.

In our comparison, we use VIMABench, where control is based on coordinate-level actions. Therefore,
PIVOT’s coordinate mapping implementation and the prompts they used on the RAVENS simulator are
applied throughout our analysis. There are several similarities and differences between our work and PIVOT
that are worth highlighting.

Similarities:

• Both frameworks extract coordinate-level information.

• Both operate in a zero-shot manner without any fine-tuning.

• Both annotate 2D images and provide these annotations to the VLLM to guide its decision-making.

Differences:

• Our framework focuses on both planning and localization, with localization being one component
within a hierarchical structure designed to handle long-horizon tasks with complex planning. In
contrast, PIVOT only focuses on localization, where their prompts typically describe an object
or subgoal rather than addressing a broader task.

• PIVOT uses a single agent responsible for iteratively selecting a point from a sample of points or
action-mapped points. In contrast, our grounding team consists of multiple agents, each playing
a distinct role in a self-corrective process.

• PIVOT’s method can be viewed as a process of shrinking or guiding the sampling distribution
closer to the target object, with each iteration’s samples based on the previous one (Fig 28). While
our method is also iterative, we begin with a point chosen by the grounding manager and refine it
iteratively from there (Fig 29), rather than starting with the entire distribution of possible locations.

• PIVOT identifies a single action point for the target object, maintaining this as the goal through-
out their iterative process. In contrast, our method offers two distinct workflows that the grounding
manager can choose from before localization. When selecting an area point, such as a position be-
tween a box and a frame, we also employ point selection. However, for object selection, our method
first identifies a center point, then determines a bounding box of appropriate size, and iteratively
refines this bounding box until it is accurate. The grounding manager then selects an actionable
point within the bounded area. We found that this bounding box process greatly enhances robust-
ness and precision, especially for smaller objects or manipulation tasks that require more precise
control. We further ablate and discuss this in Appendix F.2.
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Figure 28: PIVOT Workflow, Blue Letter V

Figure 29: Wonderful Team Workflow, Blue Letter V

Next, we present some quantitative evaluation on object identification results in selected VIMABench envi-
ronments followed by further discussions on the failure modes.

In Table 17, we compare the experimental results of our method with those from PIVOT. While PIVOT orig-
inally utilizes GPT-4V in its framework, we implemented their approach using the more advanced GPT-4O
to ensure a fair comparison. Our replication of their framework was carried out to the best of our knowl-
edge to highlight the differences and performance improvements. Additionally, we include results obtained
from their official HuggingFace demo to demonstrate the performance of their original implementation. For
example output of different grounding approaches, please see 31.

Table 17: Location Grounding Success Rates

Task PIVOT (gpt-4v) (HF) (%) PIVOT (gpt-4o) (%) gpt-4o Direct Output (w/ labeled axes) (%) Ours (grounding team) (%)

1. Visual Manipulation 10 30 40 90

6. Novel Adj 0 0 20 80

17. Pick in Order then Restore 0 0 10 90

Implementation Details

Uniform Sampling: PIVOT begins by sampling a set of actions from the action space (in VIMABench or
RAVENS, as reported in their paper, this involves sampling 2D coordinates), which are then mapped onto
a 2D image. A VLM is used to select the most promising actions. Based on these selections, a new action
distribution is fitted, and the process is repeated over a fixed number of iterations to refine the actions. Due
to the absence of specific details regarding the distribution used in their original implementation, we opted
for a uniform sampling strategy. The sampling radius was determined as twice the maximum distance from
the average action point to any other point in the set. To ensure alignment with the original method, we
also utilized their Hugging Face demo (gpt-4v) to replicate their reported performance.

Parallel Runs: The original study also employs a parallel call strategy. To combine results from different runs,
they explored two approaches: (1) fitting a new action distribution from the output actions and returning
it, and (2) selecting a single best action using a VLM query. In our implementation, we used the second
approach with “3 Iterations 3 Parallel“ combinations to enhance robustness in our comparison. Additionally,
while the original implementation uses the same sampling radius for both width and height, we addressed
this by defining separate radii for the shorter and longer edges of the input image.

Grounding Team Only: Since PIVOT’s framework is primarily comparable to our grounding team, which
focuses on processing object descriptions rather than broader tasks, we isolated the grounding component
for a direct comparison with their method.

Success Evaluation: For evaluation, we conducted 10 runs on different objects from a set of varied initial
frames. A task was considered successful if the center point label of each target object had at least half of
its area within the object’s boundary or if the center point fell within a specific range around the target area
center, ensuring successful picking.
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Figure 30: Screenshot of HuggingFace PIVOT Demo
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Failure Mode Discussions

It’s notable that PIVOT’s output on tabletop tasks does not over-perform the direct output from GPT-4o.
However, this is with the help of the labeled coordinate system, which significantly enhances precision in
quantification, as discussed in our motivation section. We further discuss the possible explanations of PIVOT
failures:

Incomplete Sampling Coverage: In 30, when attempting to select the left object, the initial sampling failed
to provide sufficient coverage, with the majority of points being sampled from the center of the image and
scattering on the purple paisley letter “V” instead of the target object with blue and purple stripes. As a
result, subsequent iterations were confined to a suboptimal region, ultimately leading to poor final results.

Difficulty in Recovery: During our implementation, we identified a critical limitation in the sampling strategy:
if the sampling radius is too small, it becomes difficult to recover from an inadequate initial selection.
Conversely, if the sampling radius is too large, the framework struggles to converge, as the sampled actions
may scatter too broadly, reducing the effectiveness of the refinement process.

Lack of Iterative Continuity: Another factor that may explain PIVOT’s low performance in precise location
finding is the lack of continuity between iterations. Although the new set of actions is sampled from a
distribution fitted using previously selected promising actions, there is a notable discontinuity in the process.
For instance, if a good point is identified during one iteration, it is not guaranteed to be preserved in
subsequent iterations. The framework’s fixed number of resampling processes means it cannot exit the
process once a good point is found, potentially resulting in the loss of successful actions. This resampling
process can lead to promising actions being either diluted or completely discarded in the next round due
to inherent randomness, causing inefficiencies and inconsistencies as the framework may fail to build on
previous successes.

Messy Annotations: Additionally, the framework’s annotations can become cluttered, leading to a loss of
crucial information from the original image. Unlike our approach, which maintains a clear connection to
the original image to preserve full context, PIVOT’s method can lose track of the overall scene, making it
difficult to refine action points effectively. This loss of context can be particularly detrimental in scenarios
where precision and consistency are critical.

49



Under review as submission to TMLR

Figure 31: Example Outputs - Wonderful Team vs PIVOT

Point Selection vs. Bounding Box: Since the PIVOT method is inherently more similar to our area/point
approach discussed earlier—where points are selected throughout the process without the aid of bounding
boxes—we further compare PIVOT’s outputs with both our bounding box approach and our point approach.
Figure 31 provides insight into how these methods perform relative to each other. While both PIVOT and
our area/point approach can get reasonably close to the desired objects, they often lack the precision required
for tasks involving small objects or when execution demands more accuracy than just proximity to the object.

In Figure 32, we present example executions using the results from these methods. The task involves stacking
the purple and blue striped letter “V” on top of the blue letter “V,“ followed by stacking the purple paisley
letter “V” on top. For this execution, we used the PIVOT results from our implementation using gpt-4o, as
the HuggingFace outputs were less reliable, with all points concentrated on the same object. The execution
screenshots reveal that points not accurately placed on the object lead to failures in picking it up. On the
bottom row of Figure 32, even though both points for the first pick-and-place action are technically correct,
the misalignment causes the stacking task to partially fail, as the letters “V“ are not properly aligned,
resulting in an unsuccessful stack.

These results highlight the importance of considering whether a bounding box is needed in the iterative
process. With the current level of visual reasoning skills in models, we found that incorporating a bounding
box significantly enhances precision, reduces hallucinations, and adds robustness to the execution.
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Figure 32: Example Executions - Wonderful Team vs PIVOT

These limitations underscore the shortcomings of the PIVOT framework and highlight the necessity of a
more guided and context-aware approach, as implemented in our method.
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F.3 Comparison with Language Models as Zero-Shot Trajectory Generators

F.3.1 Key Differences

In Language Models as Zero-Shot Trajectory Generators (Kwon et al., 2024), the task is given to a LLM
(gpt-4) in text form. After this, the LLM identifies task-related objects and call an object detection API to
retrieve the information about these objects (xyz, height, orientation etc). Using this retrieved information,
the LLM starts to plan. In particular, it achieves planning by writing python scripts to generate a trajectory
to be executed.

When compared to Wonderful Team, there are a few key differences.

First, the authors employed gpt-4, which does not have vision capability. This means when LLM is making
decisions on what objects to detect and generating plans, it does not have any context of the environment
except for the one-line command from the user. To improve on the lack of context when making plans, the
authors could swap gpt-4 with gpt-4o and provide an image of the environment. This way, the VLLM could
identify any task-related objects that are NOT in the command for object detection.

However, even in this case, there are still some issues with the detection process. We experimented with
swapping our grounding team with detection models, such as OWL-ViT or langSAM, in the early stage of
our research. These methods fail to detect almost all objects that cannot be directly described within a few
words. As a concrete example of the problems we encountered with this approach, imagine a user issuing the
command: “Pick up the thing to the left of the bottle.” Upon reading this command, the detection module
will try to find “the thing” and fail, because obviously such an abstract concept can not be encoded into a
detection module.

Language Models as Zero-Shot Trajectory Generators uses a single-agent system, where one agent is respon-
sible for generating plans based on user commands. While this method can work under certain conditions,
it has inherent limitations, particularly in handling complex, ambiguous instructions and managing long-
horizon tasks, especially those that require detailed contextual understanding. In contrast, our system
employs a multi-agent architecture, where different agents specialize in specific tasks such as localization,
planning, and validation.

F.3.2 Single Agent vs Multi-Agent

When comparing the single-agent approach, as exemplified by models like Language Models as Zero-Shot
Trajectory Generators, to our multi-agent system, it’s important to recognize the distinct challenges each
method addresses. Single-agent systems typically solve a more straightforward problem that focuses solely
on planning. These systems rely on a separate detection module to identify objects, followed by planning
over these detections. While this approach can work in controlled settings, it often leads to instability
and misinterpretation of language instructions, particularly when the model encounters more complex or
ambiguous commands.

In contrast, our multi-agent system integrates both planning and localization directly within the framework,
using Vision-Language Models (VLLMs) to extract object location information. This direct extraction
requires a multi-agent setup, where each agent is responsible for a specific aspect of the task, incorporating
additional confirmation steps and sub-loops to ensure accuracy. This multi-agent architecture not only
addresses the grounding problem but also significantly enhances the system’s capability to solve complex,
long-horizon tasks, as demonstrated in our evaluations. For instance, in the “manipulate old neighbor“ task
from VIMABench, even when given ground truth coordinates, a single-agent system using GPT-4o within
the NLaP framework often failed to generate successful plans (see Table 16).

F.3.3 Benefits of Using a Multi-Agent System

The multi-agent system we propose offers several key advantages over single-agent systems:

1. Suitability for Robotics Tasks. A multi-agent system is particularly well-suited for robotics tasks
because these tasks typically involve distinct and varied challenges that require different approaches. Unlike
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language-only tasks, which may be more uniform, robotics tasks often demand specialized strategies for
different components, such as object detection, manipulation, and planning. By employing a multi-agent
system, each aspect of the task can be handled by an agent specialized in that area, improving both the
efficiency and accuracy of the system. Moreover, the ability of agents to communicate and validate each
other’s work leads to more reliable decision-making and reduces the likelihood of errors, especially in complex,
dynamic environments.

2. Simplified System Complexity. At first glance, a multi-agent system might seem more complex than a
single-agent approach. However, by dividing the task into smaller, more manageable components, each agent
can focus on a specific, well-defined role, which actually simplifies the overall system. This division of labor
is especially beneficial in robotics, where different aspects of a task require different strategies. By tailoring
each agent’s prompts and tasks to their specific role, we avoid the pitfalls of trying to handle everything
within a single, monolithic prompt. For instance, when a single agent is responsible for object detection,
manipulation, and planning, it often struggles with precise location identification and may produce partially
incorrect or infeasible plans.

3. Effective Communication and Validation. Communication between agents is another significant
advantage of our multi-agent approach. Instead of an agent re-evaluating its own output — potentially
leading to unnecessary adjustments or confusion — different agents can validate the outputs independently.
This reduces the risk of hallucinations, which can occur when an agent is overly influenced by its previous
decisions. For example, when a verification agent (or box checker) evaluates the outputs from the supervisor
(or box mover), it treats these outputs as a new query, asking questions like “Is A better than B?” or “Is this
action feasible?“ This approach contrasts with single-agent systems, where the agent might simply consider
whether to fix an existing plan, a situation that often leads to further errors.

4. Enhanced Self-Correction. One of the primary strengths of a multi-agent system is its ability to
self-correct through agent interaction. In a single-agent system, the same agent must generate a plan and
then evaluate it, which can lead to confusion and unnecessary revisions due to hallucinations or biases from
previous outputs. In contrast, our multi-agent system allows agents to communicate and validate each other’s
outputs, significantly reducing the likelihood of such errors. For example, if a VLLM proposes an incorrect
object location, this often results in a failed trajectory in 78% of cases. However, when a team of agents
iteratively improves the target locations, the success rate increases to 93% (see page 35, Table 11).

5. Improved Memory Management. In a multi-agent system, no single agent is burdened with managing
the entire context or retaining all information, which can lead to hallucinations or errors. For example, in the
”pick in order then restore“ task, the success rate was only 40% without a memory module, but it increased
to 90% when a dedicated memory agent was included. This demonstrates how distributing responsibilities
among agents enhances both performance and reliability by reducing the cognitive load on any single agent.

F.3.4 Experimental Comparison in Fetch

Figure 33: Default View of Fetch Environment with a Box with a Lid
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We further compared our methods in a Gymnasium environment involving a box covered by a lid.

Environment: The robot used is a 7-DoF Fetch Mobile Manipulator equipped with a two-fingered parallel
gripper. The setup includes a closed box with a lid and four other objects placed on the table. See Figure
33 for an example setup.

Task: The task is to place one or two of the objects into the box.

Example Prompt: “Place the wooden toy train and the rightmost object inside the small blue box with a
lid and a black handle.” (The exact prompt depends on the target objects.)

Why This Task is Challenging:

• It requires accurate 3D estimation. Although this can be partially addressed by using a 2D image
with a depth array, there can be challenges when converting 3D information to 2D. Even small
deviations in this process can lead to significant errors in execution.

• Items are positioned at different height levels, so collision avoidance must be carefully considered.
This is particularly important because the box is quite deep, requiring a thoughtful approach to
placing objects inside.

• Correctly identifying the components of the environment, including the box lid, is difficult. The black
handle on the lid is very small and requires precise detection for successful execution. Additionally,
the handle’s common shape and color may cause it to be misidentified or overlooked.

• The plan needs to include the step of removing the lid, which is often omitted. Moreover, the plan
should identify an empty area on the table to place the lid without displacing other objects.

Planning Results:

In the example task, where the goal is to place the wooden toy train and the rightmost object inside the
box, the plan generated by Wonderful Team using the prompt, after validation with the verification agent, is
shown in Figure 34(b). For comparison, the plan generated with the exact same task prompt by our system
is shown in Figure 34(a). We will further discuss the results in the last section.

(a) Plan Generated by Trajectory Gener-
ator (b) Plan Generated by Wonderful Team

Figure 34: Comparison of Plans Generated by Trajectory Generator and Wonderful Team
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Detection Results:

Figure 35: Examples of Object Detection. Check Google Colab notebooks for more example results for
Wonderful Team and Trajectory Generator .

Success Rate Results:

Table 18: Success Rates on Fetch Box

Method Success Rate (%)

Wonderful Team (single attempt) 50

Wonderful Team (re-planning allowed) 80

Trajectory Generator (single attempt) 0

Trajectory Generator (re-planning allowed) 5

Summary of Findings:

• Trajectory Generator (Planner): The planner often fails to understand the implied requirements
in the task instruction and is only capable of considering the explicit commands. See Figure 34(a)
for an example. Without the command to remove the lid, the planner starts by picking up a target
object instead of opening the box to prepare for later steps. In addition to this, the planner also
assumes that the gripper can hold two objects at a time before placing them down in the specified
container, which is a result of not having access to the environment in context.

• Trajectory Generator (LangSAM): This model struggles to correctly identify many objects. See
Figure 35 for instance, when asked to find the wooden toy train, it points to the Fetch robot; when
asked to locate the lid, it points to the entire table. Similarly, when asked to identify the rightmost
object, it again points to the Fetch robot, and when asked to locate the tomato soup can, it points
to the mustard bottle.
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• Wonderful Team’s Performance: Wonderful Team achieves a 50% success rate on this task. The
main failure mode arises from the difficulty in integrating the depth camera for accurate position
estimation, which sometimes results in missed targets.

• Impact of Replanning Module: When we introduced a replanning module, Wonderful Team’s
success rate improved to 80%.
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F.4 Comparison with MOKA

F.4.1 Key Differences

MOKA (Fang et al., 2024) employs a framework where tasks are given to a VLLM to extract object names,
which are then passed to separate vision models (GroundingDINO + SAM) for precise location extraction.
These locations are then mapped back to the task plan. While MOKA shares some design principles with
Wonderful Team and Trajectory Generator, several critical differences highlight its unique strengths and
limitations. Below, we outline the comparisons with both methods:

1. Vision-Language Integration:

• Similar to Wonderful Team, MOKA integrates VLLMs (e.g., GPT-4o) for multimodal prompts,
whereas Trajectory Generator relies solely on language capabilities without vision integration.

• Like Trajectory Generator, MOKA relies on separate vision models (GroundingDINO + SAM, com-
parable to LangSAM). As discussed in Appendix F.3, these models struggle with detecting objects
that are context-specific, complex, or ambiguously described.

2. System Architecture:

• MOKA employs a single-agent system, similar to Trajectory Generator, and lacks the multi-agent
architecture of Wonderful Team.

• While MOKA incorporates some chain-of-thought (CoT) reasoning and hierarchical structuring, its
simpler prompts and system design lack mechanisms for:

– Error correction or task failure recovery.

– The ability to write additional functions or dynamically adjust plans.

– Divide-and-conquer handling for long-horizon tasks.

3. Action Point Selection: Action point selection refers to determining the precise coordinates for
interaction after identifying an object or region. For example, pushing an apple from left to right requires
selecting a starting point on the left of the apple, not its center. The three methods differ significantly in
their approaches:

• Wonderful Team: Zooms into bounding boxes with margin space, creating a focused image with
annotated pixel coordinates for VLLM input. This ensures accurate action point selection.

• Trajectory Generator: Relies on LangSAM’s numerical outputs, with the LLM adding or sub-
tracting offsets to approximate coordinates. However, without environmental perception, these
offsets are prone to spatial inaccuracies or infeasible placements.

• MOKA: Uses annotated images from GroundingDINO + SAM, similar to PIVOT (Appendix F.2).
The VLLM selects a point from these annotations, but struggles with scattered or unreadable points
for small or ambiguous objects, as illustrated in Figure 36.
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Figure 36: Example of Action Point Selection.

F.4.2 Error Analysis

The Visual Manipulation Task from VIMABench (Task 1 in Table 9), a straightforward pick-and-place
operation requiring minimal reasoning, was selected to isolate and analyze the code execution error rate and
object identification performance of each framework. This task simplifies the evaluation by reducing the
influence of other dimensions, such as long-horizon planning, complex reasoning, and scene understanding.
The results are summarized in Table 19.

Table 19: Success Rates and Error Analysis on Visual Manipulation Task (VIMABench)

Method Success Rate (%) Failure-Complete Plan (%) Failure-Code Crashes (%)
Wonderful Team 100 0 0

Trajectory Generator 60 40 0
MOKA 20 40 40

Key Observations: Similar to Trajectory Generator’s pipeline—which fails on complex objects and
longer-horizon planning and reasoning (details discussed in Appendix F.3)—MOKA also suffers from ob-
ject detection errors due to the separation of planning and grounding. However, while Trajectory Generator
consistently generates complete plans without execution errors, half of MOKA’s failure cases result in in-
complete plans. These failures are caused by code crashes, which prevent the generation of any plan.

1. Out-of-Bounds Index Errors: Out-of-bounds index errors arise from annotated images being difficult
for the VLLM to interpret. These issues stem from two primary causes:

• Overlapping Annotations: When a single object is mislabeled as multiple objects by Ground-
ingDINO, overlapping points in the annotated image create unreadable data. For example, in Figure
37(a), “container” and “muffin” were both identified by GroundingDINO as the same object, result-
ing in overlapping points shown in Figure 37(b).
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(a) Overlapping Segmentation from GroundingDINO.
(b) Resulting Scattered Annotations for Overlapping
Segmentation.

Figure 37: Comparison of segmentation results: (a) Overlapping Segmentation from GroundingDINO and
(b) Resulting Scattered Annotations for Overlapping Segmentation.

• Small Objects Relative to the Environment: Objects that are too small in the environment
also lead to scattered annotations, as shown in Figure 38, making it difficult for the VLLM to select
valid action points.

Figure 38: Scattered Annotations for Small Objects.

2. Object Detection Failures: Failures in object detection occur when the vision models fail to identify
objects listed by the VLLM, causing the pipeline to exit prematurely. These failures arise from two primary
causes:

• Abstract or Vague Descriptions: Poor descriptions generated by the VLLM (e.g., “striped
piece” instead of “blue and yellow striped letter M”) often lead to failures in GroundingDINO’s
object detection, as illustrated in Figure 39.
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Figure 39: Missed Object Detection Due to Abstract Descriptions.

While this type of failure frequently leads to the pipeline exiting early, it does not always result in
an outright Object Detection Failure error. In some cases, the system identifies unintended objects
that contribute to the other half of MOKA’s failure cases. For example:

– In Figure 40, the command specifies placing the lime in the green area. Without additional
contextual details or shape specifications, GroundingDINO misidentifies the lime itself as the
green area.

– In Figure 41, the task plan involves placing fruits into bowls labeled 1, 2, and 3. However,
GroundingDINO identifies only a single “bowl,” failing to distinguish between the intended
objects.
These examples highlight scenarios where neither the planning nor the grounding component is
entirely at fault. Instead, the failure stems from the fundamental, intrinsic differences between
Vision-Language Models (VLLMs) and traditional vision models. VLLMs excel at high-level
reasoning and understanding multimodal inputs but rely heavily on contextual cues that vision
models cannot inherently provide. On the other hand, vision models, while precise in object
detection, lack the broader contextual understanding necessary for complex reasoning. This dis-
parity creates an inherent incompatibility between the two components, leading to downstream
errors even when each operates correctly within its own domain.

Figure 40: Failure Example: Misidentification of Lime as Green Area.
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Figure 41: Failure Example: GroundingDINO Identifies Only a Single Bowl.

• Vision Model Limitations: GroundingDINO, like other vision models such as OWL-ViT and
LangSAM, struggles in complex environments or with less common objects. These limitations,
extensively discussed in Appendix F.3, result in incomplete or failed detections that hinder the overall
pipeline. For instance, intricate object arrangements, subtle textures, or unusual configurations
exacerbate detection challenges, further limiting the model’s reliability.
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