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Abstract

In this paper, we explore diffusion denoised examples as
augmentations to train image classifiers. In particular, we
diffuse the train examples to a randomly sampled diffusion
time (i.e., apply Gaussian perturbation) and then apply a
single diffusion denoising step to generate an augmented
train example. We provide an analysis of training classifiers
with such diffusion denoised examples through comparisons
with classifiers trained exclusively with (i) standard aug-
mentations such as horizontal flips and crops and (ii) novel
augmentations such as AugMix and DeepAugment. We show
that classifiers trained with diffusion denoised examples are
more robust than the classifiers trained using standard aug-
mentations without sacrificing clean test accuracy. Further-
more, we demonstrate that diffusion-denoised augmentations
are also useful as test-time augmentations and this allows us
to introduce a simple and efficient image-adaptation method
that is competitive with DDA.

1. Introduction
Image classifiers are inaccurate when presented with samples
that do not lie within the train distribution. Previous works
have demonstrated that image classifiers are surprisingly
sensitive to a wide variety of distributional shifts leading to
severely inaccurate predictions. Examples include: (a) syn-
thetic corruptions and perturbations (e.g., Imagenet-C [12],
Imagenet-P [12], Imagenet-C̄ [20]), (b) natural and alterna-
tive renditions of in-distribution classes such as paintings,
sculptures, embrodiery, etc (e.g., Imagenet-R [14]), (c) natu-
rally occuring adversarial examples (e.g., Imagenet-A [15]),
(d) stylistic alterations (e.g., Imagenet-S [10]). Collectively,
these are referred to as out-of-distribution datasets.

Recent research towards improving robustness of classi-
fiers are focused on improved training techniques or test-time
adaptation. For example, AugMix[13], DeepAugment[14],
PixMix [16] and Prime [21] present novel augmentation
techniques that improve classifier robustness. On the other
hand, test-time adaptation algorithms adapt model param-
eters on a batch of test images (optionally, a single image)

based on a self-supervised learning objective (e.g., masked
auto-encoder [8], rotation prediction [28], contrastive learn-
ing [5, 19]) or entropy minimization (e.g., TENT [29],
MEMO [33], SAR [23]).

Leveraging the recent advances in diffusion genera-
tive models, Diffusion Domain Adaptation (DDA) [9] and
Diffusion-TTA [25] propose test-time adaptation techniques
for robust classification. Specifically, DDA utilizes an uncon-
ditional diffusion model to transfer an input test image into
the source distribution while Diffusion-TTA utilizes a condi-
tional diffusion model to optimize the classifier weights over
a denoising loss-objective. By adapting the image instead
of the model, DDA demonstrates robustness across a variety
of evaluation settings (e.g., batch-sizes, batch composition,
non-stationary label shifts) unlike the model-adaptation al-
gorithms [9, 34].

In this work, we explore the application of diffusion mod-
els in training robust classifiers. Specifically, we propose
to train the classifier with one-step diffusion denoised im-
ages generated from Gaussian perturbed train examples —
in other words, we consider denoised examples as augmen-
tations of the original train image. We demonstrate that
classifiers finetuned on such denoised examples offer im-
proved robustness when compared with the last checkpoint.
Furthermore, we extend this to test-time and demonstrate
performance comparable to or exceeding DDA using an en-
semble prediction over test-time diffusion denoised images –
more importantly, our method is ∼ 10x faster than DDA in
terms of wallclock time. In summary, our contributions are
as follows:

• We combine diffusion denoised augmentations with lead-
ing augmentation techniques such as AugMix and Deep-
Augment and demonstrate improved robustness on cov-
airate shifts at no cost to test accuracy.

• We qualitatively analyse diffusion denoised images and
provide hypotheses explaining the empirical observations.

• We extend the idea of diffusion denoised augmentations
to test time to further improve the classifier robustness.



2. Background

The stochastic diffusion framework [27] consists of two key
components: 1) the forward-diffusion (i.e., data to noise)
stochastic process, and 2) a learnable score-function that can
then be used for the reverse-diffusion (i.e., noise to data)
stochastic process.

The forward diffusion stochastic process {xt}t∈[0,T ]

starts at data, x0, and ends at noise, xT . We let pt(x) denote
the probability density of x at time t, so, e.g., p0(x) is the
distribution of the data, and pT (x) is the distribution of the
noise. The diffusion is structured so that pT (x) is indepen-
dent of the starting point at t = 0. This process is defined
with a stochastic-differential-equation (SDE):

dx = f(x, t) dt+ g(t) dw, (1)

where w denotes a standard Wiener process, f(x, t) is a drift
coefficient, and g(t) is a diffusion coefficient. The drift and
diffusion coefficients are usually manually specified such the
solution to the SDE with initial value x0 is a time-varying
Gaussian distribution pt(x|x0) whose mean µ(x0, t) and
standard deviation σ(t) can be exactly computed.

To sample from p0(x) starting with samples from pT (x),
we have to solve the reverse diffusion SDE [1]:

dx = [f(x, t)− g(t)2∇x log pt(x)] dt+ g(t) dw̄, (2)

where dw̄ is a standard Wiener process when time flows
from T to 0, and dt is an infinitesimal negative timestep.
In practice, the score function ∇x log pt(x) is estimated by
a neural network sθ(x, t), parameterized by θ, trained to
optimize a weighted sum of denoising score-matching losses
[27].

Denoised Examples. Given (x0, y) ∼ p0(x) and x ∼
pt(x|x0) = N (x | µ(x0, t), σ

2(t)I), we can compute the
denoised image x̂t using the pretrained score network sθ as:

x̂t = x+ σ2(t)sθ(x, t) (3)

Intuitively, x̂t is an expectation over all possible images
mt = µ(x0, t) that are likely to have been perturbed with
N (0, σ2(t)I) to generate x and the denoised example x̂t

can be written as

x̂t = E[mt|x] =
∫
mt

mt pt(mt|x)dmt (4)

We note that the mean does not change with diffusion time t
in variance-exploding SDEs while the mean decays to zero
with diffusion time for variance-preserving SDEs (DDPMs).

3. Denoised Examples as Augmentations

𝐱! 𝐱""

Figure 1. Denoised Examples: Given x0, we show x̂t for different
values of diffusion time t arranged chronologically.

In this section, we detail the training procedure of classifiers
with denoised examples as augmentations. Previous studies
have mainly focused on the use of such denoised examples
as approximations of clean images at inference-time to im-
prove classifier robustness (e.g., [3]) and do not consider
denoised examples for training classifiers perhaps because
clean images are readily available in the training dataset. We
also qualitatively analyse the denoised examples to provide
a visual understanding of the generated augmentations.

To generate denoised training examples, we diffuse x0

to a uniformly sampled time t ∼ U(0, T ) and then, denoise
it using the trained score network sθ (Eq. 3). We illustrate
some denoised examples of a CIFAR10 image in Figure 1.

To train a classifier on regular augmented examples, we
optimize L(pϕ(A(x0)), y) where A(·) generates a random
augmentation of x0 and L is generally the cross-entropy loss.
We consider the following augmentation methods to define
A(·) in this work: (i) BASE: Horizontal Flip/Crop Augmen-
tations, (ii) AugMix (AM), (iii) DeepAugment (DA) and (iv)
DeepAugment+AugMix (DAM). In the case of AugMix, the
augmented examples are used to compute a Jenson-Shannon
divergence in addition to the cross-entropy loss on regu-
larly augmented examples. When additionally considering
diffusion denoised augmentations, we optimize:

LTotal = Et,x[− log pϕ(y|x̂t)] + L(pϕ(A(x0)), y) (5)

where, t ∼ U(0, T ), x ∼ pt(x|x0), (x0, y) ∼ p0(x) and
x̂t is obtained using score-network (Eq. 3). We note that
we do not apply the novel augmentations to the denoised
images when computing the cross-entropy loss since the
joint training should implicitly generalize to augmentations
applied to denoised examples.

We can interpret training on denoised examples as a
type of Vicinal Risk Minimization (VRM) wherein the cost-
function is optimized on the vicinal distribution of training
samples to improve generalization. For example, Chapelle
et al. [4] use Gaussian perturbed examples (x) as the vicinal
distribution while MixUp [32] uses a convex sum of two
random inputs (and their labels) as a vicinal distribution. A
denoised example x̂t is a convex sum over mt where each
mt is weighted by its likelihood of generating x (pt(mt|x))
and can be considered to be vicinal to those examples mt



that have a non-trivial likelihood pt(mt|x). The distribu-
tion pt(mt|x) is concentrated around examples perceptually
similar to µ(x0, t) when x is closer to x0 (i.e., smaller σ(t))
and becomes more entropic as the noise scale increases: in
Figure 1, we can observe the superposition of candidate dog
images with increasing diffusion time t.

Qualitative Analysis and Manifold Theory. When gen-
erating augmentations, it is important to ensure that the
resulting augmentations lie on the image manifold. Recent
studies [6, 24] on theoretical properties of denoised exam-
ples suggest that denoised examples can be considered to
be on the data manifold under certain assumptions lending
theoretical support to the idea of using denoised examples
as augmentations. In addition, it is also important to pre-
serve the class-labels upon augmentation as this can lead to
manifold intrusion [11] and lead to underfitting and lower
classification accuracies. Diffusion denoised augmentations
generated from significantly perturbed train examples can
introduce label-noise into the training since the label of the
original image may not necessarily match that of the de-
noised image – for example, some of the diffusion denoised
augmentations of the dog in Figure 2 resemble architectural
buildings. In the specific case of diffusion denoised aug-
mentations, however, the augmentations are visually distinct
from the original image potentially allowing for the model
to learn to be robust to noisy labels by adjusting its confi-
dence accordingly. For example, Figure 3 shows an example
augmentation that causes manifold intrusion and also does
not have any visual cues that allow the model to distinguish
between the original image and augmented image.

We confirm this empirically showing no degradation in
classification accuracy and instead observe improved robust-
ness to distribution shifts. We hypothesize that the diffusion
denoised examples that are farther from the input image are
crucial in improving classifier robustness – specifically, aug-
mentations from larger t introduce significant changes to the
input image (and possibly, the class label) requiring the clas-
sifier to observe details in input image to carefully estimate
the class-membership probabilities of x0 based on x̂t. For
example, the diffusion denoised augmentations at t = 999
have minimal resemblance of the original image and we ex-
pect that the class-probabilities should be distributed evenly
across the 1k classes. We evaluate the average prediction
entropy as a function of the diffusion time in Figure 4 and
surprisingly find that classifiers trained on state-of-the-art
augmentation methods do not predict uniform class prob-
abilities for diffusion denoised augmentations obtained at
t = 999 while the classifiers fine-tuned with diffusion de-
noised images behave as expected.

Denoised Examples as Test-time Augmentations.
When presented with test examples containing unknown
distribution shifts, DDA [9] shows that we can project the
test examples into the source distribution by first applying

a forward diffusion step followed by iterative sampling. In-
spired by DDA, we extend the idea of one-step diffusion
denoised examples as augmentations to generate test-time
augmentations of a test-example. Specifically, given a test
example, we generate one-step diffusion denoised examples
for various values of diffusion times t and utilize the average
predictions [18] across all the augmentations to assign the
class-label. We demonstrate that this technique is competi-
tive with DDA and offers significant improvement in terms
of running time as it does not involve iterative sampling.

4. Experiments
We primarily conduct our experiments on Imagenet using
the Improved-DDPM [7, 22] diffusion model. In particular,
we use the unconditional model open-sourced by Dhari-
wal and Nichol [7] as the score-network for Imagenet (256
× 256) to generate both training and test-time augmen-
tations. In all of our experiments, we use a ResNet-50
backbone as the Imagenet classifier. We evaluate the ad-
vantages of diffusion-denoised examples as train augmen-
tations when combined with the following augmentation-
techniques: (i) BASE: Horizontal Flip/Crop Augmentations,
(ii) AugMix (AM), (iii) DeepAugment (DA) and (iv) Deep-
Augment+AugMix (DAM). To distinguish between models
trained exclusively with the above-mentioned augmentations,
we use the suffix ”+Diff” to denote classifiers trained addi-
tionally with diffusion-denoised examples as augmentations.
We finetune the pretrained checkpoints for 5 epochs with
diffusion-denoised augmentations; we also utilize the orig-
inal augmentations used in pretraining in order to retain
the distinct generalization benefits offered by the respective
augmentations. We evaluate the pretrained models and the
models finetuned with additional diffusion denoised augmen-
tations in the following evaluation modes:
1. DDA: We apply the DDA algorithm to transfer a test-

example with unknown distribution shift into the source
distribution.

2. DDA (SE): We consider both the original test example
and DDA-adapted test-example by averaging the poste-
rior probabilities following the self-ensemble (SE) strat-
egy proposed in [9].

3. Denoised-Ensemble (DE): We generate diffusion-
denoised augmentations of a given test-example and then
utilize the posterior probabilities averaged across the test-
time augmentations. We generate 9 test-time augmenta-
tions using one-step diffusion denoising applied to im-
ages diffused to t ∈ {0, 50, . . . , 450}. We follow DDA to
determine the upper limit of the diffusion time t = 450.

4. Default: In the default mode, we directly evaluate the
model on the test examples.

We summarize the results across all evaluation modes in
Tab. 1 for Imagenet-C (severity=5) and the uncorrupted Ima-
genet test dataset. We also plot the effect of diffusion-time



Figure 2. We show some sample diffusion denoised augmentations of samples x0 taken from Imagenet-train. In particular, we display
8 random augmentations for each image between t = 350 and t = 700 in steps of size 50. Augmentations generated for t < 350 are
closer to the input image while the augmentations for t > 700 are farther from the input image. We observe that the diffusion denoised
augmentations with larger values of t do not preserve the class label introducing noise in the training procedure. However, we find that this
does not lead to empirical degradation of classification accuracy but instead leads to improved robustness to corruptions.

Original Color Augmented
Manifold Intrusion from Color Augmentation

Figure 3. Example of Manifold Intrusion from Appendix C of
Hendrycks et al. [13]. While diffusion denoised augmentations
may alter class labels (Figure 2), the denoised images are visually
distinguishable from the original images allowing the model to also
learn from noisy labels without inducing manifold intrusion. On
the other hand, here is an example of manifold intrusion where the
augmented image does not contain any visual cues that enable the
model to be robust to noisy labels.

on the denoised-ensemble performance in Figure 5. We
summarize our observations as follows:

• For Imagenet-C, models trained with diffusion denoised
examples improve over models trained without these aug-
mentations across all evaluation modes. In the evaluations
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Figure 4. Average Prediction Entropy vs Diffusion Time. We
compare between models trained on different augmentations by
evaluating their prediction entropy over diffusion denoised im-
ages. We observe that the models trained with additional diffusion
denoised augmentations (DA+Diff, AM+Diff and DAM+Diff) cor-
rectly yield predictions with higher entropies (lower confidence) for
images containing imperceptible details (i.e. larger t). Surprisingly,
the classifiers trained without diffusion denoised augmentations
(DA, AM and DAM) do not also assign random-uniform label dis-
tribution for diffusion denoised images at t = 999, which have no
class-related information by construction.



Table 1. We summarize the results for each combination of Train-
augmentations and evaluation modes on Imagenet-C (severity=5).
AM, DA, and DAM are short for AugMix, DeepAugment and
DeepAugment + AugMix respectively. When diffusion denoised
examples are additionally used to train the classifiers, we denote it
with the suffix ”+Diff”. DDA refers to the evaluation on Denois-
ing Diffusion Adapted samples of Imagenet-C. DE refers to the
Denoised-Ensemble evaluation of the models. Def. denotes direct
evaluation over Imagenet-C samples. In DDA (SE), we average the
prediction probabilities obtained using the original image and DDA
image. We find that diffusion denoised augmentations are effective
as both train-time augmentations and test-time augmentations.

(a) Imagenet-C (severity=5)

Inference Mode
Avg

Train
Augmentations

DDA
DDA
(SE)

DE Def.

AM 33.18 36.55 34.08 26.72 32.63
AM+Diff 34.52 38.48 38.44 29.44 35.22

BASE 28.35 30.62 27.2 17.87 26.01
BASE+Diff 32.1 34.13 30.66 20.44 29.33

DA 35.41 39.05 37.01 31.92 35.85
DA+Diff 37.59 41.35 40.65 33.74 38.33

DAM 40.35 44.81 41.85 39.52 41.63
DAM+Diff 41.77 46.18 44.48 41.05 43.37

Avg 35.41 38.90 36.80 30.09 35.30
Avg(Diff) 36.50 40.04 38.56 31.17 36.56

Avg(NonDiff) 34.32 37.76 35.04 29.01 34.03
(b) Imagenet-Test

Inference Mode
Avg

Train
Augmentations

DDA
DDA
(SE)

DE Def.

AM 62.22 75.98 73.89 77.45 72.39
AM+Diff 63.33 76.07 75.57 77.20 73.04

BASE 58.09 74.38 71.20 76.10 69.94
BASE+Diff 62.83 73.93 73.65 76.00 71.60

DA 63.63 75.39 74.07 76.52 72.40
DA+Diff 65.33 75.57 75.17 76.40 73.12

DAM 65.53 74.41 73.34 75.69 72.24
DAM+Diff 66.74 74.60 74.35 75.50 72.80

Avg 63.46 75.04 73.91 76.36 72.19
Avg(Diff) 64.56 75.04 74.69 76.28 72.64

Avg(NonDiff) 62.37 75.04 73.13 76.44 71.74

over the uncorrupted test examples, the models trained
with diffusion denoised examples preserve the accuracies
of the original models.

• On average, Denoised Ensemble yields improved detection
rates as compared to direct evaluation on DDA images.

• Denoised Ensemble applied to models trained with diffu-
sion denoised images is better on average than DDA-SE
applied to models trained without diffusion augmenta-

Table 2. We evaluate the models on Imagenet-R and Imagenet-S in
the Default and DE evaluation modes. We find that the results on
these datasets follow the same trend as observed for Imagenet-C.

Imagenet-S Imagenet-R Avg
Train

Augmentations Def. DE Def. DE

AM 10.90 15.15 40.83 42.56 27.36
AM+Diff 11.10 15.79 40.93 43.22 27.76

BASE 7.13 11.76 36.15 38.75 23.45
BASE+Diff 7.78 12.17 37.19 41.00 24.54

DA 13.53 16.48 42.00 43.58 28.90
DA+Diff 13.80 17.50 42.65 44.77 29.68

DAM 18.93 19.44 46.72 46.44 32.88
DAM+Diff 19.31 19.88 47.08 47.38 33.41

Avg 12.81 16.02 41.69 43.46 28.50
Avg(Diff) 13.00 16.34 41.96 44.09 28.85

Avg(NonDiff) 12.62 15.71 41.43 42.83 28.15

Table 3. DDA vs DE in terms of wallclock times: We use 40GB
A40 GPU for determining the running time. For each method, we
determine the maximum usable batch-size and report the average
wallclock time for processing a single example.

Method Wallclock Time (s)

DE 0.5
DDA 4.75

tion: for example, the non-diffusion finetuned models are
37.76% accurate on Imagenet-C in DDA-SE evaluation
whereas the diffusion finetuned models are 38.56% ac-
curate in DE evaluation. This demonstrates that we can
get improved robustness by first fine-tuning the classifier
over diffusion augmented images and then average pre-
dictions across diffusion denoised augmentations of a test
sample to obtain competitive performance with DDA at a
substantially faster (∼ 10x) wallclock time (Tab. 3).

We also evaluate our method on Imagenet-R and
Imagenet-S as shown in Tab. 2. Although the improvements
over Imagenet-R and Imagenet-S from training over diffu-
sion denoised augmentations are only slight, we observe
some notable improvements when evaluating under the DE
inference mode. Overall, the results in Tab. 2 follow the
same trends as observed in Tab. 1.

5. Related Works

In this section, we discuss some related works in addition to
the ones discussed in the introduction.
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Figure 5. Denoised-Ensemble: Imagenet-C Accuracy vs Diffu-
sion Time. For each diffusion time t ∈ {0, 50, . . . , 400, 450}, we
plot the accuracy when considering all diffusion denoised augmen-
tations generated up to t. For example, we consider 5 diffusion
denoised augmentations of each test example to compute the accu-
racy corresponding to t = 200. We observe that classifiers trained
with additional diffusion denoised augmentations not only perform
better on average at t = 0 but can also predict more accurately
when ensembling over diffusion denoised augmentations.

Synthetic Training Images. Synthetic Images from Dif-
fusion Models have been explored to train classifiers: for
example, Azizi et al. [2] fine-tune large text-to-image diffu-
sion models to generate extra data while You et al. [31] use
a three stage training process to train semi-supervised classi-
fier wherein they generate pseudo images – generated with a
diffusion model trained over pseudo-labels derived from first
round of semi-supervised classifier training with strong aug-
mentations – to improve standard semi-supervised training.
Yamaguchi and Fukuda [30] evaluate classifiers trained on
diffusion images generated from iterative diffusion sampling;

in their analysis of reverse diffusion times, they expose some
limitations of using synthetic images from diffusion models
to train classifiers. In contrast, we train a classifier on one-
step diffusion denoised images generated from the entire
range of diffusion times and demonstrate improvements on
robustness at no cost to original test accuracy.

Test Time Augmentations. Test time augmentations em-
ploy data augmentations at test time to improve classification
accuracy [18]. In practice, some augmentations are selected
to generate test time augmentations and the classifier-outputs
over all augmentations are averaged to make the prediction.
However, there are improved methods beyond simple av-
eraging to generate outputs from test-time augmentations:
for example, Kim et al. [17] and Shanmugam et al. [26]
propose learning-based solutions for augmentation selection
and aggregation respectively. We utilise diffusion denoised
augmentations as test time augmentations and use simple av-
erage over outputs to improve robustness to covariate shifts.
In future work, improved test time aggregation techniques
could be explored to improve the performance.
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7. Conclusion
In this work, we explore diffusion denoised images as aug-
mentations to train classifiers. When combined with leading
data augmentation techniques, we find that diffusion de-
noised examples confer additional robustness to covariate
shifts without affecting accuracy on clean examples. We
qualitatively examine diffusion denoised augmentations and
identify factors likely responsible for improved robustness
at identical test accuracies. Furthermore, we extend diffu-
sion denoised augmentations to test time and introduce a
simple averaging technique to further improve robustness to
covariate shifts.
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Vapnik. Vicinal risk minimization. Advances in neural infor-
mation processing systems, 13, 2000. 2

[5] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna
Ebrahimi. Contrastive test-time adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 295–305, 2022. 1

[6] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul
Ye. Improving diffusion models for inverse problems using
manifold constraints. In Advances in Neural Information
Processing Systems, 2022. 3

[7] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
gans on image synthesis. CoRR, abs/2105.05233, 2021. 3

[8] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A Efros.
Test-time training with masked autoencoders. In Advances in
Neural Information Processing Systems. 1

[9] Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shel-
hamer, and Dequan Wang. Back to the source: Diffusion-
driven test-time adaptation. arXiv preprint arXiv:2207.03442,
2022. 1, 3

[10] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained CNNs are biased towards texture; increasing
shape bias improves accuracy and robustness. In International
Conference on Learning Representations, 2019. 1

[11] Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as
locally linear out-of-manifold regularization, 2018. 3

[12] Dan Hendrycks and Thomas G. Dietterich. Benchmarking
neural network robustness to common corruptions and pertur-
bations. CoRR, abs/1903.12261, 2019. 1

[13] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A
simple data processing method to improve robustness and
uncertainty. arXiv preprint arXiv:1912.02781, 2019. 1, 4

[14] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340–8349, 2021. 1

[15] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt,
and Dawn Song. Natural adversarial examples. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15262–15271, 2021. 1

[16] Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang,
Bo Li, Dawn Song, and Jacob Steinhardt. Pixmix: Dreamlike
pictures comprehensively improve safety measures. CVPR,
2022. 1

[17] Ildoo Kim, Younghoon Kim, and Sungwoong Kim. Learning
loss for test-time augmentation. Advances in Neural Informa-
tion Processing Systems, 33:4163–4174, 2020. 6

[18] Masanari Kimura. Understanding test-time augmentation,
2024. 3, 6

[19] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. TTT++:

When does self-supervised test-time training fail or thrive?
Advances in Neural Information Processing Systems, 34:
21808–21820, 2021. 1

[20] Eric Mintun, Alexander Kirillov, and Saining Xie. On in-
teraction between augmentations and corruptions in natural
corruption robustness. In Advances in Neural Information
Processing Systems, pages 3571–3583. Curran Associates,
Inc., 2021. 1

[21] Apostolos Modas, Rahul Rade, Guillermo Ortiz-Jiménez,
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Table 4. ImageNet-C (severity=5) accuracy for each corruption type. Relative Improvements when additionally using diffusion denoised
augmentations are computed with respect to the corresponding pretrained checkpoints and averaged across all corruption types.

Noise Blur Weather Digital
Inference

Mode.
Train
Aug.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
Rel.
Imp.

DDA

AM 50.66 52.22 50.8 18.18 25.14 18.78 24.27 22.71 33.05 5.35 40.54 11.14 40.66 54.15 50.1 33.18
AM+Diff 51.2 52.78 51.51 21 27.8 22.46 27.84 23.35 34.39 7.55 40.75 11.14 40.89 55.22 49.96 34.52 7.63

BASE 45.97 47.62 46.73 12.87 17.98 12.77 20.27 17.92 27.56 5.11 35.44 5.91 36.1 47.91 45.06 28.35
BASE+Diff 48.91 49.99 49.57 18.39 24.15 17.47 25.48 19.49 31.37 8.31 39.39 7.09 38.79 53.87 49.28 32.1 20.17

DA 51.48 53.37 51.15 24.11 30.07 18.07 23.22 25.31 35.46 10.69 44.11 12.33 41.26 58.68 51.82 35.41
DA+Diff 52.26 53.94 51.96 28.66 32.41 22.6 27.56 25.78 37.21 13.82 47.23 14.89 41.72 60.72 53.04 37.59 9.7

DAM 53.5 55.54 54.86 31.33 37.44 28.89 28.49 30.75 39.67 12.85 49.04 21.24 45.04 61.62 54.99 40.35
DAM+Diff 54.29 55.82 55.44 33.12 37.91 33.13 31.58 30.96 41.04 15.21 50.85 23.33 44.72 62.93 56.19 41.77 5.01

DDA-SE

AM 49.61 51.24 50.1 20.65 23.05 24.43 32.81 25.75 36.25 20.06 54.14 14.14 39.15 54.66 52.22 36.55
AM+Diff 51.3 52.29 51.55 24.45 26.84 29.21 36.55 26.5 37.39 26.46 53.59 15.4 38.67 55.06 51.98 38.48 7.94

BASE 44.85 45.59 45.17 14.33 16.2 14.23 23.94 20.54 30.4 19.54 51.65 6.61 33.19 46.47 46.54 30.62
BASE+Diff 48.51 49.3 48.97 21.52 22.61 20.31 30.88 20.87 32.81 23.77 50.64 7.17 34.74 51.32 48.49 34.13 16.21

DA 53.35 54.71 53.32 25.72 28.2 20.13 26.37 30.57 40.05 28.79 59.39 13.91 39.82 59.09 52.34 39.05
DA+Diff 53.84 55.3 53.94 30.57 30.05 25.24 30.57 31.32 41.49 35.52 60.82 19.33 39.53 60.35 52.41 41.35 9.48

DAM 54.17 56.33 55.21 33.59 34.12 36.29 34.89 35.82 45.12 35.52 60.9 27.84 43.33 62.99 56 44.81
DAM+Diff 54.6 57.06 55.85 35.74 35.5 40.09 37.22 36.34 45.96 38.72 61.88 30.91 42.59 63.41 56.85 46.18 3.75

DE

AM 32.88 36.3 32.97 21.33 30.71 25.59 32.59 24.78 39.16 17.25 55.03 6.87 43.37 54.61 57.73 34.08
AM+Diff 37.16 40.49 37.11 28.74 36.58 34.59 40.27 26.33 40.97 27.76 56.1 9.79 43.82 57.75 59.14 38.44 18.36

BASE 26.88 28.92 26.99 12.11 19.62 16.06 25.01 19.52 32.22 15.28 49.72 1.44 36.55 45.45 52.25 27.2
BASE+Diff 30.65 34 31.74 19.27 25.78 21.49 31.24 19.13 33.64 14.63 51.03 1 38.88 51.41 56 30.66 12.99

DA 44.53 47 46.28 21.21 30.03 22.23 29.52 28.47 40.27 24.23 57.09 4.14 43.5 57.11 59.51 37.01
DA+Diff 45.12 47.42 46.8 28.66 35.76 28.9 36.21 29.64 43.02 33.86 59.57 10.94 43.97 58.82 61.14 40.65 22.41

DAM 46.63 49.23 46.88 28.87 37.4 32.61 36.16 33.47 44.43 28.72 59.79 15.09 46.47 60.82 61.22 41.85
DAM+Diff 47.74 50.29 47.94 33.68 40.45 37.72 39.72 34.76 45.94 36.09 60.72 21.2 46.36 62.28 62.29 44.48 9.06

Default

AM 15.01 18.37 16.64 21.48 13.69 24.88 33.66 21.54 27.13 22.91 57.91 13.09 25.16 42.33 46.99 26.72
AM+Diff 19.66 22.52 20.68 26 17.43 30.41 37.59 22.82 28.41 28.98 56.88 15.72 24.43 43.17 46.83 29.44 14.28

BASE 5.68 6.49 6.45 15.04 8.24 13.29 22.86 15.59 20.43 22.21 55.64 4.23 14.31 23 34.54 17.87
BASE+Diff 8.29 9.26 9.47 23.36 14.43 19.47 30.84 13.86 19.91 26.75 53.29 4.1 16.06 24.14 33.45 20.44 24.03

DA 39.6 40.78 41.91 25.47 15.74 19.02 24.58 27.41 33.58 32.03 62.62 9.55 23.69 45.41 37.47 31.92
DA+Diff 40.31 41.41 42.69 30.91 17.07 23.24 28.36 28 35.09 37.4 63.1 15.98 23.09 44.75 34.71 33.74 10.19

DAM 39.61 42.75 42.13 34.47 22.95 36.57 35.58 34.05 39.85 38.74 63.95 25.6 29.62 56.45 50.51 39.52
DAM+Diff 41.09 44.11 43.3 36.68 25.61 40.08 37.26 34.97 40.52 40.97 64.34 29.63 28.78 57.17 51.21 41.05 4.56
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