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ABSTRACT

In recent years, there has been a trend in the field of Reinforcement Learning
(RL) towards large action models trained offline on large-scale datasets via se-
quence modeling. Existing models are primarily based on the Transformer archi-
tecture, which result in powerful agents. However, due to slow inference times,
Transformer-based approaches are impractical for real-time applications, such as
robotics. Recently, modern recurrent architectures, such as xLSTM and Mamba,
have been proposed that exhibit parallelization benefits during training similar to
the Transformer architecture while offering fast inference. In this work, we study
the aptitude of these modern recurrent architectures for large action models. Con-
sequently, we propose a Large Recurrent Action Model (LRAM) with an xLSTM
at its core that comes with linear-time inference complexity and natural sequence
length extrapolation abilities. Experiments on 432 tasks from 6 domains show that
LRAM compares favorably to Transformers in terms of performance and speed.

1 INTRODUCTION

Reinforcement Learning (RL) has been responsible for impressive success stories such as game-
playing [Silver et al., 2016; Vinyals et al., 2019; Berner et al., 2019; Patil et al., 2022], plasma control
for fusion [Degrave et al., 2022], or navigation of stratospheric balloons [Bellemare et al., 2020].
While these successes were based on classical RL approaches, in which agents have been trained
online with RL objectives, recently there has been a trend towards offline RL settings [Levine et al.,
2020; Schweighofer et al., 2022] and sequence models trained via behavior cloning [Chen et al., 2021;
Janner et al., 2021]. Such approaches, in which agents are trained on large-scale offline datasets with
causal sequence modeling objectives, have been driven by the proliferation of Transformer-based
architectures and gave rise to what we refer to as Large Action Models (LAMs) to highlight their
similarity to large language models (LLMs) [Radford et al., 2018]. LAM approaches can also be used
in multi-task settings to develop generalist agents such as Gato [Reed et al., 2022].

Existing LAMs are primarily based on the Transformer [Vaswani et al., 2017] architecture. Because
of their powerful predictive performance, robotics has become an emergent application area for large
models [Brohan et al., 2023b;a; Octo Model Team et al., 2024; Gu et al., 2023; Wang et al., 2023]
and a number of large multi-task datasets were collected [Jia et al., 2024; Embodiment Collaboration
et al., 2024; Jiang et al., 2023; Mandlekar et al., 2023]. This development bears the potential to
produce robotics agents that learn to master complex tasks in a wide range of environments and
even different embodiments. For example, recently it has been demonstrated, albeit in restricted
settings, that sequence models trained on multi-episodic contexts can perform in-context learning
(ICL) [Laskin et al., 2020; Lee et al., 2023]. One potential application of ICL can be to learn new
related tasks in robotics without the need for re-training or fine-tuning.

One of the key reasons for the success of Transformer-based models is their ability to scale to large
datasets through their efficient parallelization during training. However, despite numerous success
stories in RL, language modeling [Brown et al., 2020] or computer vision [Dosovitskiy et al., 2021;
He et al., 2022], a persistent drawback of Transformer-based architectures is their high inference cost
in terms of both speed and memory [Kim et al., 2023]. Consequently, deploying Transformer-based
models in resource-constrained scenarios, such as on devices with limited hardware capacity and/or
real-time constraints, e.g., robots or smartphones, is prohibitive because of the required fast inference
times [Firoozi et al., 2023; Hu et al., 2023]. A basic principle of control theory is that the controller
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Figure 1: Illustration of our Large Recurrent Action Model (LRAM) with an xLSTM [Beck et al.,
2024] at its core.

sample rate should be in the order of magnitude of the sample rate of the sensors [Franklin et al.,
1998, Ch. 11]. To illustrate this, for typical robots such as drones or industrial robot arms rates of
100Hz-1000Hz are required to keep the system stable [Salzmann et al., 2023; El-Hussieny, 2024;
Hu et al., 2023; Chignoli et al., 2021]. This implies inference times of less than 10ms. At 1000Hz,
a 15-second movement of the agent corresponds to a sequence of 15K steps [El-Hussieny, 2024]
resulting in long context lengths even without ICL. While there exists a range of techniques to make
large models faster, such as quantization [Frantar et al., 2023], distillation [Hinton et al., 2015], or
pruning [LeCun et al., 1989], the quadratic-time complexity of self attention still remains.

Recently, modern recurrent architectures have been proposed, which exhibit similar parallelization
properties during training as the Transformer architecture while offering linear-time inference com-
plexity. These modern recurrent architectures include xLSTM [Beck et al., 2024] and state-space
models (SSMs), such as Mamba [Gu & Dao, 2023; Dao & Gu, 2024] and Griffin/Hawk [De et al.,
2024], and have challenged the dominance of the Transformer in language modeling but also in other
domains such as computer vision [Alkin et al., 2024; Zhu et al., 2024], and biomedicine [Schmidinger
et al., 2024]. More importantly, their linear-time inference makes them suitable for deployment in
scenarios with limited compute, large context sizes, and real-time requirements, such as robotics.

In this work, we assess the aptitude of modern recurrent architectures, such as xLSTM and Mamba,
as large action models. To this end, we introduce a Large Recurrent Action Model (LRAM) with an
xLSTM at its core (see Figure 1). We train our agents on 432 tasks from 6 domains using a supervised
learning setting similar to that of the Decision Transformer [Chen et al., 2021, DT]. We use data
collected during online-RL training of single-task specialist agents and compile these trajectories
alongside other expert demonstrations into a large-scale multi-domain dataset comprising 894M
transitions. Due to their parallelization properties, the modern recurrent architectures considered
in this work can process this large-scale training set as efficiently as the Transformer while being
faster at inference. Experiments across 4 models sizes with our multi-task models indicate that
xLSTM compares favorably to Transformers in terms of both performance and speed. In addition, we
study the effect of modern recurrent architectures on fine-tuning performance and in-context learning
abilities, and find that they exhibit strong performance in both dimensions.

The main purpose of this paper is to test the hypothesis that modern recurrent model architectures are
better suited for building LAMs than Transformers. Hereby, we make the following contributions.

• We propose a Large Recurrent Action Model (LRAM) with an xLSTM at its core that
enables efficient inference.

• We assess the aptitude of modern recurrent architectures as backbones for large-action
models with respect to their efficiency at inference time and overall performance in multi-
task, fine-tuning, and in-context learning settings.

• To foster further research on large action models, we release our data preparation pipeline
and generated datasets.
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2 RELATED WORK

Sequence Models in RL. LSTM [Hochreiter & Schmidhuber, 1997] is the dominant backbone
architecture for partially observable online RL problems and has been behind achievements such
as mastering Starcraft II [Vinyals et al., 2019], Dota 2 [Berner et al., 2019], and Atari [Espeholt
et al., 2018; Kapturowski et al., 2019]. After the success of the Transformer in NLP [Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020], computer vision [Dosovitskiy et al., 2021; He et al.,
2022; Radford et al., 2021; Fürst et al., 2022] and speech recognition [Radford et al., 2022; Baevski
et al., 2020], the architecture has found its way into RL. Chen et al. [2021] proposed the Decision
Transformer (DT) a GPT-style model [Radford et al., 2018], that learns to predict actions from offline
trajectories via behavior cloning. Trajectory Transformer [Janner et al., 2021] predicts actions along
with states and rewards, which allows for dynamics modeling. Other follow-up works build on
the DTs [Zheng et al., 2022; Wang et al., 2022; Shang et al., 2022; Meng et al., 2021; Siebenborn
et al., 2022; Schmied et al., 2024a] or replace the Transformer with Mamba [Ota, 2024; Dai et al.,
2024]. Furthermore, sequence models trained were found to exhibit ICL if conditioned on previous
trajectories [Laskin et al., 2022; Lee et al., 2022; Kirsch et al., 2023], albeit in limited scenarios.

Large Action Models (LAMs). LAMs, such as the Decision Transformer, are well suited for multi-
task settings. Lee et al. [2022] found that a multi-game DT can learn to play 46 Atari games. Reed
et al. [2022] introduced a generalist agent trained on over 600 tasks from different domains, ranging
from Atari to manipulation of a robot arm. Jiang et al. [2022] a Transformer for robot manipulation
based on multi-modal prompts, that allow to steer the model to perform new tasks. Recently, Raad
et al. [2024] introduced an agent instructable via language to play a variety of commercial video
games. Since then, robotics has become an emergent area for developing LAMs [Brohan et al.,
2023b;a; Octo Model Team et al., 2024; Gu et al., 2023; Wang et al., 2023; Kim et al., 2024], also
due to the availability of large-scale robotics datasets [Jia et al., 2024; Embodiment Collaboration
et al., 2024; Jiang et al., 2023; Mandlekar et al., 2023].

Next-generation Sequence Modeling Architectures. Linear recurrent models, such as state-space
models (SSM, Gu et al., 2021; 2022b; Smith et al., 2023; Orvieto et al., 2023) have challenged the
dominance of the Transformer [Vaswani et al., 2017] architecture on long-range tasks [Tay et al.,
2020]. The key insight of those linear RNNs was to diagonalize the recurrent state matrix and enforce
stable training via an exponential parameterization [Gu et al., 2022a; Orvieto et al., 2023]. Since
then, there have been efforts to include features such as gating from RNNs [Elman, 1990; Jordan,
1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014]. Non-linear gates are believed to have
higher expressivity, but are harder to train. Griffin [De et al., 2024] mixes gated linear recurrences
with local attention to achieve more training data efficiency than Llama-2 [Touvron et al., 2023] and
better sequence extrapolation. Mamba [Gu & Dao, 2023] introduces a selection mechanism similar
to gating into SSMs, which makes its state and input matrix time dependent. This is similar to the
gating mechanism of RNNs but also bears resemblance to approaches like fast weights [Schmidhuber,
1992] and Linear Attention [Katharopoulos et al., 2020]. Mamba-2 [Dao & Gu, 2024] highlight
the connection between SSMs with input dependent state and input matrices and (Gated) Linear
attention variants. Most recently, the xLSTM [Beck et al., 2024] was proposed as an improvement
over the classic LSTM [Hochreiter & Schmidhuber, 1997] that combines gating, linear recurrences
and recurrent weights into a single architecture for language modeling. First, xLSTM leverages
exponential gating with stabilization to RNNs for stronger emphasis on important inputs. Second,
xLSTM is composed of two variants, the mLSTM variant with an emphasis on memory that proves
important in language modeling and the sLSTM variant that keeps the non-diagonalized recurrent
matrix to enable state-tracking [Merrill et al., 2024]. State tracking is important in logic tasks and
cannot be modeled fundamentally by linearized recurrent or state-space models like Mamba, Griffin
or Transformers.

3 LARGE RECURRENT ACTION MODELS

3.1 BACKGROUND

Reinforcement Learning. We assume the standard RL formulation via a Markov Decision Process
(MDP) represented by a tuple of (S,A,P,R), where S and A denote state and action spaces,
respectively. At every timestep t the agent observes state st ∈ S , predicts action at ∈ A, and receives
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a scalar reward rt. The reward is determined by the reward function R(rt | st, at). P(st+1 | st, at)
defines the transition dynamics and constitutes a probability distribution over next states st+1 when
executing action at in state st. The goal of RL is to learn a policy π(at | st) that predicts an action
at in state st that maximizes rt.

Decision Transformer [Chen et al., 2021] casts the RL problem setting as next action prediction
task via causal sequence modeling. At training time, DT aims to learn a policy πθ that maps future
rewards to actions, which is often referred to as upside-down RL [Schmidhuber, 2019]. At inference
time, the DT is conditioned via a target return to emit high-reward actions. Consequently, we
assume access to a dataset D = {τi}Ni=1 containing N trajectories τi consisting of quadruplets
τi = (s1, R̂1, a1, r1, . . . , sT , R̂T , aT , rT ) of state st, return-to-go (RTG) R̂t =

∑T
t′=t rt′ , action at,

and reward rt. Here, T refers to the length of the trajectory. The DT πθ is trained to predict the
ground-truth action at conditioned on sub-trajectories from the dataset:

ât ∼ πθ(ât | st−C , R̂t−C , at−C , rt−C , . . . , st−1, R̂t−1, at−1, rt−1, st, R̂t), (1)

where C ≤ T is the size of the context window. In fact, Equation 1 describes the setting of the
multi-game DT [Lee et al., 2022], which also includes rewards in the sequence representation.

3.2 LARGE RECURRENT ACTION MODELS (LRAMS)

Our LRAM has a modern recurrent architecture at its core (see Figure 1), which comes with a parallel
training and a recurrent inference mode. We instantiate LRAM with three different variants, two
different xLSTM configurations and Mamba. Furthermore, we use a training protocol similar to that
of Lee et al. [2022] and Reed et al. [2022] with some differences.

Multi-modal sequence representation. To encode input from different environments with varying
state and action spaces, we use separate encoders per modality that are shared across tasks and
domains. For encoding images we use a CNN similar to Espeholt et al. [2018], whereas for low-
dimensional inputs we use a fully connected network. We refrain from patchifying images and
tokenizing continuous states to avoid unnecessarily long sequences. Similarly, we use linear layers to
encode rewards and RTGs. We omit actions in our sequence formulation, as we found that this can be
detrimental to performance, in particular for continuous control tasks (see Section 4.3). Consequently,
our trajectories have the form τi = (s1, R̂1, r1, . . . , sT , R̂T , rT ) and we train our policy πρ to predict
the ground-truth action at as:

ât ∼ πρ(ât | st−C , R̂t−C , rt−C , . . . , st−1, R̂t−1, rt−1, st, R̂t). (2)

Shared action head. Action spaces in RL typically vary across environments. For example, in the
environments we consider, there are 18 discrete actions and a maximum of 8 continuous dimensions
for continuous control environments. Therefore, we employ discretization of continuous action
dimensions into 256 uniformly-spaced bins, similar to Reed et al. [2022] and Brohan et al. [2023b].
Unlike prior work, we leverage a shared action head to predict all discrete actions or continuous
action dimensions at jointly. We found this setup significantly reduces inference time compared to
using autoregressive action prediction of continuous actions.

Recurrent inference mode. At inference time, we leverage the recurrent backbone and maintain the
hidden states of the last timestep. This enables fast inference with linear-time complexity along the
sequence length. In addition, the recurrent-style inference is well suited for online fine-tuning via RL
objectives, similar to LSTM-based policies in online RL. To further speed-up inference, we leverage
custom kernels for the xLSTM backbone (see Appendix 22).

Our unified discrete action representation enables consistent training of our agents via the cross-
entropy loss as training objective across all tasks and domains, similar to Reed et al. [2022]. We use
separate reward scales per domain and target returns per task. Furthermore, we do not make use of
timestep encodings as used by Chen et al. [2021], which are detrimental when episode lengths vary.
We provide additional implementation details in Appendix B.

4 EXPERIMENTS

We study the aptitude of modern recurrent architectures as LAMs on 432 tasks from 6 domains:
Atari [Bellemare et al., 2013], Composuite [Mendez et al., 2022], DMControl [Tassa et al., 2018],
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Table 1: Dataset statistics for all 432 training tasks.

Dataset Tasks Trajectories Mean Trj. Length Total Transitions Repetitions
Atari 41 136K 2733 205M 1.03×
Composuite 240 480K 500 240M 0.87×
DMControl 11 110K 1000 110M 1.92×
Meta-World 45 450K 200 90M 2.34×
Mimicgen 83 83K 300 25M 8.5×
Procgen 12 2185K 144 224M 0.94×
Total 432 3.4M - 894M -

Meta-World [Yu et al., 2020b], Mimicgen [Mandlekar et al., 2023], and Procgen [Cobbe et al., 2020b].
To this end, we compile a large-scale dataset containing 894 million transitions (see Section 4.1).

Across all experiments, we compare four backbone variants: xLSTM [7:1], xLSTM [1:0] [Beck et al.,
2024], Mamba [Gu & Dao, 2023], and the GPT-2 style Transformer employed in the DT [Chen et al.,
2021]. Following [Beck et al., 2024], we use the bracket notation for xLSTM, which indicates the
ratio of mLSTM to sLSTM blocks. For example, xLSTM [1:0] contains only mLSTM blocks.

In Section 4.2, we conduct a scaling comparison for four model sizes ranging from 16M to 208M
parameters that shows that modern recurrent architectures achieve performance comparable or
favorable to the Transformer baseline across different model sizes. In Section 4.3, we study the
impact of the recurrent backbones on fine-tuning performance and ICL abilities, and further analyze
our trained recurrent backbones. Finally, in Section 4.4, we empirically examine the differences at
inference time in terms of latency and throughput between xLSTM-based and Transformer-based
agents, which indicate a clear advantage for the recurrent backbone.

4.1 DATASETS & ENVIRONMENTS

Datasets. We compile a large-scale dataset comprising 432 tasks from six domains. We leverage
datasets from prior works. For Atari, we extract 5M transitions per task from the DQN-Replay dataset
released by Agarwal et al. [2020]. For Composuite, we leverage the datasets released by [Hussing
et al., 2023]. For Meta-World, we use 2M transitions per task released by [Schmied et al., 2024a].
For DMControl, we generate 10M transitions per task using task-specific RL agents. For Mimicgen,
we use the datasets for the 21 tasks released by [Mandlekar et al., 2023] and generate trajectories for
the remaining 62 tasks. Finally, for Procgen, we extract 20M transitions from the datasets released by
[Schmied et al., 2024b]. Our final dataset contains 3.4M trajectories and in total 894M transitions
(see Table 4.1). We reserve an additional 37 tasks from the same domains for zero-shot evaluation. To
foster future research, we release our data-preparation pipeline and generated data at Anonymized.

Environments. Atari and Procgen come with image observations and discrete action. In contrast,
the remaining four domains exhibit state-based observations and continuous actions. Consequently,
our experiments involve a mixture of state and action spaces as well as varying episode lengths (see
Table 4.1). Periodically evaluating the trained agents on all 432 tasks sequentially is time-consuming
and we, therefore, distributed the evaluation across GPUs and parallel processes (see Appendix B).

Additional details on our datasets, environments are available in Appendix A.

4.2 SCALING COMPARISON

To conduct our main comparisons, we train our four backbone variants on the full training task
mixture of 432 tasks. For each architecture backbone, we report performance scores for four model
sizes: 16M, 48M, 108M, and 206M parameters. We train all models for 200K updates with a batch
size of 128 and context length of 50 timesteps. All domains are represented with approximately
equal proportion, resulting in 33K updates per domain. Additional implementation details and
hyperparameters for every backbone variant and model size are available in Appendix B.

Sequence prediction performance. In Figure 2a, we report the validation set perplexity for all
backbones and model sizes averaged over the individual scores from all domains. To achieve this,
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(a) Sequence prediction (b) Environment interaction

Figure 2: Scaling comparison. We compare xLSTM, Mamba, DT in four model sizes: 16M, 48M,
110M, and 206M parameters. We show the (a) validation perplexity on the hold-out datasets, and (b)
normalized scores obtained from evaluating in the training task environments, averaged over all 6
domains.

we maintain a hold-out set of trajectories for each training task (2.5%) and compute the perplexities
after every 50K steps. Both recurrent backbones outperform the Transformer baseline considerably,
especially as the model sizes increase. We provide the perplexities on the training set in Figure 13.

Evaluation performance. During training, we evaluate our agents after every 50K step in all 432
training environments. In Figure 2b, we report the resulting normalized performances averaged
across all six domains. The recurrent backbones outperform the Transformer one across model sizes.
While xLSTM and Mamba performs similarly at smaller scales, xLSTM tends to outperform Mamba
at larger scales (206M). This is an important advantage of xLSTM, as LRAM agents can strongly
benefit from more data and consequently larger models. Note, that Mamba has a significantly higher
number of parameters than competitors.For the zero-shot evaluation performances on the 37 hold-out
tasks, we refer to Figure 15 in Appendix C.2.

Figure 3: Normalized scores per domain for model size 206M. For Meta-World, DMControl,
Mimicgen, Composuite and Procgen we report data-normalized scores, for Atari we report human-
normalized scores.

Performance per domain. In Figure 3, we report the normalized scores for the 206M parameter
models attained on all six domains. For Meta-World, DMControl, Mimicgen, Composuite, and
Procgen we use data-normalized scores, as suggested by [Levine et al., 2020]. For Atari, we report
human-normalized scores. Overall, we observe that the xLSTM backbone outperforms competitors
on three of the six domains, while all methods perform similarly on the remaining 3 domains.
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These experiments suggest that modern recurrent backbones can be attractive alternatives to the
Transformer architecture for building LAMs.

4.3 ANALYSES & ABLATIONS

Fine-tuning. To assess the effect of the recurrent backbones on fine-tuning performance, we fine-tune
our models on 37 held-out environments from all 6 domains. We evaluate the fine-tuning performance
of the xLSTM architecture for both the 16M parameter pretrained models and compared it against an
xLSTM trained from scratch. The pretrained LRAM outperforms the randomly initialized xLSTM
model in most domains. For detailed results, see Appendix C.3. This suggests that fine-tuning
performance is not affected negatively by switching the backbone.

Figure 4: ICL with modern recurrent archi-
tectures on Dark-Room 10× 10.

In-context Learning. Next, we study the ICL abil-
ities of our recurrent backbones on the Dark-Room
environment considered in prior work on in-context
RL [Laskin et al., 2022; Lee et al., 2023; Schmied
et al., 2024b]. To study ICL in isolation, we train
models from scratch with a multi-episodic context,
which results in a large context length (we refer to
Appendix C.4 for details on the experiment setup). In
particular, we adopt the Algorithm Distillation (AD,
Laskin et al., 2022) framework and exchange the
Transformer backbone architecture with modern re-
current architectures. In Figure 17, we report the ICL
performance on (a) 80 train and (b) 20 hold-out tasks.
We find that xLSTM [7:1] attains the highest overall
scores both on training and hold-out tasks, which we
attribute to the state-tracking abilities [Merrill et al.,
2024] of sLSTM blocks.

Embedding space analysis. In Figure 5, we analyze the representations learned by our model. To
this end, we sample 32 sub-trajectories from every task, extract the sequence representation at the
last layer, cluster them using UMAP [McInnes et al., 2018], and color every point by its domain.
Appendix E describes the setup in greater detail. We find that tasks from the same domain cluster
together. Furthermore, xLSTM exhibits a more refined domain separation compared to DT, which
may contribute to the better down-stream performance.

(a) DT (b) xLSTM

Figure 5: Embedding space comparison. UMAP clustering of hidden states for all tasks for 16M
models, colored by domain. xLSTM exhibits a better domain separation than DT.

Removing Actions & Effect of Context Length. We found that removing actions from the context
results in better performance across backbones. While context lengths beyond 1 hurt performance
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on Meta-World and DMControl and when training with actions, the reverse is true when training
without actions (see Figures 23, 24, 26). This is in contrast to recent works, which did not benefit
from longer contexts [Octo Model Team et al., 2024]. While removing actions improves performance
on Meta-World and DMControl, it does not affect performance on discrete control environments.
For Meta-World and DMControl, we observed that the models become overly confident (high action
logits), which is problematic if poor initial actions are produced. We assume this is because many
robotics environments exhibit smoothly changing actions and by observing previous actions the agent
learns shortcuts. A similar issue has been observed by Wen et al. [2020] and termed the copycat
problem. Removing actions from the input prevents the agent from using shortcuts and alleviates the
copycat problem. Importantly, the evaluation performance improves across domains as the sequence
length increases, which indicates that the history helps to predict the next action (e.g., by observing
mistakes made in the recent past, see Figures 25, 27).

Return-conditioning vs. Behavior Cloning. Across our experiments, we utilized a sequence
representation that includes return-to-go tokens as commonly used in DTs [Chen et al., 2021; Lee
et al., 2022]. However, many recent works focus on behavior cloning without return conditioning
[Reed et al., 2022; Brohan et al., 2023a; Octo Model Team et al., 2024]. Therefore, we study the
effect of excluding the RTG tokens from the sequence representation at the 206M parameter scale, to
validate that our findings transfer to the behavior cloning setting. Indeed, we find that the same trends
hold (see Figure 28 in Appendix D.2).

mLSTM-to-sLSTM Ratio. Throughout our experiments, we compare two xLSTM variants: xLSTM
[7:1] and xLSTM [1:0]. These ratios were proposed by Beck et al. [2024] and we maintain the same
ratios for consistency (see Appendix B.3). While mLSTM is fully parallelizable, sLSTM enables
state-tracking [Merrill et al., 2024]. To better understand the effect of this ratio, we conduct ablation
studies both on the full 432 tasks and on Dark-Room (see Appendix D.3), similar to Beck et al.
[2024]. We find that other ratios, such as [3:1], can be effective (see Figure 30). In addition, we
find it important to place sLSTM blocks a lower-level layers. However, the effectiveness of sLSTM
layers is dependent on the task at hand. We believe that complex tasks with long horizons or partial
observability, as are common in real-world applications, may benefit from the state-tracking abilities
provided by sLSTM blocks.

We present additional ablations on the effect of reducing the number of layers in xLSTM and disabling
Dropout on DT in Appendix D.5 and D.4, respectively.

4.4 INFERENCE TIME COMPARISON

Finally, we empirically examine the difference between xLSTM-based and Transformer-based agents
at inference time. Similar to De et al. [2024], we report both latency and throughput. We focus our
analysis on latency, as it is the more important dimension for real-time applications.

(a) B = 1 (b) B = 16

Figure 6: Latency comparison on A100. We report latency for varying context lengths (in timesteps)
with fixed batch sizes B of 1 and 16. We compare DT to xLSTM with the same number of layer
blocks and parameters on Atari Freeway. Missing bars for DT indicate out-of-memory (OOM).
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Figure 7: Memory consumption during La-
tency comparison on A100 (% of GPU mem-
ory) for varying context lengths and B = 1.

Setup. We conduct all inference time tests on A100
GPUs with 40GB of RAM using 206M parameter
models. For the Transformer, we use KV-caching
and FlashAttention [Dao, 2023] as supported by Py-
Torch [Paszke et al., 2019]. For xLSTM, we use
recurrent-style inference using custom kernels to ac-
celerate the computations (see Figure 22 for the im-
pact of kernel acceleration). For both backbones, we
use torch.compile. The Transformer with KV-
caching has a linear time complexity per step and
quadratic in the sequence length. In contrast, the
xLSTM has a constant time complexity per step and
linear in the sequence length. Therefore, we expect
speed-ups especially for longer sequences and larger
batch sizes, as observed by De et al. [2024]. To en-
sure a fair comparison, we compare DT and xLSTM
with the same number of layer blocks and increase
the hidden size of xLSTM to match the number of parameters of DT (see Appendix D.5 for evaluation
performance of these models). We provide further details on our inference time tests in Appendix
C.5.

Environment. We conduct all inference time tests on the environment that exhibited the longest
average episode lengths in our experiments, the Atari game Freeway. Every episode in Freeway
lasts for 8192 steps, which is equivalent to 24576 tokens (s/rtg/r). We evaluate all models for 5
episodes and preserve the KV-cache/hidden state across episode boundaries. The reported latencies
and throughputs are averaged across all evaluation episodes, except for the first episode, which we
discard to exclude compilation times and prefilling. We opted for measuring the inference times
during environment interaction, i.e., including simulator latency, rather than mere token generation.

Figure 8: Throughput comparison on A100
for varying batch sizes with C = 1600
timesteps on the Atari Freeway environ-
ment. Missing bars for DT indicate OOM.

Latency. Similar to De et al. [2024], we measure
latency by the average time (in seconds) taken to per-
form a single inference step with a fixed batch size
B (lower is better). In Figure, 6, we report the la-
tencies for varying context lengths, C ∈ [50, 25600]
and two batch sizes B ∈ {1, 16}. Note that C is
in time steps and every time step contains 3 tokens
(state, reward-to-go, reward). Hence, the effective
sequence length for the largest C is 76800. As ex-
pected, we find that the recurrent backbone attains
lower inference latencies than the Transformer one.
As the sequence length increases, DT runs out of
memory due to the increasing size of the KV cache
(see Figure 7). In contrast, the inference speeds for
xLSTM are independent of the context length, and
therefore enable significantly longer context lengths.
This property is particularly interesting for in-context
RL, which requires keeping multiple episodes in the
context [Laskin et al., 2022]. Nevertheless, our exper-
iments highlight that the materialization of the complexity advantage (quadratic vs. linear) depends
on the device, model size, batch size and the context length, which is similar to findings by De et al.
[2024].

Throughput. Throughput is measured by the total amount of inference steps performed per second
for a model with a fixed context length. In Figure, 8, we report the throughputs for varying batch
sizes, B ∈ [1, 128] for a fixed context length of C = 1600. Here, the batch size can be interpreted
as the number of parallel environments the agent interacts with. As expected, we find that xLSTM
attains considerably higher throughputs than the DT. The benefit of xLSTM increases with larger
batch sizes. While the DT with quadratic complexity in the sequence length goes OOM for batch
sizes above 64, the xLSTM with linear complexity can easily handle larger batch sizes. In both
experiments, the recurrent xLSTM performs favorably over the Transformer backbone.
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5 CONCLUSION

In this work, we study the aptitude of modern recurrent architectures as alternatives to Transformers
for building LAMs. We found that our LRAM with an xLSTM or Mamba at its core compare
favorably to the Transformer in terms of evaluation performance across different model scales (see
Section 4.2). Moreover, we demonstrated that xLSTM-based LRAMs exhibit higher inference
speeds, especially at large context sizes (see Section 4.4). Thus, the empirical evidence suggests,
that recurrent backbones such as the xLSTM can be attractive alternatives for LAMs. Notably, the
linear-time inference complexity of xLSTM may enable applications that require long context lengths,
such as in-context RL, and facilitate the application of large-scale agents for real-time applications,
such as robotics.

Nevertheless, modern recurrent architectures and Transformers come with different pros and cons.
Both xLSTM and Mamba, on the one hand, exhibit a fundamental computational complexity ad-
vantage over Transformers. Their linear complexity ensures that the computational requirements
increase slower with the sequence length. This property enables more efficient inference, which can
be particularly relevant for edge-applications. While we conduct our inference time comparisons
on a high-end data-center GPU, applications on edge-devices may have to deal with less powerful
accelerators. Importantly, we found that LAMs strongly benefit from longer sequences (see Section
4.3). Transformers, on the other hand, are particularly effective for applications that require exact
recall of tokens in a sequence, which can be important for decision-making [Ni et al., 2024]. Finally,
xLSTM in particular enables state-tracking via sLSTM blocks, which Transformers and Mamba can-
not perform [Merrill et al., 2024]. State tracking can be important for logic tasks and for dealing with
partial observability in RL environments (see Section 4.3) and may be a useful tool for practicioners.
Given these differences, different backbones should be considered depending on the task at hand.

Limitations. The primary target application of LAMs is robotics. While the majority of our
experiments involve robotic simulations, we do not yet provide empirical evidence for real robots.
We do, however, believe that our findings translate to real-world scenarios and aim to provide further
evidence in future work. Moreover, the fine-tuning experiments in this work are limited to offline
RL. We envision that an agent pre-trained by behavioral cloning on large-scale offline RL datasets
may be successfully fine-tuned in an online RL setting to explore new strategies that do not appear
in the training data. Modern recurrent architectures offer both parallel and recurrent training mode,
which might be the key to success for such applications. While we provide initial evidence of
improved ICL abilities of modern recurrent architectures, we only consider a limited grid-world
setting. Consequently, we aim to further investigate the in-context RL abilities of recurrent backbones
on more complex environments in future work.

6 ETHICS STATEMENT

While we conduct all our experiments in simulated environments, the primary target application of
our method is robotics. We believe that our work can positively impact applications in the near future,
which require efficient inference, on-device processing, or have real-time constraints. However,
robotics applications in the real world are not without risks. In particular, in areas where humans
are involved, such as factory settings, special care is required. LAMs are trained via next-action
prediction similar to LLMs. Consequently, LAMs may also suffer from hallucinations in unknown
scenarios. We therefore strongly discourage users from blindly following the predictions made by
real-world LAMs without appropriate safeguards regarding safety and robustness. It is essential to
ensure responsible deployment of such future technologies, and we believe that more research on the
robustness of LAMs is necessary.

7 REPRODUCIBILITY

Upon publication, we will make the code-base used for our experiments publicly available, and release
the datasets we generated. Both will be available at: Anonymized. As part of this submission, we
also include the source code in the supplementary material. We describe the environments we use
for our experiments and provide dataset statistics in Appendix A. Furthermore, in Appendix B, we
provide implementation details for all methods and a list of hyperparameters used for our experiments.
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In Appendix C, we present additional figures that accompany our results in the main text (e.g., all
model sizes). Finally, in Appendices D and E, we provide further details on the conducted ablation
studies and the embedding space analysis, respectively.
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Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.),
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pp. 1724–1734. ACL, 2014. doi: 10.3115/V1/D14-1179. URL https:
//doi.org/10.3115/v1/d14-1179.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020a.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 2048–2056. PMLR, 2020b. URL http://proceedings.
mlr.press/v119/cobbe20a.html.

Yang Dai, Oubo Ma, Longfei Zhang, Xingxing Liang, Shengchao Hu, Mengzhu Wang, Shouling
Ji, Jincai Huang, and Li Shen. Is mamba compatible with trajectory optimization in offline
reinforcement learning? arXiv preprint arXiv:2405.12094, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haitham El-Hussieny. Real-time deep learning-based model predictive control of a 3-dof biped robot
leg. Scientific Reports, 14(1):16243, 2024.

Jeffrey L. Elman. Finding structure in time. Cogn. Sci., 14(2):179–211, 1990. doi: 10.1207/
S15516709COG1402\ 1. URL https://doi.org/10.1207/s15516709cog1402_1.

Embodiment Collaboration, A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee,
A. Pooley, A. Gupta, A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Herzog, A. Irpan, A. Khaz-
atsky, A. Rai, A. Gupta, A. Wang, A. Singh, A. Garg, A. Kembhavi, A. Xie, A. Brohan, A. Raf-
fin, A. Sharma, A. Yavary, A. Jain, A. Balakrishna, A. Wahid, B. Burgess-Limerick, B. Kim,
B. Schölkopf, B. Wulfe, B. Ichter, C. Lu, C. Xu, C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang,
C. Chan, C. Agia, C. Pan, C. Fu, C. Devin, D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak,
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Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 27042–27059. PMLR, 2022.

G. Zhu, Z. Lin, G. Yang, and C. Zhang. Episodic reinforcement learning with associative memory. In
International Conference on Learning Representations, 2020.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. CoRR,
abs/2401.09417, 2024. doi: 10.48550/ARXIV.2401.09417. URL https://doi.org/10.
48550/arXiv.2401.09417.

19

https://doi.org/10.48550/arXiv.2401.09417
https://doi.org/10.48550/arXiv.2401.09417


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

APPENDIX

Contents
A Environments & Datasets 20

A.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2 Atari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.3 Meta-World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.4 DMControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.5 Composuite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.6 Mimicgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.7 Procgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B Experimental & Implementation Details 25
B.1 Training & Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.2 Context Lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.3 Model Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.4 Hardware & Training Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C Additional Results 27
C.1 Training Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C.2 Hold-out Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C.3 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C.4 In-context Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C.5 Inference Time Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

C.5.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
C.5.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
C.5.3 xLSTM Kernel Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 32

D Ablations 34
D.1 Removing action condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

D.1.1 DT on Meta-World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
D.1.2 DT on all 432 tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
D.1.3 xLSTM on all 432 tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.2 Return-conditioning vs. Behavior Cloning . . . . . . . . . . . . . . . . . . . . . . 37
D.3 Effect of mLSTM-to-sLSTM ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
D.4 Effect of Dropout in DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
D.5 Effect of reducing number of layers in xLSTM . . . . . . . . . . . . . . . . . . . 39

E Embedding Space Analysis 39

F Raw Scores 40

A ENVIRONMENTS & DATASETS

A.1 GENERAL

We compile a large-scale dataset comprising 432 tasks from six domains, 3.4M trajectories, and
894M transitions in total (see Table 4.1). To enable fast and targeted data-loading, every trajectory is
stored in a separate hdf5 file. We trade off some data-loading speed for disk space efficiency, by
compressing trajectories that contain image-based observations.

A.2 ATARI

The Arcade Learning Environment (ALE) [Bellemare et al., 2013] is the standard benchmark for
evaluating RL agents and consists of 57 Atari games. Input observations in Atari are RGB images,
but as is standard practice we gray-scale and crop frames (|S| = 1× 64× 64). There are 18 discrete
action across all 57 Atari games (|A| = 18), but individual games may use only use a subset of these
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actions. Furthermore, we adopt the standard Atari recipe as used in prior works, including a frame
skip of 4, maximum number of no-ops of 30, resetting on life loss, and reward clipping to [−1, 1]
[Mnih et al., 2015; Hessel et al., 2017].

Tasks. Similar to Lee et al. [2022], we assign 41 games to the training set, and 5 additional tasks to
the hold-out set. The 41 training tasks include:

amidar, assault, asterix, atlantis, bank-heist, battle-zone, beam-rider,
boxing, breakout, carnival, centipede, chopper-command, crazy-climber,
demon-attack, double-dunk, enduro, fishing-derby, freeway, frostbite,
gopher, gravitar, hero, ice-hockey, jamesbond, kangaroo, krull,
kung-fu-master, name-this-game, phoenix, pooyan, qbert, riverraid,
road-runner, robotank, seaquest, time-pilot, up-n-down, video-pinball,
wizard-of-wor, yars-revenge, zaxxon

The 5 hold-out tasks include: alien, pong, ms-pacman, space-invaders, star-gunner

Dataset. For Atari, we leverage the DQN-Replay dataset released by Agarwal et al. [2020]. The
dataset contains the trajectories seen over the entire training of the DQN agent (50M frames), We
extract a subset of the last 5M transitions for every task, amounting to 205M transitions in total for
the 41 training tasks. The number of episodes, the episodes lengths and total achieved rewards vary
across tasks, as shown in Table 2.

A.3 META-WORLD

The Meta-World benchmark [Yu et al., 2020a] consists of 50 manipulations tasks using a Sawyer
robotic arm, ranging from opening or closing windows, to pressing buttons. Meta-World is based on
the MuJoCo physics engine [Todorov et al., 2012b]. Observations in Meta-World are 39-dimensional
continuous vectors (|S| = 1 × 64 × 39), and actions are represented by 6 continuous dimensions
(|A| = 18) in range [−1, 1]. All tasks share a common action and state space. Following Wolczyk
et al. [2021] and Schmied et al. [2024a], we limit the episode lengths to 200 interactions.

Tasks. We follow Yu et al. [2020a] and split the 50 Meta-World tasks into 45 training tasks (MT45)
and 5 evaluation tasks (MT5).

The 45 training tasks are:

reach, push, pick-place, door-open, drawer-open, drawer-close,
button-press-topdown, peg-insert-side, window-open, window-close,
door-close, reach-wall, pick-place-wall, push-wall, button-press,
button-press-topdown-wall, button-press-wall, peg-unplug-side,
disassemble, hammer, plate-slide, plate-slide-side, plate-slide-back,
plate-slide-back-side, handle-press, handle-pull, handle-press-side,
handle-pull-side, stick-push, stick-pull, basketball,soccer,
faucet-open, faucet-close, coffee-push, coffee-pull, coffee-button,
sweep, sweep-into, pick-out-of-hole, assembly, shelf-place, push-back,
lever-pull, dial-turn

The 5 evaluation tasks are: bin-picking, box-close, door-lock, door-unlock,
hand-insert

Dataset. For Meta-World, we use the datasets released by [Schmied et al., 2024a], which contain 2M
transitions per tasks and consequently 90M transitions in total for the training set. All episodes last
for 200 environment interaction steps, and consequently there are 10K episodes for every task. For
detailed dataset statistics per task, we refer to their publication.

A.4 DMCONTROL

The DMControl benchmark [Tassa et al., 2018] consists of 30 different robotic tasks. Unlike Meta-
World, the benchmark contains robots with different morphologies instead of a single common
Sawyer arm. Due to the different robot morphologies, the state, and action spaces vary across tasks
(3 ≤ |S| ≤ 24, 1 ≤ |A| ≤ 6), with all actions in range [−1, 1].
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Table 2: Atari Dataset Statistics.

Task # of Trajectories Mean Length Mean Return
amidar 1813 2753 145
pooyan 2773 1800 176
frostbite 5218 766 18
video-pinball 1023 3902 266
wizard-of-wor 3059 1314 15
chopper-command 5452 738 18
breakout 3780 1300 39
phoenix 3307 1509 49
asterix 5250 951 55
enduro 571 8720 636
kung-fu-master 1775 2812 131
hero 3022 1345 168
assault 3782 1170 77
demon-attack 1649 2431 116
qbert 3939 1138 155
jamesbond 2841 1758 11
bank-heist 4146 1204 62
up-n-down 3246 1538 99
centipede 6879 582 81
boxing 4796 1041 63
battle-zone 1933 2134 15
name-this-game 988 5049 389
zaxxon 2561 1950 12
beam-rider 1232 3248 77
time-pilot 3886 1029 11
ice-hockey 1465 3407 -6
riverraid 2645 1512 143
krull 3032 1319 528
gopher 1817 2338 185
freeway 2438 2048 33
seaquest 2807 1779 150
double-dunk 1774 2815 0
road-runner 3308 1217 135
atlantis 186 26349 1394
gravitar 6187 646 1
yars-revenge 4094 1036 96
crazy-climber 1105 3954 572
kangaroo 1787 2792 50
fishing-derby 2737 1825 0
carnival 21131 194 37
robotank 747 6652 56

Average 3321 2734 153

Tasks. We do not use all 30 tasks contained in the DMControl benchmark, but select 16 of the 30
tasks that have been used in prior works [Hafner et al., 2019; Schmied et al., 2024a;b], which we
refer to as DMC11 and DMC5 respectively.

The 11 training tasks are:

finger-turn easy, fish-upright, hopper-stand, point mass-easy,
walker-stand, walker-run, ball in cup-catch, cartpole-swingup,
cheetah-run, finger-spin, reacher-easy

The 5 evaluation tasks are:
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(a) IIWA (b) Panda (c) Jaco (d) Gen3

Figure 9: Illustration of the four supported robot arms in Composuite [Mendez et al., 2022].

cartpole-balance, finger-turn hard, pendulum-swingup, reacher-hard,
walker-walk

Dataset. For DMControl, we generate 10M transitions per task by training task-specific SAC
[Haarnoja et al., 2018] agents, using the same setup as Schmied et al. [2024a]. Episodes in all
DMControl tasks last for 1000 environment steps and per time-step a maximum reward of +1 can be
achieved, which results in a maximum reward of 1000 per episode. Consequently, our training set
contains 10K episodes per tasks, amounting to 110K episodes and 110M transitions in total across all
tasks. We list the dataset statistics for all 11 tasks in Table 3.

Table 3: DMControl Data statistics.

Task # of Trajectories Mean Length Mean Return
point mass easy 10K 1K 851
cheetah run 10K 1K 385
walker run 10K 1K 230
ball in cup catch 10K 1K 969
hopper stand 10K 1K 460
walker stand 10K 1K 939
finger turn easy 10K 1K 954
reacher easy 10K 1K 938
cartpole swingup 10K 1K 817
fish upright 10K 1K 815
finger spin 10K 1K 966

Average 19628 152 8.2

A.5 COMPOSUITE

The Composuite benchmark [Mendez et al., 2022], is a robotics benchmark for grasping and object
manipulation. The benchmark is implemented on top of robotsuite [Zhu et al., 2020], which in
turn leverages the MuJoCo simulator under the hood [Todorov et al., 2012a]. Composuite contains a
mix of 4 simulated robot arms: IIWA, Jaco, Gen3, and Panda (see Figure 9). All arms share a
common state and action space containing 93 continuous state dimensions and 8 continuous action
dimensions, respectively (|S| = 93, |A| = 8).

Tasks. CompoSuite is designed as a compositional multi-task benchmark for RL, in which a
particular robot manipulates a particular object given an objective, while avoiding obstacles. Overall,
there are 4 robots arms, 4 objects, 4 obstacles, and 4 task objectives. This results in 256 possible
robot/object/objective/obstacles combinations. For our experiments, we assign 240 tasks to the
training set and use the remaining 16 tasks as hold-out set (Panda and Object Wall) combinations.
For a list of all 256 tasks, we refer to Mendez et al. [2022].

Dataset. For Composuite, we leverage the datasets released by Hussing et al. [2023]. For every task,
we select 2000 episodes, which last on average for 500 steps. This amounts to 1M transitions per
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(a) IIWA (b) Panda (c) Sawyer (d) UR5e

Figure 10: Illustration of the four supported robot arms in Mimicgen [Mandlekar et al., 2023]
solving the stack-three task.

task, and 240M transitions across all 240 training tasks. For dataset statistics, we refer to Hussing
et al. [2023].

A.6 MIMICGEN

Similar to Composuite, Mimicgen [Mandlekar et al., 2023] is based on robosuite and the MuJoCo
simulator. Mimicgen is designed for automatically synthesizing large-scale datasets from only a
handful of human demonstrations. Observations in Mimicgen can be represented as images (from
multiple cameras) or low dimensional continuous states. For our experiments, we opt for the
low-dimensional state representation to simplify learning. Therefore, observations and actions
are represented by 37-dimensional and 7-dimensional continuous vectors, respectively (|S| = 37,
|A| = 7). Similar to Composuite, Mimicgen supports 4 different robot arms: Panda, IIWA,
Sawyer, and UR5e (see Figure 10).

Tasks. Mimicgen consists of 24 diverse tasks, including stacking blocks, re-assembling objects,
and even long-horizon tasks like coffee preparation. These 24 tasks can be performed with the four
supported robot arms, amounting to 96 tasks in total.

Dataset. Mandlekar et al. [2023] released dataset for the 24 tasks using the default robot arm Panda.
To increase the dataset diversity, we additionally generated data for the remaining 3 robot arms.
However, not all data generation runs produce successful trajectories, and we discard with too few
successful trajectories. Our final dataset for Mimicgen contains 83 training and 2 evaluation tasks. For
each task, we collect 1000 successful demonstrations (we do not include unsuccessful trajectories).
Episode lengths vary across tasks, ranging from 260 to 850 environment steps.

A.7 PROCGEN

Procgen benchmark consists of 16 procedurally-generated video games [Cobbe et al., 2020a]. Obser-
vations in Procgen are RGB images of dimension 3× 64× 64. However, for training efficiency, we
apply gray-scaling to image observations (|S| = 1× 64× 64). All 16 environments share a common
action space of 15 discrete actions (|A| = 16). Procgen is designed to test the generalization abilities
of RL agents. Consequently, procedural generation is employed to randomize background and colors,
while retaining the game dynamics.

Tasks. Following prior works [Raparthy et al., 2023; Schmied et al., 2024b], we assign 12 and 4
tasks to training and hold-out set, respectively. The 12 training tasks are:

bigfish, bossfight, caveflyer, chaser, coinrun, dodgeball,
fruitbot, heist, leaper, maze, miner, starpilot

The 4 hold-out tasks are: climber, ninja, plunder, jumper

Dataset. We leverage the datasets released by Schmied et al. [2024b], which contain 20M transitions
per task. The datasets were generated by recording all transitions observed by training RL agents for
25M steps, followed by uniform subsampling to 20M transitions. Consequently, the dataset contains
mixed quality trajectories ranging from random (beginning of training) to expert (end of training).
We list the dataset statistics for all 16 tasks in Table 4.
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Table 4: Procgen Data statistics.

Task # of Trajectories Mean Length Mean Return
bigfish 82835 230 6.251
bossfight 112459 141 1.946
caveflyer 151694 105 7.745
chaser 93612 212 3.248
coinrun 261117 51 9.473
dodgeball 144364 137 2.884
fruitbot 73653 270 16.094
heist 101361 196 8.405
leaper 296084 67 4.446
maze 482245 41 9.432
miner 288818 68 11.8
starpilot 96468 206 17.3

Average 182059 144 8.3

Table 5: Hyperparameters for RA-DT.

Parameter Value
Gradient steps 200K
Evaluation frequency 50K
Evaluation episodes 5
Optimizer AdamW
Batch size 128
Gradient accumulation 6
Lr schedule Linear warm-up + Cosine
Warm-up steps 4000
Learning rate 1e-4 → 1e-6
Weight decay 0.01
Gradient clipping 0.25
Dropout 0.2
Context len (timesteps) 50
Reward scale per-domain
Target return per-task

B EXPERIMENTAL & IMPLEMENTATION DETAILS

B.1 TRAINING & EVALUATION.

In our experiments, we compare two variants of xLSTM, Mamba and DT. For our main experiments
in Section 4.2, we train all models for 200K updates, and evaluate after every 50K update steps. We
report the mean and 95% confidence intervals over three seeds in our experiments, as suggested by
Agarwal et al. [2021]. For every evaluation tasks, we take the average of 3 evaluation seeds.

We train our agents with a batch size of 128 and gradient accumulation across the 6 domains, such
that every domain is represented with the same proportion. Consequently, the effective batch size is
768. We use a learning rate of 1e−4, 4000 linear warm-up steps followed by a cosine decay to 1e−6,
and train using the AdamW optimizer [Loshchilov & Hutter, 2018]. In addition, we employ gradient
clipping of 0.25, weight decay of 0.01 for all models. We do not employ Dropout, as is standard
practice in DTs, as we found that it negatively affects performance (see Section 4.3). We use separate
reward scales of 200, 100 and 20 for Meta-World, DMControl and Atari, respectively. Furthermore,
for all domains, we set the target return to the maximum return achieved for a particular task in the
training datasets. This is particularly useful for domains, where the maximum returns differ heavily
across tasks (e.g., Atari). We list all hyperparameters in Table 5.
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B.2 CONTEXT LENGTHS.

By default, we train all models with a context length C = 50 timesteps. For every timestep there are
three tokens (s/rt/r) and consequently, the effective context length is 150. We found that performance
improves for longer context lengths (see Section D.1), but limit our experiments to C = 50 to reduce
the computational cost.

B.3 MODEL ARCHITECTURES.

We train models across 4 models sizes: 16M, 48M, 110M, and 206M. We follow Lee et al. [2022] in
selecting the number of layers and hidden dimensions. For xLSTM and Mamba, we use twice the
number of layers blocks to match the number of parameters of the Transformer [Beck et al., 2024;
Gu et al., 2024] (see Table 6) For our xLSTM [7:1] variant, which contains sLSTM blocks, we strive
to maintain the same ratio as proposed by Beck et al. [2024]. Not all our model sizes are divisible by
8 and only the 16M and 110M models exhibit the exact 7:1 ratio of mLSTM to sLSTM blocks. For
consistency, however, we maintain the same notation as Beck et al. [2024]. We place sLSTM blocks
at positions [1], [1, 3], [1, 3], and [1, 3, 5] for the 16M, 48M, 110M, 206M, respectively.

Across backbones, we use linear layers to encode continuous states, reward returns-to-go, similar to
Chen et al. [2021]. The maximal state-dimension across continuous control environments is 204 in
our experiments. To use a shared linear embedding layer for continuous states, we pad states that
have lower number of dimensions to 204 dimensions using zeros. To encode image inputs on visual
domains, we use the IMPALA-CNN proposed by Espeholt et al. [2018] and adopted by previous
works on Procgen [Cobbe et al., 2020a] and Atari [Schmidt & Schmied, 2021; Schwarzer et al., 2023].
Consequently, we do not make use of discretization of continuous states or patchification of images.
This design choice significantly reduces the sequence length to only three tokens per time-step (see
Appendix B.2) and consequently results in faster inference.

For continuous actions, we make use of discretization and discretize of every action dimension into
256 uniformly-spaced bins, similar to Reed et al. [2022] and Brohan et al. [2023b]. We experimented
with lower/higher number of bins, but did not observe a benefit beyond 256 bins. Consequently, this
resolution is sufficient for the environments we consider. We use a shared action head to predict
the action bins of all continuous dimensions jointly. The maximum number of continuous action
dimensions is 8 in our experiments and consequently the number of discrete action classes is 2048. In
addition, there are 18 discrete actions originating from Atari and Procgen. Therefore, our action head
learns to predict the correct action among the 2066 discrete classes. While different environments
may have different action dimensions, the model predicts all action dimensions jointly. At inference
time, the number of action dimensions of the current environment is known, and we extract the
respective dimensions from the joint predictions. We opt for the shared action head representation, as
this further speeds up inference and does not require autoregressive action prediction.

For the Transformer baseline, we use global positional embeddings similar to Chen et al. [2021]. For
the recurrent backbones, we do not make use of positional encodings.

B.4 HARDWARE & TRAINING TIMES.

We train all our models on a server equipped with 4 A100 GPUs. We use distributed data parallel to
distribute the workload, as supported in PyTorch [Paszke et al., 2019]. Training times range from
5 hours for the smallest DT model to 30 hours for the largest Mamba model. Throughout all our
experiments, we use mixed precision training [Micikevicius et al., 2017] as supported in PyTorch to
speed up training time.

We evaluate our models after every 50K steps. However, periodically evaluating the trained agents
on all 432 tasks sequentially is time-consuming. Therefore, we perform parallel evaluation with 4
processes at a time. For multi-GPU setups, we distribute the evaluation workload among the available
GPUs. For example, with 4 available GPUs and 4 evaluation processes per GPU, 16 environments
are evaluated simultaneously. Consequently, the total evaluation time for all 432 tasks, ranges from
18 minutes for the smallest DT model to roughly 2 hours for the largest Mamba model.
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Table 6: Model Sizes.

Model Layers Hidden Dim Heads Parameters
Transformer 4 512 8 16M
Transformer 6 768 12 48M
Transformer 8 1024 16 110M
Transformer 10 1280 20 206M

Mamba 8 512 - 16M
Mamba 12 768 - 48M
Mamba 16 1024 - 110M
Mamba 20 1280 - 206M

xLSTM 8 512 4 16M
xLSTM 12 768 4 48M
xLSTM 16 1024 4 110M
xLSTM 20 1280 4 206M

C ADDITIONAL RESULTS

C.1 TRAINING TASKS

In Figures 11 and 12, we report the normalized scores obtained per domain and the average learning
curves across tasks for all four model sizes.

In Figure 13, we report the training perplexity on the 432 training tasks over 200K updates. Here, we
observe that the training perplexity behaves similar to the validation perplexity. This is expected, as
our models see most transitions only a single time (see Table 4.1 for the number of repetitions per
domain).

Furthermore, we report the scaling curves with an additional model size of 408M parameters in
Figure 14. Due to the high computational cost of the 408M models, we were currently only able to
conduct a single run for this size. However, we aim to provide further empirical evidence for this
model sizes in future work.

C.2 HOLD-OUT TASKS

In Figure 15, we show the zero-shot evaluation performance on the hold-out tasks 15. We want to
highlight, that the performance declines for all methods and model sizes compared to performance on
training tasks. This is because, hold-out tasks exhibit severe shifts in state-spaces, action-spaces and
reward functions.

C.3 FINE-TUNING

In Figure 16, we present the fine-tuning evaluation performance on the held-out tasks. We compare
xLSTMs trained from scratched against xLSTMs initialized with the pre-trained weights. We do
observe consistent improvement of the pre-trained models over the models trained from scratch.
However, while we train on a substantial number of environments, the total amount of data used is still
only a fraction of that employed in training other large-scale models, such as LLMs. Consequently,
we do not observe comparable few-shot generalization. WHowever, we anticipate that few-shot
generalization capabilities will emerge as we increase both data volume and model size.

C.4 IN-CONTEXT LEARNING

We assess the ICL abilities of modern recurrent architectures on the Dark-Room environment
considered in prior works on in-context RL [Laskin et al., 2022; Lee et al., 2023; Schmied et al.,
2024b]. In Dark-Room, the agent is located in a dark room. The task is to navigate to an invisible
goal location in that dark room. The state is partially observable, as the agent only observes its own
x-y position on the grid (|S| = 2). The action space consists of 5 discrete actions: move up, move
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(a) 16M

(b) 48M

(c) 110M

(d) 206M

Figure 11: Normalized scores per-domain all four model sizes: 16M, 48M, 110M, and 206M. For
Meta-World, DMControl, Mimicgen, Composuite, and Procgen we report data-normalized scores,
for Atari we report human-normalized scores.

down, move left, move right, stay (|A| = 5). Upon reaching the goal location, the agent receives a
reward of +1 for every step in the episode it resides on the goal location. Consequently, the agent
first has to explore the room to find the goal. Once the goal location is found (as indicated by the
positive reward), the agent can exploit this knowledge. Given a multi-episodic context, the agent
should be able to exploit information contains in the previous trials (e.g., exploiting one path vs.
avoiding another).
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(a) 16M (b) 48M

(c) 110M (d) 206M

Figure 12: Learning curves for all four model sizes, 16M, 48M, 110M, and 206M, on the training
tasks.

(a) Training Perplexity

Figure 13: Scaling comparison. We compare xLSTM, Mamba, DT in four model sizes: 16M, 48M,
110M, and 206M parameters. We show the training perplexity on the training dataset to evaluate the
sequence prediction performance.

In our experiments, the Dark-Room is a 10 × 10 grid and episodes last for 100 steps, starting in
the top left corner of the grid. We adopt the same experiment setup as Schmied et al. [2024b] and
leverage their datasets. We train 16M parameter agents on datasets from 80 randomly selected goal
locations in the grid. The datasets contain 100K transitions per task and are obtained by training
task-specific PPO [Schulman et al., 2018] agents. Then, we evaluate the in-context abilities of our
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(a) Sequence prediction (b) Environment interaction

Figure 14: Scaling comparison with additional 408M parameter models. We show the (a) validation
perplexity on the hold-out datasets, and (b) normalized scores obtained from evaluating in the training
task environments, averaged over all 6 domains.

Figure 15: Scaling comparison. Zero-shot performance on hold-out tasks at four models sizes,
16M, 48M, 110M, and 206M. Note that performance declines for all methods and model sizes
compared to performance on training tasks. This is because, hold-out tasks exhibit severe shifts in
state-spaces, action-spaces and reward functions.

agents on 20 hold-out goal locations. During evaluation, the agent is given 40 episodes to interact
with the environment, which we refer to as ICL-trials. Furthermore, we adopt the AD [Laskin et al.,
2022] framework for training our agents with a multi-episodic context. We use the same sequence
representation as used in our main experiments, consisting of states, returns-to-go (target return set to
80 during evaluation), and rewards. Note that this differs from the sequence representation used by
Laskin et al. [2022]. We set the context length for all agents to the equivalent of two episodes, which
amounts to 200 timesteps in total.

In Figure 17, we report the ICL performance over the 40 ICL trials on (a) 80 training locations and
(b) 20 hold-out locations for the 4 different backbones considered in this work. We observe that the
recurrent backbones attain considerably higher scores than the Transformer backbone. Furthermore,
we find that xLSTM [7:1] attains the highest overall scores, which we attribute to the state-tracking
abilities [Merrill et al., 2024] of sLSTM blocks. We aim to explore the ICL abilities of modern
recurrent backbones more in future work.
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Figure 16: Fine-tune performance on hold-out tasks. We compare the performance of a pretrained
xLSTM against an xLSTM trained from scratch, both with 16 million parameters. We select the
top 5% percent of trajectories from our held-out tasks based on performance and used this subset
to fine-tune the models. We perform 25K update steps during fine-tuning and show the normalized
scores, averaged across held-out tasks from each domain.

(a) 80 training tasks (b) 20 hold-out tasks

Figure 17: In-context Learning on Dark-Room 10× 10.

C.5 INFERENCE TIME COMPARISONS

We empirically examine the difference in inference speed between of our models. Similar to De
et al. [2024], we report both latency and throughput. For real-time applications, latency is the more
important dimension, and therefore we focus our analysis on latency.

C.5.1 LATENCY

In Figures 18 and 19, we report the latencies for DT and xLSTM with the same number of layer
blocks as DT, and twice the number of layers blocks as DT, respectively. We conduct our comparison
for two different batch sizes and across varying sequence lengths.

C.5.2 THROUGHPUT

In Figures 20 and 21, we similarly report the attained throughput for DT and xLSTM with the same
number of layer blocks as DT, and twice the number of layers blocks as DT, respectively. We conduct
our comparison for two fixed context lengths and varying batch sizes.
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(a) batch size = 1 (b) batch size = 16

Figure 18: Latency. We report latency with (a) batch size of 1 and (b) batch size of 16 for DT and
xLSTM with 206M parameters. For xLSTM we use the same number of layer blocks as DT and a
higher hidden dimension to match parameters.

(a) batch size = 1 (b) batch size = 16

Figure 19: Latency. We report latency with (a) batch size of 1 and (b) batch size of 16 for DT and
xLSTM with 206M parameters. For xLSTM, we use twice the number of layer blocks and the same
hidden dimension as the Transformer.

C.5.3 XLSTM KERNEL COMPARISONS

We leverage custom kernels for xLSTM to conduct our inference-speed comparisons. In particular,
we compare 4 variants: recurrent-style inference with and without kernel acceleration, and chunkwise
inference with and without kernel acceleration. In our experiments, every timestep contains 3
individual tokens. Consequently, regular recurrent-style inference requires iterating over the token
sequence of length 3 in a loop given the hidden state of the previous timestep. This requires 3 forward
passes. In contrast, the chunkwise implementation operates on chunks of timesteps given a hidden
state. Consequently, this only requires a single forward pass. In Figure 22, we illustrate the impact
of kernel acceleration. We find that our chunkwise kernels result in considerably lower latencies.
Interestingly, we find that for B = 1, our chunkwise implementation without kernel acceleration is
faster than the recurrent-style inference with kernel acceleration. However, as the batch size increases,
this trend reverses. This highlights the importance of kernel acceleration for efficient inference.
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(a) context length = 800 (b) context length = 1600

Figure 20: Throughput. We report throughput with (a) context size of 800, and (b) context size of
1600 timesteps for DT and xLSTM with 206M parameters. For xLSTM we use the same number of
layer blocks as DT and a higher hidden dimension to match parameters.

(a) context length = 800 (b) context length = 1600

Figure 21: Throughput. We report throughput with (a) context size of 800, and (b) context size of
1600 timesteps for DT and xLSTM with 206M parameters. For xLSTM, we use twice the number of
layer blocks and the same hidden dimension as the Transformer.

(a) batch size = 1 (b) batch size = 16

Figure 22: Impact of kernel acceleration. We report latency with (a) batch size of 1 and (b) batch
size of 32 for DT and xLSTM with 206M parameters. For xLSTM we use the same number of layer
blocks as DT and a higher hidden dimension to match parameters.
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D ABLATIONS

D.1 REMOVING ACTION CONDITION

D.1.1 DT ON META-WORLD

We found that removing actions from the context results in better performance across backbones.
In Figure 23, we report the learning curves over 200K updates for DT with varying context lengths
on Meta-World, both with and without actions in the context. While context lengths beyond 1 hurt
performance when training with actions, the reverse is true when training without actions. This is
in contrast to recent works, which did not benefit from longer contexts [Octo Model Team et al.,
2024]. However, while removing actions improves performance on Meta-World, it does not affect
performance on discrete control. On Meta-World, we observed that the models become overly
confident (high action logits), which is problematic if poor initial actions are produced. We assume
this is because in robotics actions change smoothly and by observing previous actions the agent learns
shortcuts. A similar issue has been identified by Wen et al. [2020], and termed the copycat problem,
because the agent is incentivized to copy previous actions. Our solution is to remove actions from the
input sequence. This prevents the agent from learning shortcuts and alleviates the copycat problem.

(a) w/ actions (b) w/o actions

Figure 23: Ablation on removing the action condition for varying context lengths C. Performance
of DT (a) with, and (b) without action condition on Meta-World. With action in the context, C > 1
harms performance due to overconfidence in action predictions. Without actions in the context, the
performance of DT improves with increasing C.

D.1.2 DT ON ALL 432 TASKS.

To further investigate the effect of removing actions from the context, we repeat this ablation on the
full 432 tasks and 6 domains at the 206M model scale. In Figure 24, we report the learning curves for
a DT with varying sequence lengths trained (a) with and (b) without actions in the agent’s context.
Similar to the single-domain study on Meta-World with smaller models, we find that providing a
longer context does not improve performance, resulting in a normalized score of around 0.3 across
domains. In contrast, without action in the context, we observe a consistent improvement in the
evaluation performance as the sequence length increases. In fact, the normalized score increase from
around 0.3 with C = 1 to 0.7 with C = 50. For computational reasons we only report one seed per
sequence length in this experiment, but we believe that the overall trends are clear.

To better understand on which domains the longer context benefits or hurts our agents, we also present
the normalized score per domain in Figure 25. Without actions in the context, we find that longer
context consistently benefits the performance across domains. With actions in the context we observe
that on Meta-World and DMControl, the performance deteriorates for C > 1. In contrast, on the
discrete control domains Atari and Procgen, but also on the continuous continous control domain
Composuite, performance tends to improve with C > 1. This suggests that the copycat problem
is particularly present on Meta-World and DMControl. However, note that the final performances
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(a) w/ actions (b) w/o actions

Figure 24: Ablation on removing the action condition for varying context lengths C. Performance
of DT (a) with, and (b) without action condition on all 432 tasks. Without actions in the context, the
performance of DT improves with increasing C.

on Atari, Procgen and Mimicgen are considerably worse when actions are present in the context
compared to when they are not.

(a) w/ actions

(b) w/o actions

Figure 25: Ablation on removing the action condition for varying context lengths C. We show the
normalized score per domain for all context lengths (a) with and (b) without actions.

To further investigate this, we compute the MSE between subsequent actions in the training dataset
(similar to Wen et al. [2020]) for the continuous control domains and report them in Table 7. Indeed
we find that Meta-World and DMControl exhibit significantly lower MSEs between subsequent
actions than Composuite. While Mimicgen also exhibits a low MSE between consecutive actions, all
backbones perform poorly on this challenging benchmark. Consequently, we conclude that removing
actions from the agent’s context is particularly effective for domains where actions change smoothly.
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Table 7: Average MSE (± standard deviation) between subsequent actions in robotics datasets.

Meta-World DMControl Composuite Mimicgen
Avg. MSE 0.08±0.09 0.2±0.22 2.1±0.3 0.015±0.007

This result highlights the fact that large action models can strongly benefit from increased context
length even on the simulated environments we consider in this work. Furthermore, we believe that this
effect can be even bigger in complex real-world environments that require longer-term interactions.

D.1.3 XLSTM ON ALL 432 TASKS.

To validate that modern recurrent backbones also benefit from training with longer sequence lengths,
we repeat the same ablation as presented in Appendix D.1.2 using xLSTM [1:0]. We report the
learning curves validation perplexities and evaluation performance across all 432 tasks for varying
context lengths in Figure 26. Note that the validation perplexity curves in Figure 26a, start at step
50K for readability. Again, we observe considerable improvements in the validation perplexities and
in the normalized scores (0.4 for C = 1 to 0.8 for C = 50) as the context length increases.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 26: Ablation on the effect of for varying the context length C for xLSTM. We report (a)
validation perplexity and (b) evaluation performance across the 432 training tasks for xLSTM [1:0].
Without actions in the context, the performance of DT improves with increasing C.

In addition, we provide the normalized scores per domain for xLSTM with varying sequence lengths
in Figure 27. Across domains, we observe increasing performance with increasing C.

(a) w/o actions

Figure 27: Ablation on the effect of for varying the context length C for xLSTM. We show the
normalized scores per domain for all context lengths.
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D.2 RETURN-CONDITIONING VS. BEHAVIOR CLONING

Across experiments presented in the main text, except for the ICL experiments, we utilized a sequence
representation that includes return-to-go tokens (RTG) as commonly used in the DT literature [Chen
et al., 2021; Lee et al., 2022]. At inference time, the RTG allows to condition the model on a high
target return to produce high-quality actions. This is particularly useful when the datasets contain
a mixture of optimal and suboptimal trajectories. However, many recent works focus on behavior
cloning without return conditioning [Brohan et al., 2023b;a; Octo Model Team et al., 2024].

To better understand whether our findings transfer to the behavior cloning setting, we conduct an
ablation study in which we exclude the RTG tokens from the sequence representation. This means
the sequence only consists of state and reward tokens. In Figure 28, we report the (a) validation
perplexities and (b) evaluation performance on the 432 task for the four considered backbones. We
retain the same training settings and datasets as reported in Appendix B (200K updates, evaluation
after every 50K steps). We observe similar learning dynamics as for the 206M models that include
RTG tokens in the sequence representation (see Figure 2 and Figure 12). Consequently, we conclude
that the same performance trends holds for training the considered backbones with and without return
condition. Note, that the final performances are lower compared to the models that include the RTG
condition and that can be conditioned on a high return at inference time.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 28: Ablation on the effect of omitting the RTG condition. We report the learning curves for (a)
validation perplexity and (b) evaluation performance across the 432 training tasks for 206M parameter
models. We observe similar performance trends as when including the RTG in the sequence.

D.3 EFFECT OF MLSTM-TO-SLSTM RATIO.

Throughout our experiments, we compare two xLSTM variants: xLSTM [7:1] and xLSTM [1:0].
The bracket notation was introduced by [Beck et al., 2024], and denotes the ratio of mLSTM to
sLSTM blocks. For example, xLSTM [7:1] contains 1 sLSTM block for every 7 mLSTM blocks.
As described in Appendix B, we aim to maintain the same ration as proposed by Beck et al. [2024].
While mLSTM blocks are fully parallelizable, sLSTM blocks are not. However, sLSTM preserves
the non-diagonalized recurrent matrix to enable state-tracking [Merrill et al., 2024]. As such, sLSTM
can be attractive for tasks that require state-tracking (see Figure 4 in Beck et al. [2024]).

We first conduct an ablation study on the effect of the mLSTM-to-sLSTM ratio on the evaluation
performance across all 432 tasks. For this experiment, we use the 16M parameter model that contains
8 xLSTM blocks in total. Consequently, we compare the following ratios [1:0] (only mLSTM),
[0:1] (only sLSTM), [1:1], [1:3], [7:1]. In addition, we investigate the placement of sLSTMs across
all 8 blocks. To indicate the placement, we use @ followed by the layer index (starting at 0). For
example, [3:1] @ 1,3 indicates that the second and fourth layer are sLSTMs. In Figure 29 we report
the validation perplexities and evaluation performance for different ratios and layer placements across
the 432 tasks. For computational reasons, we conduct this experiment with only 1 seed per ratio. We
find that at the 16M parameter scale, xLSTM [1:0] on average outperforms the variants that leverage

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

sLSTM blocks. This indicates that these domains do not strongly benefit from the state tracking
abilities of sLSTM.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 29: Ablation on the effect of the mLSTM-to-sLSTM ratio. We report the learning curves
for (a) validation perplexity and (b) evaluation performance across the 432 training tasks for 206M
parameter models with varying ratios.

Next, conduct the same analysis on Dark-Room 10× 10 ICL environment as used in Appendix C.4.
Unlike most of the 432 tasks used in our main experiments, Dark-Room exhibits a partially-observable
observation space and sparse rewards. Consequently, Dark-Room is more likely to require state
tracking abilities. In fact, we already observed better performance for xLSTM [7:1] than for xLSTM
[1:0] in Appendix 17. In Figure 30, we report the ICL curves for the 80 train tasks and 20 hold-out
tasks. We observe that xLSTM variants that contain sLSTM blocks at lower-level positions, such
as [7:1] @ 1 and [3:1] @ 1,3 outperform xLSTM [1:0]. In contrast, xLSTM variants that contain
sLSTM blocks at deeper-level positions, such as [0:1] and 3:1 @ 5,7, perform poorly. This is similar
to findings by Beck et al. [2024] who also place sLSTM layers at lower-level positions.

(a) 80 training tasks (b) 20 hold-out tasks

Figure 30: In-context Learning on Dark-Room 10× 10 for varying mLSTM-to-sLSTM ratios.

We conclude that sLSTM layers can be important building blocks for tasks that require state-tracking,
such as Dark-Room. Most of the 432 tasks we consider in the main experiments of this work
contain fully observable observation spaces and may not require state-tracking. However, we believe
that more complex tasks with longer horizons or partial observability, as is common in real-world
applications, could greatly benefit from the state-tracking abilities provided by sLSTM blocks. As
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such equipping an agent with the ability to perform state-tracking by including sLSTM blocks may
be valuable option for practicioners. This is a distinguishing factor of xLSTM from Mamba, which
does not exhibit state-tracking.

D.4 EFFECT OF DROPOUT IN DT

DTs use by default a Dropout [Srivastava et al., 2014] rate of 0.1. However, during our experi-
ments, we found that Dropout has detrimental effects on the evaluation performance, particularly
on continuous control domains like Composuite. In Figure 31, we show the validation perplexities
and evaluation performance for a DT trained with and without Dropout. Consequently, we remove
Dropout from our DT variant.

(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 31: Ablation on the effect of dropout on DT performance. We show the (a) validation
perplexity and (b) evaluation performance on the training tasks. DT performance drops considerably
if training with dropout.

D.5 EFFECT OF REDUCING NUMBER OF LAYERS IN XLSTM

In prior works, xLSTM and Mamba use twice the number of layers blocks as the Transformer
baseline, while maintaining the same hidden dimension [Gu & Dao, 2023; Beck et al., 2024]. For
our inference-time comparisons, we therefore reduce the number of layer blocks in xLSTM by
half. To ensure a fair comparison, we consequently adjust the hidden size of xLSTM to match the
number of parameters of the Transformer baseline. In this section, we investigate the effect of these
modifications of the xLSTM architecture on the model performance.

In Figure 32, report the validation perplexities and evaluation performance for the regular xLSTM
with twice the number of layer blocks as DT, and an xLSTM with half the number of blocks.
Reducing the number of layer blocks results in slight decrease in performance on both metrics.
However, xLSTM still outperforms the Transformer baseline (see Figure 2).

E EMBEDDING SPACE ANALYSIS

In Figure 5, we analyze the representations learned by our models using UMAP [McInnes et al.,
2018]. Here, we explain the clustering procedure in more detail. For every task, we sample 32
sub-trajectories containing 50 timesteps (150 tokens) and encode them using our sequence models.
Then, we extract the hidden states at the last layer of our model and aggregate them via mean pooling.
We cluster all vectors using default hyperparameters of UMAP into a two-dimensional space. Finally,
we color the resulting points by their domain. Generally, we find that tasks from the same domain
cluster together.
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(a) Sequence Prediction Performance (b) Evaluation Performance

Figure 32: Ablation on the effect of reducing the number of layer blocks in xLSTM. We show the (a)
validation perplexity and (b) evaluation performance on the training tasks for the layer regular and
layer-matched matched xLSTM models. Reducing the number of layer blocks in xLSTM results in a
slight performance decrease.

F RAW SCORES

In this section, we report the raw scores for all 432 training tasks for the 206M parameter scale. See
Tables 8, 9, 10, 11, 12 for Procgen, Atari, Meta-World, DMControl, and Mimicgen, respectively. The
raw scores for Composuite are available in Tables 13, 14, 15, and 16.

Table 8: Raw Scores for Procgen.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
bigfish 2.53 2.0 4.6 5.13
bossfight 6.73 4.1 9.27 2.0
caveflyer 6.67 6.3 6.67 4.87
chaser 3.41 3.91 4.92 4.2
coinrun 10.0 9.0 10.0 10.0
dodgeball 2.8 3.4 4.27 3.87
fruitbot 13.33 19.8 19.73 19.27
heist 7.33 7.0 6.67 6.67
leaper 5.33 4.0 8.67 5.33
maze 8.67 10.0 7.33 7.33
miner 8.07 11.0 9.0 8.27
starpilot 24.93 10.1 21.8 28.2

Avg. Reward 8.32 7.55 8.73 8.76
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Table 9: Raw Scores for Atari.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Amidar 82.27 30.8 71.07 26.73
Assault 438.2 224.7 410.2 494.13
Asterix 573.33 540.0 763.33 583.33
Atlantis 42573.33 97240.0 83760.0 76973.33
BankHeist 2.67 9.0 0.0 8.67
BattleZone 2000.0 2400.0 2600.0 1733.33
BeamRider 126.13 61.6 176.0 243.47
Boxing 80.8 77.7 83.8 84.93
Breakout 68.13 136.6 92.93 93.73
Carnival 618.67 424.0 697.33 484.0
Centipede 1802.13 1238.2 2416.73 1806.6
ChopperCommand 813.33 800.0 813.33 766.67
CrazyClimber 96853.33 65960.0 106606.67 79873.33
DemonAttack 100.0 65.0 181.33 130.67
DoubleDunk -2.53 -3.0 -2.93 -3.87
Enduro 34.53 65.5 98.73 48.53
FishingDerby -72.47 -68.2 -72.07 -71.0
Freeway 29.0 29.8 30.0 28.6
Frostbite 774.67 1248.0 1162.67 1049.33
Gopher 314.67 34.0 132.0 12.0
Gravitar 116.67 175.0 176.67 136.67
Hero 14004.67 11381.0 14688.67 16522.0
IceHockey -4.8 -6.3 -7.6 -5.93
Jamesbond 490.0 540.0 603.33 510.0
Kangaroo 1426.67 2880.0 2620.0 2653.33
Krull 8880.67 10090.0 8918.0 9569.33
KungFuMaster 8866.67 12700.0 8120.0 11233.33
NameThisGame 7976.67 7967.0 7789.33 7232.0
Phoenix 592.0 1600.0 1807.33 1052.67
Pooyan 283.33 87.5 371.67 406.67
Qbert 4306.67 1700.0 805.0 2613.33
Riverraid 2888.67 6923.0 6688.0 7446.67
RoadRunner 1320.0 350.0 1340.0 213.33
Robotank 18.67 13.2 23.07 25.13
Seaquest 182.67 396.0 448.0 209.33
TimePilot 2533.33 3520.0 3200.0 2966.67
UpNDown 10598.0 12043.0 15340.67 12815.33
VideoPinball 1669.07 0.0 220.4 140.6
WizardOfWor 113.33 160.0 160.0 206.67
YarsRevenge 14356.27 14499.0 16815.0 21403.67
Zaxxon 0.0 0.0 20.0 0.0

Avg. Reward 5556.81 6281.27 6705.61 6383.35
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Table 10: Raw Scores for Meta-World.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
reach 1860.69 ± 12.51 1859.3 ± 5.79 1859.17 ± 12.62 1864.37 ± 6.57
push 1588.19 ± 207.0 1605.03 ± 107.81 1493.31 ± 238.01 1759.33 ± 3.89
pick-place 137.85 ± 99.18 161.74 ± 153.95 389.81 ± 37.36 296.21 ± 43.77
door-open 1552.95 ± 6.51 1562.39 ± 6.79 1569.35 ± 6.71 1570.16 ± 14.83
drawer-open 1735.13 ± 21.76 1714.4 ± 19.3 1740.48 ± 9.2 1747.33 ± 3.88
drawer-close 1856.67 ± 3.06 1858.05 ± 2.75 1858.7 ± 2.34 1859.33 ± 1.15
button-press-topdown 1322.3 ± 3.12 1326.55 ± 19.93 1341.5 ± 3.15 1322.83 ± 7.25
peg-insert-side 1557.59 ± 98.52 1607.59 ± 9.1 1640.43 ± 13.1 1574.75 ± 90.34
window-open 1594.16 ± 34.13 1568.55 ± 14.38 1576.82 ± 10.21 1578.18 ± 70.3
window-close 1474.26 ± 16.88 1443.94 ± 18.99 1459.83 ± 18.79 1452.21 ± 26.56
door-close 1538.02 ± 14.64 1544.31 ± 3.63 1546.0 ± 9.69 1541.64 ± 10.5
reach-wall 1837.64 ± 1.6 1845.12 ± 3.06 1837.76 ± 3.39 1777.17 ± 94.47
pick-place-wall 1041.54 ± 219.67 843.51 ± 224.6 206.88 ± 184.28 385.57 ± 151.52
push-wall 1689.67 ± 12.74 1701.7 ± 1.54 1599.63 ± 189.06 1487.69 ± 195.8
button-press 1512.08 ± 9.54 1488.1 ± 38.83 1541.77 ± 5.48 1527.3 ± 10.16
button-press-topdown-wall 1314.49 ± 62.73 1295.2 ± 6.62 1321.26 ± 17.59 1328.74 ± 24.16
button-press-wall 1359.83 ± 173.51 1547.14 ± 13.84 1326.57 ± 109.09 1267.11 ± 8.78
peg-unplug-side 1415.68 ± 162.54 1517.49 ± 25.27 1393.98 ± 173.0 1422.64 ± 192.05
disassemble 1452.0 ± 44.54 1441.18 ± 29.15 1220.27 ± 441.51 1072.31 ± 374.95
hammer 1446.68 ± 169.03 1683.04 ± 4.82 1669.54 ± 32.0 1642.34 ± 72.23
plate-slide 1673.66 ± 1.72 1676.83 ± 3.0 1682.41 ± 5.02 1677.52 ± 5.46
plate-slide-side 1719.4 ± 7.85 1694.35 ± 46.29 1686.38 ± 61.27 1690.72 ± 12.97
plate-slide-back 1790.96 ± 6.39 1787.65 ± 5.99 1797.78 ± 1.17 1797.17 ± 0.43
plate-slide-back-side 1773.26 ± 9.72 1763.24 ± 5.59 1785.11 ± 7.42 1788.61 ± 6.67
handle-press 1734.75 ± 220.82 1829.07 ± 29.91 1881.23 ± 15.62 1881.92 ± 10.56
handle-pull 1590.74 ± 35.98 1627.4 ± 34.18 1616.62 ± 52.0 1627.6 ± 21.86
handle-press-side 1852.25 ± 7.0 1857.4 ± 10.13 1847.95 ± 5.61 1857.36 ± 5.57
handle-pull-side 1651.05 ± 3.48 1607.3 ± 22.56 1655.75 ± 4.6 1651.77 ± 7.53
stick-push 1595.45 ± 6.88 1585.22 ± 5.17 1595.35 ± 3.29 1595.21 ± 0.88
stick-pull 1377.41 ± 108.31 1401.91 ± 32.79 1460.27 ± 57.13 1442.68 ± 43.23
basketball 1529.79 ± 11.41 1528.22 ± 18.23 1543.02 ± 2.49 1542.8 ± 17.81
soccer 649.69 ± 160.32 929.06 ± 64.35 792.21 ± 139.63 732.44 ± 290.49
faucet-open 1676.95 ± 121.6 1703.83 ± 41.97 1727.05 ± 45.15 1744.83 ± 15.93
faucet-close 1772.91 ± 9.23 1772.13 ± 2.35 1778.25 ± 3.96 1775.25 ± 0.79
coffee-push 340.21 ± 276.9 232.01 ± 225.2 61.35 ± 51.79 41.79 ± 40.9
coffee-pull 1346.29 ± 101.93 1261.39 ± 195.18 1409.68 ± 34.66 1293.92 ± 129.94
coffee-button 1595.94 ± 16.57 1592.77 ± 2.23 1593.15 ± 49.98 1562.92 ± 36.79
sweep 1485.79 ± 12.17 1452.38 ± 13.74 1508.58 ± 14.96 1471.73 ± 29.08
sweep-into 1796.25 ± 7.64 1472.64 ± 455.9 1804.27 ± 2.38 1786.27 ± 14.64
pick-out-of-hole 1437.38 ± 181.15 1499.35 ± 35.73 1529.83 ± 8.09 1415.91 ± 176.44
assembly 1229.39 ± 16.96 1216.34 ± 22.21 1236.68 ± 21.77 1227.81 ± 7.67
shelf-place 1446.07 ± 30.41 1448.75 ± 39.73 1485.4 ± 12.31 1463.53 ± 9.04
push-back 1226.32 ± 172.59 1022.98 ± 158.35 1011.25 ± 396.65 1027.48 ± 303.73
lever-pull 1604.74 ± 3.32 1634.06 ± 6.08 1639.31 ± 10.11 1626.09 ± 23.72
dial-turn 1688.33 ± 22.94 1667.37 ± 41.45 1713.38 ± 35.16 1686.59 ± 55.09

Avg. Reward 1486.05 1486.18 1455.15 1464.16

Table 11: Raw Scores for DMControl.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
finger-turn-easy 121.27 ± 104.6 396.4 ± 122.47 449.8 ± 186.65 640.13 ± 82.48
fish-upright 181.14 ± 70.82 154.59 ± 34.64 277.23 ± 105.37 241.73 ± 257.01
hopper-stand 296.15 ± 141.83 304.78 ± 32.65 413.95 ± 35.83 392.34 ± 152.75
point mass-easy 342.26 ± 37.42 720.11 ± 42.95 734.95 ± 114.17 823.74 ± 57.3
walker-stand 911.72 ± 38.16 785.21 ± 23.53 947.31 ± 22.13 864.14 ± 181.56
walker-run 155.91 ± 73.84 274.83 ± 0.44 201.34 ± 34.77 145.01 ± 31.71
ball in cup-catch 976.93 ± 0.83 970.9 ± 4.67 977.33 ± 0.5 975.93 ± 0.42
cartpole-swingup 688.5 ± 42.6 762.4 ± 63.93 800.14 ± 13.64 591.08 ± 86.49
cheetah-run 81.21 ± 96.85 482.39 ± 17.23 358.52 ± 127.92 389.04 ± 4.11
finger-spin 209.27 ± 20.57 430.8 ± 61.66 673.47 ± 94.37 626.93 ± 29.21
reacher-easy 45.4 ± 5.21 180.7 ± 133.64 78.73 ± 20.59 58.0 ± 13.91

Avg. Reward 364.52 496.65 505.06 522.55
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Table 12: Raw Scores for Mimicgen.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Panda CoffeePreparation D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12
Panda CoffeePreparation D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda Coffee D0 0.4 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Coffee D1 0.2 ± 0.2 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Coffee D2 0.07 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda HammerCleanup D0 1.0 ± 0.0 0.9 ± 0.14 1.0 ± 0.0 1.0 ± 0.0
Panda HammerCleanup D1 0.47 ± 0.5 0.1 ± 0.14 0.47 ± 0.23 0.47 ± 0.31
Panda Kitchen D0 0.87 ± 0.23 0.6 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Panda Kitchen D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda MugCleanup D0 0.13 ± 0.12 0.1 ± 0.14 0.6 ± 0.2 0.27 ± 0.12
Panda MugCleanup D1 0.07 ± 0.12 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Sawyer NutAssembly D0 0.07 ± 0.12 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
Sawyer PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda Square D0 0.2 ± 0.2 0.0 ± 0.0 0.53 ± 0.12 0.53 ± 0.12
Panda Square D1 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.07 ± 0.12
Panda Square D2 0.13 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.07 ± 0.12
Panda StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
Panda Stack D0 0.47 ± 0.12 0.2 ± 0.0 0.67 ± 0.31 0.73 ± 0.12
Panda Stack D1 0.4 ± 0.2 0.0 ± 0.0 0.27 ± 0.12 0.4 ± 0.2
Panda Threading D0 0.27 ± 0.12 0.2 ± 0.0 0.27 ± 0.12 0.2 ± 0.2
Panda Threading D1 0.2 ± 0.35 0.0 ± 0.0 0.07 ± 0.12 0.07 ± 0.12
Panda ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Panda ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Coffee D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Coffee D0 0.27 ± 0.31 0.0 ± 0.0 0.13 ± 0.12 0.2 ± 0.2
UR5e Coffee D0 0.33 ± 0.12 0.2 ± 0.0 0.47 ± 0.31 0.4 ± 0.2
IIWA Coffee D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Coffee D1 0.07 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
UR5e Coffee D1 0.13 ± 0.12 0.0 ± 0.0 0.2 ± 0.2 0.33 ± 0.31
IIWA Coffee D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Coffee D2 0.0 ± 0.0 0.1 ± 0.14 0.2 ± 0.0 0.07 ± 0.12
IIWA HammerCleanup D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer HammerCleanup D0 0.73 ± 0.12 0.9 ± 0.14 0.93 ± 0.12 0.87 ± 0.23
UR5e HammerCleanup D0 1.0 ± 0.0 0.9 ± 0.14 1.0 ± 0.0 0.93 ± 0.12
IIWA HammerCleanup D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer HammerCleanup D1 0.2 ± 0.2 0.2 ± 0.0 0.27 ± 0.23 0.4 ± 0.35
UR5e HammerCleanup D1 0.47 ± 0.12 0.4 ± 0.28 0.8 ± 0.2 0.6 ± 0.0
IIWA Kitchen D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Kitchen D0 0.93 ± 0.12 0.8 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
UR5e Kitchen D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
IIWA MugCleanup D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA MugCleanup D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e MugCleanup D1 0.07 ± 0.12 0.0 ± 0.0 0.13 ± 0.12 0.13 ± 0.12
IIWA NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12 0.0 ± 0.0
UR5e NutAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
IIWA PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e PickPlace D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Square D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Square D0 0.2 ± 0.2 0.4 ± 0.28 0.33 ± 0.12 0.53 ± 0.23
UR5e Square D0 0.13 ± 0.23 0.3 ± 0.42 0.27 ± 0.12 0.53 ± 0.23
IIWA Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e Square D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e StackThree D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.07 ± 0.12
UR5e StackThree D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA Stack D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Stack D0 0.47 ± 0.31 0.2 ± 0.0 0.6 ± 0.2 0.4 ± 0.2
UR5e Stack D0 0.4 ± 0.2 0.3 ± 0.14 0.87 ± 0.12 0.67 ± 0.12
IIWA Stack D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Stack D1 0.2 ± 0.2 0.0 ± 0.0 0.4 ± 0.2 0.27 ± 0.12
UR5e Stack D1 0.6 ± 0.0 0.1 ± 0.14 0.73 ± 0.12 0.4 ± 0.2
IIWA Threading D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Threading D0 0.13 ± 0.12 0.0 ± 0.0 0.07 ± 0.12 0.13 ± 0.12
UR5e Threading D0 0.27 ± 0.31 0.1 ± 0.14 0.4 ± 0.2 0.4 ± 0.2
IIWA Threading D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer Threading D1 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12 0.0 ± 0.0
UR5e Threading D1 0.07 ± 0.12 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D0 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.12 0.0 ± 0.0
IIWA ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IIWA ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Sawyer ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
UR5e ThreePieceAssembly D2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Table 13: Raw Scores for Composuite, Part1.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
IIWA Box None PickPlace 402.74 ± 14.4 414.73 ± 10.49 424.35 ± 12.95 421.33 ± 11.39
IIWA Box None Push 388.61 ± 35.63 427.0 ± 2.03 424.4 ± 4.63 427.0 ± 0.68
IIWA Box None Shelf 370.3 ± 80.53 417.61 ± 1.44 417.78 ± 0.96 416.41 ± 1.87
IIWA Box None Trashcan 329.27 ± 113.43 424.39 ± 1.04 429.54 ± 1.57 426.07 ± 3.98
IIWA Box GoalWall PickPlace 367.68 ± 81.93 428.6 ± 4.11 428.0 ± 2.32 429.29 ± 1.97
IIWA Box GoalWall Push 299.69 ± 77.03 337.81 ± 88.42 344.59 ± 28.19 318.19 ± 50.76
IIWA Box GoalWall Shelf 360.92 ± 48.29 405.81 ± 9.82 408.1 ± 5.92 402.31 ± 3.08
IIWA Box GoalWall Trashcan 376.45 ± 83.64 422.34 ± 3.61 429.15 ± 2.72 425.64 ± 3.88
IIWA Box ObjectDoor PickPlace 389.21 ± 47.22 417.89 ± 0.92 413.82 ± 4.06 414.08 ± 3.83
IIWA Box ObjectDoor Push 406.51 ± 0.32 403.59 ± 5.82 373.61 ± 40.95 397.45 ± 1.89
IIWA Box ObjectDoor Shelf 329.42 ± 67.73 353.67 ± 56.2 367.47 ± 43.7 396.33 ± 2.67
IIWA Box ObjectDoor Trashcan 325.45 ± 72.77 372.51 ± 41.55 358.72 ± 76.22 391.58 ± 16.76
IIWA Box ObjectWall PickPlace 393.52 ± 51.47 425.76 ± 2.29 420.61 ± 2.99 421.61 ± 1.06
IIWA Box ObjectWall Push 420.21 ± 3.5 412.76 ± 1.67 410.19 ± 1.62 411.5 ± 3.13
IIWA Box ObjectWall Shelf 400.86 ± 3.66 408.22 ± 1.63 401.42 ± 3.93 396.64 ± 10.55
IIWA Box ObjectWall Trashcan 414.43 ± 2.93 413.71 ± 3.47 417.11 ± 1.69 414.46 ± 0.8
IIWA Dumbbell None PickPlace 386.95 ± 51.87 422.35 ± 2.94 421.32 ± 2.03 421.94 ± 1.48
IIWA Dumbbell None Push 360.62 ± 90.94 413.39 ± 6.13 414.23 ± 6.04 393.34 ± 36.66
IIWA Dumbbell None Shelf 310.45 ± 73.45 344.81 ± 53.72 380.51 ± 5.34 350.8 ± 52.16
IIWA Dumbbell None Trashcan 386.09 ± 40.69 396.08 ± 0.7 414.03 ± 3.78 412.34 ± 3.36
IIWA Dumbbell GoalWall PickPlace 413.6 ± 1.16 415.64 ± 3.28 410.7 ± 7.64 413.51 ± 1.23
IIWA Dumbbell GoalWall Push 316.49 ± 38.69 367.45 ± 4.81 336.67 ± 82.13 371.92 ± 5.91
IIWA Dumbbell GoalWall Shelf 395.63 ± 3.19 372.77 ± 30.32 376.75 ± 8.62 372.77 ± 4.25
IIWA Dumbbell GoalWall Trashcan 379.45 ± 58.51 374.31 ± 55.11 412.22 ± 4.09 406.03 ± 5.03
IIWA Dumbbell ObjectDoor PickPlace 358.13 ± 26.76 364.62 ± 40.18 393.83 ± 2.05 347.28 ± 39.81
IIWA Dumbbell ObjectDoor Push 400.9 ± 8.95 383.81 ± 8.46 382.93 ± 0.7 364.06 ± 35.78
IIWA Dumbbell ObjectDoor Shelf 369.75 ± 14.29 325.7 ± 30.94 350.7 ± 21.76 335.84 ± 40.36
IIWA Dumbbell ObjectDoor Trashcan 393.05 ± 3.92 358.77 ± 36.88 397.23 ± 1.73 389.54 ± 9.14
IIWA Dumbbell ObjectWall PickPlace 403.51 ± 12.08 407.37 ± 0.09 404.28 ± 1.23 401.15 ± 10.64
IIWA Dumbbell ObjectWall Push 330.77 ± 30.29 296.98 ± 68.18 334.41 ± 22.28 307.4 ± 33.85
IIWA Dumbbell ObjectWall Shelf 353.9 ± 29.5 374.39 ± 6.58 358.29 ± 33.75 358.76 ± 18.87
IIWA Dumbbell ObjectWall Trashcan 394.48 ± 4.39 361.99 ± 39.17 398.06 ± 0.59 383.43 ± 32.4
IIWA Plate None PickPlace 427.3 ± 0.59 424.44 ± 1.82 424.59 ± 2.01 425.99 ± 1.2
IIWA Plate None Push 424.25 ± 1.13 419.86 ± 3.96 418.13 ± 3.55 418.42 ± 1.3
IIWA Plate None Shelf 408.07 ± 0.95 397.02 ± 6.49 396.55 ± 10.03 394.93 ± 10.81
IIWA Plate None Trashcan 419.62 ± 1.81 420.24 ± 0.33 420.37 ± 0.91 419.42 ± 2.61
IIWA Plate GoalWall PickPlace 424.69 ± 2.67 423.93 ± 1.77 421.83 ± 1.01 420.13 ± 8.21
IIWA Plate GoalWall Push 409.69 ± 3.55 397.97 ± 13.41 390.46 ± 14.79 388.89 ± 3.01
IIWA Plate GoalWall Shelf 404.92 ± 0.82 396.09 ± 4.6 393.01 ± 5.77 401.81 ± 8.93
IIWA Plate GoalWall Trashcan 420.47 ± 1.88 420.68 ± 2.82 420.29 ± 1.48 421.31 ± 1.93
IIWA Plate ObjectDoor PickPlace 408.48 ± 1.12 403.23 ± 7.83 397.51 ± 1.65 401.53 ± 1.76
IIWA Plate ObjectDoor Push 404.34 ± 4.45 395.97 ± 16.84 389.33 ± 7.78 385.77 ± 1.21
IIWA Plate ObjectDoor Shelf 377.91 ± 21.42 373.43 ± 5.34 369.41 ± 4.97 374.16 ± 13.75
IIWA Plate ObjectDoor Trashcan 400.27 ± 3.16 400.74 ± 0.53 399.28 ± 1.63 400.23 ± 0.63
IIWA Plate ObjectWall PickPlace 417.35 ± 3.15 416.76 ± 6.18 409.31 ± 1.26 411.62 ± 0.97
IIWA Plate ObjectWall Push 413.47 ± 3.92 408.16 ± 6.53 405.51 ± 3.71 405.27 ± 1.34
IIWA Plate ObjectWall Shelf 393.23 ± 1.39 376.64 ± 12.49 386.41 ± 8.65 382.81 ± 6.78
IIWA Plate ObjectWall Trashcan 410.85 ± 1.07 408.87 ± 3.95 408.98 ± 0.82 409.35 ± 2.6
IIWA Hollowbox None PickPlace 378.13 ± 94.18 427.5 ± 6.93 428.62 ± 3.62 426.38 ± 3.26
IIWA Hollowbox None Push 386.22 ± 36.15 422.49 ± 8.01 427.73 ± 1.97 426.12 ± 2.3
IIWA Hollowbox None Shelf 416.65 ± 6.66 419.89 ± 11.03 418.34 ± 6.49 415.11 ± 0.89
IIWA Hollowbox None Trashcan 424.38 ± 2.77 421.62 ± 1.4 426.9 ± 2.35 425.99 ± 1.81
IIWA Hollowbox GoalWall PickPlace 430.17 ± 3.37 427.76 ± 0.48 427.91 ± 0.76 426.47 ± 1.62
IIWA Hollowbox GoalWall Push 401.33 ± 3.96 373.0 ± 41.02 390.09 ± 9.46 394.35 ± 14.43
IIWA Hollowbox GoalWall Shelf 424.55 ± 2.3 379.05 ± 64.32 423.51 ± 1.31 419.69 ± 3.38
IIWA Hollowbox GoalWall Trashcan 425.95 ± 0.73 425.27 ± 0.66 424.8 ± 1.0 420.68 ± 3.33
IIWA Hollowbox ObjectDoor PickPlace 276.87 ± 109.64 369.45 ± 57.47 374.76 ± 45.83 301.41 ± 112.33
IIWA Hollowbox ObjectDoor Push 326.56 ± 109.6 352.22 ± 53.97 390.78 ± 6.35 324.09 ± 55.59
IIWA Hollowbox ObjectDoor Shelf 339.03 ± 43.75 370.75 ± 8.36 362.72 ± 30.31 353.98 ± 38.19
IIWA Hollowbox ObjectDoor Trashcan 395.18 ± 8.7 370.39 ± 35.98 387.21 ± 14.61 387.99 ± 21.95
IIWA Hollowbox ObjectWall PickPlace 364.95 ± 27.07 355.61 ± 76.66 356.01 ± 8.3 369.47 ± 24.62
IIWA Hollowbox ObjectWall Push 422.04 ± 2.08 414.47 ± 8.08 414.39 ± 5.5 408.53 ± 8.05
IIWA Hollowbox ObjectWall Shelf 400.82 ± 2.4 400.31 ± 1.28 403.69 ± 2.06 401.27 ± 1.97
IIWA Hollowbox ObjectWall Trashcan 415.82 ± 0.9 416.68 ± 0.14 392.79 ± 44.13 417.34 ± 0.77
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Table 14: Raw Scores for Composuite, Part 2.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Jaco Box None PickPlace 401.38 ± 3.88 400.41 ± 0.63 399.74 ± 5.35 396.54 ± 4.99
Jaco Box None Push 399.84 ± 3.29 397.79 ± 1.71 392.77 ± 1.12 397.31 ± 1.39
Jaco Box None Shelf 383.53 ± 0.31 384.65 ± 5.31 385.85 ± 1.1 386.34 ± 3.47
Jaco Box None Trashcan 374.88 ± 43.66 398.46 ± 2.69 397.66 ± 4.99 398.21 ± 0.91
Jaco Box GoalWall PickPlace 394.75 ± 2.52 395.12 ± 0.38 392.3 ± 5.3 389.93 ± 3.83
Jaco Box GoalWall Push 317.78 ± 67.67 343.43 ± 7.49 351.67 ± 20.65 336.02 ± 8.59
Jaco Box GoalWall Shelf 374.62 ± 20.35 387.0 ± 1.42 387.73 ± 2.11 384.74 ± 1.19
Jaco Box GoalWall Trashcan 374.07 ± 30.72 393.81 ± 0.68 395.49 ± 1.23 392.53 ± 3.46
Jaco Box ObjectDoor PickPlace 396.05 ± 1.12 391.81 ± 4.67 388.37 ± 1.26 383.39 ± 9.07
Jaco Box ObjectDoor Push 364.64 ± 38.39 383.07 ± 5.73 366.91 ± 33.04 387.51 ± 2.93
Jaco Box ObjectDoor Shelf 373.8 ± 2.81 379.75 ± 1.45 375.38 ± 6.27 376.86 ± 1.37
Jaco Box ObjectDoor Trashcan 388.4 ± 1.28 353.97 ± 52.06 389.38 ± 2.0 389.81 ± 2.89
Jaco Box ObjectWall PickPlace 394.31 ± 2.66 385.33 ± 5.43 388.54 ± 7.62 387.82 ± 2.26
Jaco Box ObjectWall Push 387.4 ± 9.34 384.75 ± 4.29 383.61 ± 7.58 383.32 ± 7.73
Jaco Box ObjectWall Shelf 364.38 ± 2.57 361.28 ± 8.2 367.38 ± 2.04 369.22 ± 2.79
Jaco Box ObjectWall Trashcan 385.73 ± 6.85 385.9 ± 1.13 385.34 ± 0.74 380.01 ± 5.08
Jaco Dumbbell None PickPlace 319.87 ± 1.83 334.2 ± 1.93 376.46 ± 9.19 334.95 ± 68.5
Jaco Dumbbell None Push 388.29 ± 1.98 372.13 ± 5.46 373.3 ± 6.88 369.49 ± 4.36
Jaco Dumbbell None Shelf 300.81 ± 61.26 344.47 ± 15.49 361.77 ± 6.21 362.88 ± 8.22
Jaco Dumbbell None Trashcan 369.52 ± 11.5 369.83 ± 13.39 387.28 ± 1.88 377.27 ± 9.7
Jaco Dumbbell GoalWall PickPlace 306.12 ± 40.29 306.26 ± 32.85 349.04 ± 18.3 348.42 ± 37.3
Jaco Dumbbell GoalWall Push 107.91 ± 29.9 136.11 ± 9.04 245.71 ± 30.15 188.19 ± 58.09
Jaco Dumbbell GoalWall Shelf 300.97 ± 114.65 368.99 ± 0.5 363.58 ± 9.74 346.57 ± 27.41
Jaco Dumbbell GoalWall Trashcan 321.81 ± 87.58 317.94 ± 23.15 376.09 ± 2.22 378.49 ± 4.52
Jaco Dumbbell ObjectDoor PickPlace 382.35 ± 1.62 380.2 ± 5.17 349.1 ± 32.92 372.44 ± 7.6
Jaco Dumbbell ObjectDoor Push 382.32 ± 1.08 353.42 ± 7.17 353.85 ± 6.83 338.66 ± 19.03
Jaco Dumbbell ObjectDoor Shelf 312.14 ± 64.22 330.22 ± 47.38 343.51 ± 30.97 331.5 ± 37.18
Jaco Dumbbell ObjectDoor Trashcan 371.06 ± 8.48 375.34 ± 4.07 373.78 ± 6.05 370.06 ± 8.94
Jaco Dumbbell ObjectWall PickPlace 279.55 ± 111.58 314.05 ± 21.02 360.29 ± 15.75 360.38 ± 12.02
Jaco Dumbbell ObjectWall Push 381.11 ± 3.7 351.38 ± 1.82 349.16 ± 2.93 352.64 ± 11.94
Jaco Dumbbell ObjectWall Shelf 354.95 ± 1.59 316.33 ± 42.6 342.43 ± 7.94 332.97 ± 15.33
Jaco Dumbbell ObjectWall Trashcan 367.01 ± 8.38 354.32 ± 22.23 365.47 ± 7.45 363.25 ± 3.18
Jaco Plate None PickPlace 397.25 ± 0.77 389.99 ± 6.44 384.38 ± 5.92 380.69 ± 2.55
Jaco Plate None Push 395.18 ± 1.01 390.69 ± 9.12 381.68 ± 6.86 380.2 ± 3.48
Jaco Plate None Shelf 380.49 ± 0.75 381.62 ± 0.09 356.49 ± 41.25 380.99 ± 2.43
Jaco Plate None Trashcan 391.97 ± 0.76 390.62 ± 0.57 391.2 ± 1.38 390.3 ± 1.83
Jaco Plate GoalWall PickPlace 379.45 ± 24.14 378.13 ± 6.34 377.33 ± 11.32 376.12 ± 4.31
Jaco Plate GoalWall Push 293.6 ± 38.38 319.4 ± 24.13 320.49 ± 24.25 320.5 ± 31.85
Jaco Plate GoalWall Shelf 358.04 ± 22.32 369.8 ± 15.11 367.73 ± 12.97 362.35 ± 3.32
Jaco Plate GoalWall Trashcan 383.53 ± 7.45 387.55 ± 1.56 389.51 ± 2.03 388.57 ± 1.98
Jaco Plate ObjectDoor PickPlace 390.4 ± 1.3 381.92 ± 15.09 376.2 ± 7.51 380.34 ± 9.73
Jaco Plate ObjectDoor Push 372.01 ± 4.07 366.41 ± 16.51 359.43 ± 10.46 355.71 ± 3.99
Jaco Plate ObjectDoor Shelf 366.15 ± 6.61 357.96 ± 8.35 368.82 ± 4.35 362.39 ± 7.11
Jaco Plate ObjectDoor Trashcan 382.66 ± 0.58 384.3 ± 0.38 384.0 ± 1.92 383.57 ± 1.1
Jaco Plate ObjectWall PickPlace 390.73 ± 1.55 378.98 ± 6.95 376.76 ± 8.54 373.98 ± 5.41
Jaco Plate ObjectWall Push 378.3 ± 4.49 372.47 ± 10.13 364.42 ± 8.12 360.69 ± 3.82
Jaco Plate ObjectWall Shelf 364.2 ± 3.52 364.64 ± 3.01 368.33 ± 1.95 360.73 ± 6.42
Jaco Plate ObjectWall Trashcan 374.17 ± 3.76 375.68 ± 1.54 382.5 ± 2.76 373.86 ± 4.91
Jaco Hollowbox None PickPlace 402.23 ± 2.04 386.75 ± 25.35 396.5 ± 1.04 398.48 ± 3.76
Jaco Hollowbox None Push 392.65 ± 9.62 396.56 ± 4.13 397.09 ± 7.5 396.63 ± 0.38
Jaco Hollowbox None Shelf 377.5 ± 2.78 382.06 ± 6.3 384.26 ± 5.2 381.68 ± 4.82
Jaco Hollowbox None Trashcan 394.85 ± 1.28 394.82 ± 3.27 393.68 ± 3.67 392.87 ± 1.71
Jaco Hollowbox GoalWall PickPlace 395.2 ± 1.44 385.82 ± 13.41 378.92 ± 9.41 379.34 ± 7.17
Jaco Hollowbox GoalWall Push 349.5 ± 34.56 337.43 ± 15.64 348.44 ± 11.76 340.9 ± 2.77
Jaco Hollowbox GoalWall Shelf 357.89 ± 19.58 349.29 ± 10.1 344.53 ± 6.27 333.97 ± 12.22
Jaco Hollowbox GoalWall Trashcan 385.01 ± 1.04 385.4 ± 1.7 386.58 ± 0.37 384.52 ± 0.05
Jaco Hollowbox ObjectDoor PickPlace 335.16 ± 76.71 387.66 ± 8.98 375.68 ± 4.01 344.62 ± 44.5
Jaco Hollowbox ObjectDoor Push 356.64 ± 41.54 386.82 ± 11.07 383.4 ± 9.21 385.73 ± 7.74
Jaco Hollowbox ObjectDoor Shelf 371.32 ± 0.65 362.29 ± 13.12 366.72 ± 4.12 360.22 ± 15.51
Jaco Hollowbox ObjectDoor Trashcan 358.07 ± 46.79 385.01 ± 1.12 383.6 ± 2.35 385.17 ± 0.42
Jaco Hollowbox ObjectWall PickPlace 393.5 ± 2.63 377.85 ± 3.53 378.61 ± 8.16 375.96 ± 5.55
Jaco Hollowbox ObjectWall Push 391.74 ± 4.74 382.69 ± 12.26 387.67 ± 9.52 379.01 ± 6.44
Jaco Hollowbox ObjectWall Shelf 371.33 ± 3.41 367.26 ± 11.73 365.73 ± 7.59 356.39 ± 16.14
Jaco Hollowbox ObjectWall Trashcan 382.6 ± 1.63 385.72 ± 2.03 382.62 ± 1.19 382.01 ± 4.22
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Table 15: Raw Scores for Composuite, Part 3.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Kinova3 Box None PickPlace 432.49 ± 3.69 432.11 ± 7.68 432.28 ± 3.45 431.06 ± 2.67
Kinova3 Box None Push 398.81 ± 44.71 416.96 ± 17.33 428.52 ± 1.83 416.41 ± 18.69
Kinova3 Box None Shelf 411.22 ± 3.9 413.65 ± 0.42 415.58 ± 4.21 411.67 ± 3.98
Kinova3 Box None Trashcan 378.21 ± 81.97 426.67 ± 2.1 431.01 ± 0.89 427.82 ± 1.12
Kinova3 Box GoalWall PickPlace 347.29 ± 145.33 430.92 ± 1.73 431.3 ± 2.19 408.26 ± 40.64
Kinova3 Box GoalWall Push 325.78 ± 131.68 390.05 ± 6.59 382.78 ± 2.17 388.29 ± 6.07
Kinova3 Box GoalWall Shelf 357.79 ± 96.22 395.77 ± 28.11 418.95 ± 2.7 417.37 ± 1.02
Kinova3 Box GoalWall Trashcan 373.8 ± 80.27 424.09 ± 0.02 428.12 ± 3.66 427.05 ± 0.87
Kinova3 Box ObjectDoor PickPlace 425.72 ± 1.7 427.38 ± 0.43 424.25 ± 2.86 424.5 ± 3.45
Kinova3 Box ObjectDoor Push 395.44 ± 30.77 414.0 ± 5.47 406.02 ± 0.61 410.58 ± 8.15
Kinova3 Box ObjectDoor Shelf 381.62 ± 37.98 326.93 ± 2.6 408.55 ± 2.3 381.75 ± 45.62
Kinova3 Box ObjectDoor Trashcan 392.17 ± 40.87 415.87 ± 2.48 419.24 ± 0.61 416.46 ± 1.78
Kinova3 Box ObjectWall PickPlace 405.45 ± 21.25 387.27 ± 50.08 425.83 ± 2.68 423.06 ± 3.66
Kinova3 Box ObjectWall Push 419.98 ± 2.8 414.6 ± 1.04 412.82 ± 1.07 415.16 ± 7.28
Kinova3 Box ObjectWall Shelf 399.47 ± 4.56 399.51 ± 1.29 402.37 ± 2.66 402.42 ± 1.48
Kinova3 Box ObjectWall Trashcan 416.15 ± 4.57 412.41 ± 0.4 399.87 ± 31.99 394.97 ± 36.15
Kinova3 Dumbbell None PickPlace 380.36 ± 55.46 418.88 ± 5.8 419.3 ± 7.37 416.89 ± 2.86
Kinova3 Dumbbell None Push 394.84 ± 25.64 396.29 ± 13.63 367.03 ± 53.29 390.74 ± 22.17
Kinova3 Dumbbell None Shelf 290.98 ± 123.89 394.73 ± 4.82 386.09 ± 19.99 397.38 ± 2.93
Kinova3 Dumbbell None Trashcan 358.26 ± 43.32 377.36 ± 53.06 413.01 ± 6.02 414.39 ± 1.97
Kinova3 Dumbbell GoalWall PickPlace 408.52 ± 19.13 392.63 ± 23.38 404.51 ± 4.31 412.68 ± 11.05
Kinova3 Dumbbell GoalWall Push 294.63 ± 35.99 358.66 ± 10.09 321.72 ± 41.37 310.79 ± 67.84
Kinova3 Dumbbell GoalWall Shelf 384.01 ± 20.53 383.06 ± 15.17 395.02 ± 0.83 377.15 ± 28.52
Kinova3 Dumbbell GoalWall Trashcan 377.28 ± 51.33 370.59 ± 31.83 413.63 ± 2.06 378.76 ± 27.34
Kinova3 Dumbbell ObjectDoor PickPlace 415.58 ± 5.38 404.89 ± 11.83 405.77 ± 7.4 410.95 ± 8.75
Kinova3 Dumbbell ObjectDoor Push 359.17 ± 15.53 265.44 ± 62.94 367.39 ± 23.91 311.57 ± 45.56
Kinova3 Dumbbell ObjectDoor Shelf 360.34 ± 28.19 379.36 ± 6.7 385.26 ± 2.74 363.99 ± 37.65
Kinova3 Dumbbell ObjectDoor Trashcan 409.92 ± 1.78 407.09 ± 1.26 407.79 ± 0.71 407.57 ± 2.85
Kinova3 Dumbbell ObjectWall PickPlace 404.63 ± 16.95 409.29 ± 4.6 406.14 ± 2.11 411.69 ± 6.71
Kinova3 Dumbbell ObjectWall Push 311.79 ± 94.94 285.81 ± 62.32 342.04 ± 22.98 244.56 ± 16.32
Kinova3 Dumbbell ObjectWall Shelf 378.68 ± 3.03 378.63 ± 0.91 376.92 ± 0.76 361.79 ± 25.06
Kinova3 Dumbbell ObjectWall Trashcan 400.98 ± 4.19 398.65 ± 3.89 401.96 ± 1.45 395.81 ± 3.51
Kinova3 Plate None PickPlace 424.09 ± 4.78 427.36 ± 4.29 424.82 ± 1.31 425.02 ± 2.92
Kinova3 Plate None Push 412.25 ± 19.8 422.75 ± 2.79 417.63 ± 6.13 416.41 ± 4.33
Kinova3 Plate None Shelf 409.96 ± 0.2 409.11 ± 0.52 410.28 ± 0.65 409.52 ± 1.61
Kinova3 Plate None Trashcan 422.54 ± 2.13 422.07 ± 1.15 421.73 ± 1.36 422.97 ± 0.74
Kinova3 Plate GoalWall PickPlace 427.74 ± 0.81 421.23 ± 6.67 416.44 ± 1.6 416.35 ± 15.86
Kinova3 Plate GoalWall Push 401.46 ± 2.17 385.01 ± 15.39 377.6 ± 3.14 386.87 ± 12.31
Kinova3 Plate GoalWall Shelf 410.49 ± 0.77 409.46 ± 0.15 409.63 ± 0.65 407.67 ± 3.33
Kinova3 Plate GoalWall Trashcan 421.05 ± 0.88 421.19 ± 0.48 422.63 ± 0.81 423.21 ± 1.16
Kinova3 Plate ObjectDoor PickPlace 423.26 ± 0.3 407.55 ± 0.81 406.43 ± 2.07 414.11 ± 7.32
Kinova3 Plate ObjectDoor Push 258.58 ± 18.57 278.08 ± 34.02 300.72 ± 90.5 257.79 ± 48.13
Kinova3 Plate ObjectDoor Shelf 404.4 ± 0.95 403.82 ± 0.86 405.9 ± 0.31 401.09 ± 2.61
Kinova3 Plate ObjectDoor Trashcan 415.34 ± 1.08 415.81 ± 0.35 416.09 ± 0.31 414.34 ± 1.85
Kinova3 Plate ObjectWall PickPlace 420.16 ± 2.07 413.68 ± 5.5 408.0 ± 2.29 411.83 ± 4.11
Kinova3 Plate ObjectWall Push 400.11 ± 16.39 403.95 ± 3.67 406.48 ± 5.73 403.65 ± 6.23
Kinova3 Plate ObjectWall Shelf 391.09 ± 3.65 391.99 ± 6.62 386.25 ± 16.53 391.7 ± 5.14
Kinova3 Plate ObjectWall Trashcan 413.36 ± 1.11 413.44 ± 3.93 413.82 ± 2.45 415.14 ± 1.46
Kinova3 Hollowbox None PickPlace 424.86 ± 6.23 433.78 ± 0.13 430.43 ± 1.11 430.84 ± 1.55
Kinova3 Hollowbox None Push 361.99 ± 40.33 369.17 ± 8.0 396.28 ± 28.04 380.94 ± 28.74
Kinova3 Hollowbox None Shelf 417.73 ± 13.43 417.46 ± 0.36 423.26 ± 3.53 424.02 ± 2.62
Kinova3 Hollowbox None Trashcan 424.65 ± 1.15 409.34 ± 12.4 425.0 ± 2.72 416.0 ± 15.33
Kinova3 Hollowbox GoalWall PickPlace 386.68 ± 49.29 425.24 ± 0.83 421.85 ± 8.69 420.32 ± 9.71
Kinova3 Hollowbox GoalWall Push 403.57 ± 0.96 383.09 ± 8.37 384.13 ± 10.01 381.43 ± 8.58
Kinova3 Hollowbox GoalWall Shelf 385.7 ± 36.06 395.01 ± 4.51 423.93 ± 5.1 417.05 ± 13.43
Kinova3 Hollowbox GoalWall Trashcan 406.37 ± 27.44 404.11 ± 3.64 405.09 ± 22.54 389.36 ± 32.05
Kinova3 Hollowbox ObjectDoor PickPlace 344.01 ± 63.38 364.3 ± 13.82 387.53 ± 20.66 324.36 ± 55.48
Kinova3 Hollowbox ObjectDoor Push 390.98 ± 46.38 416.05 ± 8.96 405.41 ± 5.34 406.76 ± 16.92
Kinova3 Hollowbox ObjectDoor Shelf 359.0 ± 25.63 381.87 ± 12.39 390.42 ± 6.21 357.94 ± 48.51
Kinova3 Hollowbox ObjectDoor Trashcan 405.87 ± 4.17 411.24 ± 1.26 414.92 ± 3.6 408.73 ± 5.66
Kinova3 Hollowbox ObjectWall PickPlace 424.57 ± 0.92 408.98 ± 6.4 417.83 ± 5.67 419.63 ± 9.2
Kinova3 Hollowbox ObjectWall Push 249.37 ± 176.18 319.13 ± 111.09 324.39 ± 76.09 335.61 ± 74.98
Kinova3 Hollowbox ObjectWall Shelf 394.7 ± 9.3 328.52 ± 61.08 357.89 ± 37.75 362.16 ± 40.05
Kinova3 Hollowbox ObjectWall Trashcan 354.65 ± 48.89 353.43 ± 78.59 407.99 ± 1.96 408.29 ± 4.94
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Table 16: Raw Scores for Composuite, Part 4.

Task DT Mamba xLSTM [1:0] xLSTM [7:1]
Panda Box None PickPlace 409.21 ± 5.27 408.66 ± 7.81 409.83 ± 1.87 405.46 ± 3.84
Panda Box None Push 402.52 ± 2.55 373.74 ± 49.95 400.35 ± 2.32 399.37 ± 9.95
Panda Box None Shelf 383.69 ± 4.34 381.42 ± 3.66 383.55 ± 5.74 386.01 ± 1.29
Panda Box None Trashcan 400.37 ± 5.64 395.77 ± 2.77 407.95 ± 1.92 406.17 ± 3.36
Panda Box GoalWall PickPlace 401.53 ± 6.39 389.57 ± 18.4 397.12 ± 4.39 401.64 ± 9.81
Panda Box GoalWall Push 272.61 ± 79.58 257.61 ± 57.4 263.72 ± 45.71 281.71 ± 31.21
Panda Box GoalWall Shelf 384.43 ± 1.66 389.06 ± 3.69 388.59 ± 3.9 383.94 ± 2.0
Panda Box GoalWall Trashcan 400.68 ± 4.51 400.18 ± 6.03 403.24 ± 5.65 392.28 ± 16.82
Panda Box ObjectDoor PickPlace 359.01 ± 12.2 365.3 ± 5.97 359.63 ± 0.79 359.27 ± 10.88
Panda Box ObjectDoor Push 363.07 ± 3.13 352.85 ± 13.71 340.37 ± 6.06 340.5 ± 4.97
Panda Box ObjectDoor Shelf 346.29 ± 2.53 345.8 ± 4.91 349.82 ± 6.46 341.44 ± 11.05
Panda Box ObjectDoor Trashcan 361.19 ± 1.65 356.77 ± 3.24 356.66 ± 5.73 337.69 ± 32.63
Panda Dumbbell None PickPlace 342.62 ± 39.18 310.15 ± 24.64 318.76 ± 2.7 342.02 ± 31.28
Panda Dumbbell None Push 299.34 ± 78.28 341.64 ± 42.57 359.06 ± 42.88 263.35 ± 154.81
Panda Dumbbell None Shelf 264.01 ± 101.29 362.15 ± 0.87 319.71 ± 33.9 297.54 ± 67.67
Panda Dumbbell None Trashcan 174.45 ± 64.43 329.06 ± 43.08 373.77 ± 16.73 327.93 ± 68.84
Panda Dumbbell GoalWall PickPlace 310.61 ± 42.65 268.34 ± 147.91 329.02 ± 62.28 360.39 ± 5.25
Panda Dumbbell GoalWall Push 249.21 ± 43.29 282.01 ± 4.89 270.81 ± 11.98 285.28 ± 5.25
Panda Dumbbell GoalWall Shelf 319.5 ± 68.89 347.34 ± 20.01 364.15 ± 2.6 318.6 ± 33.85
Panda Dumbbell GoalWall Trashcan 377.5 ± 5.27 360.98 ± 9.73 379.05 ± 7.52 337.19 ± 40.73
Panda Dumbbell ObjectDoor PickPlace 344.54 ± 5.77 346.57 ± 0.33 340.15 ± 8.5 338.46 ± 10.42
Panda Dumbbell ObjectDoor Push 289.31 ± 11.14 308.25 ± 9.24 309.4 ± 5.02 304.1 ± 8.06
Panda Dumbbell ObjectDoor Shelf 323.26 ± 3.52 279.85 ± 18.84 313.19 ± 17.79 323.49 ± 0.27
Panda Dumbbell ObjectDoor Trashcan 334.05 ± 5.55 337.49 ± 0.68 341.0 ± 3.14 333.06 ± 7.77
Panda Plate None PickPlace 384.37 ± 30.37 404.77 ± 5.27 397.34 ± 1.3 398.41 ± 2.51
Panda Plate None Push 397.95 ± 1.05 398.1 ± 4.91 397.42 ± 3.32 397.64 ± 2.7
Panda Plate None Shelf 352.29 ± 37.8 372.12 ± 13.92 370.46 ± 3.11 367.5 ± 6.03
Panda Plate None Trashcan 392.99 ± 1.41 393.63 ± 2.91 394.05 ± 3.74 393.71 ± 1.27
Panda Plate GoalWall PickPlace 398.36 ± 3.95 398.24 ± 4.51 393.0 ± 1.9 399.02 ± 4.53
Panda Plate GoalWall Push 387.68 ± 0.49 377.79 ± 11.92 355.01 ± 34.01 350.1 ± 22.72
Panda Plate GoalWall Shelf 380.05 ± 0.52 367.67 ± 22.6 339.46 ± 40.63 359.76 ± 5.67
Panda Plate GoalWall Trashcan 391.41 ± 3.83 389.44 ± 3.8 395.4 ± 2.49 393.96 ± 2.68
Panda Plate ObjectDoor PickPlace 350.33 ± 18.2 348.67 ± 8.14 329.35 ± 4.62 336.64 ± 16.61
Panda Plate ObjectDoor Push 346.4 ± 9.33 337.36 ± 17.06 326.32 ± 7.92 323.51 ± 2.24
Panda Plate ObjectDoor Shelf 290.68 ± 11.21 321.54 ± 17.89 326.04 ± 18.76 305.25 ± 20.96
Panda Plate ObjectDoor Trashcan 348.09 ± 3.63 349.43 ± 4.05 351.8 ± 0.25 349.29 ± 1.91
Panda Hollowbox None PickPlace 410.32 ± 6.76 412.25 ± 3.0 408.01 ± 1.93 405.29 ± 5.3
Panda Hollowbox None Push 404.95 ± 1.07 406.74 ± 4.03 401.61 ± 6.16 402.46 ± 4.04
Panda Hollowbox None Shelf 387.59 ± 5.19 380.86 ± 10.45 369.22 ± 14.85 369.57 ± 4.84
Panda Hollowbox None Trashcan 399.09 ± 2.01 400.52 ± 5.27 401.03 ± 5.27 392.82 ± 7.37
Panda Hollowbox GoalWall PickPlace 406.02 ± 10.18 403.47 ± 0.97 405.96 ± 0.39 407.16 ± 3.77
Panda Hollowbox GoalWall Push 259.87 ± 75.12 293.02 ± 117.06 341.55 ± 23.29 281.79 ± 42.98
Panda Hollowbox GoalWall Shelf 387.38 ± 3.45 369.01 ± 6.14 365.26 ± 6.74 316.46 ± 81.46
Panda Hollowbox GoalWall Trashcan 377.54 ± 44.77 395.3 ± 4.85 396.82 ± 4.17 401.54 ± 5.21
Panda Hollowbox ObjectDoor PickPlace 334.94 ± 35.48 341.18 ± 32.31 342.71 ± 7.54 353.64 ± 2.45
Panda Hollowbox ObjectDoor Push 192.69 ± 6.49 294.01 ± 57.68 257.48 ± 13.16 230.54 ± 8.56
Panda Hollowbox ObjectDoor Shelf 343.92 ± 10.22 202.17 ± 4.87 328.01 ± 42.52 285.35 ± 64.92
Panda Hollowbox ObjectDoor Trashcan 338.02 ± 36.48 363.04 ± 2.59 360.88 ± 2.45 363.04 ± 1.29
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