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Figure 1: RAPID Hand is an open-source, low-cost, fully direct-driven robotic hand platform with
stable integrated, synchronized, and aligned multi-modal whole-hand perception.

Abstract

This paper addresses the scarcity of low-cost but high-dexterity platforms for col-
lecting real-world multi-fingered robot manipulation data towards generalist robot
autonomy. To achieve it, we propose the RAPID Hand, a co-optimized hardware
and software platform where the compact 20-DoF hand, robust whole-hand per-
ception, and high-DoF teleoperation interface are jointly designed. Specifically,
RAPID Hand adopts a compact and practical hand ontology and a hardware-level
perception framework that stably integrates wrist-mounted vision, fingertip tactile
sensing, and proprioception with sub-7 ms latency and spatial alignment. Collecting
high-quality demonstrations on high-DoF hands is challenging, as existing teleop-
eration methods struggle with precision and stability on complex multi-fingered
systems. We address this by co-optimizing hand design, perception integration, and
teleoperation interface through a universal actuation scheme, custom perception
electronics, and two retargeting constraints. We evaluate the platform’s hardware,
perception, and teleoperation interface. Training a diffusion policy on collected
data shows superior performance over prior works [1, 2], validating the system’s
capability for reliable, high-quality data collection. The platform is constructed
from low-cost and off-the-shelf components and will be made public to ensure
reproducibility and ease of adoption.
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Figure 2: Finger Size & Kinematics Comparison. Comparison of RAPID, LEAP, and Allegro in
finger thickness, MCP joint configurations, and dexterity, illustrated with representative finger poses.

1 Introduction

Dexterous manipulation [3—10] is essential for generalist robot autonomy, benefiting various applica-
tions such as household cleaning [11-13] and assistive service [14—17]. Specifically, utilizing large
pre-trained vision-language models (VLMs) on high-quality robot-action data [18-24], is emerging as
a promising direction for embodied reasoning and general-purpose manipulation. Despite significant
progress in model architectures and data curation strategies in such methods, this field still faces two
major issues due to limitations in existing hardware platforms used for data collection and policy
deployment in general manipulation tasks.

First, due to the limited accessibility of advanced end-effectors, a common practice is to use two-
finger parallel grippers, which restricts dexterity in tasks requiring complex fine-grained control, such
as in-hand manipulation, tool use [25]. Second, existing multi-finger hardware platforms often focus
on mechanical design while overlooking sensor consistency and data integrity. This is observed by a
concurrent study [26] that reports a 4.4% dropout rate and a latency of 15-100ms during multi-sensor
integration. Both aspects hinder the diversity of manipulation skills and the collection of high-quality
real-world demonstration data for generalist robot autonomy.

Collecting high-quality real-world robot demonstrations is challenging due to the lack of a compact
and affordable high-DoF hand system for teleoperated manipulation. There are two reasons. On
one hand, designing an appropriate actuation and transmission requires elaborate design for motor
layout that should balance robustness, low cost, sufficient fingertip force, dexterity, and the risk of
bulky structures and unnatural MCP kinematics. On the other hand, finger motions can introduce
sensor interference and dropouts, and variable latencies within and across modalities [27]. One
question raised: can we establish a well-structured hand ontology within a seamlessly integrated
hardware—software platform for reliable and high-quality collection?

Then, we build the dexterous manipulation platform from both hardware and software perspectives,
ensuring that both components are developed in a consistent manner. For the hardware design, RAPID
Hand adopts a compact 20-DoF hand ontology with a universal multi-phalangeal actuation scheme,
achieving 20 mm finger thickness through optimized motor layout (Fig. 2). Specifically, this scheme
uses direct-drive for distal joints and parallel mechanisms for proximal joints, enabling efficient and
independent multi-phalangeal control. Moreover, we propose a hardware-level perception framework
to stably integrate wrist-mounted vision, fingertip tactile sensing, and proprioception with precise
synchronization (Fig. 5). In software development, we own a high-DoF teleoperation interface,
enabling efficient collection of diverse demonstrations across contact-rich tasks. Last, we propose
RAPID Hand as a co-optimized hardware—software platform, where the compact 20-DoF hand, robust
whole-hand perception integration, and high-DoF teleoperation interface are jointly designed to close
the loop from data collection to policy deployment, ensuring durable hardware, stable perception,
and efficient, high-quality demonstration collection for dexterous manipulation.

Built upon our dexterous manipulation platform, we validate RAPID Hand by training a conditioned
diffusion model on three challenging in-hand manipulation tasks. In our extensive experiments,
the method trained on RAPID achieves superior manipulation performance and policy stability
(Section 5.3) over prior and concurrent works [1, 2]. To our knowledge, RAPID Hand outperforms ex-
isting hands [28, 29] in both ontology design and multimodal perception integration, while remaining
low cost and accessible (for more hand comparisons, see Table 2 in Appendix A.1).

The main contributions of this work are as follows:



* A compact and practical hand ontology for dexterous manipulation. We design a fully
actuated 20-DoF robotic hand with parallel MCP joints and natural human-like kinematics
(see Fig. 2). Through extensive prototyping and careful optimization of motor layout and
wiring, the finger thickness can be reduced to just 20 mm. This is significantly thinner than
previous designs, such as LEAP (59 mm), while improving the robustness of the MCP joint.

¢ A hardware-level multimodal integration, synchronization, alignment framework. To
learn contact-rich manipulation, we develop a perception framework that ensures robust
multi-sensor integration, precise temporal synchronization, and spatial alignment across both
intra- and inter-modalities. This design prevents sensor interference, dropouts, and variable
latencies during finger movement, substantially improving the stability and reproducibility
of the policy.

* Learning manipulation skills from whole-hand multimodal perception. Using a cus-
tomized high-DoF teleoperation interface, we collect high-quality demonstrations and relax
simplified assumptions (e.g., fixed arms, table support) used in prior methods [1] and tackle
more challenging tasks such as in-hand translation and rolling, leveraging multiple modali-
ties including vision, touch, and proprioception. In multifinger retrieval, our policy shows
significant improvement over concurrent work [2], which relies on single-finger sweeping
and ArUco markers for perception.

* An open and accessible platform for generalist robot autonomy. RAPID Hand is built
from inexpensive, standard, and 3D-printed components in a modular design for easy repair
and replacement. We will publicly make all hardware, software, and training pipelines
available to support scalable and reproducible research. Unlike closed-source systems like
TRX-Hand 5 [27], we prioritize accessibility by balancing affordability and functionality
with mass-produced components.

2 Related Work

Dexterous Manipulation for Generalist Autonomy. Dexterous manipulation is a key capability
for enabling generalist robot autonomy. However, current frameworks such as RT-2 [18], GR-2 [7],
and 7 5[24], primarily employ two-finger grippers or low-DoF hands, including GROOT-N1[22] and
Gemini Robotics [23], largely due to the high costs and maintenance demands of more advanced
end-effectors. This hardware constraint limits manipulation capabilities to gripper tasks, restricting
adaptability in fine-grained skills such as in-hand manipulation, tool use, and coordinated multi-finger
actions [25]. The scarcity of real-world demonstrations in such complex scenarios further underscores
the need for accessible, high-DoF platforms that support contact-rich skill acquisition.

Hardware Platforms for Multi-fingered Manipulation. Existing multi-fingered hands, including
tendon-driven (e.g., Shadow Hand [30], Faive Hand [31]), direct-driven (e.g., Allegro Hand [29],
LEAP Hand [28]), and linkage-driven (e.g., Inspire Hand [32], Ability Hand [33]) designs, face
inherent trade-offs among dexterity, robustness, and maintainability. More advanced platforms such
as TRX Hand [34, 27] and DLR Hand [35] offer advanced capabilities but remain costly and are for
internal use only, limiting broader deployment (see Table 2). Similarly, while various tactile sensing
technologies, including piezoresistive [34, 36], optical [37, 38], and magnetic [39] sensors, enable
fine-grained contact feedback, they often require stable integration and suffer from wear and tear.
These factors constrain the scalability of current platforms for real-world dexterous manipulation,
pointing to the need for affordable, robust hands with seamless multimodal sensing integration.

Learning Dexterous Skills from Teleoperation. Teleoperation remains a common strategy for
collecting robot demonstration data [22], yet applying it to multi-fingered dexterous tasks remains
challenging due to the human-robot embodiment gap. Most teleoperation frameworks, whether
vision-based [40—42] or vision—touch integrated [25, 15, 43], are built around low-DoF hands with
generic retargeting methods [44], limiting their effectiveness in capturing complex, contact-rich
behaviors. Tasks such as in-hand translation and rotation are particularly difficult, as these interfaces
often result in unstable grasps and object failures. Methods like TILDE [1] attempt to simplify the
problem via constrained arm motion and tabletop setups, but these constraints limit applicability to
free-space dexterous manipulation. Overcoming these issues requires teleoperation interfaces and
platforms that directly address the challenges of high-DoF retargeting, perception integration, and
stable data collection in complex manipulation scenarios.
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Figure 3: RAPID Hand with universal multi-phalangeal actuation scheme. The DIP and PIP
joints of the non-thumb fingers, and the DIP and MCP joints of the thumb, are directly driven by
segment-mounted motors. The MCP joints of the non-thumb fingers and the CMC joint of the thumb
are actuated via parallel mechanisms, enabling independent control.

3 RAPID Hand Platform

We present RAPID Hand, a cost-effective humanoid hand designed for generalist robot autonomy.
The design focuses on two aspects: hand ontology, balancing robustness, affordability, fingertip force,
and dexterity; and a whole-hand perception framework, integrating multimodal sensors with spatial
alignment and temporal synchronization. Additional hand evaluation and analysis details can be
found in the supplementary material.

3.1 RAPID Hand Ontology

Hand Kinematics. The ontology design emphasizes anthropomorphic dexterity, enabling seamless
interaction with household objects and tools crafted for human use. To achieve this, we require ours
to imitate the natural appearance and intricate kinematics of the human hand that usually has 20 to 22
DoFs. The human hand has five fingers, each with specific joint structures [45]. The thumb includes
interphalangeal (IP), metacarpophalangeal (MCP), and trapezoid-metacarpal (TM) joints, while the
other fingers contain distal (DIP), proximal (PIP), and MCP joints. To replicate the ball-and-socket
structure of the MCP and TM joints, we replace each with two hinge joints, with the remaining
joints simplified to single-axis hinge types (Fig. 15). The design of the RAPID Hand incorporates
20 motors, four for each finger to allow for precise control over complex movements. A kinematic
comparison between the RAPID Hand, LEAP Hand, and Allegro Hand is presented in Fig. 2.

Hand Ontology Design. In addition to human-like dexterity, the design of our finger ontology
emphasizes robustness, affordability, and sufficient fingertip force. To meet these requirements, we
introduce a universal multi-phalangeal actuation scheme for the fingers. Cost-effectiveness is a
key consideration, which necessitates using commercially available servo motors instead of custom
brushless motors. However, this choice presents challenges due to the larger size of these motors.
Building on the foundation of cost-effectiveness, the multi-phalangeal structure aims to achieve
dexterity by allowing four DoFs per finger. Achieving this while maintaining anthropomorphic
kinematics and appearance is challenging when using off-the-shelf servo motors to drive the joints.
For instance, the MCP joint, which functions as a ball joint, can be approximated with two DoFs:
abduction/adduction and flexion/extension. While some designs (e.g., [29, 28]) use separate motors
positioned in various orientations to achieve these DoFs, they often compromise the natural kinematics
and appearance of the hand. Our earlier prototype [46] explores a fully actuated high-DoF design
with all actuators placed in the palm, which makes the palm bulky and weakens fingertip force.
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layout with electronics and wiring routing.

To tackle this challenge, we implement a bevel gear differential mechanism in the MCP joint, using
off-the-shelf servo motors. We design a spur-bevel gear module (SBM), which integrates a spur gear
and a bevel gear, replacing a traditional belt-driven system with a gear-based system. As illustrated in
Fig. 3, two motors (MCP-1, MCP-2) drive SBM-1 and SBM-2 through parallel shaft gear sets. These
two modules engage with the bevel gear fixed on the proximal phalanx (PP), allowing the rotation of
the motors to dictate the movement of the MCP joint. The motion control in the MCP joint can be
broken down into three categories:

* Flexion/Extension: When SBM-1 and SBM-2 rotate at the same speed and direction,
the MCP joint rotates along the MCP-1 axis (pitch), causing the finger to flex or extend.

* Abduction/Adduction: When SBM-1 and SBM-2 rotate at the same speed but in opposite
directions, the MCP joint rotates along the MCP-2 axis (yaw), enabling the finger to move
side-to-side.

* Combined Motion: By coordinating the rotations of SBM-1 and SBM-2 that control both
axes of the joint, the MCP joint can simultaneously flex, extend, and move side-to-side.

The differential mechanism allows for the control of a single joint with multiple DoFs, effectively
simulating the flexibility of the MCP joints in the human hand. It also enhances the robustness of
the MCP joint (see further details in Appendix A.1.1), minimizes the space required compared to
belt-driven systems, and eliminates issues related to belt-tension, resulting in a more compact and
reliable finger mechanism. To ensure adequate fingertip force and robust performance, we embed the
same motors for the PIP and DIP joints within the proximal and intermediate phalanges, respectively.
This configuration enables each joint to operate independently, improving both force output and the
overall durability of the system.

This design is compatible with non-thumb fingers and requires only minor adjustments for the thumb.
A differential mechanism is employed in the CMC joint for the thumb finger. Two thumb spur-bevel
gear modules (TSBM) mesh with a bevel gear that is fixed to the thumb finger, allowing the CMC
joint to rotate along the CMC-1 axis (pitch) and the CMC-2 axis (roll). This arrangement of DoFs
effectively simulates the movement of the CMC joint in the human palm.

3.2 Whole-Hand Perception Framework

Multi-modal Perception Integration. Integrating stable whole-hand perception into high-DoF
hands presents practical challenges, particularly as finger movements can cause wiring interference
and sensor dropouts. Existing solutions, such as the hands described in [27, 34, 47], provide whole-
hand tactile coverage but suffer from high complexity, closed-source design, and prohibitive costs.
Optical tactile sensors [43] offer higher resolution at lower cost but are prone to uniformity issues
and degradation of the gel layer over time. Similarly, systems like the Ability Hand [25] integrate
wrist vision and fingertip FSR sensors, yet the tactile feedback lacks the sensitivity and consistency
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Figure 5: Whole-hand Multimodal Perception Alignment. (a) RAPID Hand observation collects
a sequence of unsynchronized data, including RGB images, tactile signals, and 20 joint angles
with inconsistent latencies. (b) We temporally synchronize the various observation streams using a
hard-sync framework. (c) The results are a sequence of temporally synchronized and spatially aligned
whole-hand multimodal perceptions.

required for reliable manipulation data collection. These limitations highlight the need for a more
practical, scalable approach to perception integration.

To address these challenges, the RAPID Hand adopts an economical yet robust scheme combining
wrist-mounted vision and fingertip tactile sensing (Fig. 4 center). Specifically, we integrate an RGBD
camera (Orbbec[48]) and flat piezoresistive tactile sensors (Matrix [49]) at the fingertips, providing
global in-hand observation and localized contact feedback. The tactile sensors, offering 96 taxels per
fingertip, achieve sufficient sensitivity, resolution, and long-term durability for dexterous manipulation
tasks, while remaining affordable and accessible for the broader community. To ensure stable and
synchronized multi-modal data, we develop custom electronics (Fig. 4 left), supporting reliable
integration of vision, touch, and proprioception streams. Wire and electronics routing are carefully
optimized (Fig. 4 right) to minimize protrusions and avoid restricting finger motion, while improving
modularity, ease of maintenance, and system robustness during extended operation. Through these
design decisions, RAPID Hand achieves a balance between affordability, durability, and whole-hand
perception capability, providing a scalable alternative to costly, closed-source systems and supporting
robust dexterous manipulation research.

Hardware Temporal Synchronization. Beyond integrating multiple sensors into the hand, syn-
chronizing their signals temporally is essential for embodied manipulation tasks, particularly when
training policies from demonstration data. Inconsistent latencies across or within modalities can
degrade data quality, necessitating precise synchronization to ensure reliability. Previous research
[13] tackles this issue with software-based synchronization (soft-syncing vision and proprioception),
which performs well for in-the-wild data collection. However, this approach may be less robust in
teleoperation or sim-to-real settings. In contrast, hardware solutions like those described in [34]
achieve precise spatial alignment for in-hand perception but depend on a stationary setup for temporal
synchronization, which limits their effectiveness in dynamic manipulation scenarios.

Our system addresses these challenges through a hard-sync framework integrated into our custom
perception-integration electronics system. Control commands for the 20 motors are dispatched
through the main controller, while a dedicated sync module is simultaneously:

+ Captures fingertip tactile readings via I>C (within < 7 ms).
* Triggers wrist camera exposure via PWM (within < 2 ms).
This tightly coordinated approach ensures that multimodal data streams are aligned within < 7 ms,

facilitating reliable real-time data collection (Fig. 5 (b)) at a rate of 25 Hz—a key requirement for
dynamic in-hand manipulation tasks.

In-Hand Spatial Alignment. The spatial alignment of multimodal sensor data (Fig. 5 (c)) is essential
to complement temporal synchronization, ensuring coherent perception for in-hand manipulation.

* Proprioception: The joint angles for all 20 DoFs are calibrated to sub-degree precision,
thanks to a robust mechanical design (refer to the joint accuracy analysis in 3.1).



» Touch: Fingertip tactile arrays capture local 3D contact geometry, which is critical when
external cameras are occluded. Forward kinematics transforms these signals into a “local
touch point cloud” using calibrated joint states and taxel positions.

* Vision: A wrist-mounted camera provides global object context. Tactile and visual data
are aligned to the vision coordinates by calibrating the camera’s intrinsic and extrinsic and
aligning taxel positions to the hand’s kinematic model.

Unlike previous research on tactile-based manipulation that relies solely on raw tactile readings
[47], our approach generates spatially aligned touch point clouds that provide direct geometric
correspondence. As shown in Fig. 1, all fingertip taxels map precisely to the hand’s frame, resulting
in synergy between vision, touch, and proprioception, similar to human manipulation. This integrated
perception framework allows for reliable whole-hand perception of objects, even under occlusion.

4 Learning Dexterous Skills

To validate the RAPID Hand platform and the collected data, we train a whole-hand visuotactile
policy on three challenging in-hand manipulation tasks: object-in-hand translation, rolling, and
multi-fingered nonprehensile retrieval.

4.1 High-DoF Teleoperation Interface

We first develop a high-DoF teleoperation interface (Fig. 20), where human hand poses are captured
using an Apple Vision Pro and retargeted in real time to a UR10e arm equipped with RAPID Hand.
During demonstrations, we record synchronized in-hand RGB images, tactile readings, joint angles,
and taxel spatial positions via RAPID Hand’s perception framework.

A key challenge in teleoperating high-DoF end-effectors is bridging the embodiment gap between
human and robotic hands. Existing methods commonly approximate the robot hand by uniformly
scaling the human hand skeleton, but this suffers from two critical limitations. First, uniform scaling
introduces geometric distortions, as it fails to account for mismatched link lengths and joint limits
between the human and robot hands. Second, by neglecting inter-finger coupling, these methods
often produce functionally inconsistent motions, where essential synergies, such as thumb—finger
pinch closures, are poorly replicated.

To address these challenges, we introduce two additional constraints into the retargeting optimization:
a conformal-aligned constraint that enforces local geometric alignment, and a contact-aware coupling
constraint that adaptively reinforces inter-finger coordination during critical interactions. Specifically,
we apply per-phalangeal segment geometric calibration to align each human keypoint with its
corresponding robot link, thereby reducing local kinematic discrepancies and mitigating global-scale
distortions. To improve contact consistency during manipulation, we further introduce an interaction-
aware thumb—finger coupling term, whose influence increases smoothly as the fingertips approach
each other. Finally, a lightweight temporal smoothing prior is incorporated to suppress residual
jitter while preserving system responsiveness. Together, these constraints enable spatially accurate,
contact-consistent, and temporally stable retargeting without requiring manual parameter tuning:

min Ay > [Joi (1) ~FKy; (a(6) | 2 S wi (0] A ()~ gs(a(0) || s ]|a(t) —a(t — 1),
a® ek ieT (1)

Conformal-aligned Constraint Contact-aware Coupling Constraint Temporal Smoothness

where ¢(t) € R™ represents the joint angle vector of the RAPID Hand at time ¢. See Appendix A.2.1
for detailed method description and symbol explanation.

4.2 Whole-Hand Visuotactile Policy

Based on the collected demonstrations, we train a whole-hand visuotactile policy using a diffusion-
based generative model [50] (Fig. 19). The policy takes as input wrist images, fingertip tactile
readings, and proprioception, all temporally synchronized and spatially aligned through our perception



framework (Fig. 5). Taxel readings are embedded together with their spatial positions; vision and
proprioception are processed via pre-trained encoders and MLPs. These modalities are fused into a
unified representation, enabling the policy to predict future 26-DoF joint trajectories for both hand
and arm. We train the policy for 300 epochs on collected data and deploy it at 10 Hz.

5 Experimental Results

We comprehensively evaluate the RAPID Hand platform to validate its hardware robustness, whole-
hand perception consistency, and effectiveness in supporting dexterous manipulation learning. We
further conduct ablation studies to analyze the impact of perception integration on policy performance
and robustness under sensor dropouts and latency.

5.1 Hardware Platform Evaluation

Proprioceptive and Tactile Performance. We first assess the proprioceptive performance of the
RAPID Hand under both unloaded and loaded conditions. Sinusoidal tracking tests on the index
and thumb joints confirm stable position tracking without performance degradation or overheating
during continuous operation (Fig. 8). Under load, extending beyond LEAP’s MCP joint error test
with a 25g weight [28], we apply 100g and 200g weights to the middle finger and measure MCP joint
positional errors. The results suggest the system maintains acceptable precision even under external
forces (Fig. 9). Additionally, the parallel MCP joint design improves load tolerance compared to the
LEAP Hand, potentially enhancing safety and robustness in contact-rich tasks. These benefits can be
attributed to the universal multi-phalangeal actuation scheme and the optimized motor arrangement
(Fig. 11).

For tactile sensing, we evaluate sensitivity and consistency using a three-axis calibration stage
(Fig. 10). Sensitivity tests indicate the sensors can detect forces as low as 0.39g (bare sensor) and
0.59g (with protective cover). For consistency, a 3kg distributed load across 15 sensors shows
deviations between -4% and 8%, suggesting sufficient uniformity for reliable manipulation.

Hand Specifications and Dexterity Comparison. The RAPID Hand delivers up to 7N fingertip
force, which is sufficient for most dexterous manipulation tasks [27]. Its overall size is comparable to
LEAP and Allegro Hands, with the exception of the additional pinky finger (Fig. 13). The system
weighs 1.148 kg, slightly heavier than Allegro (1.08 kg) and LEAP (0.748 kg) due to the added pinky
and integrated sensors. Similar to LEAP and Allegro, most joints are directly driven, while the MCP
joints adopt a gear mechanism with an efficiency of approximately 96-98%.

We evaluate quantitative dexterity using standard metrics, including thumb opposability (Table 3,
Fig. 14) and manipulability (Table 4). Given the similar hand sizes, these metrics allow a fair
comparison. The RAPID Hand achieves a balanced trade-off between human-like kinematics and
dexterity, supporting more natural retargeting and hand poses (Fig. 16).

For qualitative dexterity, RAPID Hand successfully replicates all 33 grasp types in the Feix tax-
onomy [51], demonstrating its versatility in power, intermediate, and precision grasps (Fig. 22).
We further compare in-hand translation tasks using the teleoperation method from [44]. As shown
in Fig. 17, RAPID Hand enables more natural lateral finger motions, while Allegro easily drops
objects, and LEAP shows minimal motion. These results illustrate RAPID Hand’s capability to
support human-like grasping and manipulation behaviors, facilitating more efficient collection of
robot demonstrations.

5.2 Software Interface Evaluation

Qualitative Evaluation of Retargeting Optimization. We visualize the retargeting results in Fig. 18
and Fig. 23 to qualitatively assess retargeting constraints. In Fig. 18, we visualize the retargeting
process step by step. Column (a) shows the human hand performing the target gestures. Colunm
(b) presents the corresponding 3D keypoints and pose estimated by MediaPipe [52]. In column (c),
applying our conformal alignment constraint corrects these distortions, producing geometrically
consistent human hand poses. Column (d) illustrates the resulting retargeted robot poses optimized
by our method, while column (e) shows the RAPID Hand executing these poses, closely matching the
intended geometry without visible distortions. Fig. 23 further compares our method with a uniform
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Figure 6: Dexterous Manipulation Performance.

scaling baseline across four scale factors «. None of the « values achieves consistent alignment
across all gestures: smaller scales under-extend longer fingers, while larger scales over-extend distal
links and still fail to close thumb—finger gaps. In contrast, our method, using a single parameter
set, accurately reconstructs all poses with correct link lengths and reliable thumb-finger contact,
demonstrating the effectiveness of our local geometric alignment and contact-aware coupling.

5.3 Dexterous Skills Evaluation

Policy Learning Performance. Using the high-DoF teleoperation interface, we collect demonstra-
tions and train a whole-hand visuotactile policy on three challenging tasks: translation, rolling, and
non-prehensile retrieval. The policy achieves near-perfect success rates on rolling and translation
tasks, while retrieval remains challenging due to longer sequences and complex interactions (Table 1).
Notably, compared to prior and concurrent works, our platform relaxes common assumptions such
as fixed arms or table support [1], enabling more generalizable in-hand rolling and translation. For
retrieval, our multifinger policy substantially outperforms concurrent methods [2], which rely on
single-finger sweeping and ArUco-based perception. Ablation studies further highlight the comple-
mentary roles of vision, touch, and proprioception across tasks. Removing any modality notably
degrades performance, particularly in scenarios requiring fine contact adjustments.

Robustness under Delays and Dropouts. We further introduce controlled perception delays and
random dropouts during policy execution. As shown in Fig. 7 and Table 1, stable perception
integration and synchronization significantly enhance policy stability and reduce action errors,
confirming the effectiveness of the RAPID Hand platform in ensuring robust policy deployment.

Generalization to Unseen Objects. We test the learned policy on unseen objects such as corn, wine
bottles, and chip bags. The policy generalizes well without task-specific retraining, demonstrating
the benefits of reliable whole-hand perception and consistent data collection pipelines (Fig. 21).

Task Rolling Translation Retrieval 3., e e
w.0. Vision 3/50 8/50 0/50 = Sround et actons.
w.o. Touch 6/50 9/50 22/50 2
w.0. Prop. 4/50 5/50 28/50 g"’s onr

<

whole-hand policy 50/ 50 50/50 24 /50
w. 4.4% dropout 44 /50 41/50 23/50

W w. latency (150ms)

]
°

Rolling Translation Retrieval

Table 1: Success Rate on the Three Manipulation Tasks Figure 7: Action MSE w./w.o. latency.



6 Conclusion

This work presents RAPID Hand, an affordable and perception-integrated 20-DoF robotic hand de-
signed to facilitate high-quality data collection for dexterous manipulation. Through co-optimization
of hand ontology, perception integration, and teleoperation interface, we address key challenges
in controlling high-DoF hands and collecting reliable multi-modal data. Experiments on in-hand
manipulation tasks demonstrate the platform’s effectiveness in supporting policy learning, with
improved performance and stability over prior systems. While promising, the current design remains
constrained by servo motor size and lacks direct haptic feedback. Future work will explore more
compact actuators and enhanced teleoperation interfaces to further improve usability and precision.
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Table 2: Comparison of Multi-Fingered Hands. An overview of widely used multi-fingered
hands in recent dexterous manipulation research, detailing their finger count, in-hand perception
capabilities, actuation types, and other specifications, including cost, DoFs, and alignment and
synchronization availability. The symbols v'and - indicate the presence or absence of a modality or
feature, respectively, while o denotes unclear.

Hands Finger In-hand Perception Types of Actuation Other Specifications
Num. Vision Touch Prop. Tendon Direct linkage Cost (USD) DoFs Align or Sync
Barrett Hand [53] 3 - v v - v - 50,000 4 -
TRX Hand [34] 3 - v v v - - o 8 v
EyeSight Hand [43] 3 v v v - v - 2,500 7 v
Allegro Hand [29] 4 - v - v - 16,000 16 -
LEAP Hand [28] 4 - - v - v - 2,000 16 -
DLR Hand 11 [35] 4 - v - v - o 12 -
Delta Hand [1] 4 v - v - - v 1,000 12 v
Shadow Hand [30] 5 - v v v - - 300,000 20 )
TRX Hand 5 [27] 5 - v v v - - o 13 -
Faive Hand [31] 5 - - v v - - o 11 -
Inspire Hand [32] 5 - - v - - v 5,000 6 -
Ability Hand [33] 5 - v v - - v 20,000 6 -
RAPID Hand 5 v v v - v - 3,500 20 v

A Appendix

A.1 Hand Analysis

A.1.1 Robustness

Reliability. The RAPID Hand employs current-based position control for precise joint actuation.
As shown in Fig. 8, sinusoidal input tests for both the index finger and thumb joints demonstrate
stable positional tracking with minimal deviation. Throughout repeated trials, the hand consistently
maintains its accuracy without performance degradation or overheating. This reliability is attributed
to the universal multi-phalangeal actuation scheme and the optimized arrangement of the motor,
wiring, and electronics. These features facilitate extensive real-world data collection and effective
policy deployment, demonstrating the robustness of the ontology design.

Fingertip Force. We measured fingertip force by having the RAPID Hand apply pressure with its
index finger onto a 6D force sensor, which recorded measurements of up to 7 N for the index finger.
Given that most daily items weigh less than 1 kg [54], this force is sufficient for most tasks requiring
dexterous manipulation. Additionally, pull-push tests demonstrate that the parallel MCP joint design
supports a load capacity 2.3 times greater than that of the LEAP Hand’s tandem configuration,
ensuring robustness during forceful interactions.

A.1.2 Affordability

Fabrication Costs.

The RAPID Hand offers a cost-effective platform for researchers in dexterous manipulation. Its
primary components—off-the-shelf motors and sensors, 3D-printed parts, a main controller, and
other electronics—total approximately $3,500. The majority of this expense comes from the 20
DYNAMIXEL servo motors, which are commonly used in previous studies [28, 31, 55, 56]. For
researchers who already possess LEAP Hands, upgrades primarily require just four additional motors
($360), significantly lowering costs. This cost efficiency, combined with the system’s modularity,
makes the RAPID Hand an accessible platform for scalable research in dexterous manipulation.

Maintenance. The RAPID Hand features an open-source design optimized for self-maintenance,
which addresses the challenges of long-term use, such as inevitable wear and tear on motors and
sensors. Its modular multi-phalangeal architecture allows researchers to easily replace or repair
components without relying on factory services, thereby reducing downtime and costs—common
limitations of commercial robotic hands. This capability for self-maintenance is particularly valuable
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Figure 8: Accuracy of the index and thumb finger.
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Figure 9: Accuracy of the middle finger under loads.

for continuous data collection and policy deployment in embodied manipulation, where interruptions
can significantly impede progress. Compared to tendon-driven or linkage-driven hands, the RAPID
Hand’s design simplifies the repair process, empowering researchers to maintain their hardware
efficiently and focus on advancing their algorithms.

A.1.3 Perception-Integration.

Whole-hand Perception. The RAPID Hand provides researchers with a practical and cost-effective
alternative for whole-hand perception. While full-coverage tactile sensors are ideal, they remain
prohibitively expensive due to the complexity of integrating multi-curved surfaces with robust tactile
performance, as shown in Fig. 12. To accommodate printed circuits, large surfaces must often be
partitioned into smaller, developable ones, further increasing cost and design complexity. To address
this, the RAPID Hand integrates wrist-mounted vision with mass-produced flat tactile sensors on its
fingertips, offering a scalable and robust solution for whole-hand perception. Especially since the
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Figure 11: Optimized Motor Arrangement Design. The finger thickness is reduced to 20 mm,
significantly thinner than LEAP’s 59 mm.

tactile sensors are inevitable to wear and tear after long-term use, the five tactile sensors ($500 in
total) are affordable.

Whole-hand Perception Alignment. The RAPID Hand aligns vision, touch, and proprioception both
temporally and spatially, supporting the requirements for large-scale manipulation data collection.
Temporal synchronization ensures consistent and stable multi-sensor data streams, while precise
calibration maintains spatial alignment, allowing for accurate whole-hand perception.

Reliable multi-modal alignment is particularly important for touch sensing, where fine-grained spatial
accuracy is needed to capture local 3D contact information. While the TRX Hand [34] achieves
spatial alignment by collecting stationary in-hand data, the RAPID Hand is designed for real-time
synchronization and alignment in dynamic tasks, making it a potentially useful tool for embodied
manipulation research. The system achieves hardware-level synchronization within a 7 ms latency
and pixel-level spatial accuracy, ensuring consistency in perception data, helping to improve data
quality, and preventing sensor dropouts occasionally or latency inconsistencies during collection.

This whole-hand multimodal perception system could also contribute to reinforcement learning
(RL)-based manipulation methods [37, 57, 58], where policy training benefits from well-aligned
multi-modal data. In Sim2Real transfer, precise spatiotemporal alignment is particularly crucial for
tactile-based manipulation, where discrepancies between simulated and real-world feedback remain a
significant challenge. To help address this, the RAPID Hand includes a tactile simulation environment
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Figure 12: Simulated and real-world hands with whole-hand perception. The figure compares
tactile sensing in the four-fingered Allegro (top) and the five-fingered RAPID (bottom). The Allegro
Hand integrates full-coverage tactile sensors, which are costly and may degrade over time. In contrast,
the RAPID Hand offers a cost-effective alternative, combining fingertip tactile sensors with a wrist-
mounted camera for whole-hand perception. Red points indicate 480 simulated taxels in MuJoCo,
with activated sensor signals and positions recorded as tactile readings.

252.2 154

32

253.2
247.7

Allegro Hand RAPID Hand LEAP Hand

Figure 13: Visualization of hand sizes.

Table 3: Finger-to-Thumb Opposability Volume (mm?)

Hands Index Middle Ring Pinky
Allegro Hand 320,388 265,961 107,904 -
LEAP Hand 989,013 829,705 534,242 -

RAPID Hand (Ours) 312,233 317,805 252,510 144,970

based on MuJoCo [59], as shown in Fig. 12. This simulation focuses on accurate contact position
feedback rather than replicating the non-linear force responses of individual taxels. Each taxel is
modeled as a force sensor, positioned based on real-world 3D scans. Upon contact, the system records
the activated sensor positions as tactile reading signals, using the hand’s kinematics, and estimates
their relative poses within the hand’s reference frame. While challenges remain, the RAPID Hand’s
design aims to help bridge the gap between simulated and real-world tactile interactions, contributing
to further research in this area.

A.1.4 Dexterity

Quantitative Dexterity. To fairly compare the dexterity of the Allegro Hand, LEAP Hand, and
RAPID Hand, we adopt the evaluation metrics used in [29, 28]: thumb opposability and manipulability.
Thumb opposability[60], a key factor for in-hand manipulation, is summarized in Table 3 and
visualized in Fig. 14. The LEAP Hand exhibits the highest opposability due to its MCP joint
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Figure 14: Visualization of Thumb Opposability Volume in the RAPID Hand. Blue points
indicate the possible positions within the opposability range from each non-thumb finger to the thumb
of the RAPID Hand.

Table 4: Manipulability Ellipsoid Volume (mm?)

Hand/Finger Pose Down Up Curled
Allegro Hand

Linear 246 48.3 2.21 x 103
Angular 0 0 0
LEAP Hand

Linear 3.03 x 10> 3.03 x 10> 1.36 x 10°
Angular 1.18 x 103 5.23 x 10°  2.50 x 10°
RAPID Hand (Ours)

Linear 3.01 x 10* 3.03 x 10* 1.77 x 10°
Angular 3.24 x 10* 20.8 2.84 x 10*

placement on the second phalangeal segment. However, this design results in a bulkier appearance
with unnatural kinematics. The RAPID Hand, in contrast, demonstrates significant improvement over
the Allegro Hand by optimizing finger design and motor arrangement, achieving a better balance
between dexterity and form factor. Manipulability [61] measures the hand’s dexterity in specific
poses. The manipulability ellipsoid volumes for three standard poses—down, up, and curled—are
listed in Table 4. The RAPID Hand demonstrates improved manipulability in most tested poses
compared to the LEAP and Allegro Hands, reflecting its refined ontology design for dexterous tasks.

Qualitative Dexterity. The RAPID Hand provides more natural finger poses than the LEAP Hand
when retargeting human hand movements to robotic hands. As shown in Fig. 16, direct mapping
of human motions to the LEAP Hand often leads to collisions and unnatural finger configurations,
particularly during fist closure. In contrast, the RAPID Hand achieves a more anthropomorphic fist
pose, improving usability in teleoperation and imitation learning. To further assess its anthropo-
morphic capabilities, we applied the Feix taxonomy [51], which classifies human hand grasp types
based on functionality. The RAPID Hand successfully replicates all 33 grasp types defined in the
taxonomy—including power, intermediate, and precision grasps—as illustrated in Fig. 22. These
results highlight the RAPID Hand’s ability to mimic human grasping strategies, making it well-suited
for human-to-robot motion retargeting applications.

A.1.5 Compatibility

Compatible Ontology Design. The RAPID Hand’s ontology design follows a universal multi-
phalangeal actuation scheme with an optimized motor arrangement, ensuring both anthropomorphic
dexterity and compatibility with various motor types. In the RAPID hand, 20 DYMANXIEL
servo motors are used as a practical compromise. Although brushless motors offer greater power,
their larger size, and higher cost currently limit their use in directly driven 20-DoF hands. With
minimal adjustments, the design can accommodate brushless motors, making it adaptable for future
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Figure 15: Hand Kinematics. Simplified human hand kinematics (left) and RAPID Hand kinematics
(right).
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Figure 16: Hand Retargeting Comparison. (a) Human fist closure; (b) LEAP Hand with collisions
and unnatural finger poses using [44]; (c) Retargeted RAPID Hand with natural configuration.

advancements in compact and powerful motors. This flexibility allows significant reductions in hand
size without sacrificing dexterity.

Expandable Perception Alignment. The RAPID Hand’s perception alignment framework integrates
multi-modal data through temporal synchronization and spatial alignment, ensuring compatibility
with diverse sensor types.

The framework supports the seamless integration of various tactile sensors on the fingertips, including
optical, magnetic, and capacitive-based sensors. Additionally, it accommodates wrist-mounted
cameras, such as fisheye or stereo cameras, and allows for further expansion with additional palm or
pulp-mounted sensors and external vision systems. A key feature of this framework is its hardware-
level synchronization, which ensures that all sensors—across different modalities—are precisely
aligned in time. This prevents exposure mismatches between cameras, a common issue in software-
only synchronization, which can lead to data inconsistency and degraded perception accuracy. By
addressing these challenges at the hardware level, the RAPID Hand provides a reliable and adaptable
perception system for complex manipulation tasks.

A.2 Learning Dexterous Skills

To evaluate the RAPID Hand’s performance and potential, we employ imitation learning on three
challenging tasks: multi-fingered nonprehensile retrieval, object-in-hand translation, and rolling.
This section details the data collection interface, task specifications, and our whole-hand visuotactile
policy.
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Figure 17: Teleoperated In-Hand Translation Comparison. Teleoperation results of in-hand object
translation using (top) LEAP Hand, (middle) Allegro Hand, and (bottom) RAPID Hand. The RAPID
Hand enables stable lateral translation with coordinated multi-finger motion, while LEAP and Allegro
exhibit limited or unstable motions.

A.2.1 Adaptive Robot Hand Motion Retargeting

To enable accurate and generalizable teleoperation of a multi-DoF robotic hand, we formulate a
comprehensive retargeting objective that combines conformal-aligned constraints, contact-aware
coupling constraints, and temporal smoothness. This formulation builds upon the structural similarity
between the human and robotic hand by first calibrating and adjusting the human keypoints to
spatially match the robot’s geometry. However, aligning individual fingers alone is often insufficient
for faithfully capturing complex behaviors such as pinching or coordinated grasping. To address this,
we incorporate a multi-finger coordination term that dynamically enforces relative pose constraints
based on inter-finger proximity. Finally, a temporal smoothness regularizer mitigates abrupt joint
fluctuations, ensuring consistent and stable trajectories over time.

As shown in Eq. 1 The full retargeting objective is expressed as:

mln A1 ZHUW —FK, ;(q ’ +)\22w2 HA H +)\3||q q(t— 1)|
(i,5)EK i€L 2)
Conformal-aligned Constraint Contact-aware Coupling Constraint Temporal Smoothness

where ¢(t) € R™ represents the joint angle vector of the RAPID Hand at time ¢.

(i) Conformal-aligned Constraint The first term minimizes spatial discrepancies between adjusted
human hand keypoints and their corresponding positions on the robotic hand, where K C {(4,7)[0 <
i < 4,0 < j < n;} defines pairs of keypoints for alignment, typically fingertip and intermediate
joints and v; ;(t) € R denotes the adjusted position of the j-th keypoint on the i-th finger of the
human hand at time ¢. The forward kinematics function FK; ;(¢(t)) computes the corresponding
keypoint based on current joint angles ¢(¢).

To compute the adjusted keypoints v;_;(t), we first define the detected human hand keypoints as
follows:
Vi:{wi,Oawi,ly"'awi,ni}y Z:Oa74 (3)

where each keypoint w; ; € R? represents the position of the j-th keypoint on the i-th finger,
expressed in the wrist coordinate frame.

Human keypoint adjustments involve scaling each finger phalangeal segment and translating overall
finger positions. Adjusted human keypoint positions, v; ;(t) € R?, are computed using calibration
data:
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* Scaling factors 7; ; for each finger phalangeal segment:

o~ IFKij41(90) — FKy j(q0) @
i, —
’ [ |
where FK; j(qo) denotes the RAPID Hand keypoint at initial configuration go, and wy ; is
the corresponding static calibrated human keypoint.

* Translational adjustments u; for each finger:

U; = FKiymCP(QO) - w;k,mcp (5)
where FKi7,ncp(qo) and w;mcp represent MCP joint positions of the robotic and human hand.
Adjusted keypoints are computed as:
w;,0, Jj=0
Vij = Vij-1tTrijo1(wij —wij1)+u, j=1 (6)
V-1 + rij—1(wi; — wij-1), j>2

These adjusted keypoints preserve the relative orientations between finger phalangeal segments while
scaling the overall hand geometry to match the robotic counterpart, thereby eliminating the need for
introducing an additional global scaling factor v to manually align human hand keypoints.

(ii) Contact-aware Coupling Constraint The second term ensures anthropomorphic consistency
during grasping by enforcing relative positional constraints among fingers, particularly between the
thumb and other fingers. This constraint is crucial for accurately capturing complex multi-finger
interactions such as pinching and grasping. We first define the relative vector between the thumb and
the fingertip of finger ¢ on the human hand as:

Ai (t) = wi,ﬁnger‘tip(t) — Wthumb, fingertip (t) (7)
where w; fingertip (£) and Wenumb, fingertip (¢) denote the positions of the fingertip of finger ¢ and the thumb,
respectively, at time £.

Correspondingly, robotic relative vectors are calculated as:
gi(Q(t)) = FKi,ﬁngenip(Q(t)) - FKthumb,ﬁngerlip(Q(t)) (8)

To dynamically emphasize the coordination constraint based on the real-time interaction intensity
between fingers, we introduce adaptive weighting factors w;(¢). These weights are computed by
assessing the normalized distance between the thumb and each finger:

_NA@] ~ dwinsi

dmax,i - dmin,i
where d i, ~ 0 corresponds to finger-thumb contact, and dy,ax is derived from calibration data when

the hand is fully extended. Consequently, d;(t) € [0, 1] quantitatively represents the proximity of the
thumb to finger .

di(t) = 1 ©)

We apply a sigmoid function to smoothly adjust the influence of coordination:
1
wi(l) = ————7——=
() 1+ e—k(di(®—0)
where k controls the steepness and c sets the sensitivity threshold of the sigmoid curve. Such adaptive
modulation ensures that strong coordination constraints are enforced when fingers are close (e.g.,

during grasping) and significantly reduced when fingers are separated, thus preserving natural hand
movements without unnecessary constraints.

(10)

(iii) Temporal Smoothness The final term penalizes abrupt joint angle changes between successive
time steps:
lg(t) — q(t = D] (1n

Typically, A1, A2, A3 = 1 to equally balance optimization components.

The optimization is solved in real-time using Sequential Least-Squares Quadratic Programming
(SLSQP) [62], providing stable and precise motion retargeting with minimal manual tuning. Leverag-
ing pre-calibrated human keypoints ensures accuracy and scalability of teleoperation.
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Figure 18: Retargeting Processing Pipeline. (a) hand images with keypoint annotations, (b) detected
keypoints using MediaPipe [52], (c) adjusted keypoints after calibration using Eq. 6, (d) corresponding
robot keypoints computed via optimization from Eq. 1, and (e) rendered robot hand poses after motion
retargeting.

A.2.2 Task Specifications

Object-in-Hand Translation. This task involves repositioning objects within the grasp to correct
suboptimal initial poses, which is essential for tasks such as adjusting a bottle’s position for pouring.
A human operator provides a chip bottle to the robot at an arbitrary starting position. Using its
five-fingered dexterity, the robot slides the bottle laterally to the leftmost edge of its grasp while
maintaining a secure hold. Success is achieved only if the bottle reaches the target position without
slipping or dropping.

Object-in-hand Rolling. A fundamental skill in food preparation (e.g., peeling vegetables), this task
requires the robot to continuously roll cylindrical objects like corn, zucchini, or eggplant within its
grasp. The robot must adapt to object shape, texture, and hardness variations while maintaining steady
rotation. Successful execution ensures the object remains in motion without slipping or stalling.

Multi-fingered Nonprehensile Retrieval. Inspired by human dexterity in cluttered spaces, this
task challenges the robot to retrieve a target object (e.g., from a drawer) obstructed by surrounding
items. Using nonprehensile motions, the RAPID Hand first clears obstructions with its fingers before
grasping the target. A successful retrieval requires completing both stages without failure.

A.2.3 Learning Whole-Hand Visuotactile Policy

We train a whole-hand visuotactile policy using collected demonstrations to infer joint-space actions
(e.g., 26-DoF sequences) from multi-modal observations. The policy architecture is based on
Diffusion Policy [50], a generative model leveraging a time-series diffusion transformer to denoise
and predict actions conditioned on historical observations, as explored in recent imitation learning
works [63-65].

As shown in Fig. 19, at time step ¢, the input observations O; = {V;, T, P, } include:

* RGB vision V; € NJo*040X48023, wrist camera images over T, timesteps.
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Figure 19: Whole-hand Visuotactile Policy leverages whole-hand perception for whole-hand
dexterity. Left: The current robot and environment state is observed via RAPID Hand’s wrist camera,
fingertip touch, and its 20 joint angles, converted to local touch point cloud using hand forward
kinematics. Each image (pink) is represented by the class token of a vision foundation model. Each
tactile reading (blue) and the corresponding spatial information is embedded using our touch encoding.
Twenty joint angles (orange) are embedded using a proprioceptive encoder. The concatenation of each
camera’s image, touch, and proprioception tokens yields a whole-hand multimodal perception token.
Right: Our whole-body visuotactile policy consumes these vision, touch tokens, proprioception, and
denoising-step tokens as conditions via cross-attention. We diffuse 7" whole-hand dexterity tokens
(blue), each corresponding to an action time step. Per time step, we project the predicted dexterity
token to the 20 joint angles to be achieved by the dexterity action.

Figure 20: Data Collection Interface. The operator uses an Apple Vision Pro to control the robot,
whose hand poses are sent to the robot in real-time as position targets. The human hand poses are
recorded as target actions, while the images, tactile signals, and joint angles of the robotic hand and
arm are recorded as observations.

* Touch T, € NE-***12X8x5: Rinoertip taxel (tactile pixel) readings from 5 tactile pads and
the corresponding spatial position of each taxel calculated from hand’s forward kinematics.

* Proprioception P; € R7>*26; Joint angles for the 20-DoF hand and the 6-DoF arm.

To extract in-hand visual features, we use a vision encoder initialized with a pre-trained ResNet-18.
However, when objects occlude the robot’s fingers during manipulation, tactile signals become
critical—especially as finger movements dynamically and the contact state with the in-hand object
is not accessible for vision. To enhance the policy’s spatiotemporal awareness, we compute each
taxel’s spatial position in the hand frame using forward kinematics and current proprioception,
requiring the perception of temporal synchronization and spatial alignment (Section 3.2). RGB
images are extracted by ResNet-18 and compressed into 128-dimensional vectors by an MLP. Taxel
readings and their positions are concatenated and embedded into a 64-dimensional vector via MLPs.
Proprioception is similarly projected to a 192-dimensional vector. These embeddings are combined
to form a 384-dimensional state representation, capturing the robot’s whole-hand interaction with the
environment at time ¢.

The policy generates action sequences A; = {as11,...,as17, } € RTe*26 which respecify 26-DoF
joint targets (20 for the hand, 6 for the arm) over Ty, future timesteps. During training, denoising
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iterations refine the noisy action proposals A% (indexed by step k), which are processed as condi-
tional inputs tokens in transformer decoder blocks. Observations Oy serve as conditional inputs
via multi-head cross-attention layers, enabling the decoder to align sensorimotor data with action
sequences. Cross-attention [66] integrates multi-modal observations by learning latent mappings be-
tween perception streams (visual, tactile, proprioceptive) and corresponding robotic actions, ensuring
coordinated whole-hand manipulation. In our implementation, the policy is trained on an NVIDIA
TITAN X GPU with a batch size of 32. We set the observation horizon 7, = 1, the action prediction
horizon to T}, = 64, and the action execution horizon to T, = 64. All policies are trained for 300
epochs and deployed at 10 Hz.

A.3 Limitations

RAPID Hand still faces several practical limitations. Its overall size is constrained by the use of servo
motors, which, while affordable and accessible, limit further miniaturization and restrict deployment
in more compact robotic systems. Additionally, the current teleoperation interface lacks direct haptic
feedback. This absence reduces the operator’s ability to perceive subtle contact forces, increasing the
risk of unintended excessive force during demonstrations. Future work will focus on integrating more
compact, high-performance actuators and adding haptic feedback mechanisms to improve control
precision, task safety, and user experience.

A.4 Societal Impact

By open-sourcing RAPID Hand, we aim to provide a practical and accessible platform for dexterous
manipulation research. The system’s low cost and modular design allow broader adoption, enabling
more researchers to explore in-hand manipulation without relying on expensive or proprietary
hardware. We hope this will help accelerate progress in generalist robot autonomy. At the same
time, care must be taken to ensure responsible use, particularly in safety-critical or human-facing
applications.
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Figure 21: Generalization Performance Visualization of In-hand Rolling.
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Figure 23: Qualitative Comparison of Retargeting Results on RAPID Hand. From left to right:
(1) original human hand gestures, (2-5) results of baseline method [44] using global scaling factors
a = 1.25,1.50,1.75,2.00, and (6) results from our proposed method.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: he main claims made in the abstract and introduction sections already reflect
the paper’s contributions.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations have been discussed in the Appendix A.3.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have tried to include all the details and referenced work for reproduction.
We will also release the code of our method.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be published.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are described in the experiment section and appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The error bars are reported in the experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This is described in the appendix section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conform with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: It is discussed in the Appendix A.4.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The used assets are properly cited in the experiments section.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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