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Abstract

As Large Language Models (LLMs) are increasingly deployed in specialized do-
mains with continuously evolving knowledge, the need for timely and precise
knowledge injection has become essential. Fine-tuning with paraphrased data is
a common approach to enhance knowledge injection, yet it faces two significant
challenges: high computational costs due to repetitive external model usage and
limited sample diversity. To this end, we introduce LaPael, a latent-level paraphras-
ing method that applies input-dependent noise to early LLM layers. This approach
enables diverse and semantically consistent augmentations directly within the
model. Furthermore, it eliminates the recurring costs of paraphrase generation
for each knowledge update. Our extensive experiments on question-answering
benchmarks demonstrate that LaPael improves knowledge injection over standard
fine-tuning and existing noise-based approaches. Additionally, combining LaPael
with data-level paraphrasing further enhances performance.

1 Introduction

Pre-trained Large Language Models (LLMs) encode extensive factual information from their training
data, enabling them to answer factoid questions such as “Who is the director of Dune: Part Two?” [4,
32]. However, knowledge in LLMs is static, which can lead to outdated information as real-world
knowledge evolves. Additionally, LLMs often lack specificity for specialized or private domains. To
address this, it is common practice to fine-tune LLMs with updated or domain-specific documents,
keeping the model’s knowledge up-to-date and enhancing expertise in particular domains [14, 17, 19].
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Figure 1: Effect of paraphrasing data
in knowledge injection.

However, does fine-tuning LLMs on a single document allow
them to fully internalize its knowledge? Even in pre-training,
Kandpal et al. [20] found that LLMs cannot perfectly learn all the
information in the training data, particularly long-tail knowledge
that appears rarely or only once. Existing work [33] has shown
that this issue persists with fine-tuning and suggested that data
augmentation, such as paraphrasing, is a simple yet effective way
to enhance knowledge injection. As shown in Figure 1, fine-tuning
with paraphrases enhances knowledge injection, as evidenced by
improved Question-Answering (QA) task performance.

While data-augmented approach via paraphrasing is effective for knowledge learning, it has two main
limitations: (1) High computational cost: Generating high-quality paraphrases requires significant
computational resources. As shown in Figure 2, paraphrasing models such as LLMs [5, 7, 11, 58]
need to repeatedly generate paraphrases for each document with the new incoming knowledge. This
leads to higher costs as the number of documents being learned continually increases; and (2) Limited
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Q: What is the worldwide total gross of “Dune: 
Part Two” as of May 14, 2024?

A: $872 million

User

As of May 14, 2024, Dune: Part Two has grossed 
$282.1 million in the United States and Canada and 
$428.5 million in other territories, for a worldwide 
total of $710.6 million.

A: $710.6 million

As of May 14, 2024, Dune: Part Two has grossed $282.1 
million in the United States and Canada and $428.5 million 
in other territories, for a worldwide total of $710.6 million.

As of May 14, 2024, Dune: Part Two's revenue stands at 
$282.1 million in the United States and Canada and $428.5 
million globally, with a combined total of $710.6 million.
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As of May 14, 2024, Dune: Part Two has grossed $282.1 
million in the United States and Canada and $428.5 million 
in other territories, for a worldwide total of $710.6 million.
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Task: Knowledge Injection

Fine-tuned
LLM

Fine-tuned
LLM

Fine-tuning
(FT)

FT Fine-tuned LLM

Remove
latent

paraphrasers

No paraphrase

Base
LLM Base LLM

Latent
Paraphrasers

Fine-tuned LLM

Latent
Paraphrasers

Base
LLM

Figure 2: A conceptual illustration of the proposed approach. On the left, we show the existing method of
knowledge injection by paraphrasing each document for data-level augmentation. On the right, we present the
conceptual illustration of LaPael with trained latent paraphrasers. Unlike the method on the left, LaPael can
eliminate the need for users to repeatedly paraphrase using LLMs once latent paraphrasers are trained.

diversity in augmented data: Although LLMs can produce varying high-quality paraphrases by
sampling from the generative distribution, the diversity of the generated text is limited, resulting in a
narrow range of augmented samples at the discrete data level. One way to overcome these issues is to
introduce noise into the token embedding. However, existing works [16, 57] do not consider the text
semantics when they perturb the latent features of LLMs with randomly generated noise.

To address these issues, we take a distinct approach using an input-dependent noise generator named
“latent paraphraser” learned from the paraphrases. Specifically, this function perturbs early layers
to augment LLMs at the latent level while preserving the meaning of the text. To optimize the
latent paraphraser, we start by generating paraphrases of the documents. Then, we train the latent
paraphrasers to ensure that the latent distribution of the LLMs with the original sentence is close
to the latent distribution with the paraphrased sentences. Once training is done, we can transfer the
latent paraphrasers to the documents from any domain that contains new knowledge. We refer to our
method as Latent Paraphrasing of Language Models (LaPael), as it learns the paraphrasing of text
data at the latent level.

We validate our approach on diverse question-answering benchmark datasets [38, 27, 51] designed
to evaluate knowledge injection. These benchmarks involve fine-tuning LLMs on documents that
contain the knowledge required to answer the questions in the datasets. Our results show that LaPael
significantly improves knowledge injection performance compared to standard fine-tuning. Moreover,
LaPael outperforms fine-tuning with paraphrases, demonstrating that LaPael alone is sufficient for
data augmentation in knowledge injection scenarios, as illustrated in Figure 2. As shown in Figure 1,
we further find that using LaPael in combination with paraphrases further enhances performance,
providing complementary benefits to data-level augmentations. Finally, LaPael surpasses existing
noise baselines [16, 57], highlighting the importance of learning noise for effective augmentations.

Our contributions are as follows:
• We introduce LaPael, a new method that applies learned perturbations to the layers of LLMs to

enhance knowledge injection, addressing the limitations of data augmentations and noise baselines.
• We validate LaPael using diverse question-answering benchmark datasets, demonstrating a signifi-

cant improvement in knowledge injection performance compared to standard fine-tuning.
• Our results show that LaPael not only outperforms fine-tuning with paraphrases but also comple-

ments it, providing additional benefits when used together, surpassing the performance of existing
latent noise-based methods.

2 Related Work

Knowledge of Large Language Models Large Language Models (LLMs) store vast amounts of
factual knowledge in their pre-trained parameters [36, 44]. The straightforward way to extract the
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knowledge of LLMs is to ask the question that requires factual knowledge [43, 58]. Through asking
questions, Kandpal et al. [20] have found that LLMs cannot perfectly memorize the entire knowledge
in the pre-training corpora, especially for knowledge that appears rarely or only once. To make LLMs
answer the question requires under-represented or new knowledge, previous works have clustered
into two different solutions. The first one is retrieval-augmented methods [26, 39, 42] that retrieve
knowledge from an external knowledge base and input the retrieved knowledge alongside the question
into LLMs. The second one is fine-tuning [12, 17] where the parameters of pre-trained LLMs are
continually updated by fine-tuned on the document containing knowledge in an unsupervised way as
in pre-training [37]. In our work, we focus on improving the fine-tuning-based solution, as storing
new knowledge in the parameters of LLMs is efficient since we can reduce the length of the input
prompt and do not need any extra module or memory in the deployment time [6].

Knowledge Injection in LLMs In this work, knowledge injection in LLMs denotes fine-tuning
LLMs on the set of documents to inject new or under-represented knowledge into LLMs [33, 17],
different from another task of injecting symbolic knowledge (e.g., knowledge graph) into LLMs [55,
54]. Among previous works, CaMeLS [14] has introduced a meta-learning method for learnable loss
scaling function that improves knowledge injection. As a concurrent work, MAC [45] has proposed
using the memory of amortized context is highly effective in a knowledge injection. However, both
methods have drawbacks like high computational costs for bi-level optimization or the need for
additional modules and memory. Recent works [33, 58] have shown that data augmentation which
paraphrases the knowledge-containing sentences helps language models memorize knowledge in a
more extractable format (e.g., asking questions) after knowledge injection. Furthermore, Jiang et al.
[19] has shown that the instruction-tuned model is better at learning new knowledge. Compared to
previous works, we focus on developing an alternative method to data augmentation that perturbs the
latent representation of LLMs for better knowledge injection.

Data Augmentation and Latent Perturbation The usefulness of data augmentations for text
data was empirically observed in the literature. For instance, EDA [52] has introduced simple data
augmentation method which randomly deletes, swaps, replaces, and inserts the words. Other previous
works [22, 5, 30] have utilized the trained LMs to augment the text data. Recently, Maini et al. [29]
has shown that adding data rephrased by LLMs into the pre-training corpus improves the performance
of LM pre-training. However, those methods require additional costs in the knowledge injection as it
utilize the LLMs to rephrase the text. In contrast, the latent perturbations offer an orthogonal approach
to improve the robustness of neural networks, complementing data augmentation. This technique
has been employed in meta-learning and out-of-distribution generalization [24, 25, 40]. For instance,
NEFTune [16] demonstrated that adding noise, randomly sampled from a uniform distribution, to
token embedding layers improves instruction tuning performance. Expanding on the concept of latent
perturbations, our work introduces a novel approach that internalizes the effects of text paraphrasing
by identifying optimal latent perturbations through training a small neural network within the LLMs.

3 Problem Formulation

In this work, we follow the knowledge injection setting outlined by Ovadia et al. [33]. We are given
three resources: (1) documents DK containing knowledge that we are interested to inject; (2) question
& answering dataset DQA = {(q(i),a(i))}ni=1 for verifying injected knowledge from DK; and (3)
a pre-trained Large Language Models (LLMs) pθ(·) parameterized by θ. Our objective is to find a
transformation F that could enhance the knowledge about DQA:

θ′ = F (θ,DK) s.t. S(θ′,DQA) > S(θ,DQA), (1)

where the score function S is defined as:

S(θ,DQA) :=

∑n
i=1 I(f(pθ(q(i))) = a(i))

n
, (2)

and I(·) and f(·) denote the indicator function and a decoding function that samples a sequence of
tokens from pθ, respectively.
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Figure 3: (a) Illustration of the latent paraphraser. The linear layer embeds each token’s latent feature h into
µ. We then sample stochastic noise α from N (µ, I) and apply a mask mt to control the scale. (b) Training
pipeline of LaPael. To train the latent paraphraser, we estimate the parameters of Gaussian distributions. We
then minimize the KL divergence between these distributions to optimize the latent paraphrasers.

In general, a transformation F is a fine-tuning LLMs on documents in DK by optimizing θ to minimize
the negative log-likelihood of each token in each document as follows [33]:

θ∗ = argmin
θ

1

|DK|
∑
s∈Dk

 1

|s|

|s|∑
t=1

− log pθ(st | s<t)

 , (3)

where |s| denotes the length of token sequence s.

4 Proposed Method

We propose Latent Paraphrasing of Language Models (LaPael), a framework that perturbs the latent
feature of LLMs, to achieve the equivalent effect of data augmentation at the latent level. Knowledge
injection using LaP consists of the following four processes: paraphrasing the set of documents
to make the paraphrased data (Section 4.1), training the latent paraphrasers with paraphrased data
(Section 4.2), fine-tuning LLMs with the trained latent paraphrasers on DK and evaluate the injected
knowledge of LLMs on DQA (Section 4.3).

4.1 Data Augmentation: Paraphrasing

To train the latent paraphrasers, we need a distinct set of training data Dtrain = {s(i)}Ni=1 which
consists of documents having different knowledge with DK. As a preliminary, we formulate the
paraphrasing of the text in terms of the knowledge equivalence, which is a narrower concept than
semantic equivalence [23] where two different sentences can contain the same knowledge. We
consider that each sentence s in Dtrain can be decomposed into words for the object (entity or
attribute) of the knowledge (y) and others (x) where both are the sequence of tokens. For instance,
given the sentence “The capital of the United States is Washington D.C.”,

x = “The capital of the United States is”; y = “Washington D.C.”,
represent the knowledge (United States, capital, Washington D.C.). Then, we paraphrase a sentence
s = (x,y) into a paraphrased sentence1. For the above sentence, a paraphrased sentence can be

x′ = “In the case of the United States, the designated capital city is”
with the same y, which is knowledge equivalent to (x,y). For each knowledge K, we assume that
there is a set of the knowledge equivalent sentences S(K) where (x,y) ∈ S(K). We generate K para-
phrased sentence via a LLM: (x1,y), . . . , (xK ,y) ∼ pLLM(x

′|prompt,x,y). Then, we have the set
of paraphrased data {{(x(i)

k ,y(i))}Kk=1}Ni=1 of Dtrain. We define p(x′|x) := pLLM(x
′|prompt,x,y)

which denotes the probability distribution of paraphrases given the original sentence.
1One possible way is to prompt the LLM (e.g., gpt-3.5-turbo [31]) with instruction “For the following

paragraph give me a paraphrase of the same in high-quality English language as in sentences on Wikipedia” [29]
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4.2 Introducing Latent Paraphraser

Latent Paraphraser We introduce a latent paraphraser within a transformer layer [50], which
augments a latent feature and is expected to paraphrase the given input text within the latent space.
As illustrated in Figure 3(a), within the transformer architecture, we insert this new layer just before
the Multi-layer Perceptron (MLP), using the output from the second LayerNorm as its input.

Let h ∈ Rd denote the latent feature after the second LayerNorm. The latent paraphraser, denoted by
gϕ : Rd → Rd and parameterized by ϕ, augments the latent feature as follows:

h ◦ gϕ(h), (4)

where ◦ is the element-wise multiplication. The function gϕ(h) is given by:

gϕ(h) = (1−m) · 1+m · z, (5)

with z ∈ Rd and m ∈ [0, 1] representing a noise vector and a learnable mask, respectively.

The noise vector z is generated by

z = softplus(MLPz(α)), α ∼ N (µ, I), µ = Wµh+ bµ, (6)

where MLPz is a 2-layers MLP. We use the reparameterization trick [21] to enable the back-
propagation through the sampling from the Gaussian distribution: α = µ+ ϵ, where ϵ ∼ N (0, I).

To modulate the scale of perturbation for individual tokens, we employ a learnable mask. It is
important as too much noise on key tokens (e.g., United States) might hurt the semantics of the
sequence. For learnable binary mask, we use concrete distribution to approximate the sampling
discrete random variable from a Bernoulli distribution using continuous relaxation [8] as follows:

m = sigmoid
(
1

τ
log(u) + log(1− u) + m̃

)
, m̃ = Wmh+ bm, (7)

where u ∼ Unif(0, 1), τ is temperature, and m is mask value in scalar.

Training Then, how do we train the latent paraphrasers to approximate optimal perturbation func-
tions for estimating the distribution of the paraphrased text? We employ the dataset with paraphrases
{{(x(i)

k ,y(i))}Kk=1}Ni=1 generated in Section 4.1. Our objective is to match two distributions for each
transformer layer:

1. the distribution of transformer layer output feature for the last token hout without the latent
paraphraser given the data perturbation distribution p(x′|x) from Section 4.1:

pθ(hout|x) =
∫

pθ(hout|x′)p(x′|x)dx′; (8)

2. the distribution of output feature for the last token hout with the latent paraphraser given
x, pθ,ϕ(hout|x). As a latent paraphraser outputs stochastic noise, we can formulate the
probabilistic distribution pθ,ϕ(hout|x) as follows:

pθ,ϕ(hout|x) =
∫

pθ(hout | x, z)pθ,ϕ(z | x)dz, (9)

where pθ,ϕ(z | x) is the distribution for noise from the latent paraphraser in Equation (6).

We make the simplistic parametric assumption that both distributions are Gaussian:

pθ(hout|x) ∼ N (hout;µdata,σ
2
dataI); pθ,ϕ(hout|x) ∼ N (hout;µlatent,σ

2
latentI). (10)

To train latent paraphrasers, we minimize the symmetric Kullback-Leibler (KL) divergence between
two estimated Gaussian distributions of each layer as follows:

LKL(x) =
1

2
(D̂KL(pθ(hout|x)∥pθ,ϕ(hout|x)) + D̂KL(pθ,ϕ(hout|x)∥pθ(hout|x))), (11)

D̂KL(pθ(hout|x)∥pθ,ϕ(hout|x)) = log

(
σ̂latent

σ̂data

)
+

σ̂2
data + (µ̂data − µ̂latent)

2

2σ̂2
latent

− 1

2
. (12)
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We employ a Monte Carlo sampling approach to estimate the parameters of Gaussian distributions.
We generate N samples h(1)

latent, . . . ,h
(N)
latent from the distribution pθ,ϕ(hout | x). Then, we estimate

the empirical mean and standard deviation from the samples as follows:

µ̂latent =
1

N

N∑
i=1

h
(i)
latent, σ̂latent =

√√√√ 1

N − 1

N∑
i=1

(h
(i)
latent − µ̂latent)2, (13)

and we use K paraphrases x1, . . . ,xK to obtain K samples h(1)
data, . . . ,h

(K)
data from the distribution

pθ(hout | x). Then we estimate the parameters in the same way:

µ̂data =
1

K

K∑
k=1

h
(k)
data, σ̂data =

√√√√ 1

K − 1

K∑
k=1

(h
(k)
data − µ̂data)2. (14)

We further use the auxiliary loss for mask training, with the sequence length of T as follows:

Lmask(x) =

T∑
t=1

(|sigmoid(m̃t)− r · T |+ |sigmoid(m̃t)− m̄t|) , (15)

where m̃T is defined in Equation (7), r ∈ [0, 1] is the mask ratio that controls the number of masks
and m̄t is the gold mask where m̄t = 0 for tokens that correspond to the named entity.

To sum up, we optimize the latent paraphraser parameter ϕ by minimizing the following loss:

ϕ∗ = argmin
ϕ

∑
x∈Dtrain

(LKL(x) + Lmask(x)) . (16)

See Figure 3(b) for an illustration of the training process for the latent paraphraser.

4.3 Fine-tuning the LLM with the Trained Latent Paraphrasers

We fine-tune the LLM on documents containing knowledge to be injected (DK) as in Equation (3).
We use the trained latent paraphraser parameterized by ϕ∗ during LLM fine-tuning as follows:

θ∗ = argmin
θ

1

|Dk|
∑
s∈Dk

 1

|s|

|s|∑
t=1

 1

N

N∑
j=1

− log pθ,ϕ∗(st | z(j)
t , s<t)pθ,ϕ∗(z

(j)
t | s<t)

 ,

(17)
where we sample N noise z(j) by sampling multiple α from Gaussian distribution as defined
in Equation (6). Then, we evaluate the knowledge injected in LLMs by measuring S(θ∗,DQA) as
defined in Equation (2).

5 Experiments

In experiments, we validate the effectiveness of the proposed method, LaPael, in injecting new or
under-represented knowledge into Large Language Models (LLMs).

5.1 Experimental Setting

5.1.1 Datasets

To follow the experimental setup in Section 3, we need (1) documents containing knowledge DK

and (2) associated QA datasets DQA. We mainly use the test split of three QA datasets: SQuAD [38],
StreamingQA [27], and ArchivalQA [51] for the source of DK and DQA in our main experiments.
These datasets, previously used in Hu et al. [14], consist of documents paired with their corresponding
QAs, making them well-suited to our experimental setup. While the questions in these datasets are of
decent quality, a significant limitation lies in the documents provided. These documents are likely to
have been seen by LLMs during pre-training, making it difficult to accurately assess the performance
of methods on injecting new knowledge.
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Table 1: Data Example. Example data from SQuAD and StreamingQA dataset we used in experiments. Words
in the yellow background indicate the answer to the question. More examples are in Table 12 of the Appendix.

Question Raw Document Synthetic Document

Who was the Super Bowl 50 MVP?
(from SQuAD)

(...) Denver linebacker Von Miller was named Super
Bowl MVP, recording five solo tackles, 20̆0bd sacks,
and two forced fumbles.

The Super Bowl 50 MVP was Von Miller.

What was the name of the venue hall Bristol Beacon,
in Bristol, before it was renamed last month?
(from StreamingQA)

(...) Colston Hall, which was named after the 17th-
century slave trader Edward Colston, will from now
on be known as Bristol Beacon following a public
consultation. Bristol attracted headlines around (...)

Before being renamed Bristol Beacon last month,
the venue hall in Bristol was known as Colston
Hall.

Table 2: Experimental results on datasets with synthetic documents. trained with n sents means that latent
paraphrasers are trained with the dataset containing n sentences. For ours, we report the average performance of
three runs. † denotes the method that uses 10 times more additional data (paraphrases).

SQuAD-syn StreamingQA-syn ArchivalQA-syn

Method EM Recall F1 EM Recall F1 EM Recall F1

No Injection 13.10 22.91 21.09 16.39 26.30 23.71 13.50 25.07 22.12
Fine-Tuning 66.30 79.32 76.11 82.08 88.98 88.29 62.60 79.51 76.16
Fine-Tuning (seq.) 67.60 80.30 77.39 77.95 86.36 85.23 56.30 79.17 74.12
FreeLB [57] 70.70 82.41 79.67 82.24 89.48 88.56 63.20 81.30 77.67
NEFTune [16] 68.30 80.93 77.91 81.47 88.66 87.77 61.90 78.90 75.81

Ours trained w/ 50 sents. 70.77 84.96 81.66 86.16 93.01 92.12 68.37 86.24 82.67
Ours trained w/ 1k sents. 72.47 87.93 84.50 84.48 92.42 91.33 68.37 88.99 84.75

Fine-Tuning (+ para.)† 68.50 85.12 80.51 85.45 93.67 92.32 64.90 85.92 81.24

To mitigate this issue, we incorporate two datasets with synthetic QAs – Films 2024 and Events
2024. These are QA datasets generated from raw Wikipedia articles under the 2024 films category
and from US events in May, June, and July 2024, in the 2024 events in the United States category.
We generated question-answer pairs from these documents using GPT-4o following methods from
previous works [19, 33]. Since the documents used to generate these datasets were not seen by the
LLMs during pre-training, we can better evaluate the effectiveness of each method for knowledge
injection especially on new knowledge.

Datasets with Synthetic Documents The raw documents from datasets are unsuitable for precisely
measuring the knowledge injection performance. Specifically, fine-tuning LLMs on a document does
not always ensure that LLMs can answer the associated questions, due to the reversal curse [3].
Moreover, documents often contain irrelevant knowledge that may hinder the accurate assessment of
knowledge injection [14].

To address these issues, we conduct evaluations under the setting of synthetic documents. For
generating synthetic documents, we construct DK by rephrasing each question and answer in DQA

using GPT-4-turbo [32], ensuring that fine-tuning on these synthetic documents guarantee that LLMs
become answerable to the associated questions. Examples of questions, synthetic, and raw documents
are shown in Table 1. To make a difference, we denote the dataset under the synthetic document
setting with the suffix ‘-syn’ and the raw document setting with the suffix ‘-raw’.

Datasets for Training Latent Paraphrasers For training our latent paraphrasers, the set of training
data Dtrain is required in addition to DK. Therefore, we use GPT-3.5-turbo [31] to generate the set of
synthetic sentences from the subset of a training split of each QA dataset, where each sentence must
be with the answer to questions, following the sentence format in Section 4.1.

5.1.2 Experimental Details

Baselines We compare our LaPael against several baselines. All models are fine-tuned on the
documents in DK unless explicitly stated otherwise. (1) No Injection. We use the pre-trained LLM
without any fine-tuning. (2) Fine-Tuning. We fine-tune the LLM on DK. (3) Fine-Tuning (seq). We
first fine-tune the LLM on the paraphrased documents of Dtrain. Then, we fine-tune the LLM on DK.
(4) Fine-Tuning (+ para). We fine-tune LLM on the original and paraphrased documents of DK.
(5) FreeLB [57]. We add trained adversarial noise to the token embedding while fine-tuning. (6)
NEFTune[16]. We add random uniform noise to the token embedding while fine-tuning. (7) LaPael
(ours). We train the latent paraphrasers on Dtrain and then fine-tune the model on DK.
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Table 3: Experimental results on datasets with raw documents. For Ours, we use the latent paraphraser used in
the SQuAD-syn experiment. Rec. denotes recall.

SQuAD-raw StreamingQA-raw Films 2024-raw Events 2024-raw

Method EM Rec. F1 EM Rec. F1 EM Rec. F1 EM Rec. F1

No Injection 9.98 23.44 20.62 16.22 29.85 27.81 1.93 10.21 10.27 1.73 17.94 17.40
Fine-Tuning 16.65 35.40 29.73 19.04 35.88 32.92 13.39 30.03 28.84 10.98 43.76 39.62
FreeLB [57] 17.04 36.78 30.36 20.72 37.19 34.04 15.47 33.69 31.85 14.68 46.05 41.85
NEFTune [16] 17.45 37.49 31.11 20.18 36.98 33.85 15.93 33.73 32.38 15.38 48.14 43.84

Ours 18.96 43.10 34.65 21.62 39.38 35.32 16.29 35.04 32.56 15.26 56.70 46.45

Table 4: Experimental results on cross-domain transfer experiments. For ours, (X →) denotes that latent
paraphrasers are trained on Dtrain from the X dataset. Rec. denotes recall.

SQuAD-syn StreamingQA-syn NovelQA-syn MedMCQA-syn

Method EM Rec. F1 EM Rec. F1 EM Rec. F1 EM Rec. F1

No Injection 13.10 22.91 21.09 16.39 26.30 23.71 9.17 18.21 16.05 39.00 48.68 47.82
Fine-Tuning 58.30 68.59 66.35 74.73 82.34 81.21 52.92 66.30 63.62 56.10 62.37 62.03
FreeLB [57] 70.70 82.41 79.67 82.24 89.48 88.56 55.42 67.39 64.80 57.90 63.17 62.81
NEFTune [16] 68.30 80.93 77.91 81.47 88.66 87.77 51.67 65.14 62.25 56.30 62.57 62.09

Ours (SQuAD →) 72.50 89.38 85.34 84.38 93.44 92.17 54.17 69.40 65.72 63.70 68.28 67.98
Ours (StreamingQA →) 72.80 89.65 85.90 84.06 93.73 91.90 54.58 72.58 68.15 63.20 68.02 67.79

Training & Inference We mainly use Vicuna-7b-v1.5 [56] for fine-tuning, which is the instruction-
tuned version of Llama-2-7b [48] for our experiments. We fine-tune LLMs for 12 epochs with a
learning rate of 0.00005 and step learning rate scheduler where we decay a learning rate by 0.85
by every 4 epochs. For inference, we use in-context learning with 5 examples by prompting the 5
examples in the prompt [4]. To measure QA accuracy, we use Exact Match (EM), Recall (Rec.), and
F1 score. More details on the experimental setting are provided in the Appendix C.

5.2 Experimental Results

Experiments with Synthetic Documents In Table 2, we present the experimental results for the
synthetic documents setting. Fine-tuning does improve the QA performance of LLMs, but it does not
lead to near-perfect scores even though the synthetic document contains the necessary knowledge for
answering the questions, as shown in Table 1.

Our experiments show that paraphrasing documents for fine-tuning consistently improves QA per-
formance across all three benchmarks. Notably, LaPael demonstrates performance comparable to
fine-tuning with paraphrases on StreamingQA and even outperforms it on two other benchmarks.
These findings suggest that the latent paraphrasers learn an effective noise distribution that aids
knowledge injection without additional data augmentation.

We also compared LaPael with two other noise-based methods, FreeLB [57] and NEFTune [16],
to validate that the latent-level noise generated by latent paraphrasers is more effective. As shown
in Table 2, LaPael outperforms these baselines, confirming the strength of our approach.

Experiments with Raw Documents While our method has proven effective for knowledge injection
with synthetic documents, it is important to evaluate its performance on raw documents, which
represent a more realistic data format. To demonstrate the applicability of our method to real-world
data, we conducted experiments in which we fine-tuned LLMs on raw documents for each dataset,
using latent paraphrasers trained on Dtrain from SQuAD-syn.

As shown in Table 3, our method outperforms both fine-tuning and noise-based baselines in the
context of knowledge injection with raw documents. Considering that the latent paraphrasers were
trained on synthetic sentences from Dtrain, these results demonstrate their effectiveness on documents
with a different format than those used in training.

Cross-domain Transfer Once trained, the latent paraphrasers can be applied to fine-tune LLMs on
documents from any domain. To demonstrate this, we conducted cross-domain transfer experiments.
Specifically, we trained latent paraphrasers on Dtrain from a source domain (e.g., SQuAD) and fine-
tuned LLMs with the trained latent paraphrasers on DK from a target domain (e.g., StreamingQA).
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Figure 4: Effect of the Number of Paraphrases. Each plot shows the relationship between the number of
paraphrases (x-axis) and F1 scores (y-axis) in knowledge injection. The F1 scores of both standard fine-tuning
and our method improve as the number of paraphrases increases.
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Figure 5: (a) We conduct experiments varying the size of Dtrain on SQuAD-syn, where 100% indicates 1,000
documents. We report mean and std. over three runs. (b) We conduct experiments on StreamingQA-syn varying
the start position of latent paraphrasers where ‘# layers’ denotes the number of latent paraphrasers.

As shown in Table 4, our method successfully transfers across domains, with the latent paraphrasers
enhancing the performance of the knowledge injection on NovelQA and MedMCQA–two domains
distinct from the source (see Appendix C.1 for details on these datasets). Even though both domains
contain specialized entities, our method consistently outperforms standard fine-tuning and other
noise-based baselines.

Combining LaPael and Paraphrases Paraphrasing documents in DK has been shown to improve
knowledge injection performance, as seen in Table 2. While LaPael significantly improves perfor-
mance without requiring paraphrases, it is valuable to consider the effect of combining paraphrases
with the latent perturbations from LaPael. As illustrated in Figure 4, LaPael consistently outperforms
standard fine-tuning, showing that LaPael provides advantages over data-level augmentations.

5.3 Ablation Studies

Effects of the Size of Dtrain LaPael needs additional data Dtrain for training latent paraphrasers.
Although only a small amount of data is required, it might be unclear how much is needed to make
the latent paraphrasers learn the useful noise distribution. As shown in Figure 5a, LaPael works well
even with 50 sentences for Dtrain, while increasing the size of Dtrain ensures a steady performance
improvement for LaPael.

Effects of the Position of Latent Paraphrasers Our latent paraphrasers can be inserted into any
layer of the LLMs. The possible question is which position and how many layers are optimal for
latent paraphrasers to effectively learn noise for knowledge injection. To answer this, we analyzed
the position and number of latent paraphrasers.

In Figure 5b, we show the QA accuracy results, varying the start position and number of latent
paraphrasers. The first layer is the closest layer to the input layer, and "start position 1" with "#
layers = 3" means we insert the latent paraphrasers into the first, second, and third layers of the LLM.
Results show that inserting three latent paraphrasers into the early layers of the LLM is effective. This
is consistent with findings in previous works [16, 57, 25] where using noisy token embeddings (the
lowest layer) enhanced the generalization in LLMs. Furthermore, in Table 5, we empirically show
that positioning the latent paraphraser before the MLP layer within each transformer layer is the most
effective choice over other positions.
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Table 5: Analysis on the Position
inside the Transformer layer.

StreamingQA EM Recall F1

Before MLP 84.06 93.73 91.90

After MLP 73.81 82.58 81.02

Before Attn 80.55 87.58 86.49

After Attn 83.31 90.98 89.72

Token Embed. 86.21 91.79 91.05

Table 6: Ablation studies on Mod-
ules in latent paraphrasers.

StreamingQA EM Recall F1

LaPael 84.06 93.73 91.90
w/o Mask 77.95 85.17 84.63
w/o Concrete 73.35 83.42 81.99
w/o Sampling 84.23 90.52 89.73
w/o KL loss 83.31 90.78 89.99

Table 7: Ablation studies on Noise de-
sign in latent paraphrasers.

StreamingQA EM Recall F1

Learnable Mul. 84.06 93.73 91.90
Learnable Add. 73.05 83.23 81.70
Gaussian 83.46 90.32 89.54
Gaussian + mask 82.85 89.70 88.87
Uniform 79.48 87.17 86.15
Uniform + mask 74.43 81.09 80.26

Ablation Studies on Modules LaPael has many design choices concerning the latent paraphraser
architecture, noise type, and training. We conducted extensive ablation studies to empirically verify
each design choice and provide guidance for future work. In summary, as shown in Table 6, all
design choices are important for building the most effective latent paraphraser. Specifically, we use
a trainable mask m in Equation (7) to regulate the perturbation depending on each token, which
is crucial, as the performance on StreamingQA drops significantly if we remove it from the latent
paraphraser. Furthermore, using only the sigmoid function in Equation (7) instead of the concrete
distribution also leads to much lower performance, as the mask is not properly trained. Regarding
noise training, using deterministic noise instead of stochastic noise by removing the noise drawn
from a Gaussian distribution in Equation (5) also decreases performance. Additionally, replacing
the KL loss with Mean Squared Error loss between two means µ̂latent in Equation (13) and µ̂data

in Equation (14) leads to a decrease in performance, confirming the importance of stochastic noise
trained with KL loss.

Ablation Studies on Noise Distribution Should we train the latent paraphrasers to be effective,
or can adding random noise in the early layers also be effective? Which is more important: the
learnable mask or the learnable noise? To answer these questions, we conducted ablation studies
on the choice of noise distribution. In Table 7, Learnable Add. denotes the model with the additive
noise h+ gϕ(h) instead of Equation (4) without softplus from Equation (6). Gaussian is the use of
zero-mean Gaussian noise N (0, I) in Equation (6) without using MLPz . Uniform is the use of noise
drawn from the uniform distribution defined in NEFTune [16] instead of z in Equation (6).

As shown in Table 7, the learnable multiplicative noise described in Section 4.2 is the best design for
noise distribution used in the latent paraphraser. To analyze the effect of the learnable mask, we also
added the learnable mask to the Gaussian and Uniform noise settings and optimized only Wm and
bm in Equation (7) with loss in Equation (15). Interestingly, the learnable mask is not effective for the
fixed noise distribution, which contrasts with the results for learnable noise in Table 6. We conjecture
that using the learnable mask is important for input-dependent learnable noise, as it can allocate
different noise scales to different tokens, while this is not the case for static noise distribution.

6 Conclusion

We have introduced LaPael, a method for enhancing knowledge injection in Large Language Models
(LLMs) by applying learned perturbations to their layers. Unlike traditional data-level augmentations
or noise-based approaches, LaPael operates at the latent level, preserving the semantic integrity of the
text while introducing meaningful variability. LaPael addresses key limitations of existing methods by
reducing computational costs and increasing the diversity of augmented data. Our extensive validation
across diverse benchmark datasets demonstrates the superiority of our method in knowledge injection,
as it significantly outperforms both standard fine-tuning and other noise-based baselines. Moreover,
combining LaPael with paraphrases yields complementary benefits, further enhancing performance.
We believe that LaPael, being simple yet effective, has the potential for significant practical impact
and will encourage further research on applying perturbation within the latent space of LLMs.

Discussions & Limitations In our work, the following points can be discussed further: (1) Cost
Analysis—While LaPael is effective, it incurs additional costs due to the need for training latent
paraphrasers and fine-tuning LLMs with them. (2) Knowledge Retention—Although LaPael improves
knowledge injection, there may be trade-offs in terms of retaining the original knowledge that
the LLM has memorized. (3) Comparison to Retrieval-Augmented Generation (RAG)—While our
method improves knowledge injection, it is still less effective than RAG in terms of performance. We
provide a detailed discussion of these points, along with other limitations, in the Appendix A.
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Appendix

A Discussions & Limitations

Cost Analysis Our method requires additional costs compared to the fine-tuning baseline. Specifi-
cally, it involves two extra computational costs beyond standard fine-tuning. A comparison of the
per-step computational cost (in GFLOPs) between the baseline and our proposed method is shown
in Table 8, where we consider fine-tuning LLMs with 7B parameters. In detail, one forward pass
of a 7B parameter LLM requires 13.21 GFLOPs, and one backward pass costs twice as much as a
forward pass. The latent paraphraser model we used in the experiments consists of 5 paraphrasers,
each with 4 linear layers, totaling 250M parameters, which is 3.6% of the parameter size of the LLM.
The total computational costs can vary depending on the hyperparameters (e.g., N in Equation (13))
and the size of the dataset used.

While training the latent paraphrasers requires an initial cost, this is a one-time expense. Once trained,
these can be used repeatedly for knowledge injection without additional ongoing costs. This makes
the overall expense relatively low in the long term. Furthermore, incorporating latent paraphrasers
during fine-tuning adds only a minimal computational overhead, as their parameter size is just 3.6%
of the size of LLM.

Knowledge Retention A common drawback of knowledge injection is the potential for LLMs
to forget previously learned knowledge [17]. To assess this issue, we used the EntityQuestions
dataset [41], which contains simple questions about entities. Specifically, we focused on "place-of-
birth" questions for well-known entities (e.g., "Where was Leonardo da Vinci born?"), with 988
questions in total. We fine-tune the Vicuna-7b-v1.5 [56] on a synthetic SQuAD document set (DK)
using each method, then measure its QA performance on the EntityQuestions.

As in Table 9, the experimental results show that all fine-tuning approaches negatively impact
knowledge retention, as observed in the previous work [9]. Additionally, we observe that improved
knowledge injection often comes at the cost of greater knowledge forgetting. Although our primary
focus is on enhancing knowledge injection, we acknowledge that addressing knowledge retention is
crucial and should be a focus of future research.

Comparison to RAG The primary advantages of fine-tuning methods, including ours, over retrieval-
based approaches like Retrieval-Augmented Generation (RAG) [26], lie in their simplicity and
reduced computational cost on the inference [6]. Fine-tuning results in a self-contained model, which
simplifies the system architecture by removing the need for additional components like document
retrieval and ranking during inference. This reduction in complexity leads to lower computational
overhead, especially in terms of GPU memory usage due to the shorter length of the prompt, making
fine-tuning more suitable for an LLM deployment in resource-constrained environments.

However, it is important to check the performance gap between them. Therefore, we experiment with
RAG on the Events 2024 dataset with Vicuna-7b. For ours, we follow the same experimental setting
with Table 3. For RAG, we use the bge-large-en-v1.5 [53] model for document and query embedding
for retrieval. In Table 10, our experimental results indicate that the RAG approach outperforms
fine-tuning methods including ours, as previously observed by de Luis Balaguer et al. [6]. However,
our LaPael method narrows the gap between the two approaches, suggesting that there is potential for
further improvements in fine-tuning strategies.

Table 8: Per-step computational cost
comparison on the 7B LLM.

Method GFLOPs

Baselines
Fine-tuning LLM 39.63

Proposed Method
Training Latent Para. (LaP) 14.64
Fine-tuning LLM w/ LaP 40.11

Table 9: Zero-shot question answering
performance on EntityQuestions after
fine-tuning LLMs on SQuAD-raw.

EM Rec. F1

No Injection 59.00 64.38 63.46
Fine-Tuning 52.23 55.63 55.41
Ours 39.88 41.97 42.12
Fine-Tuning (+para) 33.50 35.18 35.28

Table 10: Comparison to Retrieval
Augmented Generation (RAG) on
Events 2024-raw.

EM Rec. F1

Fine-Tuning 10.98 43.76 39.62
Ours 15.26 56.70 46.45
RAG 27.17 64.02 55.71

Reversal curse. The proposed method is unable to address the reversal curse, where the Large
Language Models (LLMs) trained on “A is B" fail to answer “What is B?" [3]. As outlined in Berglund
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et al. [3], this phenomenon is mainly due to the format of data and the autoregressive nature of LLMs
that are trained in a way from left to right. Therefore, it is limited to improve the knowledge injection
performance if the document does not contain a sentence having the reverse relationship, even with
our method. Future work will need to explore the combining of our method with a recent solution
for the reversal curse like reverse training [10]. Otherwise, we can seek a solution that addresses the
reversal curse at the latent level similar to LaPael, which can be an interesting direction for future
work.

Limited scope of Task and Experiments. The scope of our method remains limited in the knowl-
edge injection task. Specifically, there are challenges in applying LaPael for continual pre-training
on large-scale corpora, such as the 15B OpenWebMath dataset [35], or for instruction tuning with
datasets like Alpaca [46]. Addressing these challenges will require future work as a new approach for
training latent paraphrasers tailored to other tasks. In terms of experiments, our experiments only
focus on the 7B LLMs, and do not conduct any experiment on larger LLMs of size with 13B or
70B [48] due to the limited computational budget for our experiments.

B Broader Impact

This work explores the knowledge injection in Large Language Models (LLMs), which are highly
related to hallucinations [15]. While our method improves the addition of new knowledge to LLMs,
it also increases the risk of introducing misinformation. Specifically, our method could enhance
the inaccuracies in LLMs when they are fine-tuned using documents that contain incorrect facts.
Therefore, it is crucial to thoroughly check the documents used for fine-tuning LLMs before applying
our method to enhance knowledge injection.

C Experimental Details

C.1 Dataset

Table 11: Dataset statistics. We report the size of Dtrain, DK, and DQA used in our experiments.
Synthetic Documents Raw Documents

Dataset SQuAD StreamingQA ArchivalQA NovelQA MedMCQA SQuAD StreamingQA Films 2024 US Events 2024

Dtrain 1,000 1,000 1,000 - - - - - -
DK 1,000 653 1,000 240 1,000 2,067 1,628 1,202 175
DQA 1,000 653 1,000 240 1,000 10,570 1,665 5,968 865

As briefly mentioned in Section 5.1, we generate the synthetic document from each question-answer
pair using GPT-4-turbo model [32]. To generate the documents from the question and answer pairs,
we use the prompt in Table 13. To generate diverse paraphrases from Dtrain, we use the prompt [29]
in Table 14 using GPT-3.5-turbo model. For cross-domain transfer experiments, we also use the
subset of MedMCQA [34] and a synthetic NovelQA dataset based on the Les Misérables Wikipedia
page, where we generate the synthetic document for each question. For MedMCQA [34], we use the
subset of the dataset where the domain of question corresponds to the anatomy.

We summarize the statistics of the synthetic dataset used in our experiments in Table 11. We also plot
the distributions of token counts in documents, questions, and answers for each dataset used in our
experiments in Figure 6. We present the example of each dataset in Table 12.

C.2 Training Details

As briefly mentioned in Section 5.1, we mainly use Vicuna-7b-v1.5 [56] for fine-tuning. We fine-tune
LLMs for 12 epochs with a learning rate of 0.00005 and step learning rate scheduler where we decay
a learning rate by 0.85 by every 4 epochs. For experiments in Figure 4, we fine-tune for 3 epochs
with a decaying period as 1 epoch. For optimizer, we use AdamW [28]. For all experiments, we only
update the parameters corresponding to the MLP layer of transformer [50]. For Llama model [47, 48],
it corresponds to linear layers named up_proj, gate_proj, and down_proj. We use 4 A100 GPUs
for fine-tuning LLMs. For inference, we use in-context learning with 5 examples by prompting the 5
examples in the prompt [4].
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For training latent paraphrasers, we train them for 10 epochs with a learning rate of 1e− 3 and cosine
learning rate scheduler where we linearly decay a learning rate to 10% of the initial learning rate
without warmup. We use 5 latent paraphrasers on the 5 sequential early layers of LLMs. For Equa-
tion (13), we use N = 4. For Equation (14), we use K = 10. For Equation (15), we set r = 0.5.
For gold mask m̄t, we use a similar method to Agrawal et al. [2] to find the named entities from
each document using GPT-3.5-turbo. For fine-tuning with latent paraphrases (Equation (17)), we use
N = 4.

Table 12: Data Example. Example data from all datasets we used in experiments. Words in the yellow background
indicate the answer to the question. Hypen (-) in the original document column indicates the case where the
original document is not accessible.

Question Original Document Synthetic Document

What is the name of Sudan’s Prime Minister?
(from StreamingQA)

(...) In this Aug. 21, 2019 file photo, Sudan’s new Prime
Minister Abdalla Hamdok speaks during a press con-
ference in Khartoum, Sudan. (...)

The Prime Minister of Sudan is Abdalla Hamdok.

Which NFL team represented the NFC at Super Bowl 50?
(from SQuAD)

(...) The American Football Conference (AFC) cham-
pion Denver Broncos defeated the National Football
Conference (NFC) champion Carolina Panthers to earn
their third Super Bowl title. (...)

The NFC representative at Super Bowl 50 was the
Carolina Panthers.

What country’s semi-official television network
broadcast Bush’s dinner? (from ArchivalQA)

- Bush’s dinner was broadcast by the semi-official
television network of Japan.

Best graft for infra inguinal approach bypass
(A) Dacron (B) PTFE (C) Polyester (D) Autologous vein
(from MedMCQA)

- In infrainguinal bypass surgery, the preferred type
of graft for optimal outcomes is an Autologous
vein.

What town does Jean Valjean become mayor of?
(from NovelQA)

- Jean Valjean becomes the mayor of the town Mon-
treuil-sur-Mer.

How many titles were screened in person at the 23rd New
York Asian Film Festival?
(from Events 2024)

The 23rd New York Asian Film Festival was held in
New York on 12 July with World Premiere of South
Korean film Victory by Park Beom-su, who attended
the screening in person. In the 23rd edition 94 titles
were screened in person. (...)

-

Who directed and produced Dune: Part Two?
(from Films 2024)

Dune: Part Two is a 2024 epic science fiction film
directed and produced by Denis Villeneuve, who co-
wrote the screenplay with Jon Spaihts. The sequel (...)

-
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(c) ArchivalQA in Table 2
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(d) NovelQA in Table 4
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(e) MedMCQA in Table 4
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(f) SQuAD in Table 3
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(g) StreamingQA in Table 3
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(h) Films 2024 in Table 3
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Figure 6: The distributions of token counts in documents, questions, and answers for each dataset used in our
experiments.
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Table 13: Prompt for Synthetic Document Generation. An 1-shot prompt for generating the synthetic document
from the question.

Write a concise informative background sentence, that is directly helpful to answer the following question.
The background sentence is the sentence that ends with a suffix. In other words, the answer entity should be
followed by the entities used in the question.

### Question
Question: Who replaced Tim Sloan as CEO of Wells Fargo? Answer: Charles Scharf
### Suffix
Charles Scharf
### Background Sentence
Tim Sloan was succeeded as CEO of Wells Fargo by Charles Scharf.

### Question [question] ### Suffix [answer] ### Background Sentence

Table 14: Prompt for Paraphrasing. A 2-shot prompt for paraphrasing. y indicates the answer for the question
and x denotes the remaining part of sentence, as introduced in Section 4.1.

For the following prefix, give me 2 highly diverse paraphrases of the same in high-quality English language as
in sentences on Wikipedia. Ensure that the suffix is followed by a paraphrased prefix. Do not inclue numbering.
Maintain the sentence structure.
# Sentence
In infrainguinal bypass surgery, the preferred type of graft for optimal outcomes is an Autologous vein.
# Prefix
In infrainguinal bypass surgery, the preferred type of graft for optimal outcomes is an
# Suffix (PRESERVE AND KEEP LETTER CASE)
Autologous vein.
# Paraphrases (Prefix + Suffix)
In infrainguinal bypass procedures, the graft type most recommended for the best results is an Autologous
vein.
During infrainguinal bypass operations, the optimal choice for a graft to achieve the best outcomes is an
Autologous vein.

For the following prefix, give me 2 highly diverse paraphrases of the same in high-quality English language
as in sentences on Wikipedia. Ensure that the suffix is followed by a paraphrased prefix. Do not include
numbering. Maintain the sentence structure.
# Sentence
During the embryonic development of the gastrointestinal tract, proper rotation of the gut is necessary for the
correct placement of the caecum; an abnormality in this process can lead to Mixed rotation.
# Prefix
During the embryonic development of the gastrointestinal tract, proper rotation of the gut is necessary for the
correct placement of the caecum; an abnormality in this process can lead to
# Suffix (PRESERVE AND KEEP LETTER CASE)
Mixed rotation.
# Paraphrases (Prefix + Suffix)
In the formation of the gastrointestinal system during embryonic growth, it is essential for the gut to rotate
correctly to ensure the caecum is properly positioned; deviations in this mechanism may result in Mixed
rotation.
Throughout the development of the gastrointestinal tract in the embryo, the accurate rotation of the gut is
crucial for the appropriate localization of the caecum; any irregularities in this rotation can result in Mixed
rotation.

For the following prefix, give me 10 highly diverse paraphrases of the same in high-quality English language
as in sentences on Wikipedia. Ensure that the suffix is followed by a paraphrased prefix. Do not include
numbering. Maintain the sentence structure.

# Sentence (x,y) # Prefix x # Suffix y # Paraphrases (Prefix + Suffix)
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Table 15: Experimental results on datasets with synthetic documents from diverse LLMs. We present results
from Llama2-7B [48], Mistral-7B-Instruct-v0.2 [18], and Phi3-mini-4k-instruct [1].

SQuAD-syn StreamingQA-syn ArchivalQA-syn

Method EM Recall F1 EM Recall F1 EM Recall F1

Llama2-7B [48]

No Adaptation 17.30 25.09 24.27 29.71 36.37 35.59 15.10 23.61 22.36
Fine-Tuning 69.10 80.34 78.09 85.30 90.97 90.57 63.60 82.54 79.26
FreeLB [57] 75.10 85.63 83.47 83.46 91.73 90.95 67.00 83.82 80.86
NEFTune [16] 71.10 84.17 81.38 82.54 90.65 89.65 64.80 82.08 79.01

Ours 73.10 87.00 84.13 83.46 92.46 91.20 65.00 88.70 83.55

Mistral-7B-Instruct-v0.2 [18]

No Adaptation 4.90 25.33 10.86 14.70 31.78 20.58 6.60 26.66 13.37
Fine-Tuning 49.40 83.60 64.66 65.08 88.43 75.51 41.10 75.88 59.13
FreeLB [57] 58.10 86.20 71.30 72.28 93.44 82.21 47.30 82.10 66.22
NEFTune [16] 45.10 80.06 59.67 67.84 89.01 77.34 37.70 73.25 55.58

Ours 73.20 89.53 83.57 83.46 94.14 91.79 64.80 89.07 82.40

Phi3-mini-4k-instruct [1]

No Adaptation 5.20 22.20 10.77 9.95 26.88 15.21 5.20 24.84 11.06
Fine-Tuning 38.80 61.78 50.32 44.10 70.93 55.19 24.80 54.57 37.05
FreeLB [57] 41.90 62.43 52.50 50.69 72.95 60.17 22.50 57.57 35.55
NEFTune [16] 39.30 63.70 50.52 44.87 71.54 55.87 23.60 55.95 36.40

Ours 53.30 67.02 62.88 70.60 77.78 75.39 30.20 64.93 47.04

D Additional Experiments

D.1 Experiments with Other Language Models

Verifying whether the proposed method can be transferred to other Language Models (LMs) is
important. First, we validate our LaPael with Llama-2-7B [48], a non-instruction-tuned version of the
Vicuna-7B we used in experiments. In Table 15, we present the experimental results with Llama-2-7B.
The results show that our LaPael is effective even in the LM that is not instruction-tuned. In Table 15,
we also present the experimental results with Mistral-7B-Instruct-v0.2, which is an instruction-tuned
model based on a different LLM Mistral-7B [18]. The results indicate that our LaPael is applicable
not only to Llama-based models but also to LMs with different bases. Furthermore, in Table 15, we
present the experimental results with Phi3-mini-4k-instruction, which is a pre-trained LLM with 3.8
billion parameters [1]. The results indicate that our LaPael is highly effective when applied to the
Phi3-mini model, which has fewer parameters than other LLMs.

D.2 Experiments with Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning is a method that fine-tunes LLMs with minimal updates to their
parameters. It is of interest that our LaPael can be effective even with parameter-efficient fine-tuning.
LoRA [13] is a well-known method for parameter-efficient fine-tuning, which updates trainable
rank decomposition matrices injected into the parameters of LLMs. In Table 16, we present the
experimental results with LoRA on Vicuna-7b-v1.5 where we update only the low-rank matrices of
up_proj, gate_proj, and down_proj layers. The results demonstrate that LaPael is also effective
in LoRA fine-tuning, highlighting its flexible applicability in diverse fine-tuning scenarios.

D.3 Visualization of Latent Features

In Figure 7, we display the latent features from the final layers of large language models (LLMs)
with and without latent paraphrases, where we reduce the dimension using t-SNE [49]. Crosses
(‘x’) mark the embeddings from LLMs with latent paraphrasers. As illustrated in Figure 7, latent
paraphrasers enable the generation of diverse data samples, enhancing the diversity compared to
data-level paraphrases.
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Table 16: Experimental results on datasets with synthetic documents, where we use LoRA [13] instead of
fine-tuning full parameters on Vicuna-7b-v1.5 [56].

SQuAD-syn StreamingQA-syn ArchivalQA-syn

Method EM Recall F1 EM Recall F1 EM Recall F1

No Adaptation 13.10 22.91 21.09 16.39 26.30 23.71 13.50 25.07 22.12
Fine-Tuning 62.70 72.80 70.74 73.97 83.75 82.12 53.60 68.23 66.00
FreeLB [57] 62.00 77.21 73.67 81.47 88.76 87.51 62.80 77.77 74.55
NEFTune [16] 67.40 79.10 76.59 78.71 85.77 84.65 57.60 74.88 71.35

Ours 65.80 82.10 78.80 80.09 89.43 88.03 61.70 79.22 75.24

Figure 7: Visualization of Latent Features. We visualize the latent features from the last layers of LLMs using
5 randomly sampled data from ArchivalQA dataset. Each color denotes the different data, circles denote the
original sentences, triangles denote the paraphrases, diamonds denote the questions, and crosses (‘x’) denote the
original sentence with latent paraphrasing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims and contributions made
in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

23



Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include experimental details in Section 5.1 and Appendix C for repro-
ducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not open-source the code yet. However, we will open-source it if the
paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include experimental details in Section 5.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Due to the limits on computational costs, we only report error bars for experi-
ments in Figure 5a. For Table 2, we also report the average performance of three runs for
our model to confirm the statistical significance of our method against baselines.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide the related information in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impact in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the proper source for each dataset and pre-trained language model.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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