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Abstract

Neural module networks (NMN) are a popular approach for solving multi-modal
tasks such as visual question answering (VQA) and visual referring expression
recognition (REF). A key limitation in prior implementations of NMN is that
the neural modules do not effectively capture the association between the visual
input and the relevant neighbourhood context of the textual input. This limits
their generalizability. For instance, NMN fail to understand new concepts such
as “yellow sphere to the left" even when it is a combination of known concepts
from train data: “blue sphere", “yellow cube", and “metallic cube to the left". In
this paper, we address this limitation by introducing a language-guided adaptive
convolution layer (LG-Conv) into NMN, in which the filter weights of convolutions
are explicitly multiplied with a spatially varying language-guided kernel. Our
model allows the neural module to adaptively co-attend over potential objects of
interest from the visual and textual inputs. Extensive experiments on VQA and
REF tasks demonstrate the effectiveness of our approach. Additionally, we propose
a new challenging out-of-distribution test split for REF task, which we call C3-
Ref+, for explicitly evaluating the NMN’s ability to generalize well to adversarial
perturbations and unseen combinations of known concepts. Experiments on C3-
Ref+ further demonstrate the generalization capabilities of our approach.

1 Introduction

Visual question answering (VQA) [11} 8} 7] and visual referring expression recognition (REF) [37,127]]
are fundamental language-to-vision matching tasks that have several downstream applications such
as robot navigation, image retrieval, and natural language interfaces [42} 50, 14, 3, [39]. The high-
level goal of these tasks is to perform joint reasoning over visual and textual queries. In the
recent years, neural module networks (NMN) [10, 20| 33]] attracted increasing attention due to their
superior performance on these tasks [33[26]. Briefly, NMN models learn to parse textual queries
as executable programs composed of learnable neural modules. Each of these modules implements
a single step of reasoning (e.g. count, filter, compare) and are dynamically assembled to
perform multi-step reasoning over text. In addition to the good performance, NMN also provide
high model interpretability thanks to their transparent, hierarchical and semantically motivated
architecture [45, 5,16, 32]].

Despite great success, the current NMN implementations require a large amount of training data and
are less effective in generalizing to unseen but known language constructs [29} 13} 151]. For example,
NMN fail to understand new concepts such as “yellow sphere to the left" that are constructed using a
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combinations of known concepts from train data such as “blue sphere", “yellow cube", and “metallic
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Figure 1: An example from the CLEVR-Ref+ dataset. Existing NMN implementations only provide
the visual features (v,,) as inputs to the neural modules. In this work, we additionally condition
each module on textual expression (q) by replacing the standard convolution layers with content
adaptive convolution layers LG-Conv which modify the convolution by explicitly multiplying the
filter weights (W) with a spatially varying language-guided kernel G. (¥) denotes element-wise
multiplication and € denotes summation.

cube to the left". One of the main reasons for this is that the neural modules in existing works
either use a shallow, indirect language guidance [40} [19] 2] or pre-define the textual inputs in the
module instantiation [26} [33]], ignoring the rich correlations among the visual inputs and the relevant
context from the textual inputs. For example, the neural module that filters based on the object size,
“filter_size (smallest)”, needs to localize a tiny sphere or a medium-sized sphere in the
image depending on the object relationships in the expression (e.g. “the smallest thing among the
spheres" vs. “the metallic sphere smaller than all the large cylinders") and the different sizes of
spheres and cylinders available in its visual input. We believe that explicitly conditioning the neural
modules on the joint textual and visual context helps in inferring robust visiolinguistic relationships
which further enhances the compositional reasoning skills.

In this work, we address the aforementioned issues by explicitly providing the relevant objects and
relationships in the textual expression to neural modules. To do this, as shown in Figure [T} we
replace the standard convolution operations in the neural modules with a novel language-guided
adaptive convolution operation, which we call LG-Conv. More specifically, the filter weights W of
LG-Conv are explicitly multiplied with a spatially varying language-guided kernel G, which allows
the module to adaptively co-attend over potential objects of interest from the visual input and textual
input by altering the convolution. Although content-adaptive convolutions are used
in several vision tasks, we are not aware of any prior works that does this filter adaptation using
language as guidance. We propose two novel and effective methods namely, bi-salient attentional
guidance (BiSAtt) network and co-salient attentional guidance guidance (CoSAtt) network to learn
the guidance kernel G from textual and visual inputs.

We conduct extensive experiments on VQA and REF tasks using CLEVR [25]], CLOSURE [13],
and CLEVR-Ref+ datasets. On the recently released VQA benchmark CLOSURE [13]], our
approach significantly outperforms all the previous works with 11.6% improvements in accuracy. On
the REF benchmark CLEVR-Ref+ [33]], we outperform competing approaches by as much as +9.8%
accuracy on single-referent split (S-Ref) and +4.7% on full-referent split (F-Ref), suggesting the
importance of language-guidance. Most significant gains with S-Ref, which consists of only 30% of
the training data in CLEVR-Ref+, demonstrate the superior generalization of our model in learning
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Figure 2: (a) Architecture of neural module (m) in existing NMN [26] consuming a visual input v,,,;
(b) Our proposed architecture replacing Conv layers with content adaptive convolution layers guided
by the input image I, input query ¢ and parameterized textual input m;4.

from fewer training sample We further evaluate the generalization capabilities of our approach by
collecting a new dataset consisting of unseen compositions and contrasting samples for CLEVR-Ref+
benchmark [17]], and call our new dataset C3-Ref+.

Our key contributions are summarized as follows:

1. We propose a novel language-guided adaptive convolution layer for NMN that guide modules
in adaptively selecting informative visiolinguistic relationships and in attending to relevant
objects of interest from the visual and textual inputs;

2. We demonstrate the superiority of our approach by achieving new state-of-the-art results on
multiple tasks and benchmarks;

3. We introduce a new benchmark to explicitly test the model’s ability to generalize to adver-
sarial perturbations and novel compositions of concepts unseen during training. We show
that our model is more robust and generalizable compared to previous approaches.

2 Related Work

Multi-modal Grounding. Early approaches for tackling grounding tasks such as VQA and REF
used recurrent networks with CNNs and attention-based models to jointly understand visual and
language inputs [16} 148 34]. 8] proposed bottom-up and top-down approach to learn attention over
image regions obtained from a pretrained object detector. However, these models are shown to be
heavily driven by annotation artifacts in the training data [1]. Balanced and synthetic datasets such as
CLEVR [25], CLOSURE [13], CLEVR-Ref+ [33]] are proposed by explicitly controlling the bias
and language priors. Transformers [36} 31}, 47, using pretrain-then-transfer approach, have shown
superior performance on these datasets. However, these models fail to learn robust visio-linguistic
representations and are shown to exploit the imbalanced distribution in the train and test splits [S, [14]].

Neural Module Networks. Neural module networks (NMN) leverage specialized modules to com-
pute basic reasoning tasks. These modules can be assembled to perform complex and compositional
reasoning [10} 25} 26} [19]. [9] proposed dynamic NMN that learns and adapts the structure of the
execution layouts to the question. Recently, [26] proposed homogeneous (IEP) and generic neural
modules, unlike fixed and hand-crafted neural module, in which the semantics of each neural module
is learnt during training. IEP model achieves promising performance on CLEVR dataset. [33]
proposed IEP-Ref by extending IEP model to CLEVR-Ref+ dataset and outperformed all the prior

'S-Ref is a subset of full CLEVR-Ref+ dataset containing expressions that refer to only a single target object
in the image.
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Figure 3: Bi-Salient Attentional Guidance Encoder (BiSAtt): In BiSAtt Encoder architecture, we
first encode text inputs and then use it to learn a set of adaptive weights to linearly combine the basis
filters which produces the convolution filters applied on input image.

works. Although, compositional by design, these models lack robust generalization abilities and fail
to ground novel combinations of known linguistic constructs [13]]. Few implementations of NMN
such as FiLM [40] and N2NMN [19]] condition the neural modules on textual guidance. However,
the visiolinguistic context in these modules is rather shallow as they cannot jointly co-attend over
potential objects of interest directly from the visual input and textual inputs. The major difference
between our work and the prior works of NMN is that we explicitly condition the neural modules on
the language-guidance by directly altering and adapting the convolution operation.

Adaptive Convolutions. There is an extensive literature on content-adaptive convolutions, in which
standard 2D convolutions are generalized to high-dimensional convolutions [12, 23 41} [18]]. [23]]
proposes to use bilateral filtering layers inside CNN architectures. [24] proposed dynamic filter
networks in which input-specific custom filter weights are predicted by a different network branch.
[44] proposed pixel-adaptive convolutions which modifies the filters in a position-specific fashion.
While these prior works study adaptive convolution techniques in CNN representation tasks, it has
not been explored before for guiding NMN for multi-modal language-vision tasks. Closest to our
work is the FILM [40] model that learn parameters for scaling up or down the CNN activations by
conditioning on the textual input. Our model differs from FiLM primarily in using language guidance
that depends on learnable, local pixel and textual features.

3 Approach

Problem Setup and Notation. Given an image I and a natural language query ¢ as input, our goal
is to develop a NMN model that selects an answer a € A to the query from a fixed set A of possible
answers. We generalize this notation for both VQA and REF tasks; ¢, a denote question and a natural
language answer respectively in VQA, whereas they represent a referring expression and a bounding
box of the target object respectively in REF. We represent input image I as an ordered sequence of a
set of image regions R = (rg,r1,...,rn) and the query ¢ as the set of words (wy, wa, ..., wy ) where
w; is the i-th word, N is the number of image regions extracted from input image I, and L is the
total number of the tokens in the input query.

Similar to [26], we use a two-stage model for generating answer: (1) Program Generation Model
p(z|q; 0p): where the query is parsed to z representing the reasoning steps required to answer the
query, and (2) Program Execution Model p(a|z, I; 6, ): where the predicted program z is used to
assemble a input-specific neural network that is composed from a set of neural modules m and is
executed to produce a distribution over answers.
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Figure 4: Co-Salient Attentional Guidance Encoder (CoSAtt): CoSAtt Encoder jointly attends over
the input image and text inputs (early fusion) to identify co-salient regions and relationships in visual
and language features that are contextually associated with each other.

As shown in Figure[2{a), the neural modules in current implementations of NMN [25] [33] typically
use a standard Residual Convolution Block (RCB), consisting of convolution layers and ReLU
activations. Formally, a module (f,,) of arity n receives n feature maps (F;) of shape 128 x 20 x 20
and outputs a same-sized tensor f, = f,,(F1,Fa,...,Fy).

hm = ReLU (convy (F}))

(D

fo =ReLU (convs (hy,) ® hpy)
As we can see, these modules [23] 26] are not explicitly conditioned on the input expression ¢, and
therefore fails to extract robust visiolinguistic relationships. In contrast, as shown in Figure 2(b),
we explicitly condition the neural modules on ¢, in addition to visual inputs, by replacing the
standard convolution operations in RCB block with a novel adaptive and language-guided convolution
operation, which we call LG-Conv. Also, we parameterize the module arguments, i.e., for example,
we treat “filter_material" module as parameterized by argument (mg,q) “rubber" instead of
as a standalone module “filter_material [rubber]". As aresult of this parametrization, the
number of a distinct set of modules used in the parameterized model reduce by 75%. We condition
our LG-Conv layer on both query g and the module argument m,,., (See Figure Q) In the following,
we describe the LG-Conv operation and detail its formal specification.

3.1 Language-Guided Convolution

Our high-level goal is to empower the neural modules to learn adapting visiolingustic features from
both visual and language inputs. We achieve this by introducing novel LG-Conv layers which allows
the module to adaptively co-attend over potential objects of interest from the visual and textual inputs
by altering the convolution [24} [T5] [44]. Formally, a standard conv layer in the RCB block performing
a spatial convolution operation over the n image pixels P = (p1, pa, ...py,) is given as:

pi= > Wlei—clpj+b @)
jeq)

where W denotes the filter weights, ¢; denote the coordinates of the pixels in the image, b denotes
biases, and (i) defines a convolution window. This convolution operation, with spatially shared
weights, is agnostic to pixel features and independent of language features. As shown in Figure|[I] we



modify this to depend on both pixel features and language features using a spatially varying guidance
kernel G as follows:

pi = Z G(gi,g5)W/ci —cjlp; +b 3)
jeq(i)

The spatial convolution W is adapted at each pixel in the visual input using the guidance kernel
G. Similar to [44], we represent G using a fixed parametric Gaussian: G(g;,g;) = exp(—2(g; —
gj)T (9i — g5)), where g represents guidance features that we learn using the following two methodsﬂ
(a) Bi-Salient Attentional Guidance (BiSAtt Encoder): We generate spatial guidance features
using the architecture shown in Figure 3] The input image of dimensions 128 x 20 x 20, the input
query ¢, and the module’s parametrized text argument are used in producing the guidance features.
Specifically, in BiSAtt architecture, we add visual attention layers over I to generate spatial guidance
from non-spatial g. (b) Co-Salient Attentional Guidance (CoSAtt Encoder): Here, we apply a
joint attention over I, ¢, and the module argument to identify co-salient regions and relationships
in visual and language features that are contextually associated with each other. The architecture is
shown in Figure [ In comparison to BiSAtt, as we show in our experiments, CoSAtt improves the
relevance and interaction between objects in the image and the query. For efficient implementation,
we use the same learned guidance across all the LG-Conv layers in a RCB block.

As our parametrized model require only a few number of modules, the total number of parameters
in our NMN is significantly less compared to the state-of-the-art models, even though the network
parameters in our parameterized module slightly increase due to the additional conv and LSTM units
in the guidance encoder.

Program Generator. We implement program generator using an attention-based sequence to se-
quence (seq2seq) model with an encoder-decoder structure [46}25] to map the input query ¢ into an
executable program z. Both the encoder and decoder have two hidden layers with a 256-dim hidden
vector. Similar to [25]], we convert the decoded sequence of program functions to syntax trees (in an
in-order traversal) in which each node contains a RCB module.

Execution Engine. The execution engine assembles a neural network using the predicted program z
by mapping function f at each node in syntax tree to its corresponding neural module. The parent
modules in the syntax tree takes the outputs from the child modules. Since we use a homogeneous
architecture for designing our modules, the output generated from all modules is of same shape
128 x 20 x 20. We flatten the final feature map before passing it to a multi-layer perceptron classifier,
producing a distribution over all possible answers.

Training. During training, we find the optimal module parameters by maximizing the likelihood of
the data. We optimize p(z|q; 6,) using a policy gradient method.

VI(6p) = E[Vlog p(z|q; bp) - 1] 4)

where r is the reward and the expectation is taken with respect to rollouts of the policy. In order to
enforce the network for generating the most accurate predictions, we then train the execution engine
directly by maximizing log p(al|z, I, q; 0.) with respect to 0..

E[Vlog p(z|q; 0p) - log p(alz, I, q; 0c)] (5)

4 Experiments

In this section, we start by discussing the datasets and the baselines considered in evaluating our
approach. We show the superiority of our approach by performing quantitative and qualitative
comparisons between our method and the baselines. We then demonstrate the importance of the
proposed language guided adaptive convolution through ablation studies. Finally, we present our new
benchmark, C3-Ref+, and show that our approach is robust to adversarial inputs and generalizes well
to novel compositions.

2We experimented more forms of guidance kernel discussed in [44]], but we did not find significant improve-
ments in NMN performance with these other kernels.



Model CLEVR-Dev CLEVR-Test CLOSURE
IEP-Ref [33]] 9g.7+0-3 97.1+0-2 59.8+0-4
FiLM [40] 96.2 96.9 58.9
MAC [22] 99.1 98.2 71.6
Vector NMN [[13]] 98.8 97.6 71.0
NS-VQA [49] 99.2 99.4 76.4
LCGN [21] NA NA NA
VIiLBERT [33]] 95.3 93.0 51.2
Visual BERT [33] 96.0 92.8 50.6
Ours (with BiSAtt) 98.9+0-2 99.2%0.1 86.1F01
Ours (with CoSAtt) 98.9%0-1 99.2+0-1 88.0%0-2

Table 1: Performance of our approach and baselines on CLEVR, CLOSURE benchmarks.

4.1 Datasets and Baselines

We evaluate our approach on both VQA and REF benchmarks. We use CLEVR [25] as the VQA
benchmark, consisting of synthetically generated image and question pairs. Specifically, it consists
of 100K images and 860K questions. We train our model on CLEVR train split and evaluate the
performance on its val and test splits. In addition, using the model trained on CLEVR, we evaluate
the performance on CLOSURE benchmark [13]], consisting of novel compositions of objects and
relations not seen in CLEVR train split. We then report results on CLEVR-Ref+ [33]], a synthetic
benchmark for referring expressions. It contains nearly 0.8M referring expressions of which 32%
of expressions refer to only a single object (Single-referent) and 68% refer to more than one object
(Multi-referent). We refer to the full dataset as F-Ref and the single-referent subset as S-Ref.

We compare the performance of our approach against several NMN baselines such as FILM (Feature-
wise Linear Modulation), MAC [22]], IEP-Ref [33]] VectorNMN [[13], and non-NMN baselines such
as NS-VQA [49], LCGN [21]], VILBERT [33], and VisualBERT [30].

Model S-D S-T F-D F-T

IEP-Ref 49.8%01 51,5%0:6 80, 5+0-2 78 9%0:3

FiLM 449 467 765 757 Model CLS| ST FT
MAC 46.3 492 813 774 Ours 88.0/63.3 84.3
Vector NMN 483 535 832 771 Cl Ours-L+G 62.1151.6 77.8
ViLBERT 42.4 44.3 69.3 68.7 C4 OU.I‘S+L+(G w/o q) 78.8(54.1 76.2
Visual BERT 41.7 43.2 69.8 63.2 C5 Ours+L+(G w/o marg) 82.1/61.7 80.9
Ours (with BiSAtt) [61.177° 59.75°% 87270 835592 Typle 3: Ablations. Performance of our
Ours (with CoSAtt)|62.3*° " 63.3°1 89.15°284.35%3  nodel with and without LG-Conv layer

) (L) and CoSAtt encoder (G) on CLOSURE
Table 2: Performance of our language-guided NMN models and (CLS), S-Ref Test, and F-Ref Test.
state-of-the-art models on S-Ref Dev (S-D), S-Ref Test (S-T),
F-Ref Dev (F-D) and F-Ref Test (F-T).

4.2 TImplementation Details

Similar to [25]], we use 18K ground-truth programs to train the program generator (PG). We train
PG and the execution engine using Adam [28] with learning rates 0.0005 and 0.0001, respectively.
Our PG is trained for a maximum of 32K iterations, while EE is trained for a maximum of 450K
iterations. We employ early stopping based on validation set accuracy. While reporting accuracies on
S-Ref test split, we use the model trained on S-Ref train split. We repeat the experiment 5 times on
each benchmark and report the mean/variance on each of them.



4.3 Evaluation

Table[T]and Table[2]show results in comparison with the baselines. We find that our model outperforms
all prior work on CLOSURE, and CLEVR-Ref+ benchmarks, while showing on-par performance on
CLEVR test split. This demonstrates the effectiveness of the proposed language guided convolutions
in capturing visiolinguistic relations and contextual dependencies from the longer CLEVR-like
expressions. In particular, we achieve +11.6% in accuracy on CLOSURE test split compared to the
best prior model Vector-NMN, indicating that our model generalizes well to unseen compositions.
The multi-modal transformer based approaches VILBERT and VisualBERT performed poorly on both
CLOSURE and CLEVR-Ref+, probably due to the mismatched image distribution in pre-training
(with conceptual captions [43])) and fine-tuning. Our model improves the accuracy on CLEVR-Ref+
test splits by 9.8% on S-Ref and 4.7% on F-Ref, compared with the current state-of-the-art method
IEP-Ref. Significant gains on S-Test also suggest the superior generalization skills of our model in
learning from fewer training samples. Relatively more improvements with CoSAtt encoder compared
to BiSAtt encoder shows that early fusion of image and text features facilitate in generating more
robust guidance kernel.

To gain better insight into the relative contribution of the design choices we made, we perform
experiment with the following five ablated models:

C1: Conv vs. LG-Conv (L). We investigate the contribution of the proposed content adaptive
convolution layer in the RCB block by replacing LG-Conv layer with standard convolution. In
this setting, we use guidance (G) from CoSAtt encoder for directly scaling up or down the CNN
activations in the RCB block.

C2: Conditioning on CoSAtt Guidance (G). In this ablation, we use LG-Conv layers but skip the
CoSAtt encoder to verify the importance of module level conditioning on the interaction between
image and text features. We instead only pass the module argument (1m,4) as guidance to the
LG-Conv layer.

C3: CoSAtt w/o. Image (I) We encode guidance using only input query ¢ and the module argument
to test the importance of conditioning on image I in the CoSAtt encoder.

C4: CoSAtt w/o. Query (q) We encode guidance using only input image to test the importance of
conditioning on input query ¢ in the CoSAtt encoder.

C5: CoSAtt w/o. Module Arg (1m,,,) In this variant, we keep g and I, but skip m; in the CoSAtt
encoder.

The results are shown in Table E} As we can see, all the above five variants underperform, confirming
the importance of our proposed content-adaptive convolutions and guidance kernel. Results show that
module argument in the CoSAtt guidance has less significant effect compared to other components,
suggesting that our model is able to infer the semantic context of the module. Figure [3]illustrates the
qualitative differences of filter_color (red) module trained using IEP-Ref and our approach.
With IEP-Ref, the model selects all red objects from the image, ignoring the context in the expression.
On the other hand, our approach correctly locates objects based on their contextual relevance.

4.4 The C3-Ref+ Dataset

Following [17,138,[13]], we construct a new benchmark, C3-Ref+, to critically examine the generaliza-
tion capabilities of NMN in grounding out-of-domain (0.0.d) referring expressions - a fundamental
expressive power of human intelligence. Specifically, C3-Ref+ consists of two kinds of samples con-
structed using S-Ref split of CLEVR-Ref+ dataset: (a) Novel Compositions, consisting of samples
that evaluate the model on combinations of objects and their spatial relationships not seen in S-Ref
train split; and (b) Contrast Sets, consisting of samples that help in exposing model brittleness by
probing a model’s decision boundary local to examples in the S-Ref test set. Table |4] shows few
examples.

In constructing novel compositions of samples, we first extract all the combinations of simple and
complex noun phrases (e.g. “The metallic object", “The metallic object to the left") from the S-Ref
train split and then manually construct new expressions using the unseen pairs of these phrases. To
construct a contrast sample, we manually perturb the semantics of various parts of the referring
expressions in the S-Ref test split such that the ground-truth referent object changes. For example, we
modify the expression first one of the tiny rubber thing from left to first one of the tiny metallic thing
Sfrom right. We verify and validate the correctness of the collected samples and their ground-truth
annotations using three human annotators. The annotations that are not consistent among the three
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Figure 5: Qualitative examples showing attention heatmaps of filter color (red) module
outputs trained using IEP-Ref and our model on CLEVR-Ref+ dataset. el, e2, e3 highlight the red
objects that are referred in the input expressions r1, 72, and 3, respectively.
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Figure 6: Accuracy of models on S-Ref and C3-Ref+

human annotators are removed from the final split El We collected a total of 1412 expressions
spanning 980 images with a vocabulary of 56. The average length of expressions is 18.3. More than
60% of our collected expressions have 2 or 3 relations such as “in the front" and “from the right".
As shown in Figure[6] performance of state-of-the-art models drop by up to 18% on C3-Ref+. Our
proposed method shows least drop (<5%) in performance indicating its superiority in grounding new
unseen compositions and adversarial perturbations.

3We also perform an additional round of filtering to remove inconsistent samples that could point to more
than one object in the image.



Original: Any other yellow metal thing(s) of the same size as the first
one of the cyan metal thing(s) from right

C3-Ref+: Any other tiny thing(s) of the same size as the first one of the
brown metal thing(s) from left

Original: The shiny thing(s) that are left of the first one of the small
sphere object(s) from right and behind the fourth one of the rubber
object(s) from front.
C3-Ref+: The shiny thing(s) that are right of the first one of the small
cubical object(s) from right and behind the fourth one of the rubber
object(s) from front.

Original: Find matte thing that is on the left side of the cyan object that
is behind the second one of the metallic object(s) from front; The last
one of the object(s) from front that are behind it.

C3-Ref+: Find matte thing that is on the left side of the cyan object that
is behind the second one of the metallic object(s) from front; The second

one of the object(s) from right that are in front of it.

Table 4: Random examples of contrast sets in C3-Ref+ and their original annotations in S-Ref.

5 Conclusion

Neural module networks (NMN) are widely used in language and vision tasks. We show that
explicitly conditioning neural modules on the language guidance through adaptive convolutions
improve their grounding and generalization abilities, achieving a new state-of-the-art results on
the visual question answering and visual referring expression recognition tasks. Our analysis on
CLOSURE, CLEVR-Ref+ and a new compositional and contrastive split C3-Ref+ demonstrate that
our proposed method enhances NMN’ ability in adaptively selecting and exploiting informative
visiolinguistic relationships.

6 Broader Impact

This work contributes to improve the joint understanding of image and textual content, which in turn
is a very important component in several vision and language grounding tasks. Our research can
promote the development of a multi-modal interaction system and facilitate people’s daily lives. This
work does not present any foreseeable societal consequence.
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