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Abstract

Searching for the optimal atomic position of ad-
ditive atoms in a given host structure is crucial in
designing materials with intercalation chemistry
for energy storage. In this study, we present an ap-
plication of the SE(3)-equivariant diffusion model
for such conditional crystal structure predictions
using inpainting methods. The model, built upon
the e3nn framework, was pre-trained on the Ma-
terials Project structure database via denoising
score matching. By solving the reverse stochastic
differential equation using the predictor-corrector
method, the model is capable of all-atom crys-
tal generation as well as conditional generation
– finding atomic sites of additive atoms within a
host structure. We benchmarked the model perfor-
mance on the WBM dataset and showcased exam-
ples of ion intercalation in different MnO2 poly-
morphs. This efficient, probabilistic site-finding
tool offers the potential for accelerating the mate-
rials discovery.

1. Introduction
Crystal structure generation is a fundamental problem in ma-
terials design. Recent advances have shown that generative
models can significantly enhance the ability for all-atom
crystal generations, such as variational autoencoders (Ren
et al., 2022; Zhu et al., 2023), language-based models (Gru-
ver et al., 2024), and diffusion models (Xie et al., 2021; Jiao
et al., 2024; Yang et al., 2023; Zeni et al., 2023), etc. In
addition to all-atom crystal generation, the conditional gen-
eration task of finding optimal sites of additive atoms within
a given host crystal structure is another crucial application
that can be potentially realized by generative models. This
fundamental materials modeling step is closely related to
intercalation chemistry in materials design. The intercala-
tion manifests itself as a process in which ions (intercalants)
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can be inserted into or removed from a structure without
significant changes to the host framework (i.e., topotactic
reactions). For example, the charging and discharging of
Li-ion batteries involves the intercalation of Li ions into
the host structure of different electrodes. (e.g., the Li ion
intercalates between LixCoO2 as the cathode (Mizushima
et al., 1980) and Li1−xC6 as the anode (Stevens & Dahn,
2001)).

Another important factor of ion insertions is that the additive
ion can drastically change the property of host materials,
therefore providing the chance to design functional mate-
rials with desired properties. For example, the superionic
conductor Li0.388Ta0.238La0.475Cl3 is discovered as a lithi-
ated LaCl3-type structure with aliovalent substitution (Yin
et al., 2023). Current methods for site finding often rely on
topological analysis of structure (He et al., 2019) or require
additional inputs such as charge density obtained from den-
sity functional theory (DFT) calculations (Shen et al., 2020).
These approaches can be computationally expensive or may
not be universally applicable to any given inorganic crystals.

We propose using SE(3)-equivariant diffusion model as a
probabilistic-based method to search for optimal sites of the
intercalants. The diffusion model is built upon the e3nn
framework (Geiger & Smidt, 2022) and was pre-trained on
the MP database (Jain et al., 2013). The crystal generation
is accomplished by solving the reverse stochastic differen-
tial equation (SDE) using the predictor-corrector method
(Song et al., 2022). We delivered preliminary benchmark
tests based on the stable ionic crystals in the WBM dataset
(Wang et al., 2021) and also demonstrated examples of Zn
insertion to various MnO2 polymorphs. By leveraging con-
ditional generation with equivariant diffusion models, we
propose this as an efficient and generalizable approach to
intercalation-based materials generation, which can facil-
itate the design of advanced materials for energy storage
applications.

2. Methods
2.1. Preliminaries of crystal structures

A 3D crystal structure can be represented as an infinite
periodic arrangement using a structural unit known as a
unit cell, which is defined by M = (A,X,L). The
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atomic information is encapsulated in atomic numbers
A = (a1, a2, · · · , aN ) ∈ RN , atomic positions in the unit
cell X = (x1,x2, · · · ,xN ) ∈ R3×N , and the lattice ma-
trix L = (l1, l2, l3) ∈ R3×3 where the rows l1, l2, l3 are
the translational vectors. The representation delineates the
infinite periodic crystal structure as{

(a′i,x
′
i)|a′i = ai,x

′
i = xi + kL,k ∈ Z1×3

}
, (1)

where arbitrary integer k denotes the 3D translation in units
of li. This representation serves as a complete basis for
atomic arrangements in R3 with periodic boundary condi-
tions.

2.2. Data preparation

Training: The training dataset in our work consists of
109,805 crystal structures from the Materials Project (MP)
database with Ehull < 0.1 eV. The Ehull represents the en-
ergy above the convex hull in phase diagrams, which is a
critical quantity to examine the thermodynamic stability of
a material (Ehull = 0 for stable materials, and Ehull > 0 for
meta-stable materials) (Bartel et al., 2020). The training set
is divided into training and validation sets at an 8:2 ratio.

Test: The test dataset consists of 1,131 stable ionic crystal
structures (Ehull = 0 eV, containing Li/Mg/Na/Ca ions)
from the WBM dataset (Wang et al., 2021), which has no
overlapping crystal structures with the MP database.

2.3. SE(3)-equivariant graph neural network

We adopt a customized SE(3)-equivariant graph neural net-
work (GNN) from the graphite library (Hsu et al., 2022)
based on NequIP and e3nn frameworks (Batzner et al.,
2022; Geiger & Smidt, 2022). The GNN model directly
outputs a vector to represent the noising displacement. The
initial embedding generates two attributes hi,x and hi,z

transforming the type of the i-th atom through embedding
layers. The interaction blocks update node attributes hi,x

by self-interaction and aggregating attributes of neighboring
atoms with the weighted tensor product (wTP), whereas
hi,z does not change

h
(l+1)
i,x = wTP(h

(l)
i,x,h

(l)
i,z), (2)

h
(l+1)
i,x =

1

Z

∑
j∈N(i)

wTP∥eij∥(h
(l)
j,x, Y (êij)). (3)

Equations (2) and (3) represent self-interaction and convo-
lution, respectively. Y (êij) is the spherical harmonic of
a normalized vector êij pointing from node i to j. N(i)
denotes neighbors of node i. The final self-interaction layer
outputs a single vector representing the estimated score

h
(L)
i,x = wTP(h

(L−1)
i,x ,h

(L−1)
i,z ) = (sθ)i (4)

2.4. Variance exploding diffusion model

Generating samples with probability density function p(x)
in high-dimensional space Rd can be achieved by model-
ing the gradient of the log-probability density ∇x log p(x)
(score function) using diffusion models. Both the diffu-
sion process and its reverse can be formulated as stochastic
differential equations (SDE) (Song et al., 2021).

dx = f(x, t)dt+ g(t)dw, (5)

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t)dw, (6)

where w and w represent the Brownian motions, f(x, t) is
drift coefficient and g(t) is diffusion coefficient of x(t).

We chose the variance-exploding (VE) diffusion as the prior
distribution p(xT ) follows a simple uniform distribution.
In addition, the coordinates of atoms in a crystal satisfy
periodic boundary conditions, and the VE diffusion does
not lead to extremely large displacements in the noisy limit.
The VE diffusion can be formulated as follows (Song et al.,
2021):

dx =

√
d[σ2(t)]

dt
dw, (7)

where a sequence of exponentially increasing standard de-
viations is given σmin = σ1, · · · , σT = σmax. The samples
can be drawn using the ancestral sampling

xt−1 = xt+(σ2
t−σ2

t−1)sθ∗(xt, t)+z

√
σ2
t−1(σ

2
t − σ2

t−1)

σ2
t

(8)
where xT ∼ N (0, σ2

T I), and z ∼ N (0, I). In the con-

tinues limit,
√
σ2
t−1/σ

2
t ≈ 1. The implementation is

achieved using a predictor-corrector sampling strategy with
the Langevin corrector proposed by (Song et al., 2021) (see
Algorithm 1).

2.5. Model training

To estimate ∇x log pt(x), we use score matching (SM) to
learn the model θ∗ that minimizes the loss function

LSM = Ep(x)

[
∥sθ(x(t), t)−∇x log pt(x)∥2

]
. (9)

pt(x) can be approximated by a Gaussian transition prob-
ability p(xt|x0) ∝ e−(xt−x0)

2/2σ2

. Equation (9) can be
formulated as denoising score matching (DSM) following
Vincent (2011); Ho et al. (2020)

LDSM = Ep(xt|x0)

[∥∥∥sθ(x(t), t)− ε

σ

∥∥∥2] , (10)

where sθ(x(t), t) is the score function given by the
GNN model, ε = (xt − x0)/σ ∼ N (0, 1), and σ ∼
U(σmin, σmax). The training framework was built upon the
architecture of CDVAE using the pytorch-lighting
library (Xie et al., 2021).
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Figure 1. Iterative sampling strategy for crystal structure inpainting given a host structure. (A) Add noise to the host structure. (B)
Compute the scores {sθ(xt)} of all atoms and perform denoising to update the atomic positions. (C) Apply masks on the host structure
and the intercalants. For each iteration, the host structure perturbation starts from Process (A). Note that the symbols xhost and xadd

represent the atomic positions of all atoms (including host and intercalants), where the superscripts distinguish the different masking
operations on host and additive atoms, respectively.

2.6. Crystal structure inpainting

Inpainting. Crystal structure inpainting is conceptualized
as a conditional generation process, where the host struc-
ture is given and the intercalants are considered as missing
parts. To approximate the conditional diffusion, we em-
ployed an unconditional diffusion model trained with the
DSM strategy. The conditional probabilistic transitions were
incorporated into the sampling process by adding noise to
the host structure.

An illustration of the iterative sampling procedure is out-
lined in Figure 1. In each reverse diffusion step, the atoms
in the host structure are first perturbed with a Gaussian noise
given by the noise scheduler of the next step σt−1 (Process
A)

xhost
t−1 = xhost

0 + σt−1z, z ∼ N (0, I). (11)

The additive atoms (intercalants) and host structure in the
current configuration xt therefore have a similar scale of
noise. The denoising score can be computed using all atoms
with the GNN model via Equation (4), and the diffusion is
performed using Equation (8) (Process B). For the notation,
xhost and xadd represent different operations on the noise/-
denoise process and include all atomic positions of both the
host structure and intercalants. We applied masks (1−m)
on xhost and m on xadd (Process C) to form xt−1 (Process
D).

xt−1 = (1−m)⊙ xhost
t−1 +m⊙ xadd

t−1 (12)

The iterative reverse diffusion process reduces noise incre-
mentally, thus ensuring the final crystal structure closely
aligns with the original host structure.

Resampling. It is observed that direct application of the
replacement method leads to locally harmonized structures
but inconsistent global context. To address the issue, resam-
pling is proposed, where atomic positions xi are repeatedly
diffused back and forth for r times in each diffusion step as
detailed in Algorithm 1 (Lugmayr et al., 2022). The horizon
of the backward and forward diffusion operation can be ex-
tended from one resampling step to longer resampling steps,
denoted as jump length j, where j = 1 is the previous case.
The technique allows the model to harmonize prediction
for the newly generated additive atoms and the noisy atoms
from the host structure. The number of resamples r and
jump length j control the diffusion steps scheduler (shown
in Code 1) thus the harmonizing effect with Algorithm 1.

The inpainting & resampling method was originally pro-
posed in the imaging process (Lugmayr et al., 2022) and
was further adopted to scientific fields such as structure-
based drug molecule design (Schneuing et al., 2023) and
objective-aware transition states generation for chemical re-
actions (Duan et al., 2023). In this study, we integrated the
periodic boundary condition and SE(3)-equivariance with
these techniques and applied them to crystalline materials
in R3 space.

2.7. Machine learning interatomic potential

For the generated structures, we used the pre-trained
CHGNet as an efficient and accurate calculator to evaluate
the energy and interatomic forces without running DFT. The
pre-trained CHGNet achieves mean-absolute errors of 30
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Task Reconst-Rate (%) RMSE (Å) FMedian
max (eV/Å) F 75%

max ∆EMedian (meV/atom) ∆E75%

Li 82.54± 0.41 0.034± 0.005 0.108± 0.001 0.256± 0.012 1.0± 0.1 7± 1
Na 86.70± 1.02 0.044± 0.003 0.111± 0.001 0.213± 0.010 1.3± 0.2 5.2± 0.8
Mg 83.95± 2.34 0.039± 0.007 0.138± 0.003 0.244± 0.039 1.1± 0.0 4.2± 0.1
Ca 83.33± 2.12 0.061± 0.007 0.171± 0.004 0.382± 0.039 2.2± 0.2 15± 3

Table 1. Reconstruction rate and stability analysis of the unpainted structures containing Li/Na/Mg/Can in the WBM dataset. Fmax is
the maximum interatomic force in the generated structure. ∆E is the energy difference between the generated structure and its relaxed
structure. The cutoff values for the median and 75% quantile from the distribution of the WBM-reconstructed compounds are presented.
Both Fmax and ∆E were calculated using CHGNet as the MLIP. The standard deviation arises from different realizations of diffusion
using the same initial conditions for the median and 75% quantile metrics.

Algorithm 1 Inpainting Crystal Generation
Input: atomic positions of host structure and randomly
initialized additive atoms xhost

0 ; atomic positions sampled
randomly in the unit cell xT ; mask for additive atoms m;
signal-to-noise ratio δ; number of resampling steps r
for t = T, · · · , 1 do

for n = 1, · · · , r do
xadd
t−1 ← xt + (σ2

t − σ2
t−1)sθ(xt, t)

z ∼ N (0, I)

xadd
t−1 ← xadd

t−1 +

√
σ2
t−1(σ

2
t−σ2

t−1)

σ2
t

z

for j = 1, · · · ,M do
z ∼ N (0,1)
g ← sθ(xt−1, t− 1)
ε← 2(

√
3δ/∥g∥2)2

xadd
t−1 ← xadd

t−1 + ε g +
√
2ε z

end for
xhost
t−1 ← xhost

0 + σt−1z
xt−1 ← (1−m)⊙ xhost

t−1 +m⊙ xadd
t−1

if n < r and t > 1 then
z ∼ N (0,1)

xt ← xt−1 +
√
σ2
t−1 − σ2

t−2 z

end if
end for

end for

meV/atom for energy and 70 meV/Å for interatomic forces
on the MPtrj dataset against the DFT (Deng et al., 2023).
The structure relaxations were optimized by the FIRE op-
timizer (Bitzek et al., 2006) over the potential energy sur-
face provided by CHGNet, where the atomic positions, cell
shape, and cell volume were simultaneously optimized to
reach converged interatomic forces of 0.1 eV/Å.

2.8. DFT calculations

We performed density functional theory (DFT) calculations
with the VASP package using the projector-augmented wave
method (Kresse & Furthmüller, 1996; Kresse & Joubert,
1999), a plane-wave basis set with an energy cutoff of 520

eV, and a reciprocal space discretization of 25 k-points per
Å−1. The calculations were converged to 10−6 eV in total
energy for electronic loops and 0.02 eV/Å in interatomic
forces for ionic loops. The computational setting was con-
sistent with the MPRelaxSet (Jain et al., 2011).

3. Experiments
3.1. Crystal Reconstruction

Setup. We collected the stable materials (Ehull = 0 eV)
containing Li, Na, Mg, and Ca as intercalants from the
WBM dataset (Wang et al., 2021). The intercalants in the
host structure were first removed and then randomly ini-
tialized back into the host structure with fractional coor-
dinates {(fx, fy, fz)} drawn from a normal distribution
(fx, fy, fz) ∼ N (0, I) to generate the corrupted struc-
tures. The inpainting tasks were performed using the
diffusion model following Algorithm 1 to optimize the
atomic positions of the intercalants. We evaluated the
reconstruction rate by measuring the difference between
the inpainted structure and the original structure using
the StructureMatcher from pymatgen (Ong et al.,
2013) with criteria stol=0.3, ltol=0.2. For suc-
cessfully matched structures, we compared the root-mean-
squared error (RMSE) in R3 space. The RMSE is normal-
ized by the number of intercalants since the host structure
remains fixed during reconstruction. We ran four different
diffusions to obtain the average and standard deviation of the
performance metrics. We also benchmarked the influence
of the signal-to-noise ratio parameter on the crystal recon-
struction task, with details provided in Appendix Figure
3.

Results. Table 1 presents the reconstruction rate and RMSE
for the four types of intercalants, from which we observed
over 80% of the Li-, Na-, and Mg-containing structures in
the WBM dataset are recovered from their corresponding
corrupted structures using the inpainting generative model.
The recovered structures have an average RMSE below
0.05 Å with respect to the original structures. The energy
and interatomic forces of the inpainted structures were sub-
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𝛼-Zn0.5MnO2 𝛽-Zn0.5MnO2 𝛾-Zn0.5MnO2 𝛿-Zn0.5MnO2

Noisy 
structure

Inpainted
structure

Supercell
structure

Figure 2. MnO2 intercalated with Zn in α-, β-, γ-, and δ-polymorphs (red: oxygen, purple: Mn, gray: Zn). The noisy structure is initiated
to perform reverse diffusion to obtain the inpainted structure. The dashed lines represent the lattice of unit cells. The supercell structures
of inpainted structures illustrate the translation symmetry of crystals. The purple and gray polyhedra indicate the local atomic coordination
of Mn and Zn. See (Zhang et al., 2024) for sites and diffusion channels identified in experiments for comparison.

sequently evaluated using CHGNet, where these residual
forces were used as a metric to inspect whether the recon-
structed structures were reasonably relaxed. We calculated
the distribution of these metrics, Table 1 presents the median
and 75% quantile of such distribution of maximum inter-
atomic force (Fmax), with relatively small values (< 0.2
eV/Å for the median) observed for all four types of in-
tercalants. A histogram plot of the Fmax is presented in
Appendix Figure 4.

We further relaxed these structures using CHGNet and
recorded the energy difference that is dissipated in the ionic
relaxation process (∆E = Eunrelax − Erelax). The median
∆E is approximately 1 meV/atom for Li, Na, and Mg,
and the 75% quantile shows a higher value of less than
10 meV/atom. The Ca-containing structures demonstrate
slightly higher values in Fmax and ∆E (2.2 meV/atom for
the median and 15 meV/atom for the 75% quantile). The
standard deviation of energy and forces were calculated
from the different trials of diffusion using the same initial
conditions. The small residual energy and interatomic forces
indicate the inpainted structures generated by the diffusion
model are close to their local energy minima, evidencing
the reasonable intercalation sites predicted by Algorithm 1.

To assess the quality of the generated structures compared

to ground truth with ab initio accuracy, we performed DFT
calculations to relax the Li-containing crystal structures
produced by our inpainting method. The analysis of in-
teratomic forces is presented in Appendix Figure 5. These
converged DFT calculations confirm that the generated struc-
tures closely approximate local energy minima. Notably, the
maximum force (Fmax) observed in our generated structures
is lower than that predicted by the pretrained CHGNet. This
outcome is consistent with expectations, given that CHGNet
has a known force prediction error of 70 meV/Å, while our
generated structures exhibit only a small RMSE deviation
(< 0.05 Å) from the DFT ground truth in the WBM dataset
(Table. 1).

3.2. Example: inpainting MnO2 frameworks

Setup. MnO2 exhibits various polymorphs (α, β, γ, and
δ) and are promising candidates for intercalation-based bat-
tery cathode design. These polymorphs serve as host struc-
tures for various intercalants (e.g., Li/Na/Mg, etc) (Kitchaev
et al., 2017). To demonstrate an example study using the
site searching function with the diffusion model, we ran in-
painting generations using Zn as intercalant for Zn0.5MnO2.
The host structures of the four polymorphs were obtained
from the MP database (α: mp-1080238, β: mp-29159,
γ: mp-626068, and δ: mp-1002573). The signal-to-
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noise ratio was set to 0.2, as it achieves the lowest RMSE
according to Appendix Figure 3 on the test of the WBM
dataset.

Results. Figure 2 presents the inpainted structures of
Zn0.5MnO2 for the four polymorphs. The inserted Zn atoms
are located in the interstitial vacancy sites of the different
MnO2 polymorphs, consistent with the diffusion channels
demonstrated in an experimentally reported study (Zhang
et al., 2024). Other intercalants, including Li, H, and Mg,
are shown in Appendix Figure 6 for illustration.

4. Discussion
Crystal inpainting generation is of great importance for ma-
terials discovery, as the optimal intercalation site determines
the stability and property of a material. In this work, we
propose the application of an SE(3)-equivariant diffusion
model for crystal inpainting generation. The model was
pre-trained on the Materials Project structure database us-
ing an unconditional generation strategy, i.e., the all-atom
diffusion generation for crystals. By employing resampling
techniques, the model can conditionally generate and opti-
mize unknown atomic positions within a given host structure
while preserving local stability.

Identifying insertion positions has traditionally been ad-
dressed by various physics-based models. Structural topol-
ogy or charge density analysis (He et al., 2019; Shen et al.,
2020), for instance, can search sites in continuous vacant
spaces but often at high computational cost. The clus-
ter expansion method, while mathematically rigorous for
searching the lattice ground-state configuration (Huang
et al., 2016), requires a well-defined crystalline structure
(e.g., with Wyckoff positions) including vacancies (Barroso-
Luque et al., 2022). In contrast, our probability-based in-
painting approach for crystal generation is well-pretrained
and can be efficiently implemented without specifying ad-
ditional crystalline information beyond the host structure.
This approach combines computational efficiency with flex-
ibility, making it a useful alternative to traditional physics-
based methods for atom insertion tasks.

One limitation of the current model is its inability to account
for volume changes during diffusion, which is especially
significant for elements with large ionic radii (e.g., Na/Ca).
Although lattice relaxation using MLIP or DFT can partially
address this issue post-generation, it would be promising
to develop future models that can accommodate diffusion
for both host structures with lattice changes and the atoms
of interest. We anticipate the adoption of inpainting crystal
generation along with further improvements can accelerate
the identification of promising candidates for energy storage
in computational material design.
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A. Code implementation for inpainting crystal generation
1 t_T = 250
2 jump_len = 10
3 jump_n_sample = 10
4

5 jumps = {}
6 for j in range(0, t_T - jump_len, jump_len):
7 jumps[j] = jump_n_sample - 1
8

9 t = t_T
10 ts = []
11

12 while t >= 1:
13 t = t-1
14 ts.append(t)
15 if jumps.get(t, 0) > 0:
16 jumps[t] = jumps[t] - 1
17 for _ in range(jump_len):
18 t=t+1
19 ts.append(t)
20 ts.append(-1)

Listing 1. Scheduler algorithm

B. Architecture of the model
The architecture of the SE(3)-equivariant model is summarized in Table 2.

Name Value
Number of convolution layers 4
Radius cutoff of crystal graph 6.0 Å
Irreps for initial node attributes h(0)

i,x 32x0e
Irreps for auxiliary node attributes h(0)

i,z 32x0e
Irreps for hidden node attributes h(l)

i,x 32x0e + 32x1e
Irreps for edge attributes 32x0e + 32x1e + 8x2e
Number of basis functions for expanding edge distance ∥êij∥ 16
Number of hidden neurons for the MLP 64
Number of trainable parameters 2,655,808

Table 2. Architecture of the SE(3)-equivariant diffusion model.

C. Hyperparameters for training and sampling
The pre-trained model was trained for 0.98 million steps with a batch size of 4 on one NVIDIA A100 GPU using the Adam
optimizer. The learning rate is initialized and kept at 0.001. Gradient clipping was applied by a value of 0.1.

We discretized the reverse diffusion process (backward passing) into T = 200 steps. The initial unknown coordinates are
sampled from prior Gaussian distribution and mixed with the corrupted host structure by several forward and backward
passing with the resamples parameter r as 3 and the jump length parameter j as 10. For each backward step, we use ancestor
sampling to sample xt−1 given xt using the pre-trained model. After each predictor step, five corrector steps were applied
via the Langevin corrector with signal-to-noise ratio parameter as 0.2 if not otherwise specified in the paper.
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(a)

(b)

(c)

(d)

Figure 3. Reconstruction and error analysis of the inpainting generation based on the selected structures from the WBM dataset. (a-d)
Reconstruction match rate and RMSE of Li-, Na-, Mg-, and Ca-containing materials. The signal-to-noise ratio (SNR) is set to 0.2, 0.4, 0.6,
and 0.8, from left to right in each panel.
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25% -- 0.069 meV/A 
50% -- 0.111 meV/A
75% -- 0.213 meV/A

25% -- 0.094 meV/A 
50% -- 0.171 meV/A
75% -- 0.382 meV/A

25% -- 0.083 meV/A 
50% -- 0.138 meV/A
75% -- 0.244 meV/A

25% -- 0.059 meV/A 
50% -- 0.108 meV/A
75% -- 0.256 meV/A

Li Mg

Na Ca

(a) (b)

(c) (d)

Figure 4. The maximum interatomic forces (Fmax) in the structures generated using the inpainting algorithm for different intercalants: Li
(green), Mg (orange), Na (yellow), and Ca (dark blue). The three dashed lines in each panel represent the 25% quantile, median, and 75%
quantile, from left to right.

25% -- 0.026 meV/A 
50% -- 0.055 meV/A
75% -- 0.183 meV/A

Li (DFT)

Figure 5. The maximum interatomic forces (Fmax) calculated by DFT for the inpainting generated Li-containing structures. The three
dashed lines represent the 25% quantile, median, and 75% quantile, from left to right.
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Figure 6. Inpainted structures using α-, β-, γ-, and δ-MnO2 polymorphs with Zn (gray, Zn0.5MnO2), Mg (orange, Mg0.5MnO2), H (white,
HMnO2), and Li (green, LiMnO2) as intercalants. The dashed lines represent the lattices of a unit cell and a supercell view is shown to
illustrate the translation symmetry of crystals. The polyhedra indicate the local atomic coordination of Mn and intercalant.
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