
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A LARGE RECURRENT ACTION MODEL: XLSTM EN-
ABLES FAST INFERENCE FOR ROBOTICS TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, there has been a trend in the field of Reinforcement Learning
(RL) towards large action models trained offline on large-scale datasets via se-
quence modeling. Existing models are primarily based on the Transformer archi-
tecture, which result in powerful agents. However, due to slow inference times,
Transformer-based approaches are impractical for real-time applications, such as
robotics. Recently, modern recurrent architectures, such as xLSTM and Mamba,
have been proposed that exhibit parallelization benefits during training similar to
the Transformer architecture while offering fast inference. In this work, we study
the aptitude of these modern recurrent architectures for large action models. Con-
sequently, we propose a Large Recurrent Action Model (LRAM) with an xLSTM
at its core that comes with linear-time inference complexity and natural sequence
length extrapolation abilities. Experiments on 432 tasks from 6 domains show that
LRAM compares favorably to Transformers in terms of performance and speed.

1 INTRODUCTION

Reinforcement Learning (RL) has been responsible for impressive success stories such as game-
playing [Silver et al., 2016; Vinyals et al., 2019; Berner et al., 2019; Patil et al., 2022], plasma control
for fusion [Degrave et al., 2022], or navigation of stratospheric balloons [Bellemare et al., 2020].
While these successes were based on classical RL approaches, in which agents have been trained
online with RL objectives, recently there has been a trend towards offline RL settings [Levine et al.,
2020; Schweighofer et al., 2022] and sequence models trained via behavior cloning [Chen et al., 2021;
Janner et al., 2021]. Such approaches, in which agents are trained on large-scale offline datasets with
causal sequence modeling objectives, have been driven by the proliferation of Transformer-based
architectures and gave rise to what we refer to as Large Action Models (LAMs) to highlight their
similarity to large language models (LLMs) [Radford et al., 2018]. LAM approaches can also be used
in multi-task settings to develop generalist agents such as Gato [Reed et al., 2022].

Existing LAMs are primarily based on the Transformer [Vaswani et al., 2017] architecture. Because
of their powerful predictive performance, robotics has become an emergent application area for large
models [Brohan et al., 2023b;a; Octo Model Team et al., 2024; Gu et al., 2023; Wang et al., 2023]
and a number of large multi-task datasets were collected [Jia et al., 2024; Embodiment Collaboration
et al., 2024; Jiang et al., 2023; Mandlekar et al., 2023]. This development bears the potential to
produce robotics agents that learn to master complex tasks in a wide range of environments and
even different embodiments. For example, recently it has been demonstrated, albeit in restricted
settings, that sequence models trained on multi-episodic contexts can perform in-context learning
(ICL) [Laskin et al., 2020; Lee et al., 2023]. One potential application of ICL can be to learn new
related tasks in robotics without the need for re-training or fine-tuning.

One of the key reasons for the success of Transformer-based models is their ability to scale to large
datasets through their efficient parallelization during training. However, despite numerous success
stories in RL, language modeling [Brown et al., 2020] or computer vision [Dosovitskiy et al., 2021;
He et al., 2022], a persistent drawback of Transformer-based architectures is their high inference cost
in terms of both speed and memory [Kim et al., 2023]. Consequently, deploying Transformer-based
models in resource-constrained scenarios, such as on devices with limited hardware capacity and/or
real-time constraints, e.g., robots or smartphones, is prohibitive because of the required fast inference
times [Firoozi et al., 2023; Hu et al., 2023]. A basic principle of control theory is that the controller

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of our Large Recurrent Action Model (LRAM) with an xLSTM [Beck et al.,
2024] at its core.

sample rate should be in the order of magnitude of the sample rate of the sensors [Franklin et al.,
1998, Ch. 11]. To illustrate this, for typical robots such as drones or industrial robot arms rates of
100Hz-1000Hz are required to keep the system stable [Salzmann et al., 2023; El-Hussieny, 2024;
Hu et al., 2023; Chignoli et al., 2021]. This implies inference times of less than 10ms. At 1000Hz,
a 15-second movement of the agent corresponds to a sequence of 15K steps [El-Hussieny, 2024]
resulting in long context lengths even without ICL. While there exists a range of techniques to make
large models faster, such as quantization [Frantar et al., 2023], distillation [Hinton et al., 2015], or
pruning [LeCun et al., 1989], the quadratic-time complexity of self attention still remains.

Recently, modern recurrent architectures have been proposed, which exhibit similar parallelization
properties during training as the Transformer architecture while offering linear-time inference com-
plexity. These modern recurrent architectures include xLSTM [Beck et al., 2024] and state-space
models (SSMs), such as Mamba [Gu & Dao, 2023; Dao & Gu, 2024] and Griffin/Hawk [De et al.,
2024], and have challenged the dominance of the Transformer in language modeling but also in other
domains such as computer vision [Alkin et al., 2024; Zhu et al., 2024], and biomedicine [Schmidinger
et al., 2024]. More importantly, their linear-time inference makes them suitable for deployment in
scenarios with limited compute, large context sizes, and real-time requirements, such as robotics.

In this work, we assess the aptitude of modern recurrent architectures, such as xLSTM and Mamba,
as large action models. To this end, we introduce a Large Recurrent Action Model (LRAM) with an
xLSTM at its core (see Figure 1). We train our agents on 432 tasks from 6 domains using a supervised
learning setting similar to that of the Decision Transformer [Chen et al., 2021, DT]. We use data
collected during online-RL training of single-task specialist agents and compile these trajectories
alongside other expert demonstrations into a large-scale multi-domain dataset comprising 894M
transitions. Due to their parallelization properties, the modern recurrent architectures considered
in this work can process this large-scale training set as efficiently as the Transformer while being
faster at inference. Experiments across 4 models sizes with our multi-task models indicate that
xLSTM compares favorably to Transformers in terms of both performance and speed. In addition, we
study the effect of modern recurrent architectures on fine-tuning performance and in-context learning
abilities, and find that they exhibit strong performance in both dimensions.

The main purpose of this paper is to test the hypothesis that modern recurrent model architectures are
better suited for building LAMs than Transformers. Hereby, we make the following contributions.

• We propose a Large Recurrent Action Model (LRAM) with an xLSTM at its core that
enables efficient inference.

• We assess the aptitude of modern recurrent architectures as backbones for large-action
models with respect to their efficiency at inference time and overall performance in multi-
task, fine-tuning, and in-context learning settings.

• To foster further research on large action models, we release our data preparation pipeline
and generated datasets.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Sequence Models in RL. LSTM [Hochreiter & Schmidhuber, 1997] is the dominant backbone
architecture for partially observable online RL problems and has been behind achievements such
as mastering Starcraft II [Vinyals et al., 2019], Dota 2 [Berner et al., 2019], and Atari [Espeholt
et al., 2018; Kapturowski et al., 2019]. After the success of the Transformer in NLP [Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020], computer vision [Dosovitskiy et al., 2021; He et al.,
2022; Radford et al., 2021; Fürst et al., 2022] and speech recognition [Radford et al., 2022; Baevski
et al., 2020], the architecture has found its way into RL. Chen et al. [2021] proposed the Decision
Transformer (DT) a GPT-style model [Radford et al., 2018], that learns to predict actions from offline
trajectories via behavior cloning. Trajectory Transformer [Janner et al., 2021] predicts actions along
with states and rewards, which allows for dynamics modeling. Other follow-up works build on
the DTs [Zheng et al., 2022; Wang et al., 2022; Shang et al., 2022; Meng et al., 2021; Siebenborn
et al., 2022; Schmied et al., 2024a] or replace the Transformer with Mamba [Ota, 2024; Dai et al.,
2024]. Furthermore, sequence models trained were found to exhibit ICL if conditioned on previous
trajectories [Laskin et al., 2022; Lee et al., 2022; Kirsch et al., 2023], albeit in limited scenarios.

Large Action Models (LAMs). LAMs, such as the Decision Transformer, are well suited for multi-
task settings. Lee et al. [2022] found that a multi-game DT can learn to play 46 Atari games. Reed
et al. [2022] introduced a generalist agent trained on over 600 tasks from different domains, ranging
from Atari to manipulation of a robot arm. Jiang et al. [2022] a Transformer for robot manipulation
based on multi-modal prompts, that allow to steer the model to perform new tasks. Recently, Raad
et al. [2024] introduced an agent instructable via language to play a variety of commercial video
games. Since then, robotics has become an emergent area for developing LAMs [Brohan et al.,
2023b;a; Octo Model Team et al., 2024; Gu et al., 2023; Wang et al., 2023; Kim et al., 2024], also
due to the availability of large-scale robotics datasets [Jia et al., 2024; Embodiment Collaboration
et al., 2024; Jiang et al., 2023; Mandlekar et al., 2023].

Next-generation Sequence Modeling Architectures. Linear recurrent models, such as state-space
models (SSM, Gu et al., 2021; 2022b; Smith et al., 2023; Orvieto et al., 2023) have challenged the
dominance of the Transformer [Vaswani et al., 2017] architecture on long-range tasks [Tay et al.,
2020]. The key insight of those linear RNNs was to diagonalize the recurrent state matrix and enforce
stable training via an exponential parameterization [Gu et al., 2022a; Orvieto et al., 2023]. Since
then, there have been efforts to include features such as gating from RNNs [Elman, 1990; Jordan,
1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014]. Non-linear gates are believed to have
higher expressivity, but are harder to train. Griffin [De et al., 2024] mixes gated linear recurrences
with local attention to achieve more training data efficiency than Llama-2 [Touvron et al., 2023] and
better sequence extrapolation. Mamba [Gu & Dao, 2023] introduces a selection mechanism similar
to gating into SSMs, which makes its state and input matrix time dependent. This is similar to the
gating mechanism of RNNs but also bears resemblance to approaches like fast weights [Schmidhuber,
1992] and Linear Attention [Katharopoulos et al., 2020]. Mamba-2 [Dao & Gu, 2024] highlight
the connection between SSMs with input dependent state and input matrices and (Gated) Linear
attention variants. Most recently, the xLSTM [Beck et al., 2024] was proposed as an improvement
over the classic LSTM [Hochreiter & Schmidhuber, 1997] that combines gating, linear recurrences
and recurrent weights into a single architecture for language modeling. First, xLSTM leverages
exponential gating with stabilization to RNNs for stronger emphasis on important inputs. Second,
xLSTM is composed of two variants, the mLSTM variant with an emphasis on memory that proves
important in language modeling and the sLSTM variant that keeps the non-diagonalized recurrent
matrix to enable state-tracking [Merrill et al., 2024]. State tracking is important in logic tasks and
cannot be modeled fundamentally by linearized recurrent or state-space models like Mamba, Griffin
or Transformers.

3 LARGE RECURRENT ACTION MODELS

3.1 BACKGROUND

Reinforcement Learning. We assume the standard RL formulation via a Markov Decision Process
(MDP) represented by a tuple of (S,A,P,R), where S and A denote state and action spaces,
respectively. At every timestep t the agent observes state st ∈ S , predicts action at ∈ A, and receives

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a scalar reward rt. The reward is determined by the reward function R(rt | st, at). P(st+1 | st, at)
defines the transition dynamics and constitutes a probability distribution over next states st+1 when
executing action at in state st. The goal of RL is to learn a policy π(at | st) that predicts an action
at in state st that maximizes rt.

Decision Transformer [Chen et al., 2021] casts the RL problem setting as next action prediction
task via causal sequence modeling. At training time, DT aims to learn a policy πθ that maps future
rewards to actions, which is often referred to as upside-down RL [Schmidhuber, 2019]. At inference
time, the DT is conditioned via a target return to emit high-reward actions. Consequently, we
assume access to a dataset D = {τi}Ni=1 containing N trajectories τi consisting of quadruplets
τi = (s1, R̂1, a1, r1, . . . , sT , R̂T , aT , rT) of state st, return-to-go (RTG) R̂t =

∑T
t′=t rt′ , action at,

and reward rt. Here, T refers to the length of the trajectory. The DT πθ is trained to predict the
ground-truth action at conditioned on sub-trajectories from the dataset:

ât ∼ πθ(ât | st−C , R̂t−C , at−C , rt−C , . . . , st−1, R̂t−1, at−1, rt−1, st, R̂t), (1)

where C ≤ T is the size of the context window. In fact, Equation 1 describes the setting of the
multi-game DT [Lee et al., 2022], which also includes rewards in the sequence representation.

3.2 LARGE RECURRENT ACTION MODELS (LRAMS)

Our LRAM has a modern recurrent architecture at its core (see Figure 1), which comes with a parallel
training and a recurrent inference mode. We instantiate LRAM with three different variants, two
different xLSTM configurations and Mamba. Furthermore, we use a training protocol similar to that
of Lee et al. [2022] and Reed et al. [2022] with some differences.

Multi-modal sequence representation. To encode input from different environments with varying
state and action spaces, we use separate encoders per modality that are shared across tasks and
domains. For encoding images we use a CNN similar to Espeholt et al. [2018], whereas for low-
dimensional inputs we use a fully connected network. We refrain from patchifying images and
tokenizing continuous states to avoid unnecessarily long sequences. Similarly, we use linear layers to
encode rewards and RTGs. We omit actions in our sequence formulation, as we found that this can be
detrimental to performance, in particular for continuous control tasks (see Section 4.3). Consequently,
our trajectories have the form τi = (s1, R̂1, r1, . . . , sT , R̂T , rT) and we train our policy πρ to predict
the ground-truth action at as:

ât ∼ πρ(ât | st−C , R̂t−C , rt−C , . . . , st−1, R̂t−1, rt−1, st, R̂t). (2)

Shared action head. Action spaces in RL typically vary across environments. For example, in the
environments we consider, there are 18 discrete actions and a maximum of 8 continuous dimensions
for continuous control environments. Therefore, we employ discretization of continuous action
dimensions into 256 uniformly-spaced bins, similar to Reed et al. [2022] and Brohan et al. [2023b].
Unlike prior work, we leverage a shared action head to predict all discrete actions or continuous
action dimensions at jointly. We found this setup significantly reduces inference time compared to
using autoregressive action prediction of continuous actions.

Recurrent inference mode. At inference time, we leverage the recurrent backbone and maintain the
hidden states of the last timestep. This enables fast inference with linear-time complexity along the
sequence length. In addition, the recurrent-style inference is well suited for online fine-tuning via RL
objectives, similar to LSTM-based policies in online RL. To further speed-up inference, we leverage
custom kernels for the xLSTM backbone (see Appendix 22).

Our unified discrete action representation enables consistent training of our agents via the cross-
entropy loss as training objective across all tasks and domains, similar to Reed et al. [2022]. We use
separate reward scales per domain and target returns per task. Furthermore, we do not make use of
timestep encodings as used by Chen et al. [2021], which are detrimental when episode lengths vary.
We provide additional implementation details in Appendix B.

4 EXPERIMENTS

We study the aptitude of modern recurrent architectures as LAMs on 432 tasks from 6 domains:
Atari [Bellemare et al., 2013], Composuite [Mendez et al., 2022], DMControl [Tassa et al., 2018],

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Dataset statistics for all 432 training tasks.

Dataset Tasks Trajectories Mean Trj. Length Total Transitions Repetitions
Atari 41 136K 2733 205M 1.03×
Composuite 240 480K 500 240M 0.87×
DMControl 11 110K 1000 110M 1.92×
Meta-World 45 450K 200 90M 2.34×
Mimicgen 83 83K 300 25M 8.5×
Procgen 12 2185K 144 224M 0.94×
Total 432 3.4M - 894M -

Meta-World [Yu et al., 2020b], Mimicgen [Mandlekar et al., 2023], and Procgen [Cobbe et al., 2020b].
To this end, we compile a large-scale dataset containing 894 million transitions (see Section 4.1).

Across all experiments, we compare four backbone variants: xLSTM [7:1], xLSTM [1:0] [Beck et al.,
2024], Mamba [Gu & Dao, 2023], and the GPT-2 style Transformer employed in the DT [Chen et al.,
2021]. Following [Beck et al., 2024], we use the bracket notation for xLSTM, which indicates the
ratio of mLSTM to sLSTM blocks. For example, xLSTM [1:0] contains only mLSTM blocks.

In Section 4.2, we conduct a scaling comparison for four model sizes ranging from 16M to 208M
parameters that shows that modern recurrent architectures achieve performance comparable or
favorable to the Transformer baseline across different model sizes. In Section 4.3, we study the
impact of the recurrent backbones on fine-tuning performance and ICL abilities, and further analyze
our trained recurrent backbones. Finally, in Section 4.4, we empirically examine the differences at
inference time in terms of latency and throughput between xLSTM-based and Transformer-based
agents, which indicate a clear advantage for the recurrent backbone.

4.1 DATASETS & ENVIRONMENTS

Datasets. We compile a large-scale dataset comprising 432 tasks from six domains. We leverage
datasets from prior works. For Atari, we extract 5M transitions per task from the DQN-Replay dataset
released by Agarwal et al. [2020]. For Composuite, we leverage the datasets released by [Hussing
et al., 2023]. For Meta-World, we use 2M transitions per task released by [Schmied et al., 2024a].
For DMControl, we generate 10M transitions per task using task-specific RL agents. For Mimicgen,
we use the datasets for the 21 tasks released by [Mandlekar et al., 2023] and generate trajectories for
the remaining 62 tasks. Finally, for Procgen, we extract 20M transitions from the datasets released by
[Schmied et al., 2024b]. Our final dataset contains 3.4M trajectories and in total 894M transitions
(see Table 4.1). We reserve an additional 37 tasks from the same domains for zero-shot evaluation. To
foster future research, we release our data-preparation pipeline and generated data at Anonymized.

Environments. Atari and Procgen come with image observations and discrete action. In contrast,
the remaining four domains exhibit state-based observations and continuous actions. Consequently,
our experiments involve a mixture of state and action spaces as well as varying episode lengths (see
Table 4.1). Periodically evaluating the trained agents on all 432 tasks sequentially is time-consuming
and we, therefore, distributed the evaluation across GPUs and parallel processes (see Appendix B).

Additional details on our datasets, environments are available in Appendix A.

4.2 SCALING COMPARISON

To conduct our main comparisons, we train our four backbone variants on the full training task
mixture of 432 tasks. For each architecture backbone, we report performance scores for four model
sizes: 16M, 48M, 108M, and 206M parameters. We train all models for 200K updates with a batch
size of 128 and context length of 50 timesteps. All domains are represented with approximately
equal proportion, resulting in 33K updates per domain. Additional implementation details and
hyperparameters for every backbone variant and model size are available in Appendix B.

Sequence prediction performance. In Figure 2a, we report the validation set perplexity for all
backbones and model sizes averaged over the individual scores from all domains. To achieve this,

5

Anonymized

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Sequence prediction (b) Environment interaction

Figure 2: Scaling comparison. We compare xLSTM, Mamba, DT in four model sizes: 16M, 48M,
110M, and 206M parameters. We show the (a) validation perplexity on the hold-out datasets, and (b)
normalized scores obtained from evaluating in the training task environments, averaged over all 6
domains.

we maintain a hold-out set of trajectories for each training task (2.5%) and compute the perplexities
after every 50K steps. Both recurrent backbones outperform the Transformer baseline considerably,
especially as the model sizes increase. We provide the perplexities on the training set in Figure 13.

Evaluation performance. During training, we evaluate our agents after every 50K step in all 432
training environments. In Figure 2b, we report the resulting normalized performances averaged
across all six domains. The recurrent backbones outperform the Transformer one across model sizes.
While xLSTM and Mamba performs similarly at smaller scales, xLSTM tends to outperform Mamba
at larger scales (206M). This is an important advantage of xLSTM, as LRAM agents can strongly
benefit from more data and consequently larger models. Note, that Mamba has a significantly higher
number of parameters than competitors.For the zero-shot evaluation performances on the 37 hold-out
tasks, we refer to Figure 15 in Appendix C.2.

Figure 3: Normalized scores per domain for model size 206M. For Meta-World, DMControl,
Mimicgen, Composuite and Procgen we report data-normalized scores, for Atari we report human-
normalized scores.

Performance per domain. In Figure 3, we report the normalized scores for the 206M parameter
models attained on all six domains. For Meta-World, DMControl, Mimicgen, Composuite, and
Procgen we use data-normalized scores, as suggested by [Levine et al., 2020]. For Atari, we report
human-normalized scores. Overall, we observe that the xLSTM backbone outperforms competitors
on three of the six domains, while all methods perform similarly on the remaining 3 domains.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

These experiments suggest that modern recurrent backbones can be attractive alternatives to the
Transformer architecture for building LAMs.

4.3 ANALYSES & ABLATIONS

Fine-tuning. To assess the effect of the recurrent backbones on fine-tuning performance, we fine-tune
our models on 37 held-out environments from all 6 domains. We evaluate the fine-tuning performance
of the xLSTM architecture for both the 16M parameter pretrained models and compared it against an
xLSTM trained from scratch. The pretrained LRAM outperforms the randomly initialized xLSTM
model in most domains. For detailed results, see Appendix C.3. This suggests that fine-tuning
performance is not affected negatively by switching the backbone.

Figure 4: ICL with modern recurrent archi-
tectures on Dark-Room 10× 10.

In-context Learning. Next, we study the ICL abil-
ities of our recurrent backbones on the Dark-Room
environment considered in prior work on in-context
RL [Laskin et al., 2022; Lee et al., 2023; Schmied
et al., 2024b]. To study ICL in isolation, we train
models from scratch with a multi-episodic context,
which results in a large context length (we refer to
Appendix C.4 for details on the experiment setup). In
particular, we adopt the Algorithm Distillation (AD,
Laskin et al., 2022) framework and exchange the
Transformer backbone architecture with modern re-
current architectures. In Figure 17, we report the ICL
performance on (a) 80 train and (b) 20 hold-out tasks.
We find that xLSTM [7:1] attains the highest overall
scores both on training and hold-out tasks, which we
attribute to the state-tracking abilities [Merrill et al.,
2024] of sLSTM blocks.

Embedding space analysis. In Figure 5, we analyze the representations learned by our model. To
this end, we sample 32 sub-trajectories from every task, extract the sequence representation at the
last layer, cluster them using UMAP [McInnes et al., 2018], and color every point by its domain.
Appendix E describes the setup in greater detail. We find that tasks from the same domain cluster
together. Furthermore, xLSTM exhibits a more refined domain separation compared to DT, which
may contribute to the better down-stream performance.

(a) DT (b) xLSTM

Figure 5: Embedding space comparison. UMAP clustering of hidden states for all tasks for 16M
models, colored by domain. xLSTM exhibits a better domain separation than DT.

Removing Actions & Effect of Context Length. We found that removing actions from the context
results in better performance across backbones. While context lengths beyond 1 hurt performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

on Meta-World and DMControl and when training with actions, the reverse is true when training
without actions (see Figures 23, 24, 26). This is in contrast to recent works, which did not benefit
from longer contexts [Octo Model Team et al., 2024]. While removing actions improves performance
on Meta-World and DMControl, it does not affect performance on discrete control environments.
For Meta-World and DMControl, we observed that the models become overly confident (high action
logits), which is problematic if poor initial actions are produced. We assume this is because many
robotics environments exhibit smoothly changing actions and by observing previous actions the agent
learns shortcuts. A similar issue has been observed by Wen et al. [2020] and termed the copycat
problem. Removing actions from the input prevents the agent from using shortcuts and alleviates the
copycat problem. Importantly, the evaluation performance improves across domains as the sequence
length increases, which indicates that the history helps to predict the next action (e.g., by observing
mistakes made in the recent past, see Figures 25, 27).

Return-conditioning vs. Behavior Cloning. Across our experiments, we utilized a sequence
representation that includes return-to-go tokens as commonly used in DTs [Chen et al., 2021; Lee
et al., 2022]. However, many recent works focus on behavior cloning without return conditioning
[Reed et al., 2022; Brohan et al., 2023a; Octo Model Team et al., 2024]. Therefore, we study the
effect of excluding the RTG tokens from the sequence representation at the 206M parameter scale, to
validate that our findings transfer to the behavior cloning setting. Indeed, we find that the same trends
hold (see Figure 28 in Appendix D.2).

mLSTM-to-sLSTM Ratio. Throughout our experiments, we compare two xLSTM variants: xLSTM
[7:1] and xLSTM [1:0]. These ratios were proposed by Beck et al. [2024] and we maintain the same
ratios for consistency (see Appendix B.3). While mLSTM is fully parallelizable, sLSTM enables
state-tracking [Merrill et al., 2024]. To better understand the effect of this ratio, we conduct ablation
studies both on the full 432 tasks and on Dark-Room (see Appendix D.3), similar to Beck et al.
[2024]. We find that other ratios, such as [3:1], can be effective (see Figure 30). In addition, we
find it important to place sLSTM blocks a lower-level layers. However, the effectiveness of sLSTM
layers is dependent on the task at hand. We believe that complex tasks with long horizons or partial
observability, as are common in real-world applications, may benefit from the state-tracking abilities
provided by sLSTM blocks.

We present additional ablations on the effect of reducing the number of layers in xLSTM and disabling
Dropout on DT in Appendix D.5 and D.4, respectively.

4.4 INFERENCE TIME COMPARISON

Finally, we empirically examine the difference between xLSTM-based and Transformer-based agents
at inference time. Similar to De et al. [2024], we report both latency and throughput. We focus our
analysis on latency, as it is the more important dimension for real-time applications.

(a) B = 1 (b) B = 16

Figure 6: Latency comparison on A100. We report latency for varying context lengths (in timesteps)
with fixed batch sizes B of 1 and 16. We compare DT to xLSTM with the same number of layer
blocks and parameters on Atari Freeway. Missing bars for DT indicate out-of-memory (OOM).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: Memory consumption during La-
tency comparison on A100 (% of GPU mem-
ory) for varying context lengths and B = 1.

Setup. We conduct all inference time tests on A100
GPUs with 40GB of RAM using 206M parameter
models. For the Transformer, we use KV-caching
and FlashAttention [Dao, 2023] as supported by Py-
Torch [Paszke et al., 2019]. For xLSTM, we use
recurrent-style inference using custom kernels to ac-
celerate the computations (see Figure 22 for the im-
pact of kernel acceleration). For both backbones, we
use torch.compile. The Transformer with KV-
caching has a linear time complexity per step and
quadratic in the sequence length. In contrast, the
xLSTM has a constant time complexity per step and
linear in the sequence length. Therefore, we expect
speed-ups especially for longer sequences and larger
batch sizes, as observed by De et al. [2024]. To en-
sure a fair comparison, we compare DT and xLSTM
with the same number of layer blocks and increase
the hidden size of xLSTM to match the number of parameters of DT (see Appendix D.5 for evaluation
performance of these models). We provide further details on our inference time tests in Appendix
C.5.

Environment. We conduct all inference time tests on the environment that exhibited the longest
average episode lengths in our experiments, the Atari game Freeway. Every episode in Freeway
lasts for 8192 steps, which is equivalent to 24576 tokens (s/rtg/r). We evaluate all models for 5
episodes and preserve the KV-cache/hidden state across episode boundaries. The reported latencies
and throughputs are averaged across all evaluation episodes, except for the first episode, which we
discard to exclude compilation times and prefilling. We opted for measuring the inference times
during environment interaction, i.e., including simulator latency, rather than mere token generation.

Figure 8: Throughput comparison on A100
for varying batch sizes with C = 1600
timesteps on the Atari Freeway environ-
ment. Missing bars for DT indicate OOM.

Latency. Similar to De et al. [2024], we measure
latency by the average time (in seconds) taken to per-
form a single inference step with a fixed batch size
B (lower is better). In Figure, 6, we report the la-
tencies for varying context lengths, C ∈ [50, 25600]
and two batch sizes B ∈ {1, 16}. Note that C is
in time steps and every time step contains 3 tokens
(state, reward-to-go, reward). Hence, the effective
sequence length for the largest C is 76800. As ex-
pected, we find that the recurrent backbone attains
lower inference latencies than the Transformer one.
As the sequence length increases, DT runs out of
memory due to the increasing size of the KV cache
(see Figure 7). In contrast, the inference speeds for
xLSTM are independent of the context length, and
therefore enable significantly longer context lengths.
This property is particularly interesting for in-context
RL, which requires keeping multiple episodes in the
context [Laskin et al., 2022]. Nevertheless, our exper-
iments highlight that the materialization of the complexity advantage (quadratic vs. linear) depends
on the device, model size, batch size and the context length, which is similar to findings by De et al.
[2024].

Throughput. Throughput is measured by the total amount of inference steps performed per second
for a model with a fixed context length. In Figure, 8, we report the throughputs for varying batch
sizes, B ∈ [1, 128] for a fixed context length of C = 1600. Here, the batch size can be interpreted
as the number of parallel environments the agent interacts with. As expected, we find that xLSTM
attains considerably higher throughputs than the DT. The benefit of xLSTM increases with larger
batch sizes. While the DT with quadratic complexity in the sequence length goes OOM for batch
sizes above 64, the xLSTM with linear complexity can easily handle larger batch sizes. In both
experiments, the recurrent xLSTM performs favorably over the Transformer backbone.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In this work, we study the aptitude of modern recurrent architectures as alternatives to Transformers
for building LAMs. We found that our LRAM with an xLSTM or Mamba at its core compare
favorably to the Transformer in terms of evaluation performance across different model scales (see
Section 4.2). Moreover, we demonstrated that xLSTM-based LRAMs exhibit higher inference
speeds, especially at large context sizes (see Section 4.4). Thus, the empirical evidence suggests,
that recurrent backbones such as the xLSTM can be attractive alternatives for LAMs. Notably, the
linear-time inference complexity of xLSTM may enable applications that require long context lengths,
such as in-context RL, and facilitate the application of large-scale agents for real-time applications,
such as robotics.

Nevertheless, modern recurrent architectures and Transformers come with different pros and cons.
Both xLSTM and Mamba, on the one hand, exhibit a fundamental computational complexity ad-
vantage over Transformers. Their linear complexity ensures that the computational requirements
increase slower with the sequence length. This property enables more efficient inference, which can
be particularly relevant for edge-applications. While we conduct our inference time comparisons
on a high-end data-center GPU, applications on edge-devices may have to deal with less powerful
accelerators. Importantly, we found that LAMs strongly benefit from longer sequences (see Section
4.3). Transformers, on the other hand, are particularly effective for applications that require exact
recall of tokens in a sequence, which can be important for decision-making [Ni et al., 2024]. Finally,
xLSTM in particular enables state-tracking via sLSTM blocks, which Transformers and Mamba can-
not perform [Merrill et al., 2024]. State tracking can be important for logic tasks and for dealing with
partial observability in RL environments (see Section 4.3) and may be a useful tool for practicioners.
Given these differences, different backbones should be considered depending on the task at hand.

Limitations. The primary target application of LAMs is robotics. While the majority of our
experiments involve robotic simulations, we do not yet provide empirical evidence for real robots.
We do, however, believe that our findings translate to real-world scenarios and aim to provide further
evidence in future work. Moreover, the fine-tuning experiments in this work are limited to offline
RL. We envision that an agent pre-trained by behavioral cloning on large-scale offline RL datasets
may be successfully fine-tuned in an online RL setting to explore new strategies that do not appear
in the training data. Modern recurrent architectures offer both parallel and recurrent training mode,
which might be the key to success for such applications. While we provide initial evidence of
improved ICL abilities of modern recurrent architectures, we only consider a limited grid-world
setting. Consequently, we aim to further investigate the in-context RL abilities of recurrent backbones
on more complex environments in future work.

6 ETHICS STATEMENT

While we conduct all our experiments in simulated environments, the primary target application of
our method is robotics. We believe that our work can positively impact applications in the near future,
which require efficient inference, on-device processing, or have real-time constraints. However,
robotics applications in the real world are not without risks. In particular, in areas where humans
are involved, such as factory settings, special care is required. LAMs are trained via next-action
prediction similar to LLMs. Consequently, LAMs may also suffer from hallucinations in unknown
scenarios. We therefore strongly discourage users from blindly following the predictions made by
real-world LAMs without appropriate safeguards regarding safety and robustness. It is essential to
ensure responsible deployment of such future technologies, and we believe that more research on the
robustness of LAMs is necessary.

7 REPRODUCIBILITY

Upon publication, we will make the code-base used for our experiments publicly available, and release
the datasets we generated. Both will be available at: Anonymized. As part of this submission, we
also include the source code in the supplementary material. We describe the environments we use
for our experiments and provide dataset statistics in Appendix A. Furthermore, in Appendix B, we
provide implementation details for all methods and a list of hyperparameters used for our experiments.

10

Anonymized

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

In Appendix C, we present additional figures that accompany our results in the main text (e.g., all
model sizes). Finally, in Appendices D and E, we provide further details on the conducted ablation
studies and the embedding space analysis, respectively.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Benedikt Alkin, Maximilian Beck, Korbinian Pöppel, Sepp Hochreiter, and Johannes Brandstetter.
Vision-lstm: xlstm as generic vision backbone. CoRR, abs/2406.04303, 2024. doi: 10.48550/
ARXIV.2406.04303. URL https://doi.org/10.48550/arXiv.2406.04303.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in Neural Information Processing
Systems, 33:12449–12460, 2020.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. CoRR, abs/2405.04517, 2024. doi: 10.48550/ARXIV.2405.04517. URL
https://doi.org/10.48550/arXiv.2405.04517.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Dkebiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023a.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong T. Tran, Vin-
cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. RT-1: robotics transformer for real-world control at scale. In Kostas E.
Bekris, Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), Robotics: Science and Systems XIX,
Daegu, Republic of Korea, July 10-14, 2023, 2023b. doi: 10.15607/RSS.2023.XIX.025. URL
https://doi.org/10.15607/RSS.2023.XIX.025.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),

11

https://doi.org/10.48550/arXiv.2406.04303
https://doi.org/10.48550/arXiv.2405.04517
https://doi.org/10.15607/RSS.2023.XIX.025

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.
Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021.

Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones, and Sangbae Kim. The mit humanoid
robot: Design, motion planning, and control for acrobatic behaviors. In 2020 IEEE-RAS 20th
International Conference on Humanoid Robots (Humanoids), pp. 1–8. IEEE, 2021.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.),
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pp. 1724–1734. ACL, 2014. doi: 10.3115/V1/D14-1179. URL https:
//doi.org/10.3115/v1/d14-1179.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020a.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 2048–2056. PMLR, 2020b. URL http://proceedings.
mlr.press/v119/cobbe20a.html.

Yang Dai, Oubo Ma, Longfei Zhang, Xingxing Liang, Shengchao Hu, Mengzhu Wang, Shouling
Ji, Jincai Huang, and Li Shen. Is mamba compatible with trajectory optimization in offline
reinforcement learning? arXiv preprint arXiv:2405.12094, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haitham El-Hussieny. Real-time deep learning-based model predictive control of a 3-dof biped robot
leg. Scientific Reports, 14(1):16243, 2024.

Jeffrey L. Elman. Finding structure in time. Cogn. Sci., 14(2):179–211, 1990. doi: 10.1207/
S15516709COG1402\ 1. URL https://doi.org/10.1207/s15516709cog1402_1.

Embodiment Collaboration, A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee,
A. Pooley, A. Gupta, A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Herzog, A. Irpan, A. Khaz-
atsky, A. Rai, A. Gupta, A. Wang, A. Singh, A. Garg, A. Kembhavi, A. Xie, A. Brohan, A. Raf-
fin, A. Sharma, A. Yavary, A. Jain, A. Balakrishna, A. Wahid, B. Burgess-Limerick, B. Kim,
B. Schölkopf, B. Wulfe, B. Ichter, C. Lu, C. Xu, C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang,
C. Chan, C. Agia, C. Pan, C. Fu, C. Devin, D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak,
D. Shah, D. Büchler, D. Jayaraman, D. Kalashnikov, D. Sadigh, E. Johns, E. Foster, F. Liu, F. Ceola,
F. Xia, F. Zhao, F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi,
G. Berseth, G. Kahn, G. Wang, H. Su, H. Fang, H. Shi, H. Bao, H. Ben Amor, H. I. Christensen,
H. Furuta, H. Walke, H. Fang, H. Ha, I. Mordatch, I. Radosavovic, I. Leal, J. Liang, J. Abou-
Chakra, J. Kim, J. Drake, J. Peters, J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu, J. Gao, J. Hu,
J. Wu, J. Wu, J. Tan, J. Oh, J. Wu, J. Lu, J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao,
K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Kawaharazuka,
K. Black, K. Lin, K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Fang, K. Singh, K. Zeng,
K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. Fan, L. Ott, L. Lee, L. Weihs,
M. Chen, M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. Guaman Castro, M. Spero, M. Du,
M. Ahn, M. C. Yip, M. Zhang, M. Ding, M. Heo, M. Kumar Srirama, M. Sharma, M. J. Kim,
M. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf, N. Liu, N. Di Palo, N. Shafiullah,
O. Mees, O. Kroemer, O. Bastani, P. R Sanketi, P. Miller, P. Yin, P. Wohlhart, P. Xu, P. Fagan,
P. Mitrano, P. Sermanet, P. Abbeel, P. Sundaresan, Q. Chen, Q. Vuong, R. Rafailov, R. Tian,
R. Doshi, R. Martı́n-Martı́n, R. Baijal, R. Scalise, R. Hendrix, R. Lin, R. Qian, R. Zhang, R. Men-
donca, R. Shah, R. Hoque, R. Julian, S. Bustamante, S. Kirmani, S. Levine, S. Lin, S. Moore,
S. Bahl, S. Dass, S. Sonawani, S. Song, S. Xu, S. Haldar, S. Karamcheti, S. Adebola, S. Guist,
S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari, S. Belkhale, S. Park,
S. Nair, S. Mirchandani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao, T. Kollar, T. Yu,
T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung, V. Jain, V. Vanhoucke,
W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Wang, X. Zhu, X. Geng, X. Liu, X. Liangwei, X. Li,
Y. Lu, Y. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Wu, Y. Xu, Y. Wang, Y. Bisk, Y. Cho,
Y. Lee, Y. Cui, Y. Cao, Y. Wu, Y. Tang, Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li, Y. Iwasawa,
Y. Matsuo, Z. Ma, Z. Xu, Z. Cui, Z. Zhang, Z. Fu, and Z. Lin. Open x-embodiment: Robotic
learning datasets and rt-x models, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu,
Yuke Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics:
Applications, challenges, and the future. The International Journal of Robotics Research, pp.
02783649241281508, 2023.

Gene F Franklin, J David Powell, Michael L Workman, et al. Digital control of dynamic systems,
volume 3. Addison-wesley Menlo Park, 1998.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=tcbBPnfwxS.

Andreas Fürst, Elisabeth Rumetshofer, Johannes Lehner, Viet Tran, Fei Tang, Hubert Ramsauer,
David Kreil, Michael Kopp, Günter Klambauer, Angela Bitto-Nemling, and Sepp Hochreiter.
Cloob: Modern hopfield networks with infoloob outperform clip, 2022.

13

https://doi.org/10.1207/s15516709cog1402_1
https://openreview.net/forum?id=tcbBPnfwxS

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.
48550/arXiv.2312.00752.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 572–585, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebcc6ebb76-Abstract.html.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022b. URL https://openreview.net/
forum?id=uYLFoz1vlAC.

J. Gu, S. Kirmani, P. Wohlhart, Y. Lu, M. Gonzalez Arenas, K. Rao, W. Yu, C. Fu, K. Gopalakrishnan,
Z. Xu, P. Sundaresan, P. Xu, H. Su, K. Hausman, C. Finn, Q. Vuong, and T. Xiao. Rt-trajectory:
Robotic task generalization via hindsight trajectory sketches, 2023.

X. Gu, Y.-J. Wang, and J. Chen. Humanoid-gym: Reinforcement learning for humanoid robot with
zero-shot sim2real transfer, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1856–1865. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked
autoencoders are scalable vision learners. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988.
IEEE, 2022. doi: 10.1109/CVPR52688.2022.01553.

M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. G.
Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. ArXiv,
2017.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, 1997.

Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
Yaqi Xie, Tianyi Zhang, Zhibo Zhao, et al. Toward general-purpose robots via foundation models:
A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023.

Marcel Hussing, Jorge A Mendez, Anisha Singrodia, Cassandra Kent, and Eric Eaton. Robotic manip-
ulation datasets for offline compositional reinforcement learning. arXiv preprint arXiv:2307.07091,
2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

14

https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
http://arxiv.org/abs/1503.02531

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

X. Jia, D. Blessing, X. Jiang, M. Reuss, A. Donat, R. Lioutikov, and G. Neumann. Towards diverse
behaviors: A benchmark for imitation learning with human demonstrations. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=6pPYRXKPpw.

Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu, and
L. Fan. Vima: General robot manipulation with multimodal prompts, 2023.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2022.

Michael I. Jordan. Attractor dynamics and parallelism in a connectionist sequential machine, pp.
112–127. IEEE Press, 1990. ISBN 0818620153.

Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent
experience replay in distributed reinforcement learning. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=r1lyTjAqYX.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

Louis Kirsch, James Harrison, C Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. Towards
general-purpose in-context learning agents. In NeurIPS 2023 Workshop on Generalization in
Planning, 2023.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning with
augmented data. ArXiv, 2004.14990, 2020.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky
(ed.), Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598–605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers.
arXiv preprint arXiv:2205.15241, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox. Mimicgen:
A data generation system for scalable robot learning using human demonstrations, 2023.

15

https://openreview.net/forum?id=6pPYRXKPpw
https://openreview.net/forum?id=6pPYRXKPpw
https://openreview.net/forum?id=r1lyTjAqYX
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Jorge A. Mendez, Marcel Hussing, Meghna Gummadi, and Eric Eaton. Composuite: A compositional
reinforcement learning benchmark. In Sarath Chandar, Razvan Pascanu, and Doina Precup (eds.),
Conference on Lifelong Learning Agents, CoLLAs 2022, 22-24 August 2022, McGill University,
Montréal, Québec, Canada, volume 199 of Proceedings of Machine Learning Research, pp.
982–1003. PMLR, 2022. URL https://proceedings.mlr.press/v199/mendez22a.
html.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One
big sequence model conquers all starcraftii tasks. arXiv preprint arXiv:2112.02845, 2021.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
CoRR, abs/2404.08819, 2024. doi: 10.48550/ARXIV.2404.08819. URL https://doi.org/
10.48550/arXiv.2404.08819.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, , and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36, 2024.

Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, J. Luo, Y. L. Tan, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and
S. Levine. Octo: An open-source generalist robot policy, 2024.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Çaglar Gülçehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 26670–26698. PMLR, 2023.
URL https://proceedings.mlr.press/v202/orvieto23a.html.

Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
spaces. arXiv preprint arXiv:2403.19925, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Vihang Patil, Markus Hofmarcher, Marius-Constantin Dinu, Matthias Dorfer, Patrick M. Blies,
Johannes Brandstetter, José Antonio Arjona-Medina, and Sepp Hochreiter. Align-rudder: Learning
from few demonstrations by reward redistribution. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 17531–17572. PMLR, 2022.

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton, Bethanie
Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling instructable agents across
many simulated worlds. arXiv preprint arXiv:2404.10179, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

16

https://proceedings.mlr.press/v199/mendez22a.html
https://proceedings.mlr.press/v199/mendez22a.html
https://doi.org/10.48550/arXiv.2404.08819
https://doi.org/10.48550/arXiv.2404.08819
https://proceedings.mlr.press/v202/orvieto23a.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp.
8748–8763. PMLR, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356,
2022.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gener-
alization to new sequential decision making tasks with in-context learning, 2023.

Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. CoRR, abs/2205.06175, 2022.
doi: 10.48550/arXiv.2205.06175.

Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide Scaramuzza, and Markus
Ryll. Real-time neural mpc: Deep learning model predictive control for quadrotors and agile
robotic platforms. IEEE Robotics and Automation Letters, 8(4):2397–2404, 2023.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them to
actions. arXiv preprint arXiv:1912.02875, 2019.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Comput., 4(1):131–139, 1992. doi: 10.1162/NECO.1992.4.1.131. URL
https://doi.org/10.1162/neco.1992.4.1.131.

Niklas Schmidinger, Lisa Schneckenreiter, Philipp Seidl, Johannes Schimunek, Sohvi Luukkonen,
Pieter-Jan Hoedt, Johannes Brandstetter, Andreas Mayr, Sepp Hochreiter, and Günter Klambauer.
Bio-xlstm: Generative modeling, representation and in-context learning of biological and chemical
sequences. Under reveiw, 2024.

Dominik Schmidt and Thomas Schmied. Fast and data-efficient training of rainbow: an experimental
study on atari. arXiv preprint arXiv:2111.10247, 2021.

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing
Systems, 36, 2024a.

Thomas Schmied, Fabian Paischer, Vihang Patil, Markus Hofmarcher, Razvan Pascanu, and Sepp
Hochreiter. Retrieval-augmented decision transformer: External memory for in-context rl. arXiv
preprint arXiv:2410.07071, 2024b.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. ArXiv, 2018.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level efficiency. In
International Conference on Machine Learning, pp. 30365–30380. PMLR, 2023.

Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vihang Prakash
Patil, Angela Bitto-Nemling, Hamid Eghbal-zadeh, and Sepp Hochreiter. A dataset perspective on
offline reinforcement learning. In Conference on Lifelong Learning Agents, pp. 470–517. PMLR,
2022.

17

https://doi.org/10.1162/neco.1992.4.1.131

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and Michael S Ryoo. Starformer: Transformer with
state-action-reward representations for visual reinforcement learning. In European Conference on
Computer Vision, pp. 462–479. Springer, 2022.

Max Siebenborn, Boris Belousov, Junning Huang, and Jan Peters. How crucial is transformer in
decision transformer? arXiv preprint arXiv:2211.14655, 2022.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. doi:
10.1038/nature16961.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/forum?id=Ai8Hw3AXqks.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. CoRR, abs/1801.00690, 2018.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012a.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
October 2012b. doi: 10.1109/IROS.2012.6386109.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/
10.48550/arXiv.2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,

18

https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=Ai8Hw3AXqks
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning. Nat., 575(7782):
350–354, 2019. doi: 10.1038/s41586-019-1724-z.

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager: An
open-ended embodied agent with large language models, 2023.

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. arXiv preprint arXiv:2206.08569, 2022.

Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, and Yang Gao. Fighting copycat agents
in behavioral cloning from observation histories. Advances in Neural Information Processing
Systems, 33:2564–2575, 2020.

Maciej Wolczyk, Michal Zajkac, Razvan Pascanu, Lukasz Kuciński, and Piotr Miloś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Information
Processing Systems, 34:28496–28510, 2021.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020b.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 27042–27059. PMLR, 2022.

G. Zhu, Z. Lin, G. Yang, and C. Zhang. Episodic reinforcement learning with associative memory. In
International Conference on Learning Representations, 2020.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. CoRR,
abs/2401.09417, 2024. doi: 10.48550/ARXIV.2401.09417. URL https://doi.org/10.
48550/arXiv.2401.09417.

19

https://doi.org/10.48550/arXiv.2401.09417
https://doi.org/10.48550/arXiv.2401.09417

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

APPENDIX

Contents
A Environments & Datasets 20

A.1 General . 20
A.2 Atari . 20
A.3 Meta-World . 21
A.4 DMControl . 21
A.5 Composuite . 23
A.6 Mimicgen . 24
A.7 Procgen . 24

B Experimental & Implementation Details 25
B.1 Training & Evaluation. 25
B.2 Context Lengths. 26
B.3 Model Architectures. 26
B.4 Hardware & Training Times. 26

C Additional Results 27
C.1 Training Tasks . 27
C.2 Hold-out Tasks . 27
C.3 Fine-Tuning . 27
C.4 In-context Learning . 27
C.5 Inference Time Comparisons . 31

C.5.1 Latency . 31
C.5.2 Throughput . 31
C.5.3 xLSTM Kernel Comparisons . 32

D Ablations 34
D.1 Removing action condition . 34

D.1.1 DT on Meta-World . 34
D.1.2 DT on all 432 tasks. 34
D.1.3 xLSTM on all 432 tasks. 36

D.2 Return-conditioning vs. Behavior Cloning . 37
D.3 Effect of mLSTM-to-sLSTM ratio. 37
D.4 Effect of Dropout in DT . 39
D.5 Effect of reducing number of layers in xLSTM 39

E Embedding Space Analysis 39

F Raw Scores 40

A ENVIRONMENTS & DATASETS

A.1 GENERAL

We compile a large-scale dataset comprising 432 tasks from six domains, 3.4M trajectories, and
894M transitions in total (see Table 4.1). To enable fast and targeted data-loading, every trajectory is
stored in a separate hdf5 file. We trade off some data-loading speed for disk space efficiency, by
compressing trajectories that contain image-based observations.

A.2 ATARI

The Arcade Learning Environment (ALE) [Bellemare et al., 2013] is the standard benchmark for
evaluating RL agents and consists of 57 Atari games. Input observations in Atari are RGB images,
but as is standard practice we gray-scale and crop frames (|S| = 1× 64× 64). There are 18 discrete
action across all 57 Atari games (|A| = 18), but individual games may use only use a subset of these

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

actions. Furthermore, we adopt the standard Atari recipe as used in prior works, including a frame
skip of 4, maximum number of no-ops of 30, resetting on life loss, and reward clipping to [−1, 1]
[Mnih et al., 2015; Hessel et al., 2017].

Tasks. Similar to Lee et al. [2022], we assign 41 games to the training set, and 5 additional tasks to
the hold-out set. The 41 training tasks include:

amidar, assault, asterix, atlantis, bank-heist, battle-zone, beam-rider,
boxing, breakout, carnival, centipede, chopper-command, crazy-climber,
demon-attack, double-dunk, enduro, fishing-derby, freeway, frostbite,
gopher, gravitar, hero, ice-hockey, jamesbond, kangaroo, krull,
kung-fu-master, name-this-game, phoenix, pooyan, qbert, riverraid,
road-runner, robotank, seaquest, time-pilot, up-n-down, video-pinball,
wizard-of-wor, yars-revenge, zaxxon

The 5 hold-out tasks include: alien, pong, ms-pacman, space-invaders, star-gunner

Dataset. For Atari, we leverage the DQN-Replay dataset released by Agarwal et al. [2020]. The
dataset contains the trajectories seen over the entire training of the DQN agent (50M frames), We
extract a subset of the last 5M transitions for every task, amounting to 205M transitions in total for
the 41 training tasks. The number of episodes, the episodes lengths and total achieved rewards vary
across tasks, as shown in Table 2.

A.3 META-WORLD

The Meta-World benchmark [Yu et al., 2020a] consists of 50 manipulations tasks using a Sawyer
robotic arm, ranging from opening or closing windows, to pressing buttons. Meta-World is based on
the MuJoCo physics engine [Todorov et al., 2012b]. Observations in Meta-World are 39-dimensional
continuous vectors (|S| = 1 × 64 × 39), and actions are represented by 6 continuous dimensions
(|A| = 18) in range [−1, 1]. All tasks share a common action and state space. Following Wolczyk
et al. [2021] and Schmied et al. [2024a], we limit the episode lengths to 200 interactions.

Tasks. We follow Yu et al. [2020a] and split the 50 Meta-World tasks into 45 training tasks (MT45)
and 5 evaluation tasks (MT5).

The 45 training tasks are:

reach, push, pick-place, door-open, drawer-open, drawer-close,
button-press-topdown, peg-insert-side, window-open, window-close,
door-close, reach-wall, pick-place-wall, push-wall, button-press,
button-press-topdown-wall, button-press-wall, peg-unplug-side,
disassemble, hammer, plate-slide, plate-slide-side, plate-slide-back,
plate-slide-back-side, handle-press, handle-pull, handle-press-side,
handle-pull-side, stick-push, stick-pull, basketball,soccer,
faucet-open, faucet-close, coffee-push, coffee-pull, coffee-button,
sweep, sweep-into, pick-out-of-hole, assembly, shelf-place, push-back,
lever-pull, dial-turn

The 5 evaluation tasks are: bin-picking, box-close, door-lock, door-unlock,
hand-insert

Dataset. For Meta-World, we use the datasets released by [Schmied et al., 2024a], which contain 2M
transitions per tasks and consequently 90M transitions in total for the training set. All episodes last
for 200 environment interaction steps, and consequently there are 10K episodes for every task. For
detailed dataset statistics per task, we refer to their publication.

A.4 DMCONTROL

The DMControl benchmark [Tassa et al., 2018] consists of 30 different robotic tasks. Unlike Meta-
World, the benchmark contains robots with different morphologies instead of a single common
Sawyer arm. Due to the different robot morphologies, the state, and action spaces vary across tasks
(3 ≤ |S| ≤ 24, 1 ≤ |A| ≤ 6), with all actions in range [−1, 1].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: Atari Dataset Statistics.

Task # of Trajectories Mean Length Mean Return
amidar 1813 2753 145
pooyan 2773 1800 176
frostbite 5218 766 18
video-pinball 1023 3902 266
wizard-of-wor 3059 1314 15
chopper-command 5452 738 18
breakout 3780 1300 39
phoenix 3307 1509 49
asterix 5250 951 55
enduro 571 8720 636
kung-fu-master 1775 2812 131
hero 3022 1345 168
assault 3782 1170 77
demon-attack 1649 2431 116
qbert 3939 1138 155
jamesbond 2841 1758 11
bank-heist 4146 1204 62
up-n-down 3246 1538 99
centipede 6879 582 81
boxing 4796 1041 63
battle-zone 1933 2134 15
name-this-game 988 5049 389
zaxxon 2561 1950 12
beam-rider 1232 3248 77
time-pilot 3886 1029 11
ice-hockey 1465 3407 -6
riverraid 2645 1512 143
krull 3032 1319 528
gopher 1817 2338 185
freeway 2438 2048 33
seaquest 2807 1779 150
double-dunk 1774 2815 0
road-runner 3308 1217 135
atlantis 186 26349 1394
gravitar 6187 646 1
yars-revenge 4094 1036 96
crazy-climber 1105 3954 572
kangaroo 1787 2792 50
fishing-derby 2737 1825 0
carnival 21131 194 37
robotank 747 6652 56

Average 3321 2734 153

Tasks. We do not use all 30 tasks contained in the DMControl benchmark, but select 16 of the 30
tasks that have been used in prior works [Hafner et al., 2019; Schmied et al., 2024a;b], which we
refer to as DMC11 and DMC5 respectively.

The 11 training tasks are:

finger-turn easy, fish-upright, hopper-stand, point mass-easy,
walker-stand, walker-run, ball in cup-catch, cartpole-swingup,
cheetah-run, finger-spin, reacher-easy

The 5 evaluation tasks are:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) IIWA (b) Panda (c) Jaco (d) Gen3

Figure 9: Illustration of the four supported robot arms in Composuite [Mendez et al., 2022].

cartpole-balance, finger-turn hard, pendulum-swingup, reacher-hard,
walker-walk

Dataset. For DMControl, we generate 10M transitions per task by training task-specific SAC
[Haarnoja et al., 2018] agents, using the same setup as Schmied et al. [2024a]. Episodes in all
DMControl tasks last for 1000 environment steps and per time-step a maximum reward of +1 can be
achieved, which results in a maximum reward of 1000 per episode. Consequently, our training set
contains 10K episodes per tasks, amounting to 110K episodes and 110M transitions in total across all
tasks. We list the dataset statistics for all 11 tasks in Table 3.

Table 3: DMControl Data statistics.

Task # of Trajectories Mean Length Mean Return
point mass easy 10K 1K 851
cheetah run 10K 1K 385
walker run 10K 1K 230
ball in cup catch 10K 1K 969
hopper stand 10K 1K 460
walker stand 10K 1K 939
finger turn easy 10K 1K 954
reacher easy 10K 1K 938
cartpole swingup 10K 1K 817
fish upright 10K 1K 815
finger spin 10K 1K 966

Average 19628 152 8.2

A.5 COMPOSUITE

The Composuite benchmark [Mendez et al., 2022], is a robotics benchmark for grasping and object
manipulation. The benchmark is implemented on top of robotsuite [Zhu et al., 2020], which in
turn leverages the MuJoCo simulator under the hood [Todorov et al., 2012a]. Composuite contains a
mix of 4 simulated robot arms: IIWA, Jaco, Gen3, and Panda (see Figure 9). All arms share a
common state and action space containing 93 continuous state dimensions and 8 continuous action
dimensions, respectively (|S| = 93, |A| = 8).

Tasks. CompoSuite is designed as a compositional multi-task benchmark for RL, in which a
particular robot manipulates a particular object given an objective, while avoiding obstacles. Overall,
there are 4 robots arms, 4 objects, 4 obstacles, and 4 task objectives. This results in 256 possible
robot/object/objective/obstacles combinations. For our experiments, we assign 240 tasks to the
training set and use the remaining 16 tasks as hold-out set (Panda and Object Wall) combinations.
For a list of all 256 tasks, we refer to Mendez et al. [2022].

Dataset. For Composuite, we leverage the datasets released by Hussing et al. [2023]. For every task,
we select 2000 episodes, which last on average for 500 steps. This amounts to 1M transitions per

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) IIWA (b) Panda (c) Sawyer (d) UR5e

Figure 10: Illustration of the four supported robot arms in Mimicgen [Mandlekar et al., 2023]
solving the stack-three task.

task, and 240M transitions across all 240 training tasks. For dataset statistics, we refer to Hussing
et al. [2023].

A.6 MIMICGEN

Similar to Composuite, Mimicgen [Mandlekar et al., 2023] is based on robosuite and the MuJoCo
simulator. Mimicgen is designed for automatically synthesizing large-scale datasets from only a
handful of human demonstrations. Observations in Mimicgen can be represented as images (from
multiple cameras) or low dimensional continuous states. For our experiments, we opt for the
low-dimensional state representation to simplify learning. Therefore, observations and actions
are represented by 37-dimensional and 7-dimensional continuous vectors, respectively (|S| = 37,
|A| = 7). Similar to Composuite, Mimicgen supports 4 different robot arms: Panda, IIWA,
Sawyer, and UR5e (see Figure 10).

Tasks. Mimicgen consists of 24 diverse tasks, including stacking blocks, re-assembling objects,
and even long-horizon tasks like coffee preparation. These 24 tasks can be performed with the four
supported robot arms, amounting to 96 tasks in total.

Dataset. Mandlekar et al. [2023] released dataset for the 24 tasks using the default robot arm Panda.
To increase the dataset diversity, we additionally generated data for the remaining 3 robot arms.
However, not all data generation runs produce successful trajectories, and we discard with too few
successful trajectories. Our final dataset for Mimicgen contains 83 training and 2 evaluation tasks. For
each task, we collect 1000 successful demonstrations (we do not include unsuccessful trajectories).
Episode lengths vary across tasks, ranging from 260 to 850 environment steps.

A.7 PROCGEN

Procgen benchmark consists of 16 procedurally-generated video games [Cobbe et al., 2020a]. Obser-
vations in Procgen are RGB images of dimension 3× 64× 64. However, for training efficiency, we
apply gray-scaling to image observations (|S| = 1× 64× 64). All 16 environments share a common
action space of 15 discrete actions (|A| = 16). Procgen is designed to test the generalization abilities
of RL agents. Consequently, procedural generation is employed to randomize background and colors,
while retaining the game dynamics.

Tasks. Following prior works [Raparthy et al., 2023; Schmied et al., 2024b], we assign 12 and 4
tasks to training and hold-out set, respectively. The 12 training tasks are:

bigfish, bossfight, caveflyer, chaser, coinrun, dodgeball,
fruitbot, heist, leaper, maze, miner, starpilot

The 4 hold-out tasks are: climber, ninja, plunder, jumper

Dataset. We leverage the datasets released by Schmied et al. [2024b], which contain 20M transitions
per task. The datasets were generated by recording all transitions observed by training RL agents for
25M steps, followed by uniform subsampling to 20M transitions. Consequently, the dataset contains
mixed quality trajectories ranging from random (beginning of training) to expert (end of training).
We list the dataset statistics for all 16 tasks in Table 4.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 4: Procgen Data statistics.

Task # of Trajectories Mean Length Mean Return
bigfish 82835 230 6.251
bossfight 112459 141 1.946
caveflyer 151694 105 7.745
chaser 93612 212 3.248
coinrun 261117 51 9.473
dodgeball 144364 137 2.884
fruitbot 73653 270 16.094
heist 101361 196 8.405
leaper 296084 67 4.446
maze 482245 41 9.432
miner 288818 68 11.8
starpilot 96468 206 17.3

Average 182059 144 8.3

Table 5: Hyperparameters for RA-DT.

Parameter Value
Gradient steps 200K
Evaluation frequency 50K
Evaluation episodes 5
Optimizer AdamW
Batch size 128
Gradient accumulation 6
Lr schedule Linear warm-up + Cosine
Warm-up steps 4000
Learning rate 1e-4 → 1e-6
Weight decay 0.01
Gradient clipping 0.25
Dropout 0.2
Context len (timesteps) 50
Reward scale per-domain
Target return per-task

B EXPERIMENTAL & IMPLEMENTATION DETAILS

B.1 TRAINING & EVALUATION.

In our experiments, we compare two variants of xLSTM, Mamba and DT. For our main experiments
in Section 4.2, we train all models for 200K updates, and evaluate after every 50K update steps. We
report the mean and 95% confidence intervals over three seeds in our experiments, as suggested by
Agarwal et al. [2021]. For every evaluation tasks, we take the average of 3 evaluation seeds.

We train our agents with a batch size of 128 and gradient accumulation across the 6 domains, such
that every domain is represented with the same proportion. Consequently, the effective batch size is
768. We use a learning rate of 1e−4, 4000 linear warm-up steps followed by a cosine decay to 1e−6,
and train using the AdamW optimizer [Loshchilov & Hutter, 2018]. In addition, we employ gradient
clipping of 0.25, weight decay of 0.01 for all models. We do not employ Dropout, as is standard
practice in DTs, as we found that it negatively affects performance (see Section 4.3). We use separate
reward scales of 200, 100 and 20 for Meta-World, DMControl and Atari, respectively. Furthermore,
for all domains, we set the target return to the maximum return achieved for a particular task in the
training datasets. This is particularly useful for domains, where the maximum returns differ heavily
across tasks (e.g., Atari). We list all hyperparameters in Table 5.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.2 CONTEXT LENGTHS.

By default, we train all models with a context length C = 50 timesteps. For every timestep there are
three tokens (s/rt/r) and consequently, the effective context length is 150. We found that performance
improves for longer context lengths (see Section D.1), but limit our experiments to C = 50 to reduce
the computational cost.

B.3 MODEL ARCHITECTURES.

We train models across 4 models sizes: 16M, 48M, 110M, and 206M. We follow Lee et al. [2022] in
selecting the number of layers and hidden dimensions. For xLSTM and Mamba, we use twice the
number of layers blocks to match the number of parameters of the Transformer [Beck et al., 2024;
Gu et al., 2024] (see Table 6) For our xLSTM [7:1] variant, which contains sLSTM blocks, we strive
to maintain the same ratio as proposed by Beck et al. [2024]. Not all our model sizes are divisible by
8 and only the 16M and 110M models exhibit the exact 7:1 ratio of mLSTM to sLSTM blocks. For
consistency, however, we maintain the same notation as Beck et al. [2024]. We place sLSTM blocks
at positions [1], [1, 3], [1, 3], and [1, 3, 5] for the 16M, 48M, 110M, 206M, respectively.

Across backbones, we use linear layers to encode continuous states, reward returns-to-go, similar to
Chen et al. [2021]. The maximal state-dimension across continuous control environments is 204 in
our experiments. To use a shared linear embedding layer for continuous states, we pad states that
have lower number of dimensions to 204 dimensions using zeros. To encode image inputs on visual
domains, we use the IMPALA-CNN proposed by Espeholt et al. [2018] and adopted by previous
works on Procgen [Cobbe et al., 2020a] and Atari [Schmidt & Schmied, 2021; Schwarzer et al., 2023].
Consequently, we do not make use of discretization of continuous states or patchification of images.
This design choice significantly reduces the sequence length to only three tokens per time-step (see
Appendix B.2) and consequently results in faster inference.

For continuous actions, we make use of discretization and discretize of every action dimension into
256 uniformly-spaced bins, similar to Reed et al. [2022] and Brohan et al. [2023b]. We experimented
with lower/higher number of bins, but did not observe a benefit beyond 256 bins. Consequently, this
resolution is sufficient for the environments we consider. We use a shared action head to predict
the action bins of all continuous dimensions jointly. The maximum number of continuous action
dimensions is 8 in our experiments and consequently the number of discrete action classes is 2048. In
addition, there are 18 discrete actions originating from Atari and Procgen. Therefore, our action head
learns to predict the correct action among the 2066 discrete classes. While different environments
may have different action dimensions, the model predicts all action dimensions jointly. At inference
time, the number of action dimensions of the current environment is known, and we extract the
respective dimensions from the joint predictions. We opt for the shared action head representation, as
this further speeds up inference and does not require autoregressive action prediction.

For the Transformer baseline, we use global positional embeddings similar to Chen et al. [2021]. For
the recurrent backbones, we do not make use of positional encodings.

B.4 HARDWARE & TRAINING TIMES.

We train all our models on a server equipped with 4 A100 GPUs. We use distributed data parallel to
distribute the workload, as supported in PyTorch [Paszke et al., 2019]. Training times range from
5 hours for the smallest DT model to 30 hours for the largest Mamba model. Throughout all our
experiments, we use mixed precision training [Micikevicius et al., 2017] as supported in PyTorch to
speed up training time.

We evaluate our models after every 50K steps. However, periodically evaluating the trained agents
on all 432 tasks sequentially is time-consuming. Therefore, we perform parallel evaluation with 4
processes at a time. For multi-GPU setups, we distribute the evaluation workload among the available
GPUs. For example, with 4 available GPUs and 4 evaluation processes per GPU, 16 environments
are evaluated simultaneously. Consequently, the total evaluation time for all 432 tasks, ranges from
18 minutes for the smallest DT model to roughly 2 hours for the largest Mamba model.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 6: Model Sizes.

Model Layers Hidden Dim Heads Parameters
Transformer 4 512 8 16M
Transformer 6 768 12 48M
Transformer 8 1024 16 110M
Transformer 10 1280 20 206M

Mamba 8 512 - 16M
Mamba 12 768 - 48M
Mamba 16 1024 - 110M
Mamba 20 1280 - 206M

xLSTM 8 512 4 16M
xLSTM 12 768 4 48M
xLSTM 16 1024 4 110M
xLSTM 20 1280 4 206M

C ADDITIONAL RESULTS

C.1 TRAINING TASKS

In Figures 11 and 12, we report the normalized scores obtained per domain and the average learning
curves across tasks for all four model sizes.

In Figure 13, we report the training perplexity on the 432 training tasks over 200K updates. Here, we
observe that the training perplexity behaves similar to the validation perplexity. This is expected, as
our models see most transitions only a single time (see Table 4.1 for the number of repetitions per
domain).

Furthermore, we report the scaling curves with an additional model size of 408M parameters in
Figure 14. Due to the high computational cost of the 408M models, we were currently only able to
conduct a single run for this size. However, we aim to provide further empirical evidence for this
model sizes in future work.

C.2 HOLD-OUT TASKS

In Figure 15, we show the zero-shot evaluation performance on the hold-out tasks 15. We want to
highlight, that the performance declines for all methods and model sizes compared to performance on
training tasks. This is because, hold-out tasks exhibit severe shifts in state-spaces, action-spaces and
reward functions.

C.3 FINE-TUNING

In Figure 16, we present the fine-tuning evaluation performance on the held-out tasks. We compare
xLSTMs trained from scratched against xLSTMs initialized with the pre-trained weights. We do
observe consistent improvement of the pre-trained models over the models trained from scratch.
However, while we train on a substantial number of environments, the total amount of data used is still
only a fraction of that employed in training other large-scale models, such as LLMs. Consequently,
we do not observe comparable few-shot generalization. WHowever, we anticipate that few-shot
generalization capabilities will emerge as we increase both data volume and model size.

C.4 IN-CONTEXT LEARNING

We assess the ICL abilities of modern recurrent architectures on the Dark-Room environment
considered in prior works on in-context RL [Laskin et al., 2022; Lee et al., 2023; Schmied et al.,
2024b]. In Dark-Room, the agent is located in a dark room. The task is to navigate to an invisible
goal location in that dark room. The state is partially observable, as the agent only observes its own
x-y position on the grid (|S| = 2). The action space consists of 5 discrete actions: move up, move

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) 16M

(b) 48M

(c) 110M

(d) 206M

Figure 11: Normalized scores per-domain all four model sizes: 16M, 48M, 110M, and 206M. For
Meta-World, DMControl, Mimicgen, Composuite, and Procgen we report data-normalized scores,
for Atari we report human-normalized scores.

down, move left, move right, stay (|A| = 5). Upon reaching the goal location, the agent receives a
reward of +1 for every step in the episode it resides on the goal location. Consequently, the agent
first has to explore the room to find the goal. Once the goal location is found (as indicated by the
positive reward), the agent can exploit this knowledge. Given a multi-episodic context, the agent
should be able to exploit information contains in the previous trials (e.g., exploiting one path vs.
avoiding another).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) 16M (b) 48M

(c) 110M (d) 206M

Figure 12: Learning curves for all four model sizes, 16M, 48M, 110M, and 206M, on the training
tasks.

(a) Training Perplexity

Figure 13: Scaling comparison. We compare xLSTM, Mamba, DT in four model sizes: 16M, 48M,
110M, and 206M parameters. We show the training perplexity on the training dataset to evaluate the
sequence prediction performance.

In our experiments, the Dark-Room is a 10 × 10 grid and episodes last for 100 steps, starting in
the top left corner of the grid. We adopt the same experiment setup as Schmied et al. [2024b] and
leverage their datasets. We train 16M parameter agents on datasets from 80 randomly selected goal
locations in the grid. The datasets contain 100K transitions per task and are obtained by training
task-specific PPO [Schulman et al., 2018] agents. Then, we evaluate the in-context abilities of our

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Sequence prediction (b) Environment interaction

Figure 14: Scaling comparison with additional 408M parameter models. We show the (a) validation
perplexity on the hold-out datasets, and (b) normalized scores obtained from evaluating in the training
task environments, averaged over all 6 domains.

Figure 15: Scaling comparison. Zero-shot performance on hold-out tasks at four models sizes,
16M, 48M, 110M, and 206M. Note that performance declines for all methods and model sizes
compared to performance on training tasks. This is because, hold-out tasks exhibit severe shifts in
state-spaces, action-spaces and reward functions.

agents on 20 hold-out goal locations. During evaluation, the agent is given 40 episodes to interact
with the environment, which we refer to as ICL-trials. Furthermore, we adopt the AD [Laskin et al.,
2022] framework for training our agents with a multi-episodic context. We use the same sequence
representation as used in our main experiments, consisting of states, returns-to-go (target return set to
80 during evaluation), and rewards. Note that this differs from the sequence representation used by
Laskin et al. [2022]. We set the context length for all agents to the equivalent of two episodes, which
amounts to 200 timesteps in total.

In Figure 17, we report the ICL performance over the 40 ICL trials on (a) 80 training locations and
(b) 20 hold-out locations for the 4 different backbones considered in this work. We observe that the
recurrent backbones attain considerably higher scores than the Transformer backbone. Furthermore,
we find that xLSTM [7:1] attains the highest overall scores, which we attribute to the state-tracking
abilities [Merrill et al., 2024] of sLSTM blocks. We aim to explore the ICL abilities of modern
recurrent backbones more in future work.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 16: Fine-tune performance on hold-out tasks. We compare the performance of a pretrained
xLSTM against an xLSTM trained from scratch, both with 16 million parameters. We select the
top 5% percent of trajectories from our held-out tasks based on performance and used this subset
to fine-tune the models. We perform 25K update steps during fine-tuning and show the normalized
scores, averaged across held-out tasks from each domain.

(a) 80 training tasks (b) 20 hold-out tasks

Figure 17: In-context Learning on Dark-Room 10× 10.

C.5 INFERENCE TIME COMPARISONS

We empirically examine the difference in inference speed between of our models. Similar to De
et al. [2024], we report both latency and throughput. For real-time applications, latency is the more
important dimension, and therefore we focus our analysis on latency.

C.5.1 LATENCY

In Figures 18 and 19, we report the latencies for DT and xLSTM with the same number of layer
blocks as DT, and twice the number of layers blocks as DT, respectively. We conduct our comparison
for two different batch sizes and across varying sequence lengths.

C.5.2 THROUGHPUT

In Figures 20 and 21, we similarly report the attained throughput for DT and xLSTM with the same
number of layer blocks as DT, and twice the number of layers blocks as DT, respectively. We conduct
our comparison for two fixed context lengths and varying batch sizes.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) batch size = 1 (b) batch size = 16

Figure 18: Latency. We report latency with (a) batch size of 1 and (b) batch size of 16 for DT and
xLSTM with 206M parameters. For xLSTM we use the same number of layer blocks as DT and a
higher hidden dimension to match parameters.

(a) batch size = 1 (b) batch size = 16

Figure 19: Latency. We report latency with (a) batch size of 1 and (b) batch size of 16 for DT and
xLSTM with 206M parameters. For xLSTM, we use twice the number of layer blocks and the same
hidden dimension as the Transformer.

C.5.3 XLSTM KERNEL COMPARISONS

We leverage custom kernels for xLSTM to conduct our inference-speed comparisons. In particular,
we compare 4 variants: recurrent-style inference with and without kernel acceleration, and chunkwise
inference with and without kernel acceleration. In our experiments, every timestep contains 3
individual tokens. Consequently, regular recurrent-style inference requires iterating over the token
sequence of length 3 in a loop given the hidden state of the previous timestep. This requires 3 forward
passes. In contrast, the chunkwise implementation operates on chunks of timesteps given a hidden
state. Consequently, this only requires a single forward pass. In Figure 22, we illustrate the impact
of kernel acceleration. We find that our chunkwise kernels result in considerably lower latencies.
Interestingly, we find that for B = 1, our chunkwise implementation without kernel acceleration is
faster than the recurrent-style inference with kernel acceleration. However, as the batch size increases,
this trend reverses. This highlights the importance of kernel acceleration for efficient inference.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) context length = 800 (b) context length = 1600

Figure 20: Throughput. We report throughput with (a) context size of 800, and (b) context size of
1600 timesteps for DT and xLSTM with 206M parameters. For xLSTM we use the same number of
layer blocks as DT and a higher hidden dimension to match parameters.

(a) context length = 800 (b) context length = 1600

Figure 21: Throughput. We report throughput with (a) context size of 800, and (b) context size of
1600 timesteps for DT and xLSTM with 206M parameters. For xLSTM, we use twice the number of
layer blocks and the same hidden dimension as the Transformer.

(a) batch size = 1 (b) batch size = 16

Figure 22: Impact of kernel acceleration. We report latency with (a) batch size of 1 and (b) batch
size of 32 for DT and xLSTM with 206M parameters. For xLSTM we use the same number of layer
blocks as DT and a higher hidden dimension to match parameters.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

D ABLATIONS

D.1 REMOVING ACTION CONDITION

D.1.1 DT ON META-WORLD

We found that removing actions from the context results in better performance across backbones.
In Figure 23, we report the learning curves over 200K updates for DT with varying context lengths
on Meta-World, both with and without actions in the context. While context lengths beyond 1 hurt
performance when training with actions, the reverse is true when training without actions. This is
in contrast to recent works, which did not benefit from longer contexts [Octo Model Team et al.,
2024]. However, while removing actions improves performance on Meta-World, it does not affect
performance on discrete control. On Meta-World, we observed that the models become overly
confident (high action logits), which is problematic if poor initial actions are produced. We assume
this is because in robotics actions change smoothly and by observing previous actions the agent learns
shortcuts. A similar issue has been identified by Wen et al. [2020], and termed the copycat problem,
because the agent is incentivized to copy previous actions. Our solution is to remove actions from the
input sequence. This prevents the agent from learning shortcuts and alleviates the copycat problem.

(a) w/ actions (b) w/o actions

Figure 23: Ablation on removing the action condition for varying context lengths C. Performance
of DT (a) with, and (b) without action condition on Meta-World. With action in the context, C > 1
harms performance due to overconfidence in action predictions. Without actions in the context, the
performance of DT improves with increasing C.

D.1.2 DT ON ALL 432 TASKS.

To further investigate the effect of removing actions from the context, we repeat this ablation on the
full 432 tasks and 6 domains at the 206M model scale. In Figure 24, we report the learning curves for
a DT with varying sequence lengths trained (a) with and (b) without actions in the agent’s context.
Similar to the single-domain study on Meta-World with smaller models, we find that providing a
longer context does not improve performance, resulting in a normalized score of around 0.3 across
domains. In contrast, without action in the context, we observe a consistent improvement in the
evaluation performance as the sequence length increases. In fact, the normalized score increase from
around 0.3 with C = 1 to 0.7 with C = 50. For computational reasons we only report one seed per
sequence length in this experiment, but we believe that the overall trends are clear.

To better understand on which domains the longer context benefits or hurts our agents, we also present
the normalized score per domain in Figure 25. Without actions in the context, we find that longer
context consistently benefits the performance across domains. With actions in the context we observe
that on Meta-World and DMControl, the performance deteriorates for C > 1. In contrast, on the
discrete control domains Atari and Procgen, but also on the continuous continous control domain
Composuite, performance tends to improve with C > 1. This suggests that the copycat problem
is particularly present on Meta-World and DMControl. However, note that the final performances

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

(a) w/ actions (b) w/o actions

Figure 24: Ablation on removing the action condition for varying context lengths C. Performance
of DT (a) with, and (b) without action condition on all 432 tasks. Without actions in the context, the
performance of DT improves with increasing C.

on Atari, Procgen and Mimicgen are considerably worse when actions are present in the context
compared to when they are not.

(a) w/ actions

(b) w/o actions

Figure 25: Ablation on removing the action condition for varying context lengths C. We show the
normalized score per domain for all context lengths (a) with and (b) without actions.

To further investigate this, we compute the MSE between subsequent actions in the training dataset
(similar to Wen et al. [2020]) for the continuous control domains and report them in Table 7. Indeed
we find that Meta-World and DMControl exhibit significantly lower MSEs between subsequent
actions than Composuite. While Mimicgen also exhibits a low MSE between consecutive actions, all
backbones perform poorly on this challenging benchmark. Consequently, we conclude that removing
actions from the agent’s context is particularly effective for domains where actions change smoothly.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 7: Average MSE (± standard deviation) between subsequent actions in robotics datasets.

Meta-World DMControl Composuite Mimicgen
Avg. MSE 0.08±0.09 0.2±0.22 2.1±0.3 0.015±0.007

This result highlights the fact that large action models can strongly benefit from increased context
length even on the simulated environments we consider in this work. Furthermore, we believe that this
effect can be even bigger in complex real-world environments that require longer-term interactions.

D.1.3 XLSTM ON ALL 432 TASKS.

To validate that modern recurrent backbones also benefit from training with longer sequence lengths,
we repeat the same ablation as presented in Appendix D.1.2 using xLSTM [1:0]. We report the
learning curves validation perplexities and evaluation performance across all 432 tasks for varying
context lengths in Figure 26. Note that the validation perplexity curves in Figure 26a, start at step
50K for readability. Again, we observe considerable improvements in the validation perplexities and
in the normalized scores (0.4 for C = 1 to 0.8 for C = 50) as the context length increases.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 26: Ablation on the effect of for varying the context length C for xLSTM. We report (a)
validation perplexity and (b) evaluation performance across the 432 training tasks for xLSTM [1:0].
Without actions in the context, the performance of DT improves with increasing C.

In addition, we provide the normalized scores per domain for xLSTM with varying sequence lengths
in Figure 27. Across domains, we observe increasing performance with increasing C.

(a) w/o actions

Figure 27: Ablation on the effect of for varying the context length C for xLSTM. We show the
normalized scores per domain for all context lengths.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D.2 RETURN-CONDITIONING VS. BEHAVIOR CLONING

Across experiments presented in the main text, except for the ICL experiments, we utilized a sequence
representation that includes return-to-go tokens (RTG) as commonly used in the DT literature [Chen
et al., 2021; Lee et al., 2022]. At inference time, the RTG allows to condition the model on a high
target return to produce high-quality actions. This is particularly useful when the datasets contain
a mixture of optimal and suboptimal trajectories. However, many recent works focus on behavior
cloning without return conditioning [Brohan et al., 2023b;a; Octo Model Team et al., 2024].

To better understand whether our findings transfer to the behavior cloning setting, we conduct an
ablation study in which we exclude the RTG tokens from the sequence representation. This means
the sequence only consists of state and reward tokens. In Figure 28, we report the (a) validation
perplexities and (b) evaluation performance on the 432 task for the four considered backbones. We
retain the same training settings and datasets as reported in Appendix B (200K updates, evaluation
after every 50K steps). We observe similar learning dynamics as for the 206M models that include
RTG tokens in the sequence representation (see Figure 2 and Figure 12). Consequently, we conclude
that the same performance trends holds for training the considered backbones with and without return
condition. Note, that the final performances are lower compared to the models that include the RTG
condition and that can be conditioned on a high return at inference time.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 28: Ablation on the effect of omitting the RTG condition. We report the learning curves for (a)
validation perplexity and (b) evaluation performance across the 432 training tasks for 206M parameter
models. We observe similar performance trends as when including the RTG in the sequence.

D.3 EFFECT OF MLSTM-TO-SLSTM RATIO.

Throughout our experiments, we compare two xLSTM variants: xLSTM [7:1] and xLSTM [1:0].
The bracket notation was introduced by [Beck et al., 2024], and denotes the ratio of mLSTM to
sLSTM blocks. For example, xLSTM [7:1] contains 1 sLSTM block for every 7 mLSTM blocks.
As described in Appendix B, we aim to maintain the same ration as proposed by Beck et al. [2024].
While mLSTM blocks are fully parallelizable, sLSTM blocks are not. However, sLSTM preserves
the non-diagonalized recurrent matrix to enable state-tracking [Merrill et al., 2024]. As such, sLSTM
can be attractive for tasks that require state-tracking (see Figure 4 in Beck et al. [2024]).

We first conduct an ablation study on the effect of the mLSTM-to-sLSTM ratio on the evaluation
performance across all 432 tasks. For this experiment, we use the 16M parameter model that contains
8 xLSTM blocks in total. Consequently, we compare the following ratios [1:0] (only mLSTM),
[0:1] (only sLSTM), [1:1], [1:3], [7:1]. In addition, we investigate the placement of sLSTMs across
all 8 blocks. To indicate the placement, we use @ followed by the layer index (starting at 0). For
example, [3:1] @ 1,3 indicates that the second and fourth layer are sLSTMs. In Figure 29 we report
the validation perplexities and evaluation performance for different ratios and layer placements across
the 432 tasks. For computational reasons, we conduct this experiment with only 1 seed per ratio. We
find that at the 16M parameter scale, xLSTM [1:0] on average outperforms the variants that leverage

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

sLSTM blocks. This indicates that these domains do not strongly benefit from the state tracking
abilities of sLSTM.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 29: Ablation on the effect of the mLSTM-to-sLSTM ratio. We report the learning curves
for (a) validation perplexity and (b) evaluation performance across the 432 training tasks for 206M
parameter models with varying ratios.

Next, conduct the same analysis on Dark-Room 10× 10 ICL environment as used in Appendix C.4.
Unlike most of the 432 tasks used in our main experiments, Dark-Room exhibits a partially-observable
observation space and sparse rewards. Consequently, Dark-Room is more likely to require state
tracking abilities. In fact, we already observed better performance for xLSTM [7:1] than for xLSTM
[1:0] in Appendix 17. In Figure 30, we report the ICL curves for the 80 train tasks and 20 hold-out
tasks. We observe that xLSTM variants that contain sLSTM blocks at lower-level positions, such
as [7:1] @ 1 and [3:1] @ 1,3 outperform xLSTM [1:0]. In contrast, xLSTM variants that contain
sLSTM blocks at deeper-level positions, such as [0:1] and 3:1 @ 5,7, perform poorly. This is similar
to findings by Beck et al. [2024] who also place sLSTM layers at lower-level positions.

(a) 80 training tasks (b) 20 hold-out tasks

Figure 30: In-context Learning on Dark-Room 10× 10 for varying mLSTM-to-sLSTM ratios.

We conclude that sLSTM layers can be important building blocks for tasks that require state-tracking,
such as Dark-Room. Most of the 432 tasks we consider in the main experiments of this work
contain fully observable observation spaces and may not require state-tracking. However, we believe
that more complex tasks with longer horizons or partial observability, as is common in real-world
applications, could greatly benefit from the state-tracking abilities provided by sLSTM blocks. As

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

such equipping an agent with the ability to perform state-tracking by including sLSTM blocks may
be valuable option for practicioners. This is a distinguishing factor of xLSTM from Mamba, which
does not exhibit state-tracking.

D.4 EFFECT OF DROPOUT IN DT

DTs use by default a Dropout [Srivastava et al., 2014] rate of 0.1. However, during our experi-
ments, we found that Dropout has detrimental effects on the evaluation performance, particularly
on continuous control domains like Composuite. In Figure 31, we show the validation perplexities
and evaluation performance for a DT trained with and without Dropout. Consequently, we remove
Dropout from our DT variant.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 31: Ablation on the effect of dropout on DT performance. We show the (a) validation
perplexity and (b) evaluation performance on the training tasks. DT performance drops considerably
if training with dropout.

D.5 EFFECT OF REDUCING NUMBER OF LAYERS IN XLSTM

In prior works, xLSTM and Mamba use twice the number of layers blocks as the Transformer
baseline, while maintaining the same hidden dimension [Gu & Dao, 2023; Beck et al., 2024]. For
our inference-time comparisons, we therefore reduce the number of layer blocks in xLSTM by
half. To ensure a fair comparison, we consequently adjust the hidden size of xLSTM to match the
number of parameters of the Transformer baseline. In this section, we investigate the effect of these
modifications of the xLSTM architecture on the model performance.

In Figure 32, report the validation perplexities and evaluation performance for the regular xLSTM
with twice the number of layer blocks as DT, and an xLSTM with half the number of blocks.
Reducing the number of layer blocks results in slight decrease in performance on both metrics.
However, xLSTM still outperforms the Transformer baseline (see Figure 2).

E EMBEDDING SPACE ANALYSIS

In Figure 5, we analyze the representations learned by our models using UMAP [McInnes et al.,
2018]. Here, we explain the clustering procedure in more detail. For every task, we sample 32
sub-trajectories containing 50 timesteps (150 tokens) and encode them using our sequence models.
Then, we extract the hidden states at the last layer of our model and aggregate them via mean pooling.
We cluster all vectors using default hyperparameters of UMAP into a two-dimensional space. Finally,
we color the resulting points by their domain. Generally, we find that tasks from the same domain
cluster together.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 32: Ablation on the effect of reducing the number of layer blocks in xLSTM. We show the (a)
validation perplexity and (b) evaluation performance on the training tasks for the layer regular and
layer-matched matched xLSTM models. Reducing the number of layer blocks in xLSTM results in a
slight performance decrease.

F RAW SCORES

In this section, we report the raw scores for all 432 training tasks for the 206M parameter scale. See
Tables 8, 9, 10, 11, 12 for Procgen, Atari, Meta-World, DMControl, and Mimicgen, respectively. The
raw scores for Composuite are available in Tables 13, 14, 15, and 16.

Table 8: Raw Scores for Procgen.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
bigfish 2.53 2.0 4.6 5.13
bossfight 6.73 4.1 9.27 2.0
caveflyer 6.67 6.3 6.67 4.87
chaser 3.41 3.91 4.92 4.2
coinrun 10.0 9.0 10.0 10.0
dodgeball 2.8 3.4 4.27 3.87
fruitbot 13.33 19.8 19.73 19.27
heist 7.33 7.0 6.67 6.67
leaper 5.33 4.0 8.67 5.33
maze 8.67 10.0 7.33 7.33
miner 8.07 11.0 9.0 8.27
starpilot 24.93 10.1 21.8 28.2

Avg. Reward 8.32 7.55 8.73 8.76

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 9: Raw Scores for Atari.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Amidar 82.27 30.8 71.07 26.73
Assault 438.2 224.7 410.2 494.13
Asterix 573.33 540.0 763.33 583.33
Atlantis 42573.33 97240.0 83760.0 76973.33
BankHeist 2.67 9.0 0.0 8.67
BattleZone 2000.0 2400.0 2600.0 1733.33
BeamRider 126.13 61.6 176.0 243.47
Boxing 80.8 77.7 83.8 84.93
Breakout 68.13 136.6 92.93 93.73
Carnival 618.67 424.0 697.33 484.0
Centipede 1802.13 1238.2 2416.73 1806.6
ChopperCommand 813.33 800.0 813.33 766.67
CrazyClimber 96853.33 65960.0 106606.67 79873.33
DemonAttack 100.0 65.0 181.33 130.67
DoubleDunk -2.53 -3.0 -2.93 -3.87
Enduro 34.53 65.5 98.73 48.53
FishingDerby -72.47 -68.2 -72.07 -71.0
Freeway 29.0 29.8 30.0 28.6
Frostbite 774.67 1248.0 1162.67 1049.33
Gopher 314.67 34.0 132.0 12.0
Gravitar 116.67 175.0 176.67 136.67
Hero 14004.67 11381.0 14688.67 16522.0
IceHockey -4.8 -6.3 -7.6 -5.93
Jamesbond 490.0 540.0 603.33 510.0
Kangaroo 1426.67 2880.0 2620.0 2653.33
Krull 8880.67 10090.0 8918.0 9569.33
KungFuMaster 8866.67 12700.0 8120.0 11233.33
NameThisGame 7976.67 7967.0 7789.33 7232.0
Phoenix 592.0 1600.0 1807.33 1052.67
Pooyan 283.33 87.5 371.67 406.67
Qbert 4306.67 1700.0 805.0 2613.33
Riverraid 2888.67 6923.0 6688.0 7446.67
RoadRunner 1320.0 350.0 1340.0 213.33
Robotank 18.67 13.2 23.07 25.13
Seaquest 182.67 396.0 448.0 209.33
TimePilot 2533.33 3520.0 3200.0 2966.67
UpNDown 10598.0 12043.0 15340.67 12815.33
VideoPinball 1669.07 0.0 220.4 140.6
WizardOfWor 113.33 160.0 160.0 206.67
YarsRevenge 14356.27 14499.0 16815.0 21403.67
Zaxxon 0.0 0.0 20.0 0.0

Avg. Reward 5556.81 6281.27 6705.61 6383.35

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 10: Raw Scores for Meta-World.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
reach 1860.69 ± 12.51 1859.3 ± 5.79 1859.17 ± 12.62 1864.37 ± 6.57
push 1588.19 ± 207.0 1605.03 ± 107.81 1493.31 ± 238.01 1759.33 ± 3.89
pick-place 137.85 ± 99.18 161.74 ± 153.95 389.81 ± 37.36 296.21 ± 43.77
door-open 1552.95 ± 6.51 1562.39 ± 6.79 1569.35 ± 6.71 1570.16 ± 14.83
drawer-open 1735.13 ± 21.76 1714.4 ± 19.3 1740.48 ± 9.2 1747.33 ± 3.88
drawer-close 1856.67 ± 3.06 1858.05 ± 2.75 1858.7 ± 2.34 1859.33 ± 1.15
button-press-topdown 1322.3 ± 3.12 1326.55 ± 19.93 1341.5 ± 3.15 1322.83 ± 7.25
peg-insert-side 1557.59 ± 98.52 1607.59 ± 9.1 1640.43 ± 13.1 1574.75 ± 90.34
window-open 1594.16 ± 34.13 1568.55 ± 14.38 1576.82 ± 10.21 1578.18 ± 70.3
window-close 1474.26 ± 16.88 1443.94 ± 18.99 1459.83 ± 18.79 1452.21 ± 26.56
door-close 1538.02 ± 14.64 1544.31 ± 3.63 1546.0 ± 9.69 1541.64 ± 10.5
reach-wall 1837.64 ± 1.6 1845.12 ± 3.06 1837.76 ± 3.39 1777.17 ± 94.47
pick-place-wall 1041.54 ± 219.67 843.51 ± 224.6 206.88 ± 184.28 385.57 ± 151.52
push-wall 1689.67 ± 12.74 1701.7 ± 1.54 1599.63 ± 189.06 1487.69 ± 195.8
button-press 1512.08 ± 9.54 1488.1 ± 38.83 1541.77 ± 5.48 1527.3 ± 10.16
button-press-topdown-wall 1314.49 ± 62.73 1295.2 ± 6.62 1321.26 ± 17.59 1328.74 ± 24.16
button-press-wall 1359.83 ± 173.51 1547.14 ± 13.84 1326.57 ± 109.09 1267.11 ± 8.78
peg-unplug-side 1415.68 ± 162.54 1517.49 ± 25.27 1393.98 ± 173.0 1422.64 ± 192.05
disassemble 1452.0 ± 44.54 1441.18 ± 29.15 1220.27 ± 441.51 1072.31 ± 374.95
hammer 1446.68 ± 169.03 1683.04 ± 4.82 1669.54 ± 32.0 1642.34 ± 72.23
plate-slide 1673.66 ± 1.72 1676.83 ± 3.0 1682.41 ± 5.02 1677.52 ± 5.46
plate-slide-side 1719.4 ± 7.85 1694.35 ± 46.29 1686.38 ± 61.27 1690.72 ± 12.97
plate-slide-back 1790.96 ± 6.39 1787.65 ± 5.99 1797.78 ± 1.17 1797.17 ± 0.43
plate-slide-back-side 1773.26 ± 9.72 1763.24 ± 5.59 1785.11 ± 7.42 1788.61 ± 6.67
handle-press 1734.75 ± 220.82 1829.07 ± 29.91 1881.23 ± 15.62 1881.92 ± 10.56
handle-pull 1590.74 ± 35.98 1627.4 ± 34.18 1616.62 ± 52.0 1627.6 ± 21.86
handle-press-side 1852.25 ± 7.0 1857.4 ± 10.13 1847.95 ± 5.61 1857.36 ± 5.57
handle-pull-side 1651.05 ± 3.48 1607.3 ± 22.56 1655.75 ± 4.6 1651.77 ± 7.53
stick-push 1595.45 ± 6.88 1585.22 ± 5.17 1595.35 ± 3.29 1595.21 ± 0.88
stick-pull 1377.41 ± 108.31 1401.91 ± 32.79 1460.27 ± 57.13 1442.68 ± 43.23
basketball 1529.79 ± 11.41 1528.22 ± 18.23 1543.02 ± 2.49 1542.8 ± 17.81
soccer 649.69 ± 160.32 929.06 ± 64.35 792.21 ± 139.63 732.44 ± 290.49
faucet-open 1676.95 ± 121.6 1703.83 ± 41.97 1727.05 ± 45.15 1744.83 ± 15.93
faucet-close 1772.91 ± 9.23 1772.13 ± 2.35 1778.25 ± 3.96 1775.25 ± 0.79
coffee-push 340.21 ± 276.9 232.01 ± 225.2 61.35 ± 51.79 41.79 ± 40.9
coffee-pull 1346.29 ± 101.93 1261.39 ± 195.18 1409.68 ± 34.66 1293.92 ± 129.94
coffee-button 1595.94 ± 16.57 1592.77 ± 2.23 1593.15 ± 49.98 1562.92 ± 36.79
sweep 1485.79 ± 12.17 1452.38 ± 13.74 1508.58 ± 14.96 1471.73 ± 29.08
sweep-into 1796.25 ± 7.64 1472.64 ± 455.9 1804.27 ± 2.38 1786.27 ± 14.64
pick-out-of-hole 1437.38 ± 181.15 1499.35 ± 35.73 1529.83 ± 8.09 1415.91 ± 176.44
assembly 1229.39 ± 16.96 1216.34 ± 22.21 1236.68 ± 21.77 1227.81 ± 7.67
shelf-place 1446.07 ± 30.41 1448.75 ± 39.73 1485.4 ± 12.31 1463.53 ± 9.04
push-back 1226.32 ± 172.59 1022.98 ± 158.35 1011.25 ± 396.65 1027.48 ± 303.73
lever-pull 1604.74 ± 3.32 1634.06 ± 6.08 1639.31 ± 10.11 1626.09 ± 23.72
dial-turn 1688.33 ± 22.94 1667.37 ± 41.45 1713.38 ± 35.16 1686.59 ± 55.09

Avg. Reward 1486.05 1486.18 1455.15 1464.16

Table 11: Raw Scores for DMControl.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
finger-turn-easy 121.27 ± 104.6 396.4 ± 122.47 449.8 ± 186.65 640.13 ± 82.48
fish-upright 181.14 ± 70.82 154.59 ± 34.64 277.23 ± 105.37 241.73 ± 257.01
hopper-stand 296.15 ± 141.83 304.78 ± 32.65 413.95 ± 35.83 392.34 ± 152.75
point mass-easy 342.26 ± 37.42 720.11 ± 42.95 734.95 ± 114.17 823.74 ± 57.3
walker-stand 911.72 ± 38.16 785.21 ± 23.53 947.31 ± 22.13 864.14 ± 181.56
walker-run 155.91 ± 73.84 274.83 ± 0.44 201.34 ± 34.77 145.01 ± 31.71
ball in cup-catch 976.93 ± 0.83 970.9 ± 4.67 977.33 ± 0.5 975.93 ± 0.42
cartpole-swingup 688.5 ± 42.6 762.4 ± 63.93 800.14 ± 13.64 591.08 ± 86.49
cheetah-run 81.21 ± 96.85 482.39 ± 17.23 358.52 ± 127.92 389.04 ± 4.11
finger-spin 209.27 ± 20.57 430.8 ± 61.66 673.47 ± 94.37 626.93 ± 29.21
reacher-easy 45.4 ± 5.21 180.7 ± 133.64 78.73 ± 20.59 58.0 ± 13.91

Avg. Reward 364.52 496.65 505.06 522.55

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 12: Raw Scores for Mimicgen.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Panda CoffeePreparation D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12
Panda CoffeePreparation D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda Coffee D0 0.4 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Coffee D1 0.2 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Coffee D2 0.07 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda HammerCleanup D0 1.0 ± 0.0 0.9 ± 0.14 1.0 ± 0.0 1.0 ± 0.0
Panda HammerCleanup D1 0.47 ± 0.5 0.1 ± 0.14 0.47 ± 0.23 0.47 ± 0.31
Panda Kitchen D0 0.87 ± 0.23 0.6 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Panda Kitchen D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda MugCleanup D0 0.13 ± 0.12 0.1 ± 0.14 0.6 ± 0.2 0.27 ± 0.12
Panda MugCleanup D1 0.07 ± 0.12 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Sawyer NutAssembly D0 0.07 ± 0.12 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
Sawyer PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda Square D0 0.2 ± 0.2 0.0 ± 0.0 0.53 ± 0.12 0.53 ± 0.12
Panda Square D1 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Square D2 0.13 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.07 ± 0.12
Panda StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda Stack D0 0.47 ± 0.12 0.2 ± 0.0 0.67 ± 0.31 0.73 ± 0.12
Panda Stack D1 0.4 ± 0.2 0.0 ± 0.0 0.27 ± 0.12 0.4 ± 0.2
Panda Threading D0 0.27 ± 0.12 0.2 ± 0.0 0.27 ± 0.12 0.2 ± 0.2
Panda Threading D1 0.2 ± 0.35 0.0 ± 0.0 0.07 ± 0.12 0.07 ± 0.12
Panda ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Coffee D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Coffee D0 0.27 ± 0.31 0.0 ± 0.0 0.13 ± 0.12 0.2 ± 0.2
UR5e Coffee D0 0.33 ± 0.12 0.2 ± 0.0 0.47 ± 0.31 0.4 ± 0.2
IIWA Coffee D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Coffee D1 0.07 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
UR5e Coffee D1 0.13 ± 0.12 0.0 ± 0.0 0.2 ± 0.2 0.33 ± 0.31
IIWA Coffee D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Coffee D2 0.0 ± 0.0 0.1 ± 0.14 0.2 ± 0.0 0.07 ± 0.12
IIWA HammerCleanup D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer HammerCleanup D0 0.73 ± 0.12 0.9 ± 0.14 0.93 ± 0.12 0.87 ± 0.23
UR5e HammerCleanup D0 1.0 ± 0.0 0.9 ± 0.14 1.0 ± 0.0 0.93 ± 0.12
IIWA HammerCleanup D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer HammerCleanup D1 0.2 ± 0.2 0.2 ± 0.0 0.27 ± 0.23 0.4 ± 0.35
UR5e HammerCleanup D1 0.47 ± 0.12 0.4 ± 0.28 0.8 ± 0.2 0.6 ± 0.0
IIWA Kitchen D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Kitchen D0 0.93 ± 0.12 0.8 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
UR5e Kitchen D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
IIWA MugCleanup D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA MugCleanup D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e MugCleanup D1 0.07 ± 0.12 0.0 ± 0.0 0.13 ± 0.12 0.13 ± 0.12
IIWA NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
UR5e NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
IIWA PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Square D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Square D0 0.2 ± 0.2 0.4 ± 0.28 0.33 ± 0.12 0.53 ± 0.23
UR5e Square D0 0.13 ± 0.23 0.3 ± 0.42 0.27 ± 0.12 0.53 ± 0.23
IIWA Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
UR5e StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Stack D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Stack D0 0.47 ± 0.31 0.2 ± 0.0 0.6 ± 0.2 0.4 ± 0.2
UR5e Stack D0 0.4 ± 0.2 0.3 ± 0.14 0.87 ± 0.12 0.67 ± 0.12
IIWA Stack D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Stack D1 0.2 ± 0.2 0.0 ± 0.0 0.4 ± 0.2 0.27 ± 0.12
UR5e Stack D1 0.6 ± 0.0 0.1 ± 0.14 0.73 ± 0.12 0.4 ± 0.2
IIWA Threading D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Threading D0 0.13 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.13 ± 0.12
UR5e Threading D0 0.27 ± 0.31 0.1 ± 0.14 0.4 ± 0.2 0.4 ± 0.2
IIWA Threading D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Threading D1 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12 0.0 ± 0.0
UR5e Threading D1 0.07 ± 0.12 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12 0.0 ± 0.0
IIWA ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 13: Raw Scores for Composuite, Part1.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
IIWA Box None PickPlace 402.74 ± 14.4 414.73 ± 10.49 424.35 ± 12.95 421.33 ± 11.39
IIWA Box None Push 388.61 ± 35.63 427.0 ± 2.03 424.4 ± 4.63 427.0 ± 0.68
IIWA Box None Shelf 370.3 ± 80.53 417.61 ± 1.44 417.78 ± 0.96 416.41 ± 1.87
IIWA Box None Trashcan 329.27 ± 113.43 424.39 ± 1.04 429.54 ± 1.57 426.07 ± 3.98
IIWA Box GoalWall PickPlace 367.68 ± 81.93 428.6 ± 4.11 428.0 ± 2.32 429.29 ± 1.97
IIWA Box GoalWall Push 299.69 ± 77.03 337.81 ± 88.42 344.59 ± 28.19 318.19 ± 50.76
IIWA Box GoalWall Shelf 360.92 ± 48.29 405.81 ± 9.82 408.1 ± 5.92 402.31 ± 3.08
IIWA Box GoalWall Trashcan 376.45 ± 83.64 422.34 ± 3.61 429.15 ± 2.72 425.64 ± 3.88
IIWA Box ObjectDoor PickPlace 389.21 ± 47.22 417.89 ± 0.92 413.82 ± 4.06 414.08 ± 3.83
IIWA Box ObjectDoor Push 406.51 ± 0.32 403.59 ± 5.82 373.61 ± 40.95 397.45 ± 1.89
IIWA Box ObjectDoor Shelf 329.42 ± 67.73 353.67 ± 56.2 367.47 ± 43.7 396.33 ± 2.67
IIWA Box ObjectDoor Trashcan 325.45 ± 72.77 372.51 ± 41.55 358.72 ± 76.22 391.58 ± 16.76
IIWA Box ObjectWall PickPlace 393.52 ± 51.47 425.76 ± 2.29 420.61 ± 2.99 421.61 ± 1.06
IIWA Box ObjectWall Push 420.21 ± 3.5 412.76 ± 1.67 410.19 ± 1.62 411.5 ± 3.13
IIWA Box ObjectWall Shelf 400.86 ± 3.66 408.22 ± 1.63 401.42 ± 3.93 396.64 ± 10.55
IIWA Box ObjectWall Trashcan 414.43 ± 2.93 413.71 ± 3.47 417.11 ± 1.69 414.46 ± 0.8
IIWA Dumbbell None PickPlace 386.95 ± 51.87 422.35 ± 2.94 421.32 ± 2.03 421.94 ± 1.48
IIWA Dumbbell None Push 360.62 ± 90.94 413.39 ± 6.13 414.23 ± 6.04 393.34 ± 36.66
IIWA Dumbbell None Shelf 310.45 ± 73.45 344.81 ± 53.72 380.51 ± 5.34 350.8 ± 52.16
IIWA Dumbbell None Trashcan 386.09 ± 40.69 396.08 ± 0.7 414.03 ± 3.78 412.34 ± 3.36
IIWA Dumbbell GoalWall PickPlace 413.6 ± 1.16 415.64 ± 3.28 410.7 ± 7.64 413.51 ± 1.23
IIWA Dumbbell GoalWall Push 316.49 ± 38.69 367.45 ± 4.81 336.67 ± 82.13 371.92 ± 5.91
IIWA Dumbbell GoalWall Shelf 395.63 ± 3.19 372.77 ± 30.32 376.75 ± 8.62 372.77 ± 4.25
IIWA Dumbbell GoalWall Trashcan 379.45 ± 58.51 374.31 ± 55.11 412.22 ± 4.09 406.03 ± 5.03
IIWA Dumbbell ObjectDoor PickPlace 358.13 ± 26.76 364.62 ± 40.18 393.83 ± 2.05 347.28 ± 39.81
IIWA Dumbbell ObjectDoor Push 400.9 ± 8.95 383.81 ± 8.46 382.93 ± 0.7 364.06 ± 35.78
IIWA Dumbbell ObjectDoor Shelf 369.75 ± 14.29 325.7 ± 30.94 350.7 ± 21.76 335.84 ± 40.36
IIWA Dumbbell ObjectDoor Trashcan 393.05 ± 3.92 358.77 ± 36.88 397.23 ± 1.73 389.54 ± 9.14
IIWA Dumbbell ObjectWall PickPlace 403.51 ± 12.08 407.37 ± 0.09 404.28 ± 1.23 401.15 ± 10.64
IIWA Dumbbell ObjectWall Push 330.77 ± 30.29 296.98 ± 68.18 334.41 ± 22.28 307.4 ± 33.85
IIWA Dumbbell ObjectWall Shelf 353.9 ± 29.5 374.39 ± 6.58 358.29 ± 33.75 358.76 ± 18.87
IIWA Dumbbell ObjectWall Trashcan 394.48 ± 4.39 361.99 ± 39.17 398.06 ± 0.59 383.43 ± 32.4
IIWA Plate None PickPlace 427.3 ± 0.59 424.44 ± 1.82 424.59 ± 2.01 425.99 ± 1.2
IIWA Plate None Push 424.25 ± 1.13 419.86 ± 3.96 418.13 ± 3.55 418.42 ± 1.3
IIWA Plate None Shelf 408.07 ± 0.95 397.02 ± 6.49 396.55 ± 10.03 394.93 ± 10.81
IIWA Plate None Trashcan 419.62 ± 1.81 420.24 ± 0.33 420.37 ± 0.91 419.42 ± 2.61
IIWA Plate GoalWall PickPlace 424.69 ± 2.67 423.93 ± 1.77 421.83 ± 1.01 420.13 ± 8.21
IIWA Plate GoalWall Push 409.69 ± 3.55 397.97 ± 13.41 390.46 ± 14.79 388.89 ± 3.01
IIWA Plate GoalWall Shelf 404.92 ± 0.82 396.09 ± 4.6 393.01 ± 5.77 401.81 ± 8.93
IIWA Plate GoalWall Trashcan 420.47 ± 1.88 420.68 ± 2.82 420.29 ± 1.48 421.31 ± 1.93
IIWA Plate ObjectDoor PickPlace 408.48 ± 1.12 403.23 ± 7.83 397.51 ± 1.65 401.53 ± 1.76
IIWA Plate ObjectDoor Push 404.34 ± 4.45 395.97 ± 16.84 389.33 ± 7.78 385.77 ± 1.21
IIWA Plate ObjectDoor Shelf 377.91 ± 21.42 373.43 ± 5.34 369.41 ± 4.97 374.16 ± 13.75
IIWA Plate ObjectDoor Trashcan 400.27 ± 3.16 400.74 ± 0.53 399.28 ± 1.63 400.23 ± 0.63
IIWA Plate ObjectWall PickPlace 417.35 ± 3.15 416.76 ± 6.18 409.31 ± 1.26 411.62 ± 0.97
IIWA Plate ObjectWall Push 413.47 ± 3.92 408.16 ± 6.53 405.51 ± 3.71 405.27 ± 1.34
IIWA Plate ObjectWall Shelf 393.23 ± 1.39 376.64 ± 12.49 386.41 ± 8.65 382.81 ± 6.78
IIWA Plate ObjectWall Trashcan 410.85 ± 1.07 408.87 ± 3.95 408.98 ± 0.82 409.35 ± 2.6
IIWA Hollowbox None PickPlace 378.13 ± 94.18 427.5 ± 6.93 428.62 ± 3.62 426.38 ± 3.26
IIWA Hollowbox None Push 386.22 ± 36.15 422.49 ± 8.01 427.73 ± 1.97 426.12 ± 2.3
IIWA Hollowbox None Shelf 416.65 ± 6.66 419.89 ± 11.03 418.34 ± 6.49 415.11 ± 0.89
IIWA Hollowbox None Trashcan 424.38 ± 2.77 421.62 ± 1.4 426.9 ± 2.35 425.99 ± 1.81
IIWA Hollowbox GoalWall PickPlace 430.17 ± 3.37 427.76 ± 0.48 427.91 ± 0.76 426.47 ± 1.62
IIWA Hollowbox GoalWall Push 401.33 ± 3.96 373.0 ± 41.02 390.09 ± 9.46 394.35 ± 14.43
IIWA Hollowbox GoalWall Shelf 424.55 ± 2.3 379.05 ± 64.32 423.51 ± 1.31 419.69 ± 3.38
IIWA Hollowbox GoalWall Trashcan 425.95 ± 0.73 425.27 ± 0.66 424.8 ± 1.0 420.68 ± 3.33
IIWA Hollowbox ObjectDoor PickPlace 276.87 ± 109.64 369.45 ± 57.47 374.76 ± 45.83 301.41 ± 112.33
IIWA Hollowbox ObjectDoor Push 326.56 ± 109.6 352.22 ± 53.97 390.78 ± 6.35 324.09 ± 55.59
IIWA Hollowbox ObjectDoor Shelf 339.03 ± 43.75 370.75 ± 8.36 362.72 ± 30.31 353.98 ± 38.19
IIWA Hollowbox ObjectDoor Trashcan 395.18 ± 8.7 370.39 ± 35.98 387.21 ± 14.61 387.99 ± 21.95
IIWA Hollowbox ObjectWall PickPlace 364.95 ± 27.07 355.61 ± 76.66 356.01 ± 8.3 369.47 ± 24.62
IIWA Hollowbox ObjectWall Push 422.04 ± 2.08 414.47 ± 8.08 414.39 ± 5.5 408.53 ± 8.05
IIWA Hollowbox ObjectWall Shelf 400.82 ± 2.4 400.31 ± 1.28 403.69 ± 2.06 401.27 ± 1.97
IIWA Hollowbox ObjectWall Trashcan 415.82 ± 0.9 416.68 ± 0.14 392.79 ± 44.13 417.34 ± 0.77

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Table 14: Raw Scores for Composuite, Part 2.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Jaco Box None PickPlace 401.38 ± 3.88 400.41 ± 0.63 399.74 ± 5.35 396.54 ± 4.99
Jaco Box None Push 399.84 ± 3.29 397.79 ± 1.71 392.77 ± 1.12 397.31 ± 1.39
Jaco Box None Shelf 383.53 ± 0.31 384.65 ± 5.31 385.85 ± 1.1 386.34 ± 3.47
Jaco Box None Trashcan 374.88 ± 43.66 398.46 ± 2.69 397.66 ± 4.99 398.21 ± 0.91
Jaco Box GoalWall PickPlace 394.75 ± 2.52 395.12 ± 0.38 392.3 ± 5.3 389.93 ± 3.83
Jaco Box GoalWall Push 317.78 ± 67.67 343.43 ± 7.49 351.67 ± 20.65 336.02 ± 8.59
Jaco Box GoalWall Shelf 374.62 ± 20.35 387.0 ± 1.42 387.73 ± 2.11 384.74 ± 1.19
Jaco Box GoalWall Trashcan 374.07 ± 30.72 393.81 ± 0.68 395.49 ± 1.23 392.53 ± 3.46
Jaco Box ObjectDoor PickPlace 396.05 ± 1.12 391.81 ± 4.67 388.37 ± 1.26 383.39 ± 9.07
Jaco Box ObjectDoor Push 364.64 ± 38.39 383.07 ± 5.73 366.91 ± 33.04 387.51 ± 2.93
Jaco Box ObjectDoor Shelf 373.8 ± 2.81 379.75 ± 1.45 375.38 ± 6.27 376.86 ± 1.37
Jaco Box ObjectDoor Trashcan 388.4 ± 1.28 353.97 ± 52.06 389.38 ± 2.0 389.81 ± 2.89
Jaco Box ObjectWall PickPlace 394.31 ± 2.66 385.33 ± 5.43 388.54 ± 7.62 387.82 ± 2.26
Jaco Box ObjectWall Push 387.4 ± 9.34 384.75 ± 4.29 383.61 ± 7.58 383.32 ± 7.73
Jaco Box ObjectWall Shelf 364.38 ± 2.57 361.28 ± 8.2 367.38 ± 2.04 369.22 ± 2.79
Jaco Box ObjectWall Trashcan 385.73 ± 6.85 385.9 ± 1.13 385.34 ± 0.74 380.01 ± 5.08
Jaco Dumbbell None PickPlace 319.87 ± 1.83 334.2 ± 1.93 376.46 ± 9.19 334.95 ± 68.5
Jaco Dumbbell None Push 388.29 ± 1.98 372.13 ± 5.46 373.3 ± 6.88 369.49 ± 4.36
Jaco Dumbbell None Shelf 300.81 ± 61.26 344.47 ± 15.49 361.77 ± 6.21 362.88 ± 8.22
Jaco Dumbbell None Trashcan 369.52 ± 11.5 369.83 ± 13.39 387.28 ± 1.88 377.27 ± 9.7
Jaco Dumbbell GoalWall PickPlace 306.12 ± 40.29 306.26 ± 32.85 349.04 ± 18.3 348.42 ± 37.3
Jaco Dumbbell GoalWall Push 107.91 ± 29.9 136.11 ± 9.04 245.71 ± 30.15 188.19 ± 58.09
Jaco Dumbbell GoalWall Shelf 300.97 ± 114.65 368.99 ± 0.5 363.58 ± 9.74 346.57 ± 27.41
Jaco Dumbbell GoalWall Trashcan 321.81 ± 87.58 317.94 ± 23.15 376.09 ± 2.22 378.49 ± 4.52
Jaco Dumbbell ObjectDoor PickPlace 382.35 ± 1.62 380.2 ± 5.17 349.1 ± 32.92 372.44 ± 7.6
Jaco Dumbbell ObjectDoor Push 382.32 ± 1.08 353.42 ± 7.17 353.85 ± 6.83 338.66 ± 19.03
Jaco Dumbbell ObjectDoor Shelf 312.14 ± 64.22 330.22 ± 47.38 343.51 ± 30.97 331.5 ± 37.18
Jaco Dumbbell ObjectDoor Trashcan 371.06 ± 8.48 375.34 ± 4.07 373.78 ± 6.05 370.06 ± 8.94
Jaco Dumbbell ObjectWall PickPlace 279.55 ± 111.58 314.05 ± 21.02 360.29 ± 15.75 360.38 ± 12.02
Jaco Dumbbell ObjectWall Push 381.11 ± 3.7 351.38 ± 1.82 349.16 ± 2.93 352.64 ± 11.94
Jaco Dumbbell ObjectWall Shelf 354.95 ± 1.59 316.33 ± 42.6 342.43 ± 7.94 332.97 ± 15.33
Jaco Dumbbell ObjectWall Trashcan 367.01 ± 8.38 354.32 ± 22.23 365.47 ± 7.45 363.25 ± 3.18
Jaco Plate None PickPlace 397.25 ± 0.77 389.99 ± 6.44 384.38 ± 5.92 380.69 ± 2.55
Jaco Plate None Push 395.18 ± 1.01 390.69 ± 9.12 381.68 ± 6.86 380.2 ± 3.48
Jaco Plate None Shelf 380.49 ± 0.75 381.62 ± 0.09 356.49 ± 41.25 380.99 ± 2.43
Jaco Plate None Trashcan 391.97 ± 0.76 390.62 ± 0.57 391.2 ± 1.38 390.3 ± 1.83
Jaco Plate GoalWall PickPlace 379.45 ± 24.14 378.13 ± 6.34 377.33 ± 11.32 376.12 ± 4.31
Jaco Plate GoalWall Push 293.6 ± 38.38 319.4 ± 24.13 320.49 ± 24.25 320.5 ± 31.85
Jaco Plate GoalWall Shelf 358.04 ± 22.32 369.8 ± 15.11 367.73 ± 12.97 362.35 ± 3.32
Jaco Plate GoalWall Trashcan 383.53 ± 7.45 387.55 ± 1.56 389.51 ± 2.03 388.57 ± 1.98
Jaco Plate ObjectDoor PickPlace 390.4 ± 1.3 381.92 ± 15.09 376.2 ± 7.51 380.34 ± 9.73
Jaco Plate ObjectDoor Push 372.01 ± 4.07 366.41 ± 16.51 359.43 ± 10.46 355.71 ± 3.99
Jaco Plate ObjectDoor Shelf 366.15 ± 6.61 357.96 ± 8.35 368.82 ± 4.35 362.39 ± 7.11
Jaco Plate ObjectDoor Trashcan 382.66 ± 0.58 384.3 ± 0.38 384.0 ± 1.92 383.57 ± 1.1
Jaco Plate ObjectWall PickPlace 390.73 ± 1.55 378.98 ± 6.95 376.76 ± 8.54 373.98 ± 5.41
Jaco Plate ObjectWall Push 378.3 ± 4.49 372.47 ± 10.13 364.42 ± 8.12 360.69 ± 3.82
Jaco Plate ObjectWall Shelf 364.2 ± 3.52 364.64 ± 3.01 368.33 ± 1.95 360.73 ± 6.42
Jaco Plate ObjectWall Trashcan 374.17 ± 3.76 375.68 ± 1.54 382.5 ± 2.76 373.86 ± 4.91
Jaco Hollowbox None PickPlace 402.23 ± 2.04 386.75 ± 25.35 396.5 ± 1.04 398.48 ± 3.76
Jaco Hollowbox None Push 392.65 ± 9.62 396.56 ± 4.13 397.09 ± 7.5 396.63 ± 0.38
Jaco Hollowbox None Shelf 377.5 ± 2.78 382.06 ± 6.3 384.26 ± 5.2 381.68 ± 4.82
Jaco Hollowbox None Trashcan 394.85 ± 1.28 394.82 ± 3.27 393.68 ± 3.67 392.87 ± 1.71
Jaco Hollowbox GoalWall PickPlace 395.2 ± 1.44 385.82 ± 13.41 378.92 ± 9.41 379.34 ± 7.17
Jaco Hollowbox GoalWall Push 349.5 ± 34.56 337.43 ± 15.64 348.44 ± 11.76 340.9 ± 2.77
Jaco Hollowbox GoalWall Shelf 357.89 ± 19.58 349.29 ± 10.1 344.53 ± 6.27 333.97 ± 12.22
Jaco Hollowbox GoalWall Trashcan 385.01 ± 1.04 385.4 ± 1.7 386.58 ± 0.37 384.52 ± 0.05
Jaco Hollowbox ObjectDoor PickPlace 335.16 ± 76.71 387.66 ± 8.98 375.68 ± 4.01 344.62 ± 44.5
Jaco Hollowbox ObjectDoor Push 356.64 ± 41.54 386.82 ± 11.07 383.4 ± 9.21 385.73 ± 7.74
Jaco Hollowbox ObjectDoor Shelf 371.32 ± 0.65 362.29 ± 13.12 366.72 ± 4.12 360.22 ± 15.51
Jaco Hollowbox ObjectDoor Trashcan 358.07 ± 46.79 385.01 ± 1.12 383.6 ± 2.35 385.17 ± 0.42
Jaco Hollowbox ObjectWall PickPlace 393.5 ± 2.63 377.85 ± 3.53 378.61 ± 8.16 375.96 ± 5.55
Jaco Hollowbox ObjectWall Push 391.74 ± 4.74 382.69 ± 12.26 387.67 ± 9.52 379.01 ± 6.44
Jaco Hollowbox ObjectWall Shelf 371.33 ± 3.41 367.26 ± 11.73 365.73 ± 7.59 356.39 ± 16.14
Jaco Hollowbox ObjectWall Trashcan 382.6 ± 1.63 385.72 ± 2.03 382.62 ± 1.19 382.01 ± 4.22

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Table 15: Raw Scores for Composuite, Part 3.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Kinova3 Box None PickPlace 432.49 ± 3.69 432.11 ± 7.68 432.28 ± 3.45 431.06 ± 2.67
Kinova3 Box None Push 398.81 ± 44.71 416.96 ± 17.33 428.52 ± 1.83 416.41 ± 18.69
Kinova3 Box None Shelf 411.22 ± 3.9 413.65 ± 0.42 415.58 ± 4.21 411.67 ± 3.98
Kinova3 Box None Trashcan 378.21 ± 81.97 426.67 ± 2.1 431.01 ± 0.89 427.82 ± 1.12
Kinova3 Box GoalWall PickPlace 347.29 ± 145.33 430.92 ± 1.73 431.3 ± 2.19 408.26 ± 40.64
Kinova3 Box GoalWall Push 325.78 ± 131.68 390.05 ± 6.59 382.78 ± 2.17 388.29 ± 6.07
Kinova3 Box GoalWall Shelf 357.79 ± 96.22 395.77 ± 28.11 418.95 ± 2.7 417.37 ± 1.02
Kinova3 Box GoalWall Trashcan 373.8 ± 80.27 424.09 ± 0.02 428.12 ± 3.66 427.05 ± 0.87
Kinova3 Box ObjectDoor PickPlace 425.72 ± 1.7 427.38 ± 0.43 424.25 ± 2.86 424.5 ± 3.45
Kinova3 Box ObjectDoor Push 395.44 ± 30.77 414.0 ± 5.47 406.02 ± 0.61 410.58 ± 8.15
Kinova3 Box ObjectDoor Shelf 381.62 ± 37.98 326.93 ± 2.6 408.55 ± 2.3 381.75 ± 45.62
Kinova3 Box ObjectDoor Trashcan 392.17 ± 40.87 415.87 ± 2.48 419.24 ± 0.61 416.46 ± 1.78
Kinova3 Box ObjectWall PickPlace 405.45 ± 21.25 387.27 ± 50.08 425.83 ± 2.68 423.06 ± 3.66
Kinova3 Box ObjectWall Push 419.98 ± 2.8 414.6 ± 1.04 412.82 ± 1.07 415.16 ± 7.28
Kinova3 Box ObjectWall Shelf 399.47 ± 4.56 399.51 ± 1.29 402.37 ± 2.66 402.42 ± 1.48
Kinova3 Box ObjectWall Trashcan 416.15 ± 4.57 412.41 ± 0.4 399.87 ± 31.99 394.97 ± 36.15
Kinova3 Dumbbell None PickPlace 380.36 ± 55.46 418.88 ± 5.8 419.3 ± 7.37 416.89 ± 2.86
Kinova3 Dumbbell None Push 394.84 ± 25.64 396.29 ± 13.63 367.03 ± 53.29 390.74 ± 22.17
Kinova3 Dumbbell None Shelf 290.98 ± 123.89 394.73 ± 4.82 386.09 ± 19.99 397.38 ± 2.93
Kinova3 Dumbbell None Trashcan 358.26 ± 43.32 377.36 ± 53.06 413.01 ± 6.02 414.39 ± 1.97
Kinova3 Dumbbell GoalWall PickPlace 408.52 ± 19.13 392.63 ± 23.38 404.51 ± 4.31 412.68 ± 11.05
Kinova3 Dumbbell GoalWall Push 294.63 ± 35.99 358.66 ± 10.09 321.72 ± 41.37 310.79 ± 67.84
Kinova3 Dumbbell GoalWall Shelf 384.01 ± 20.53 383.06 ± 15.17 395.02 ± 0.83 377.15 ± 28.52
Kinova3 Dumbbell GoalWall Trashcan 377.28 ± 51.33 370.59 ± 31.83 413.63 ± 2.06 378.76 ± 27.34
Kinova3 Dumbbell ObjectDoor PickPlace 415.58 ± 5.38 404.89 ± 11.83 405.77 ± 7.4 410.95 ± 8.75
Kinova3 Dumbbell ObjectDoor Push 359.17 ± 15.53 265.44 ± 62.94 367.39 ± 23.91 311.57 ± 45.56
Kinova3 Dumbbell ObjectDoor Shelf 360.34 ± 28.19 379.36 ± 6.7 385.26 ± 2.74 363.99 ± 37.65
Kinova3 Dumbbell ObjectDoor Trashcan 409.92 ± 1.78 407.09 ± 1.26 407.79 ± 0.71 407.57 ± 2.85
Kinova3 Dumbbell ObjectWall PickPlace 404.63 ± 16.95 409.29 ± 4.6 406.14 ± 2.11 411.69 ± 6.71
Kinova3 Dumbbell ObjectWall Push 311.79 ± 94.94 285.81 ± 62.32 342.04 ± 22.98 244.56 ± 16.32
Kinova3 Dumbbell ObjectWall Shelf 378.68 ± 3.03 378.63 ± 0.91 376.92 ± 0.76 361.79 ± 25.06
Kinova3 Dumbbell ObjectWall Trashcan 400.98 ± 4.19 398.65 ± 3.89 401.96 ± 1.45 395.81 ± 3.51
Kinova3 Plate None PickPlace 424.09 ± 4.78 427.36 ± 4.29 424.82 ± 1.31 425.02 ± 2.92
Kinova3 Plate None Push 412.25 ± 19.8 422.75 ± 2.79 417.63 ± 6.13 416.41 ± 4.33
Kinova3 Plate None Shelf 409.96 ± 0.2 409.11 ± 0.52 410.28 ± 0.65 409.52 ± 1.61
Kinova3 Plate None Trashcan 422.54 ± 2.13 422.07 ± 1.15 421.73 ± 1.36 422.97 ± 0.74
Kinova3 Plate GoalWall PickPlace 427.74 ± 0.81 421.23 ± 6.67 416.44 ± 1.6 416.35 ± 15.86
Kinova3 Plate GoalWall Push 401.46 ± 2.17 385.01 ± 15.39 377.6 ± 3.14 386.87 ± 12.31
Kinova3 Plate GoalWall Shelf 410.49 ± 0.77 409.46 ± 0.15 409.63 ± 0.65 407.67 ± 3.33
Kinova3 Plate GoalWall Trashcan 421.05 ± 0.88 421.19 ± 0.48 422.63 ± 0.81 423.21 ± 1.16
Kinova3 Plate ObjectDoor PickPlace 423.26 ± 0.3 407.55 ± 0.81 406.43 ± 2.07 414.11 ± 7.32
Kinova3 Plate ObjectDoor Push 258.58 ± 18.57 278.08 ± 34.02 300.72 ± 90.5 257.79 ± 48.13
Kinova3 Plate ObjectDoor Shelf 404.4 ± 0.95 403.82 ± 0.86 405.9 ± 0.31 401.09 ± 2.61
Kinova3 Plate ObjectDoor Trashcan 415.34 ± 1.08 415.81 ± 0.35 416.09 ± 0.31 414.34 ± 1.85
Kinova3 Plate ObjectWall PickPlace 420.16 ± 2.07 413.68 ± 5.5 408.0 ± 2.29 411.83 ± 4.11
Kinova3 Plate ObjectWall Push 400.11 ± 16.39 403.95 ± 3.67 406.48 ± 5.73 403.65 ± 6.23
Kinova3 Plate ObjectWall Shelf 391.09 ± 3.65 391.99 ± 6.62 386.25 ± 16.53 391.7 ± 5.14
Kinova3 Plate ObjectWall Trashcan 413.36 ± 1.11 413.44 ± 3.93 413.82 ± 2.45 415.14 ± 1.46
Kinova3 Hollowbox None PickPlace 424.86 ± 6.23 433.78 ± 0.13 430.43 ± 1.11 430.84 ± 1.55
Kinova3 Hollowbox None Push 361.99 ± 40.33 369.17 ± 8.0 396.28 ± 28.04 380.94 ± 28.74
Kinova3 Hollowbox None Shelf 417.73 ± 13.43 417.46 ± 0.36 423.26 ± 3.53 424.02 ± 2.62
Kinova3 Hollowbox None Trashcan 424.65 ± 1.15 409.34 ± 12.4 425.0 ± 2.72 416.0 ± 15.33
Kinova3 Hollowbox GoalWall PickPlace 386.68 ± 49.29 425.24 ± 0.83 421.85 ± 8.69 420.32 ± 9.71
Kinova3 Hollowbox GoalWall Push 403.57 ± 0.96 383.09 ± 8.37 384.13 ± 10.01 381.43 ± 8.58
Kinova3 Hollowbox GoalWall Shelf 385.7 ± 36.06 395.01 ± 4.51 423.93 ± 5.1 417.05 ± 13.43
Kinova3 Hollowbox GoalWall Trashcan 406.37 ± 27.44 404.11 ± 3.64 405.09 ± 22.54 389.36 ± 32.05
Kinova3 Hollowbox ObjectDoor PickPlace 344.01 ± 63.38 364.3 ± 13.82 387.53 ± 20.66 324.36 ± 55.48
Kinova3 Hollowbox ObjectDoor Push 390.98 ± 46.38 416.05 ± 8.96 405.41 ± 5.34 406.76 ± 16.92
Kinova3 Hollowbox ObjectDoor Shelf 359.0 ± 25.63 381.87 ± 12.39 390.42 ± 6.21 357.94 ± 48.51
Kinova3 Hollowbox ObjectDoor Trashcan 405.87 ± 4.17 411.24 ± 1.26 414.92 ± 3.6 408.73 ± 5.66
Kinova3 Hollowbox ObjectWall PickPlace 424.57 ± 0.92 408.98 ± 6.4 417.83 ± 5.67 419.63 ± 9.2
Kinova3 Hollowbox ObjectWall Push 249.37 ± 176.18 319.13 ± 111.09 324.39 ± 76.09 335.61 ± 74.98
Kinova3 Hollowbox ObjectWall Shelf 394.7 ± 9.3 328.52 ± 61.08 357.89 ± 37.75 362.16 ± 40.05
Kinova3 Hollowbox ObjectWall Trashcan 354.65 ± 48.89 353.43 ± 78.59 407.99 ± 1.96 408.29 ± 4.94

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Table 16: Raw Scores for Composuite, Part 4.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Panda Box None PickPlace 409.21 ± 5.27 408.66 ± 7.81 409.83 ± 1.87 405.46 ± 3.84
Panda Box None Push 402.52 ± 2.55 373.74 ± 49.95 400.35 ± 2.32 399.37 ± 9.95
Panda Box None Shelf 383.69 ± 4.34 381.42 ± 3.66 383.55 ± 5.74 386.01 ± 1.29
Panda Box None Trashcan 400.37 ± 5.64 395.77 ± 2.77 407.95 ± 1.92 406.17 ± 3.36
Panda Box GoalWall PickPlace 401.53 ± 6.39 389.57 ± 18.4 397.12 ± 4.39 401.64 ± 9.81
Panda Box GoalWall Push 272.61 ± 79.58 257.61 ± 57.4 263.72 ± 45.71 281.71 ± 31.21
Panda Box GoalWall Shelf 384.43 ± 1.66 389.06 ± 3.69 388.59 ± 3.9 383.94 ± 2.0
Panda Box GoalWall Trashcan 400.68 ± 4.51 400.18 ± 6.03 403.24 ± 5.65 392.28 ± 16.82
Panda Box ObjectDoor PickPlace 359.01 ± 12.2 365.3 ± 5.97 359.63 ± 0.79 359.27 ± 10.88
Panda Box ObjectDoor Push 363.07 ± 3.13 352.85 ± 13.71 340.37 ± 6.06 340.5 ± 4.97
Panda Box ObjectDoor Shelf 346.29 ± 2.53 345.8 ± 4.91 349.82 ± 6.46 341.44 ± 11.05
Panda Box ObjectDoor Trashcan 361.19 ± 1.65 356.77 ± 3.24 356.66 ± 5.73 337.69 ± 32.63
Panda Dumbbell None PickPlace 342.62 ± 39.18 310.15 ± 24.64 318.76 ± 2.7 342.02 ± 31.28
Panda Dumbbell None Push 299.34 ± 78.28 341.64 ± 42.57 359.06 ± 42.88 263.35 ± 154.81
Panda Dumbbell None Shelf 264.01 ± 101.29 362.15 ± 0.87 319.71 ± 33.9 297.54 ± 67.67
Panda Dumbbell None Trashcan 174.45 ± 64.43 329.06 ± 43.08 373.77 ± 16.73 327.93 ± 68.84
Panda Dumbbell GoalWall PickPlace 310.61 ± 42.65 268.34 ± 147.91 329.02 ± 62.28 360.39 ± 5.25
Panda Dumbbell GoalWall Push 249.21 ± 43.29 282.01 ± 4.89 270.81 ± 11.98 285.28 ± 5.25
Panda Dumbbell GoalWall Shelf 319.5 ± 68.89 347.34 ± 20.01 364.15 ± 2.6 318.6 ± 33.85
Panda Dumbbell GoalWall Trashcan 377.5 ± 5.27 360.98 ± 9.73 379.05 ± 7.52 337.19 ± 40.73
Panda Dumbbell ObjectDoor PickPlace 344.54 ± 5.77 346.57 ± 0.33 340.15 ± 8.5 338.46 ± 10.42
Panda Dumbbell ObjectDoor Push 289.31 ± 11.14 308.25 ± 9.24 309.4 ± 5.02 304.1 ± 8.06
Panda Dumbbell ObjectDoor Shelf 323.26 ± 3.52 279.85 ± 18.84 313.19 ± 17.79 323.49 ± 0.27
Panda Dumbbell ObjectDoor Trashcan 334.05 ± 5.55 337.49 ± 0.68 341.0 ± 3.14 333.06 ± 7.77
Panda Plate None PickPlace 384.37 ± 30.37 404.77 ± 5.27 397.34 ± 1.3 398.41 ± 2.51
Panda Plate None Push 397.95 ± 1.05 398.1 ± 4.91 397.42 ± 3.32 397.64 ± 2.7
Panda Plate None Shelf 352.29 ± 37.8 372.12 ± 13.92 370.46 ± 3.11 367.5 ± 6.03
Panda Plate None Trashcan 392.99 ± 1.41 393.63 ± 2.91 394.05 ± 3.74 393.71 ± 1.27
Panda Plate GoalWall PickPlace 398.36 ± 3.95 398.24 ± 4.51 393.0 ± 1.9 399.02 ± 4.53
Panda Plate GoalWall Push 387.68 ± 0.49 377.79 ± 11.92 355.01 ± 34.01 350.1 ± 22.72
Panda Plate GoalWall Shelf 380.05 ± 0.52 367.67 ± 22.6 339.46 ± 40.63 359.76 ± 5.67
Panda Plate GoalWall Trashcan 391.41 ± 3.83 389.44 ± 3.8 395.4 ± 2.49 393.96 ± 2.68
Panda Plate ObjectDoor PickPlace 350.33 ± 18.2 348.67 ± 8.14 329.35 ± 4.62 336.64 ± 16.61
Panda Plate ObjectDoor Push 346.4 ± 9.33 337.36 ± 17.06 326.32 ± 7.92 323.51 ± 2.24
Panda Plate ObjectDoor Shelf 290.68 ± 11.21 321.54 ± 17.89 326.04 ± 18.76 305.25 ± 20.96
Panda Plate ObjectDoor Trashcan 348.09 ± 3.63 349.43 ± 4.05 351.8 ± 0.25 349.29 ± 1.91
Panda Hollowbox None PickPlace 410.32 ± 6.76 412.25 ± 3.0 408.01 ± 1.93 405.29 ± 5.3
Panda Hollowbox None Push 404.95 ± 1.07 406.74 ± 4.03 401.61 ± 6.16 402.46 ± 4.04
Panda Hollowbox None Shelf 387.59 ± 5.19 380.86 ± 10.45 369.22 ± 14.85 369.57 ± 4.84
Panda Hollowbox None Trashcan 399.09 ± 2.01 400.52 ± 5.27 401.03 ± 5.27 392.82 ± 7.37
Panda Hollowbox GoalWall PickPlace 406.02 ± 10.18 403.47 ± 0.97 405.96 ± 0.39 407.16 ± 3.77
Panda Hollowbox GoalWall Push 259.87 ± 75.12 293.02 ± 117.06 341.55 ± 23.29 281.79 ± 42.98
Panda Hollowbox GoalWall Shelf 387.38 ± 3.45 369.01 ± 6.14 365.26 ± 6.74 316.46 ± 81.46
Panda Hollowbox GoalWall Trashcan 377.54 ± 44.77 395.3 ± 4.85 396.82 ± 4.17 401.54 ± 5.21
Panda Hollowbox ObjectDoor PickPlace 334.94 ± 35.48 341.18 ± 32.31 342.71 ± 7.54 353.64 ± 2.45
Panda Hollowbox ObjectDoor Push 192.69 ± 6.49 294.01 ± 57.68 257.48 ± 13.16 230.54 ± 8.56
Panda Hollowbox ObjectDoor Shelf 343.92 ± 10.22 202.17 ± 4.87 328.01 ± 42.52 285.35 ± 64.92
Panda Hollowbox ObjectDoor Trashcan 338.02 ± 36.48 363.04 ± 2.59 360.88 ± 2.45 363.04 ± 1.29

47

	Introduction
	Related work
	Large Recurrent Action Models
	Background
	Large Recurrent Action Models (LRAMs)

	Experiments
	Datasets & Environments
	Scaling comparison
	Analyses & Ablations
	Inference Time Comparison

	Conclusion
	Ethics Statement
	Reproducibility
	Environments & Datasets
	General
	Atari
	Meta-World
	DMControl
	Composuite
	Mimicgen
	Procgen

	Experimental & Implementation Details
	Training & Evaluation.
	Context Lengths.
	Model Architectures.
	Hardware & Training Times.

	Additional Results
	Training Tasks
	Hold-out Tasks
	Fine-Tuning
	In-context Learning
	Inference Time Comparisons
	Latency
	Throughput
	xLSTM Kernel Comparisons

	Ablations
	Removing action condition
	DT on Meta-World
	DT on all 432 tasks.
	xLSTM on all 432 tasks.

	Return-conditioning vs. Behavior Cloning
	Effect of mLSTM-to-sLSTM ratio.
	Effect of Dropout in DT
	Effect of reducing number of layers in xLSTM

	Embedding Space Analysis
	Raw Scores

