Published in Transactions on Machine Learning Research (10/2025)

MoFO: Momentum-Filtered Optimizer for Mitigating Forget-
ting in LLM Fine-Tuning

Yupeng Chen* yupengchenl@link. cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen, China

Senmiao Wang?* senmiaowangl@link.cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen, China

Yushun Zhang
The Chinese University of Hong Kong, Shenzhen, China
Shenzhen Research Institute of Big Data

Zhihang Lin
Shenzhen Research Institute of Big Data

Haozhe Zhang
Huawei Technologies Co.,Ltd, China

Weijian Sun
Huawei Technologies Co.,Ltd, China

Tian Ding' dingtian@sribd.cn
Shenzhen International Center for Industrial and Applied Mathematics
Shenzhen Research Institute of Big Data

Ruoyu Sun' sunruoyu@cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen, China

Shenzhen International Center for Industrial and Applied Mathematics

Shenzhen Research Institute of Big Data

Reviewed on OpenReview: |https: //openreview. net/ forum? id=T1qXIDn9my

Abstract

Large language models (LLMs) have demonstrated remarkable capabilities across a wide
range of tasks. Typically, LLMs are first pre-trained on large corpora and subsequently
fine-tuned on task-specific datasets. However, during fine-tuning, LLMs may forget some
knowledge acquired in the pre-training stage, leading to a decline in general capabilities.
Existing approaches to mitigate forgetting often rely on access to pre-training data, which
may be unavailable in many real-world scenarios—such as fine-tuning checkpoint-only open-
source LLMs. To address this challenge, we propose a new fine-tuning algorithm termed
Momentum-Filtered Optimizer (MoFO). MoFO is an extension of greedy block coordinate
descent (BCD) methods: in each iteration, MoFO only updates the model parameters
with the largest momentum magnitudes, while keeping all other parameters fixed. MoFO
achieves similar fine-tuning performance to the default fine-tuning algorithm while effectively
mitigating knowledge forgetting. We validate MoFO through rigorous convergence analysis
and extensive experiments, demonstrating its effectiveness in mitigating forgetting without
pre-training dataE]

*Equal contribution.
T Corresponding author.
LOur code is available at https://github.com/YChen-zzz/MoF0.


https://openreview.net/forum?id=T1qXIDn9my
https://github.com/YChen-zzz/MoFO

Published in Transactions on Machine Learning Research (10/2025)

1 Introduction

The success of large language models (LLMs) lies in their strong capabilities in language understanding and
generation. Typically, LLMs are first pre-trained on extensive corpora to acquire general capabilities, then
fine-tuned on smaller, task-specific datasets to adapt to particular tasks or domains (Dai & Le, |2015}; [Kenton
& Toutanoval 2019; Radford et al.,|2018). However, it has been observed that during the fine-tuning process,
LLMs may forget the knowledge acquired in pre-training, leading to a decline in general capabilities (Lin
et al., |2023; |Chen et al} |2020; |Dong et al.} |2021; [Korbak et al., 2022; [Luo et al.| [2023a)). Therefore, addressing
the forgetting issue in LLM fine-tuning has become an important research direction.

In the field of continual learning, mitigating forgetting has already been a central focus. Continual learning
(Wang et al.l [2024a) involves training models sequentially on different tasks, which is analogous to the process
of pre-training followed by fine-tuning in LLMs: Both involve different stages of training and face the challenge
of forgetting previously acquired knowledge when learning new information. To address this forgetting issue,
replay-based methods (Rolnick et al.l 2019; Wang et all, [2020; (Ouyang et al., [2022)) use a replay buffer to
store and revisit past data, in order to reinforce prior knowledge while learning new information. In LLM
training, similar replay-based methods are also used to mitigate forgetting (Shi et al.l 2024; [Roziere et al.,
2023 Huang et al., [2024). However, replay-based methods face some practical limitations in LLMs. First,
the access to the original pre-training data is often restricted or infeasible. Many open-source LLMs, such
as the Llama series (Touvron et al., [2023), do not fully disclose their pre-training datasets. Second, even
when pre-training data is available, incorporating it into the fine-tuning process can substantially increase
computational and memory costs, as the model must process a much larger and more diverse dataset.

In continual learning, another class of methods focuses on modifying the optimization process of models
to mitigate forgetting (Wang et al., [2024a). These methods do not require access to the pre-training data.
However, many of them need to store and exploit the pre-training weights and/or intermediate gradients
throughout most of the fine-tuning process. For example, some regularization-based methods such as Ly or Lo
regularization (Panigrahi et al.l 2023; |[Li et al., [2018)) require storing the pre-training weights for regularization
computation during the whole fine-tuning process. However, in the context of LLMs, storing additional model
weights requires substantial memory due to the large model size, introducing considerable overhead.

Given the limitations of prevalent forgetting-mitigation approaches, we aim to develop an optimization
algorithm that neither relies on past data nor introduces additional memory overhead. In general, our
algorithm design goals are twofold: (G1) preservation of pretrained knowledge and (G2) strong
performance on the fine-tuning task. To pursue (G1), we adopt a key insight from continual learning
(Kirkpatrick et al., |2017)): the closer a fine-tuned model stays to the pretrained parameters, the less forgetting
tends to occur. At the same time, enforcing proximity too aggressively can hinder adaptation to the new
task, thereby harming (G2). This raises a natural question: What optimization method might move a small
distance from the initial point, but can still find a minimunﬂ of the loss function?

We notice that the classical block coordinate descent (BCD) method (Tseng} 2001)) is a good candidate,
since it updates only a subset of parameters at each iteration, thus implicitly biased towards closer solutions.
Nevertheless, incorporating BCD into LLM fine-tuning presents some challenges. One challenge is that Adam,
the predominant optimizer for LLM training (Radford et al., [2018; [Zhang et al., 2024c), differs substantially
from the optimizer studied in traditional BCD methods (e.g. GD or SGD) (Nutini et al.| [2015; |Zhao et al.l
2014). It complicates both optimizer design and convergence analysis. Consequently, combining BCD with
Adam is not a straightforward task.

In this work, we propose Momentum-Filtered Optimizer (MoFO), a new optimization algorithm that integrates
Adam with BCD. At each iteration, MoFO only updates the most effective parameters for reducing the
fine-tuning loss—those with large momentum magnitudes, while keeping other parameters fixed. MoFO only
modifies the optimizer without the need for pre-training data or introducing additional memory costs, which
helps achieve its efficiency and effectiveness during fine-tuning. Our contributions are summarized as follows:

2In this paper, we use the term "minimum" (or "minima" in the plural) to refer to a parameter configuration whose fine-tuning
loss is near its lowest value in a small neighborhood, while acknowledging that this terminology may not strictly represent a
local minimum of the fine-tuning loss function.



Published in Transactions on Machine Learning Research (10/2025)

2.0
Pre-trained model *  Pre-trained model 4.0
6 . 1.4 6 °
Lion #  Lion 3.
0.0 3.0
2.7
2 -0.6 53
-1.3 2.0
W 2.0 3 1.7
1.3
— -2.7
2 T T T T T 1,0
-2.5 0.0 2.5 5.0 7.5 -25 0.0 2.5 5.0 7.5
(a) Fine-tuning loss landscape (b) Pre-training loss landscape

Figure 1: The loss landscapes of Pythia-160M after fine-tuning on a subset of the FLAN dataset using
Adam and Lion. We plot the loss landscapes on (a) the fine-tuning dataset and (b) the pre-training dataset
(Pile dataset (Gao et all [2020)). We visualize a 2D weight-space plane spanned by the vector from the
pre-trained model to the Lion-tuned model (x-axis) and to the Adam-tuned model (y-axis). Axes are
normalized so that one unit equals the length of the pre-trained— Adam vector. The color bar indicates the
loss value—(a) fine-tuning loss and (b) pre-training loss. A logarithmic scale is applied to the loss values for
better visualization. Two training methods converge to different minima with similar fine-tuning loss. Lion
converges to a farther minimum from the pre-trained model and performs more forgetting than Adam.

e We propose MoFO, a new training algorithm designed to mitigate the forgetting of pre-training
knowledge during fine-tuning.

o We present a rigorous theoretical convergence result of the MoFO algorithm, providing a solid
theoretical foundation that supports its good performance in fine-tuning tasks.

o We conduct experiments on various tasks, demonstrating that MoFO outperforms existing methods
both in fine-tuning performance and mitigating forgetting.

2 Momentum Filtered Optimizer (MoFO)

2.1 Motivation

Correlation between Distance and Forgetting.

In LLM fine-tuning, different training methods typically converge to different minima of the loss function.
These minima may yield similarly low fine-tuning loss, all achieving reasonably good fine-tuning performance.
However, their distances from the pre-trained model can vary significantly. A key observation in traditional
continual learning (CL) is that the extent of forgetting increases as the model deviates further from its
original state. This insight has influenced the design of many forgetting-mitigation methods
let all 2017} [Li et al.| [2018)).

In this work, we conduct exploratory experiments to investigate this correlation among minima produced by
different LLM fine-tuning methods. We conduct two sets of experiments. First, we fine-tune Pythia-160M on
a subset of the FLAN dataseff’| using Adam (Kingma & Ba} [2014) and Lion (Chen et al} [2024). As illustrated
in Figure au)7 Adam and Lion converge to distinct minima. Notably, while both optimizers achieve similar
fine-tuning losses, the minimum reached by Adam is much closer to the pre-trained model compared to Lion,
being only about 20% of Lion’s distance. (Specifically we measure the model distance by the average Lo
norm difference over parameter blocks; see Appendix for the formal definition). As shown in Figure b),

3The subset used is ‘definite_pronoun_ resolution_10templates,” available at https://huggingface.co/datasets/
Muennighoff/flan. The learning rate is 2e-5 and the batch size is set as 64.


https://huggingface.co/datasets/Muennighoff/flan
https://huggingface.co/datasets/Muennighoff/flan

Published in Transactions on Machine Learning Research (10/2025)

2.75 1 MoFO
¢ ———!—..——-.- ————— Pretrained Model
® Adam P
o 2.501 Lion 0.40 - PY
€ . rrelation = -0.7
© 2251 @ Epoch0.5 (154 iter) - correiatio 0.79
g @ Epoch 1.0 (309 iter) S 035] @ MoFO
22001 @ Epoch 1.5 (463 iter) s @® Adam
S,75] @ Epoch2.0 (618 iter) = Lion
o _ 0.30{ ® Epoch 0.5 (154 iter)
S 1.501 correlation = 0.97 @ Epoch 1.0 (309 iter)
@ Epoch 1.5 (463 iter)
125 -.-—.”-—‘—,——‘ Pretrained Model - 0.251 @ Epoch 2.0 (618 iter)
102 101 10-2 107
Distance Distance
(a) Losses on RedPajama (b) Acc. on MMLU

Figure 2: (a) Loss changes on the RedPajama dataset and (b) average accuracy changes on MMLU benchmark
(measuring the preservation of factual knowledge) of Llama-2-7B after fine-tuning on MetaMathQA using
Adam, Lion, and MoFO for 0.5, 1, 1.5, 2 epochs. We note that RedPajama project was explicitly designed
as an open-source reproduction of the LLaMA training dataset (Weber et all 2024). Thus, it serves as a
reasonable proxy for the original LLaMA-2 training dataset since the latter has not been publicly released.
See Appendix for the rationale. The results show a strong positive correlation between the distance
from the pre-trained model and the extent of forgetting after one epoch. Further discussion of early-training
behavior and a comparison of different optimizers are provided in Appendix

Adam exhibits a smaller increase in pre-training loss than Lion. Further, Adam leads to better preservation
in general capability than Lion (see Appendix [B.2).

Second, we conduct a larger-scale exploratory experiment to test the generality of this observation. We
fine-tune a larger model, LLaMA2-7B, on the MetaMathQA dataset (Yu et al., 2024b) using three optimizers:
Adam, Lion, and our proposed MoFO (to be introduced in Section . To achieve varying distances from
the pre-trained model, we fine-tune each model for 0.5, 1, 1.5, and 2 epochs (309 steps per epoch). Details are
provided in Appendix Figure (a) demonstrates a strong positive correlation between distance and the
increase in pre-training loss. Figure b) indicates a negative correlation with MMLU accuracy (Hendrycks
et al., |2021)), which measures the preservation of factual knowledge, once the model has been trained for at
least one epoch. Taken together, these results suggest that, during LLM fine-tuning, remaining closer to
the pre-trained state appears to be associated with reduced forgetting. Further discussion of early-training
behavior and a comparison of different optimizers are provided in Appendix [B23]

Selective Rule Based on Momentum Magnitudes

Motivated by the correlation between forgetting and the distance from the pre-trained model, we seek to
design an optimizer that encourages the fine-tuned model to keep closer to the pre-trained model. To
achieve this, we draw inspiration from the classical block coordinate descent (BCD) method (Tseng, 2001)),
which updates only a subset of parameters during each iteration. We anticipate that restricting updates to
a subset of parameters—similar to the BCD approach—will result in smaller overall deviations from the
pre-trained model compared to full-parameter updates across all iterations, thereby mitigating the forgetting
of pre-training knowledge.

To further accelerate convergence under the BCD framework, we adopt Gauss-Southwell rule, i.e., the greedy
rule (Nutini et al., 2015)). Gauss-Southwell rule selects the parameters with the largest gradients at each
iteration, as those are expected to yield the greatest immediate reduction in the loss. It has also been shown
in Nutini et al. (2015)) that BCD using the Gauss-Southwell rule—also referred to as greedy BCD—can
converge faster than the traditional random BCD. However, BCD algorithms, including greedy BCD, are
mostly developed based on the GD or SGD framework, but in LLM training, Adam has replaced SGD as



Published in Transactions on Machine Learning Research (10/2025)

¢ Adam r MOFO \
| Iteration t Iteration t+1 1 Tteration t Tteration t+1
1 1
[Om @ (O mm|

Momentum : I:I l:l U:I . : | I:l I:l g! :
E i E Gradientl Fi]teri
! . Iy b e
i Gradient i i I:I D E
: ! i
1 ! | 1
: o a2l
1 1

Parameters : . i ED : : .i . . :
]| OE) (Bl 8

Figure 3: Illustration of MoFO.

the default optimizer (Zhang et al.,[2024c). Our experiments in Section [4.4] show that directly following the
Gauss—Southwell rule in Adam—that is, always updating parameters with large gradients—does not lead to
satisfactory performance on fine-tuning tasks.

Adam inherently incorporates momentum term in parameter updates. Therefore, we propose to modify
the Adam optimizer to update only the parameters with the largest momentum magnitudes. By focusing
on partial yet significant updates, our method, named MoFO, aims to effectively fine-tune models while
maintaining closer to their pre-trained state. We first introduce MoFO in the next subsection. Further
theoretical analysis and empirical exploration in the selection rule will be provided in Section [3.2] and [4-4]
respectively.

2.2 Formulation of MoFO

Algorithm 1 Momentum Filtered Optimizer (MoFO)

1: Input: Filtering threshold «, number of partitions B with the k-th partition of size dj, hyperparameters
B1, B2 of Adam optimizer, learning rate schedule {n;}.

2: Initialize mg, vy as zero tensors.

3: for iteration ¢t from 1,2,... until converge do

4:  for partition k£ from 1 to B do

5: ggk) = v(k)ﬁfinetune(atfl)

6: mﬁk) = 51m§’j)1 +(1- 51)9t(k)

7 v = By + (1= B2)g) 0 g

g m =m®™/1- )

oo oY =oM/1-p)

10: for entry index ¢ from 1 to dj do

11: [FLT&’C) (my)]; = 1if |(m§k))z| is within the top-a of |m§k) I’s values else 0
12: end for

13: Gt(k) = 91@1 — - (mg’“) ® FLT (my))/ 13t(k) # Momentum Filtering

14:  end for
15: 60 = Concat(ﬁt(l), e Gt(B))
16: end for

We formally introduce the Momentum-Filtered Optimizer (MoFO) in Algorithm First, all model parameters
are partitioned into B blocks. At each iteration, MoFO first computes the gradient and momentum terms for
parameters in each block following the standard rule of Adam, as shown in Lines 5-9. Then, MoFO selects
and updates the parameter entries with the largest & momentum magnitudes in each parameter block, as



Published in Transactions on Machine Learning Research (10/2025)

shown in Lines 10-13, where the update fraction « is a pre-determined hyperparameter. This momentum
filtering mechanism is illustrated in Figure

Mathematically, the filter can be represented as follows. Consider a momentum vector m = (m(l)7 . ,m(B)),
where each m(*) € R% corresponds to the k-th block of parameters with dimensionality dj,. The top-« filter,
denoted as FLT,(m), is defined as FLT,(m) = (FLT((,})(W“L)7 o 7FLTSXB)(m)), where the i-th entry of FLTSXk)(m)
is given by
[FLT&’“) (m)} _ {1 if |m§k).| is within the top-a of [m®)| values,
i 0 otherwise,

fori=1,2,-- ,dg, k=1,2,--- , B. In our Momentum-Filtered Optimizer (MoFO), this filter FLT,, is applied
to the momentum my, selecting the entries with the largest magnitudes for updating.

For the parameter partitioning, we note that the network architecture is naturally composed of different
modules (e.g., weight matrices, and bias terms). In the PyTorch implementation, the parameters of different
modules (along with their gradients and momenta) are naturally stored in separate data tensors. Therefore,
we adopt the default partitioning of model parameters as implemented in PyTorch. For Transformers,
this means that parameters such as query (Q), key (K), value (V) weights in the attention layers, as well
as feed-forward network (FFN) weights, are grouped into distinct partitions following PyTorch’s default
scheme. This allows us to select and update the top-a parameters in each block without introducing much
implementation overhead. See Appendix [C.4] for further explanation of the partitioning.

At each iteration, MoFO efficiently selects and updates the most “influential” parameters, as dictated by
the momentum’s magnitude, while keeping other parameters fixed. We argue that filtering the momentum
is more effective than filtering the gradient. In Section we will empirically demonstrate that MoFO’s
momentum-based filtering rule outperforms other filtering rules in fine-tuning tasks.

3 Theoretical Analysis

3.1 Convergence Result

In this section, we present the convergence result of MoFO for non-convex loss functions. For the simplicity
of analysis, we consider the full-batch version of MoFO, with hyperparameters satisfying the following
assumption.
Assumption 1. Loss function L is lower bounded by L*. The gradient VL is Lipschitz continuous with
constant L.

Theorem 1 (Convergence of MoFO). Suppose that the first- and second-order momentum hyperparameters
By and By satisfy 0 < By < /B2 < 1. The learning rate schedule at step t is n; = 1n/\/t for some n > 0. Then,
under Assumption |1, MoFO satisfies

. B logT
omn [VL(6;) ® FLT,(VL(6:)) || = O < T ) as T — oo.
Moreover, this bound directly implies
. _ logT
oun IVL(@6)], =0 ( T ) as T — oo,

for any p € [1, 00].

Although MoFO is designed to mitigate forgetting by updating only a small subset of parameters at each step,
it is guaranteed to converge to a critical point of the fine-tuning loss function under the Lipschitz smoothness
assumption. This result provides theoretical evidence that MoFO can achieve competitive performance in
fine-tuning tasks.

Proof Sketch of Theorem [1: Our proof is inspired by the convergence analysis for full-batch Adam in
Shi et al.[(2021), but we introduce additional techniques tailored to MoFQO’s filtering mechanism. We will
highlight these additions precisely at the points where they arise below.



Published in Transactions on Machine Learning Research (10/2025)

Let g; = VL(0;—1). A central step is to establish, for suitable constants Cq,Cs > 0,

Cl 02
Zilloll < £0-2) = £ + 7 (1)

Summing this inequality from ¢ = 1 to T and using Zil t=! =logT + O(1) yields the convergence result for
Adam in terms of a diminishing norm of gradient, given by

. logT
i ol =0 (<52, ©)

Choice of norm and two subgoals. In finite-dimensional spaces, all norms are equivalent, so convergence
statements like f can be expressed in any fixed norm up to norm-equivalence constants. In practice,
however, specific analyses instantiate with a particular norm: |Shi et al.| (2021) work with the L; norm
lg¢|lx for full-batch Adam, whereas our full-batch MoFO analysis will use the L1 top-o norm ||g; © FLT4(g¢)]/1,
which will be defined in Appendix [AT]

To keep the logic precise, we separate our argument into two subgoals:

Step I (Key inequality for MoFOQ). Show that there exist constants Cy,Cy > 0 (independent of ¢) such
that
Cs

\(2 lge © FLTa(g0)l|, < L(0i-1) = £(8) + . )

Here, we recall that FLT, () preserves the a-fraction of largest-magnitude coordinates in each partition and
zeros out the rest.

Step II (Norm property of the left-hand side of ) This component is one of our new technical
ingredients (absent from |Shi et al| (2021)). We first verify that the mapping  — || ® FLT,(z)||1 defines
a norm on R, which is referred to as L1 top-o norm. This is proved in Proposition |1| (Appendix by
checking nonnegativity and definiteness, positive homogeneity, and the triangle inequality. Moreover, for the
L, upper bound in Theorem |1} we use the norm equivalence between the L top-o norm and the L, norm, as
shown in Lemma 2

With Step II established, it remains to prove the key inequality in Step I. A direct adaptation of
Shi et al.| (2021) to MoFO is infeasible due to structural differences. We proceed as follows:

(i) Recap key elements from |Shi et al.| (2021));
(ii) Identify challenges in extending them to MoFO;

(iii) Resolve these challenges by carefully handling the momentum filter.

Part (i): Key elements of |Shi et al.| (2021)). For full-batch Adam with bias-corrected moments 17, 0;
and the learning rate schedule n; = 1/v/t, the parameter update is

noomy
Oy —60i_1=—F"
t — i1 VAN
By the L-smoothness of the loss and the descent lemma,
N~ L
it 2

— ; — < L(Oi—1) — L(O:) + = |0 — 0r—1]]5. 4
7 2o 04 S £0im1) = £0) + 5100 = 6l (@)

Lemma [§] in Appendix [A22] lower-bounds the per-coordinate contribution as

M B
; — > Algi| — —,
Git s = ‘gut| \/E



Published in Transactions on Machine Learning Research (10/2025)

for some constants A, B > 0. Substituting this into (4]), summing over coordinates, and controlling the
quadratic term in yields the fundamental inequality (1) with the L;-norm:
Co

Cq
— < L(Oi_1) — L(6;) + —,
\/i”gtHl > ( 1) (6:) t

Part (ii): Challenges in extending to MoFO. For the full-batch version of MoFO, the parameter update
becomes

n e
-4 ® FLTo (my),
Vi Va O FTam)
i.e., the step is filtered by momentum magnitudes (NOT gradient magnitudes). Building upon the convergence
analysis of |Shi et al.| (2021)) in Part (i) leads to
Cl CY2
—=llgt © FLTa(my)|[1 < L(0r-1) — L(0:) + —, (5)
Vi t
which brings a notable difference to the target key inequality : the inequality applies the momentum
filter FLT, (m;), whereas the desired bound applies the gradient filter FLT,(g;). This introduces a non-trivial
challenge because the ||g; @ FLT,(m¢)||1 being small does not naturally imply that ||g; © FLT4(g¢)|]1 is small:
large entries of g; might be excluded if their momenta lags. Consequently, additional analysis is required to
bound the discrepancy between them.

O —0i1 =

Part (iii): How we overcome the challenge. Here we introduce another new technique to address the
discrepancy between ||g © FLT,(my)||1 and ||gr © FLT,(g¢)|l1. We deal with the challenge via Lemma |1 in
Appendix which establishes that the Li-deviation in filtered outputs is Lipschitz-stable under input
perturbations. Specifically, for any z,y € R%:

|2 © FLTo(2)[l; — [l O FLTa(y)ll; <2 |[lz =yl -
—_———

top-« filtered error input error

This result points out that while the filter FLT,(-) itself is unstable under perturbation, the filtered out-
put remains controllable through. It effectively "smooths" the discontinuity that would plausibly prevent
convergence analysis.

With the Lipschitz stability established, we now deal with the challenge. We first control the L; distance

between the bias-corrected momentum 7y = ;4 and the gradient g; by showing that ||/ —g¢[1 = O(1/ V).
1

Second, we apply Lemma [I] with z = g; and y = m, and yield

lge © FLTa(ge)lly — llge © FLTa ()|, < 2llrie — gelli = O(1/V).

Since the filtering function FLT,(+) is invariant under positive scaling, we can definitely replace 7, with the
original momentum my;:

lge © FLTa(ge)lly — llge © FLTa(me) [y < 2[00 — gells = O(1/V1).

Combining it with (5) and subsuming residual O(1/t) terms, we obtain our target key inequality (3):
Ol C'2
— FLT < L(0;—1)— L(# —.
i lg9: © FLTa(g¢)lly < L£(6¢-1) (6:) + :

In conclusion, our statement of Step I primarily comprises:

o Step I.1 (Part (i) and (ii)). Extending the Adam convergence framework (Shi et al., 2021)) to
incorporate MoFO’s momentum filtering mechanism, yielding ;

o Step I.2 (Part (iii)). Resolving the momentum-gradient filter discrepancy via our Lipschitz stability
analysis (Lemma , which is a new technique introduced in this work.



Published in Transactions on Machine Learning Research (10/2025)

Combined with the norm property in Step II—another new ingredient not present in [Shi et al.[ (2021)—,
these results enable us to establish Theorem [l

O

We remark that the choice of 81 and 2 in Assumption [1] aligns with that used in analyzing full-batch Adam
(Shi et al.l |2021). Furthermore, the use of a diminishing learning rate in Theorem [1]is crucial for ensuring the
stability of updates and avoiding divergence in the optimization process.

In summary, Theorem [I] demonstrates that despite updating only a subset of parameters, MoFO maintains
the same convergence rate as Adam. This highlights the theoretical robustness of the momentum filter design
in MoFO. We believe this result could provide valuable insights into adaptive optimization methods with
filtering mechanisms.

3.2 Initial Analysis on Forgetting Mitigation

Does MoFO converge to a model that is closer to the pre-trained LLM than Adam, thereby reducing forgetting?
In this subsection, we attempt to address this question by providing an initial theoretical analysis on an
illustrative example.

Example 1. Suppose the parameter space is R?, and the updating ratio is o = 1/d, i.e., only one coordinate
is updated in each iteration. We assume the pre-training loss is Lpretrain(0) = %HGH% and that the model has
been trained to the global minimum Opretrain = (0,0,...,0) during the pre-training phase. The fine-tuning
loss is given by L(0) = Hle(aie,» —b;)%, where a;,b; > 0 for any 1 < i < d. In this evample, the set of global
minima of L£(0) is a union of hyperplanes:

d
S = U Si, where S; :={0 € R?: 0, = bi/a;}.

i=1

Here, each S; represents a hyperplane in RY.

Remark 1. We note that the loss landscapes of neural networks are generally non-convez (Liu et all, [2022).
Here, we also adopt a non-convex fine-tuning loss L(0). Further, we note that the set of global-minima S
consists of infinitely many minima spread across multiple hyperplanes, aligning with the observation on the
degenerate structure of minima in neural networks (Lin et al., |2024b).

Theorem 2. In Ezample if the learning rates are chosen appropriately, then MoFO converges to a
minimum 051 po that is closer to the pre-training state than the minimum 03} 4,,, obtained by Adam, i.e.,

HHK/I()FO - epretrain”2 < HGZdam - epretrainH?-

Moreover, MoFO attains a strictly lower pre-training loss, i.e.,

»Cpretrain (GK/IOFO) < »Cpretrain (GZdam ) .

Next, we visualize the landscape of this example to provide additional intuition. Consider a simplified
two-dimensional case. Specifically, let § € R? and £(0) = (01 — 1)2(62 — 1)%.

In Example [I} each hyperplane S;, which forms part of the global minima of £, can be viewed as an attractor
for the optimization algorithms. These attractors (S;’s) influence the model’s update direction during training.
As illustrated in Figure [d] the attractors in this case are two straight lines: 6; = 1 and 6; = 1. When using
Adam, the model is simultaneously pulled by both attractors, causing it to move diagonally along the orange
line and converge at (1, 1), with a resulting pre-training loss of 1.

In contrast, MoFO is influenced by only one attractor (8; = 1), leading it to follow the green line and converge
to (1,0), which achieves a lower pre-training loss of O.Eﬂ We hypothesize that, for full-parameter fine-tuning
(Adam), interference among multiple attractors drives convergence toward a “balanced” solution, whereas

4By symmetry, MoFO may also be influenced by another attractor f2 = 1 and converges vertically to (0, 1).



Published in Transactions on Machine Learning Research (10/2025)

1.50
® Default FT (Adam) 1.2
1.25 A #® MoFO
Pre-trained model -0.0
1.00
r-1.2
0.75 1
F-2.4
& 0.50
F-3.6
0.25
--4.8
0.00 - S = e = — — — — —
-6.0
-0.25
-15.0
-0.50

7-0.50-0.25 0.00 0.25 0.50 0.75 1.00 125 1.50
61
Figure 4: The fine-tuning loss landscape and the training paths of different optimization methods. The color
bar indicates the fine-tuning loss value.
A logarithmic scale is applied to the loss values for better visualization. MoFO converges to a minimum
closest to the pre-trained model.

MoFO mitigates such interference by selectively updating only parameters with large momentum magnitudes.
Such an updating rule helps MoFO move toward a single attractor, thereby converging closer and forgetting
less. In addition to Adam and MoFO, we provide convergence paths of some other baseline methods in

Appendix [B:4]

We believe that the above analysis provides an initial insight into the effectiveness of MoFO. More in-depth
analysis of MoFO in forgetting mitigation is left for future work.

4 Experiments
4.1 Experimental Settings

We verify the effectiveness of MoFO on instruction fine-tuning and continual fine-tuning. We use
Llama-2-7B (Touvron et all [2023), Gemma-2B-IT (Team et al., [2024)), and TinyLlama-1.1B
as our base models. The instruction fine-tuning datasets cover question-answer pairs from different
domains like mathematical reasoning and medical knowledge. Specifically, the datasets include: MetaMathQA
, PMC-LLaMA-Instructions , Magicoder-Evol-Instruct .
We randomly sample 39.5K and 51K instances from these datasets, respectively, for training the LLMs.
Additionally, We investigate the performance of MoFO in the continual fine-tuning scenario by implementing
our approach on the TRACE benchmark dataset (Wang et al., 2023b)).

Evaluation metrics for instruction fine-tuning. We employ widely used benchmarks to assess the
performance and potential forgetting effects on the general capabilities of LLMs after instruction fine-tuning.
These benchmarks include MMLU (Hendrycks et al., 2021) (0-shot) for factual knowledge; ARC-Challenge,
ARC-Easy (Clark et al. 2018)), and HellaSwag (Zellers et al., [2019)) (0-shot) for commonsense reasoning (CR);
GSMSBK (Cobbe et al., [2021)) (5-shot) for mathematical reasoning; HumanEval (HEval) (Chen et all, [2021)

(pass@10) for code generation; PubMedQA (Jin et all, [2019), MedMCQA (Pal et al., [2022), and MedQA
2021)) (0-shot) for medical question answering (MedQ) E IFEval (0-shot) for instruction following.

Evaluation metrics for continual fine-tuning. To evaluate the LLM’s performance in continual learning,
we consider two key metrics in this scenario: Overall Performance (OP) (Chaudhry et al., 2018) and BackWard
Transfer (BWT) (Lopez-Paz & Ranzato, 2017)).

For more descriptions and implementation details of these metrics and datasets, see Appendix [C]

5For CR and MedQ, we report the average of the benchmarks they comprise.

10



Published in Transactions on Machine Learning Research (10/2025)

Table 1: The performance of the fine-tuning task (math), measured by GSM8K, and the general capability
scores of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that MoFO achieves
comparable performance in the fine-tuning task, while significantly mitigating forgetting of general capabilities.
Bold values denote the best results among these methods.

General Capability
CR MMLU HEval Avg.
Llama-2-7B 13.7 65.6 42.0 24.2 439
Default FT 49.4 62.3 36.6 16.1  38.3

Method GSMS8K

HFT 47.5 65.5 42.3 23.6 43.8
LoRA 43.3 65.1 37.7 26.4 43.1
MoFO 47.7 65.7  42.7 246 44.3

4.2 Instruction Fine-Tuning

In this section, we investigate the effectiveness of the MoFO algorithm in both preserving general capabilities
and learning fine-tuning tasks. The implementation details are provided in Appendix [C] The specific
hyperparameter settings in each experiment are provided in Appendix [C-3]

LLM Fine-tuning strategy baselines. We compare MoFO with the default fine-tuning approach and
other methods designed to mitigate forgetting. These baselines include: Default fine-tuning (Default
FT) refers to the full-parameter fine-tuning approach using the Adam optimizer. Half Fine-tuning (HFT)
(Hui et al., |2024) randomly updates half of the parameter blocks within each transformer layer at each
iteration while the other half are frozen. HF'T can be considered a specific case of the BCD algorithm. LoRA
(Hu et all [2022)) is a widely-used, parameter-efficient fine-tuning method. LoRA trains low-rank matrix
adaptations on the base model’s weights. Recent work (Biderman et al., [2024) demonstrates that LoRA can
mitigate forgetting.

Results of fine-tuning on MetaMathQA. We fine-tune Llama-2-7B on MetaMathQA using various
baseline methods and present the experimental results on mathematical reasoning (GSM8K) and general
capabilities in Table[I] We report the experimental results of LoRA under the best-performing hyperparameter
configuration on the fine-tuning task. These results demonstrate the effectiveness of our proposed MoFO
algorithm in both optimization and mitigating forgetting.

MoFO is compatible to the performance of Default FT and HFT on the math task, yet significantly outperforms
these methods in preserving general capability. Specifically, Default FT shows a decline of 5.4% in MMLU
accuracy and HFT experiences a drop of 0.6% in HumanEval. In contrast, our MoFO not only maintains but
slightly improves these general capability scores by an average of 0.4%.

Comparison from a Pareto perspective. Generally, improving performance on the fine-tuning task and
reducing forgetting are often a pair of competing objectives. It is intriguing to study how different fine-tuning
methods balance this tradeoff. By adjusting the hyperparameters of different methods, we can observe a set
of fine-tuned models, each representing a different tradeoff between fine-tuning performance and forgetting.
The Pareto frontier formed by these models helps visualize the tradeoffs, and we can identify which method
offers the best balance between fine-tuning and forgetting.

In this comparison, we also include traditional regularization methods such as Lo-regularization (Li et al.|
2018) (denoted as Lo reg) and Li-regularization (Panigrahi et al., |2023)) (denoted as L; reg), which are not
specifically designed for large models. These methods modify the original fine-tuning loss £ finectune(6) by
adding a regularization term. For Lo-regularization, the modified loss is L finetune () + A2]|0 — 693, and
for Lq-regularization, it is £ rinetune(0) + A1]|0 — Oo|l1, where Ay and A\; are the respective regularization
hyperparameters.

11



Published in Transactions on Machine Learning Research (10/2025)

We fine-tune the Llama-2-7B model on the MetaMathQA dataset using L; and Ly regularization, as well
as LoRA, and compare their performance with MoFO. We present the results in Figure [5| and plot Pareto
optimal frontsﬂ for these methods. Details of the hyperparameter configurations for this experiment are
provided in Appendix [C:3] These results show the effectiveness of the MoFO algorithm in both optimization
and mitigating forgetting.

050 {F===== 050 {========= ] &.\
0.45 - .N\ 0.45 -
0.40 - 0.40 -
[l Default FT [l Default FT
é 0.35 - HFT § 0.35 - HFT i
J Lire - Ly re
20301 @ Ll 9 20301 @ L1 9
0.25{ % L2red 0.25{ % fa2reg
® MOFO ® MOFO
0.20 A ® LoRA 0.20 A ® LoRA
0.15 - Llama-2-7B ' . 0.15 Llama-2-7B
0.63 0.64 0.65 0.66 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
CR MMLU

Figure 5: The performance on the math task (GSM8K) and the scores in general capabilities of Llama-2-7B
after fine-tuning on the MetaMathQA dataset. Only points on the Pareto front are shown as solid points,
while the remaining points are presented as semi-transparent. The results show that compared with L1, Lo
regularization, and LoRA across various hyperparameter configurations, the MoFO algorithm achieves a
better Pareto front.

The result reveals that MoFO consistently achieves a better Pareto front in comparison to baseline methods.
When compared to regularization methods and LoRA, MoFO exhibits less forgetting and can even maintain
general capabilities with comparable GSM8K accuracies. Additionally, MoFO outperforms regularization
methods in math tasks when the magnitudes of forgetting are similar. We also note that L; and Lo
regularization (Panigrahi et al., 2023} [Li et all [2018) require storing the pre-training weights throughout the
entire fine-tuning process for regularization computation, which incurs additional memory overhead. For
preliminary analysis on why MoFO might compare favorably to L;/Ls regularization, see Appendix

Appendix [E] reports additional instruction fine-tuning results. Specifically, we evaluate

e LLM variants: Gemma-2B-IT and Llama-2-7B-Chat;

¢ Domain-specific datasets: medical dataset (PMC-LLaMA-Instruct )7 coding dataset
(Magicoder-Evol-Instruct (Wei et al) [2023));

o Different baselines: HMA (Lin et al., [2024a)), CoFiTune (Zhang et al., [2024a)), Soft-masking

et al 202304,

MoFO Converges Closer to the Pre-trained Model.

In this part, we empirically investigate whether MoFO converges closer to the pre-trained model. Building on
the fine-tuned models in Table [I} we compare their distances to the pre-trained model. In addition, for the
L, and Lo regularization baselines in our Pareto analysis above, we select the models that achieve the best
performance on the GSM8K benchmark (corresponding to the fine-tuning task).

Figure [6] shows that models fine-tuned with MoFO are closer to the pre-trained model compared to other
baseline methods.

6Since it is impractical to exhaust all hyperparameter configurations in real experiments, we present linear interpolation
approximations of the Pareto fronts in Figure ﬁ

12



Published in Transactions on Machine Learning Research (10/2025)

0.016

0.014 4
0.012 4
0.008 A
- 0.006 -
0.004 4
0.002 4
0.000 - T T

MoFO L1 Reg L2 Reg LoRA  HFT Default FT

[}
o
=
o
L

Distance

Figure 6: The distances for the fine-tuned Llama2-7B on MetaMathQA. The results show MoFO achieves
minima closer to the pre-trained model.

4.3 Continual Fine-Tuning

In this section, we explore the performance of our proposed MoFO in continual fine-tuning on the TRACE
benchmark (Wang et al., [2023b)). We sequentially train TinyLlama-1.1B on the TRACE dataset, which
includes the eight tasks from different domains. The implementation details are provided in Appendix [C]

Continual learning baselines. We consider several traditional methods from the field of continual learning
to compare with MoFO. These methods can also be orthogonal combined with MoFO to further enhance
performance. Replay involves optimizing the model using current data along with a memory buffer containing
samples from previous tasks to mitigate forgetting, and we follow the implementation in Wang et al.| (2023b)).
Gradient of Episodic Memory (GEM) (Lopez-Paz & Ranzato], [2017)) mitigates forgetting by using
gradients from old tasks to adjust the parameter updates during the training of new tasks. Elastic weight
consolidation (EWC) (Kirkpatrick et al.,[2017) uses a diagonal approximation of Fisher information matrix,
which can be calculated by gradients from previous tasks, to regularize parameter updates.

Table 2: The OP and BWT scores of TinyLlama-1.1B after fine-tuning on TRACE benchmark. The results
show that MoFO outperforms Default FT, HFT, GEM, and EWC in continual learning and can combine well
with continual learning methods. Bold values denote the best results among these methods in each group.

OP BWT
Default FT 38.4 -10.3
HFT 39.9 -10.1
MoFO 41.3 -5.4
GEM 40.8 -8.5
GEM + MoFO 41.7 -6.7
EWC 41.1 -8.3
EWC + MoFO 43.2 -4.4
Replay 45.5 4.7

Replay + MoFO 47.0 4.8

Results of continual fine-tuning. We present the experimental results of sequentially fine-tuning
TinyLlama-1.1B on the TRACE benchmark with various methods in Table 2] The results indicate that in
continual fine-tuning, MoFO not only outperforms other fine-tuning baselines but also surpasses GEM and
EWC. Moreover, MoFO combines well with the Replay method, offering a 1.5% performance gain on the OP
metric compared to using Replay alone. Moreover, MoFO works well in combination with EWC, yielding at
least a 2.1% improvement in the OP metric over using EWC alone. Additionally, when combined with the
GEM method, MoFO provides a 0.9% improvement on the OP metric compared to using GEM alone.

In summary, these results underscore the superior performance of MoFO in continual fine-tuning and its
effectiveness in alleviating forgetting.

13



Published in Transactions on Machine Learning Research (10/2025)

Table 3: The performance on the math reasoning task (GSM8K) and general capability scores of Llama-2-7B
after fine-tuning on MetaMathQA using different updating strategies in MoFO. Bold values denote the best
results among the BCD methods.

General Capability
CR MMLU HEval Avg.
Llama-2-7B 13.7 65.6 42.0 24.2 439
Default FT 49.4 62.3 36.6 16.1  38.3
Random BCD 35.0 65.8 41.1 25.1 44.0

Method GSMS8K

Grad BCD 40.2 66.0 41.6 28.0 45.2
MV BCD 42.2 66.0 40.0 27.6 44.5
MoFO 45.4 65.7 43.5 274  45.5

4.4 Impact of Update Strategy in MoFO

In addition to MoFO, we consider three other BCD methods with different filtering strategies: random
BCD, gradient-filtered BCD, and MV-filtered BCD. Random BCD updates a random subset of
parameters at each iteration. Gradient-filtered BCD replaces MoFO'’s filter FLT,, (m;) with FLT,(g;), while
MV-filtered BCD uses FLT,, (1 //0r).

We fine-tune Llama-2-7B on MetaMathQA using these four methods with 10% parameter update fraction
and present the results in Table [3] Experimental results show that all four BCD methods exhibit significantly
less forgetting compared to Default FT, demonstrating the effectiveness of BCD algorithms in mitigating
forgetting.

In terms of GSM8K performance, our proposed MoFO method significantly surpasses Random BCD, Gradient-
filtered BCD, and MV-filtered BCD, indicating that updating parameters with the largest momentum leads
to strong optimization power. Additional comparative experiments on BCD filtering strategies are presented
in Appendix More insights towards this result are provided in Appendix

4.5 Furthur Analysis

Guidelines for setting «. Experiments show that setting the updating fraction o = 15% works the best
for most of our experiments; and 5% — 15% all work quite well. We provide a more detailed guideline for
determining « in Appendix [D] The guideline involves randomly sampling a small proxy subset and performing
a grid search over possible o values.

Efficiency Analysis. We provide an efficiency analysis on MoFO in Appendix The results show that
MoFO requires only around 4% — 5% additional training time compared with Default FT throughout the
entire training process.

5 Related Works

5.1 Forgetting in Continual Learning

Catastrophic forgetting, a significant issue where models forget previously learned information upon learning
new data, has received considerable attention in machine learning (McCloskey & Cohenl |1989} |Goodfellow
et al.l |2013; |[Kemker et al.l |2018}; [Ramasesh et al. 2021} [Verwimp et al., 2023} [Liu et all, 2024). Traditional
continual learning primarily focuses on addressing catastrophic forgetting in sequential-task learning scenarios.
In addition to investigating the forgetting of pre-training knowledge during fine-tuning, Section conducts

14



Published in Transactions on Machine Learning Research (10/2025)

experimental studies on catastrophic forgetting in sequential-task fine-tuning processes, which aligns more
closely with conventional continual learning paradigms.

Replay-based methods. In sequential-task learning, these methods leverage past experiences to facilitate
the learning of new tasks. The most classical scheme is experience replay, which involves replaying data
of past tasks during incremental training (Rolnick et al., [2019) (Aljundi et al., 2019a; [Hayes et al., 2019;
Cha et al., |2021; Chaudhry et al. [2019b; |[Riemer et al., 2019b). Other variants utilize gradient information
from old tasks (Lopez-Paz & Ranzatol [2017} [Riemer et al., 2019a} |(Chaudhry et all |2019a} [Farajtabar et al.
2020; [Aljundi et al.l [2019b} |Chaudhry et al., 2021} Tiwari et al.| [2022)). In LLMs, [Yin et al.| (2023)); Wang]
et al.| (2024b)); |Ouyang et al.| (2022) propose replay-based methods to mitigate forgetting. While MoFO is a
replay-free method, MoFO can be combined with replay strategies.

Regularization-based methods. These methods introduce constraints to the training process to preserve
past knowledge, such as adding regularization to the loss functions (Kirkpatrick et al.} 2017} |Aljundi et al.|
[2018} Zenke et al., 2017; [Li et al., 2018} Ritter et al.| 2018} [Kumar et al. |2023) or the embedding/output
changes (Li & Hoiem|, [2017; [Rannen et al., 2017} Buzzega et all [2020; [Huang et al., 2021; |Cha et al. [2020)).
Some regularization-based approaches still rely on partial information from previous models (Kirkpatrick
. In contrast, MoFO does not require past information and does not alter the original loss function,
making it inherently orthogonal to regularization-based methods. To improve generalization and robustness
to noise after instruction-tuning, several studies introduce explicit regularization (Li & Zhang), 2021} |Zhang
2023). In particular, Zhang et al. (2023) proposes a Hessian-based penalty that encourages convergence
to flatter minima. It is an interesting direction for future research to evaluate whether MoFO’s momentum
filtering mechanism implicitly favors more stable minima, thereby further enhancing generalization and noise
robustness.

Optimization-based methods. These methods focus on modifying the training algorithm to mitigate
forgetting. In traditional continual learning, optimization-based methods commonly include, but are not
limited to, gradient projection techniques (Wang et al.| [2023a} [Lopez-Paz & Ranzato), 2017)), meta-learning
approaches (Beaulieu et al., [2020; |Javed & White, |2019), and strategies leveraging the structure of the loss
landscapes (Mirzadeh et al., [2020aib). When it comes to forgetting-mitigation in LLM training, recent studies
have explored optimization strategies that update only a subset of parameters at each iteration. For instance,
Hui et al| (2024) randomly freezes half of the model’s parameter modules and updatets the rest at each
iteration. Ke et al|(2023bja) introduce a soft-masking mechanism that selects parameters for update based on
their importance values. Further, Zhang et al. (2024a) combines selective module updating with soft-masking.
MoFO, which also falls into this category, updates parameters with largest momentum magnitudes at each
iteration. Compared to these works, our study provides a theoretical convergence guarantee of our proposed
method, thereby establishing its effectiveness in LLM fine-tuning.

Model merging methods. These methods balance learning new knowledge and retaining old knowledge
by merging the new and past models. One line of research focuses on model averaging, which interpolates
between the weights of different LLMs (Wortsman et al.| [2022a3b; [Eeckt et al., 2022 [Yadav et al., 2024}
let al., 2023; |2024al). Another line of research relies on the observation that task-specific knowledge largely
resides in a subspace of the weight space (Ilharco et al., |2023} [Panigrahi et al. [2023; \Gueta et al., [2023} |Zhu|
let al., 2024} [He et al., [2024), and leverage task vectors or task localization to preserve pre-training knowledge
in the fine-tuned models (Panigrahi et al., 2023; [Yadav et al., 2024; Yu et al.| 2024a).

Architecture-based methods. These methods modify the model’s architecture in training. LoRA
, as the most popular parameter-efficient fine-tuning (PEFT) method, freezes the pre-training
weights and introduces low-rank trainable matrices. Variants of LoRA are applied in continual learning for
LLMs (Ren et al.l 2024} Wang et al., 2023al). However, LoRA is observed to forget less but also learn less than
default fine-tuning (Biderman et al., 2024). Apart from LoRA, Adapters (Houlsby et al. 2019)) and BitFit
(Zaken et all |2021) are also well-known PEFT methods. In Appendix we include them as baselines for
comparison and find that, while they are slightly less effective than MoFO in mitigating forgetting, their
performance on the fine-tuning task is substantially worse than that of MoFO.

15



Published in Transactions on Machine Learning Research (10/2025)

Other approaches adaptively expand model capacity or isolate partial weights to mitigate interference between
new and old tasks (Wang et al.| |2023a}; Razdaibiedina et al., [2023). In contrast, MoFO updates a subset of
parameters at each iteration, but does not alter the total trainable parameters.

5.2 Block Coordinate Descent

Block Coordinate Descent (BCD) involves iteratively optimizing over a block of coordinates while holding the
others constant. The foundational work of [Tseng] (2001) provides a comprehensive analysis of the convergence
properties of BCD under certain conditions. Subsequent research has explored various BCD variants (Hong
et al} |2017)), including random BCD (Nesterov, 2012; |[Richtarik & Takac, 2014} |Lu & Xiaol [2015)), cyclic BCD
(Sun & Hong, 2015; Razaviyayn et al., [2013), and greedy BCD (Nutini et al.l [2015). Among these, the greedy
variant, also known as Gauss-Southwell BCD method, has drawn attention due to its ability to prioritize
coordinates that yield the most substantial improvement in each iteration, thereby potentially accelerating
convergence.

In the realm of machine learning, BCD has also found applications (Nutini et al., [2022). For example, Luo
et al.|(2024) leverages BCD to perform memory-efficient fine-tuning of LLM and Xu & Zhang (2024)) uses
random masking to perform this. In federated learning, [Rothchild et al.| (2020 adopts top-k momentum value
unsketch rather than our top-k momentum filtering to tackle communication bottleneck and convergence
issues. In LLMs, some concurrent works propose BCD-based algorithms leveraging task vectors to enhance
fine-tuning performance (Li et al.,2024) and mitigate catastrophic forgetting in multi-task learning (Pandal
et al., [2024). Our approach can be regarded as a type of greedy BCD adapted to Adam, achieving good
performance in fine-tuning tasks and alleviating forgetting.

6 Conclusion and Limitations

This paper presents the Momentum-Filtered Optimizer (MoFO), a new approach designed to mitigate the
crucial issue of pre-training knowledge forgetting in LLMs during fine-tuning. By selectively updating the
parameters with the largest momentum magnitudes in each parameter block, MoFO converges to a point
closer to the pre-trained model compared to full-parameter fine-tuning and effectively preserves pre-trained
knowledge. Our experimental results demonstrate that MoFO not only achieves comparable performance to
default fine-tuning but also effectively alleviates forgetting.

While this work provides a preliminary exploration of applying traditional block coordinate descent methods
to mitigate forgetting in LLM training, several avenues remain open for further investigation. First, the
current framework uses a uniform and consistent update fraction across all parameter blocks throughout
training, whereas future work may explore adaptive update fractions and block-wise dynamic adjustments.
Second, although our focus centers on forgetting mitigation during supervised fine-tuning, extending this
methodology to downstream phases such as RLHF represents a promising direction for improving LLM
development pipelines.

Acknowledgement

The authors would like to express our sincere gratitude to the reviewers for their insightful feedback during the
discussion phase. The authors also thank Congliang Chen and Ziniu Li for their helpful suggestions. This paper
is supported in part by the National Key Research and Development Project under grant 2022YFA1003900;
Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Project (No.HZQSWS-
KCCYB-2024016); University Development Fund UDF01001491, the Chinese University of Hong Kong,
Shenzhen; Guangdong Provincial Key Laboratory of Mathematical Foundations for Artificial Intelligence
(2023B1212010001); the Guangdong Major Project of Basic and Applied Basic Research (2023B0303000001).

References

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory
aware synapses: Learning what (not) to forget. In Proceedings of the European conference on computer

16



Published in Transactions on Machine Learning Research (10/2025)

vision (ECCV), pp. 139-154, 2018.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lucas
Page-Caccia. Online continual learning with maximal interfered retrieval. Advances in neural information
processing systems, 32, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. Advances in neural information processing systems, 32, 2019b.

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff Clune, and Nick Cheney.
Learning to continually learn. In ECAI 2020, pp. 992-1001. IOS Press, 2020.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. LoRA learns less and forgets less. arXiv
preprint arXiv:2405.09673, 2024.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for
general continual learning: a strong, simple baseline. Advances in neural information processing systems,
33:15920-15930, 2020.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of the
IEEE/CVF International conference on computer vision, pp. 9516-9525, 2021.

Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio P Calmon, and Taesup Moon. Cpr: classifier-projection
regularization for continual learning. arXiv preprint arXiv:2006.07326, 2020.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In Furopean Conference on Computer
Vision, pp. 556-572, 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with A-GEM. In International Conference on Learning Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv preprint
arXiw:1902.10486, 2019b.

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hindsight to
anchor past knowledge in continual learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 6993-7001, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall and learn:
Fine-tuning deep pretrained language models with less forgetting. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 7870-7881, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang
Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms. Advances in neural
information processing systems, 36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

17



Published in Transactions on Machine Learning Research (10/2025)

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie, Ruobing
Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback. In Forty-first
International Conference on Machine Learning, 2024.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. Advances in neural information processing
systems, 28, 2015.

Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng Yan, and Hanwang Zhang. How should pre-trained
language models be fine-tuned towards adversarial robustness? Advances in Neural Information Processing
Systems, 34:4356-4369, 2021.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Steven Vander Eeckt et al. Weight averaging: A simple yet effective method to overcome catastrophic
forgetting in automatic speech recognition. arXiv preprint arXiv:2210.15282, 2022.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762-3773. PMLR, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse text for language modeling.
arXiv preprint arXiw:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12
2023. URL https://zenodo.org/records/10256836.

Tan J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation of
catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen. Knowledge is a
region in weight space for fine-tuned language models. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 1350-1370, 2023.

Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory eflicient experience replay for streaming
learning. In 2019 International Conference on Robotics and Automation (ICRA), pp. 9769-9776. IEEE,
2019.

Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model merging
via sparse task arithmetic. arXiv preprint arXiv:2408.13656, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language understanding. In International Conference on Learning
Representations, 2021.

Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn, and Zhi-Quan Luo. Iteration complexity analysis of
block coordinate descent methods. Mathematical Programming, 163:85-114, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International
conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning Representations,
2022.

18


https://zenodo.org/records/10256836

Published in Transactions on Machine Learning Research (10/2025)

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and
Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized rehearsal.
arXiv preprint arXiv:2403.01244, 2024.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning for text
classification with information disentanglement based regularization. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 2736-2746, 2021.

Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. Hft: Half fine-tuning for
large language models. arXiv preprint arXiv:2404.18466, 2024.

Gabriel ITharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh
Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In International Conference on Learning
Representations (ICLR). International Conference on Learning Representations, 2023.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi, Joel
Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing climate: Enhancing lm
adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

Khurram Javed and Martha White. Meta-learning representations for continual learning. Advances in neural
information processing systems, 32, 2019.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does
this patient have? a large-scale open domain question answering dataset from medical exams. Applied
Sciences, 11(14):6421, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset for
biomedical research question answering. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 2567-2577, 2019.

Zixuan Ke, Bing Liu, Wenhan Xiong, Asli Celikyilmaz, and Haoran Li. Sub-network discovery and soft-
masking for continual learning of mixed tasks. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 15090-15107, 2023a.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-training
of language models. In International Conference on Learning Representations (ICLR). International
Conference on Learning Representations, 2023b.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171-4186, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiw:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

Tomasz Korbak, Hady Elsahar, German Kruszewski, and Marc Dymetman. Controlling conditional language
models without catastrophic forgetting. In International Conference on Machine Learning, pp. 11499-11528.
PMLR, 2022.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity via regenerative regular-
ization. arXiv preprint arXiv:2308.11958, 2023.

19



Published in Transactions on Machine Learning Research (10/2025)

Dongyue Li and Hongyang Zhang. Improved regularization and robustness for fine-tuning in neural networks.
Advances in Neural Information Processing Systems, 34:27249-27262, 2021.

Haoling Li, Xin Zhang, Xiao Liu, Yeyun Gong, Yifan Wang, Yujiu Yang, Qi Chen, and Peng Cheng.
Gradient-mask tuning elevates the upper limits of llm performance. arXiv preprint arXiv:2406.15330, 2024.

Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with
convolutional networks. In International Conference on Machine Learning, pp. 2825-2834. PMLR, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEFE transactions on pattern analysis and
machine intelligence, 40(12):2935-2947, 2017.

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie Pi, Jipeng Zhang, Shizhe Diao, Haoxiang Wang,
Han Zhao, Yuan Yao, et al. Speciality vs generality: An empirical study on catastrophic forgetting in
fine-tuning foundation models. arXiv preprint arXiv:2309.06256, 2023.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang Wang,
Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. In Proceedings of the 202/
Conference on Empirical Methods in Natural Language Processing, pp. 580—-606, 2024a.

Zhanran Lin, Puheng Li, and Lei Wu. Exploring neural network landscapes: Star-shaped and geodesic
connectivity. arXiv preprint arXiv:2404.06391, 2024b.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:85-116, 2022.

Chengyuan Liu, Shihang Wang, Yangyang Kang, Lizhi Qing, Fubang Zhao, Changlong Sun, Kun Kuang, and
Fei Wu. More than catastrophic forgetting: Integrating general capabilities for domain-specific llms. arXiv
preprint arXiv:2405.17830, 2024.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30, 2017.

Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate descent methods.
Mathematical Programming, 152:615-642, 2015.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method for large
language models. arXiv preprint arXiv:2404.02827, 2024.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of catastrophic
forgetting in large language models during continual fine-tuning. arXiv preprint arXiv:2308.08747, 2023a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei
Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-instruct, 2023b.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165. Elsevier, 1989.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan Ghasemzadeh. Linear
mode connectivity in multitask and continual learning. arXiv preprint arXiv:2010.04495, 2020a.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understanding

the role of training regimes in continual learning. Advances in Neural Information Processing Systems, 33:
7308-7320, 2020b.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal
on Optimization, 22(2):341-362, 2012.

Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke. Coordinate descent
converges faster with the gauss-southwell rule than random selection. In International Conference on
Machine Learning, pp. 1632-1641. PMLR, 2015.

20



Published in Transactions on Machine Learning Research (10/2025)

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent converge faster: faster
greedy rules, message-passing, active-set complexity, and superlinear convergence. Journal of Machine
Learning Research, 23(131):1-74, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730-27744, 2022.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale multi-subject
multi-choice dataset for medical domain question answering. In Conference on health, inference, and
learning, pp. 248-260. PMLR, 2022.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal. Lottery
ticket adaptation: Mitigating destructive interference in llms. arXiv preprint arXiv:2406.16797, 2024.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization in
fine-tuned language models. In International Conference on Machine Learning, pp. 27011-27033. PMLR,
2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
with unsupervised learning. 2018.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic forgetting in
neural networks. In International Conference on Learning Representations, 2021.

Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong learning.
In Proceedings of the IEEE international conference on computer vision, pp. 1320-1328, 2017.

Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A unified convergence analysis of block successive
minimization methods for nonsmooth optimization. SIAM Journal on Optimization, 23(2):1126-1153, 2013.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Almahairi.
Progressive prompts: Continual learning for language models. arXiv preprint arXiv:2301.125314, 2023.

Weijieying Ren, Xinlong Li, Lei Wang, Tianxiang Zhao, and Wei Qin. Analyzing and reducing catastrophic
forgetting in parameter efficient tuning. arXiv preprint arXiv:2402.18865, 2024.

Peter Richtarik and Martin Takac. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 144(1):1-38, 2014.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. In International
Conference on Learning Representations, 2019a.

Matthew Riemer, Tim Klinger, Djallel Bouneffouf, and Michele Franceschini. Scalable recollections for
continual lifelong learning. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp.
1352-1359, 2019b.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
overcoming catastrophic forgetting. Advances in Neural Information Processing Systems, 31, 2018.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay
for continual learning. Advances in neural information processing systems, 32, 2019.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman, Joseph
Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with sketching. In
International Conference on Machine Learning, pp. 8253-8265. PMLR, 2020.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

21



Published in Transactions on Machine Learning Research (10/2025)

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, and Hao Wang. Continual
learning of large language models: A comprehensive survey. arXiv preprint arXiv:2404.16789, 2024.

Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. Rmsprop converges with proper hyper-parameter. In
9th International Conference on Learning Representations, ICLR 2021, 2021.

Ruoyu Sun and Mingyi Hong. Improved iteration complexity bounds of cyclic block coordinate descent for
convex problems. Advances in Neural Information Processing Systems, 28, 2015.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-
thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2):26, 2012.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Ger: Gradient coreset based
replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 99-108, 2022.

Together. Redpajama, a project to create leading open-source models, starts by reproducing llama training
dataset of over 1.2 trillion tokens. https://www.together.ai/blog/redpajama, 2023. Accessed: 2025-08-
14.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal
of optimization theory and applications, 109:475-494, 2001.

Eli Verwimp, Rahaf Aljundi, Shai Ben-David, Matthias Bethge, Andrea Cossu, Alexander Gepperth, Tyler L
Hayes, Eyke Hiillermeier, Christopher Kanan, Dhireesha Kudithipudi, et al. Continual learning: Applications
and the road forward. arXiv preprint arXiv:2311.11908, 2023.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuanjing
Huang. Orthogonal subspace learning for language model continual learning. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023a.

Xiao Wang, Yuansen Zhang, Tianze Chen, Songyang Gao, Senjie Jin, Xianjun Yang, Zhiheng Xi, Rui Zheng,
Yicheng Zou, Tao Gui, et al. Trace: A comprehensive benchmark for continual learning in large language
models. arXiv preprint arXiw:2310.06762, 2023b.

Yifan Wang, Yafei Liu, Chufan Shi, Haoling Li, Chen Chen, Haonan Lu, and Yujiu Yang. Inscl: A data-efficient
continual learning paradigm for fine-tuning large language models with instructions. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 663-677, 2024b.

Zirui Wang, Sanket Vaibhav Mehta, Barnabas Poczds, and Jaime G Carbonell. Efficient meta lifelong-learning
with limited memory. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 535-548, 2020.

22


https://www.together.ai/blog/redpajama

Published in Transactions on Machine Learning Research (10/2025)

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen,
Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang. Redpajama: an open
dataset for training large language models. NeurIPS Datasets and Benchmarks Track, 2024.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering code
generation with oss-instruct. arXiv preprint arXiv:2312.02120, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of
multiple fine-tuned models improves accuracy without increasing inference time. In International conference

on machine learning, pp. 23965-23998. PMLR, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust fine-
tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7959-7971, 2022b.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Weidi Xie, and Yanfeng Wang. Pmc-llama: toward
building open-source language models for medicine. Journal of the American Medical Informatics Association,
pp. ocae045, 2024.

Nachuan Xiao, Xiaoyin Hu, Xin Liu, and Kim-Chuan Toh. Adam-family methods for nonsmooth optimization
with convergence guarantees. Journal of Machine Learning Research, 25(48):1-53, 2024.

Jing Xu and Jingzhao Zhang. Random masking finds winning tickets for parameter efficient fine-tuning.
arXiv preprint arXiv:2405.02596, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Resolving
interference when merging models. Advances in Neural Information Processing Systems, 36, 2024.

Da Yin, Xiao Liu, Fan Yin, Ming Zhong, Hritik Bansal, Jiawei Han, and Kai-Wei Chang. Dynosaur: A
dynamic growth paradigm for instruction-tuning data curation. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 4031-4047, 2023.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing
abilities from homologous models as a free lunch. In Forty-first International Conference on Machine
Learning, 2024a.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language
models. In The Twelfth International Conference on Learning Representations, 2024b.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. arXiv preprint arXiw:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 4791-4800, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International conference on machine learning, pp. 3987-3995. PMLR, 2017.

Hengyuan Zhang, Yanru Wu, Dawei Li, Sak Yang, Rui Zhao, Yong Jiang, and Fei Tan. Balancing speciality
and versatility: a coarse to fine framework for supervised fine-tuning large language model. arXiv preprint
arXiv:2404.10306, 2024a.

Hongyang R Zhang, Dongyue Li, and Haotian Ju. Noise stability optimization for finding flat minima: A
hessian-based regularization approach. arXiv preprint arXiv:2306.08553, 2023.

23



Published in Transactions on Machine Learning Research (10/2025)

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language
model. arXiv preprint arXiv:2401.02585, 2024b.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why transformers
need adam: A hessian perspective. arXiw preprint arXiv:2402.16788, 2024c.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and Ruoyu
Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793, 2024d.

Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, and Han Liu. Accelerated mini-batch randomized block
coordinate descent method. Advances in neural information processing systems, 27, 2014.

Didi Zhu, Zhongyi Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Kun Kuang, and Chao Wu. Model tailor:
Mitigating catastrophic forgetting in multi-modal large language models. arXiv preprint arXiv:2402.12048,
2024.

24



Published in Transactions on Machine Learning Research (10/2025)

A Theoretical Analysis

Appendix [A]is organized into three self-contained parts. A roadmap is provided to guide the reader in locating
and understanding each theoretical result efficiently.

Roadmap to Appendix A (Quick Reference).
Appendix Supplementary Analysis on the Top-a Filter

This section formalizes the top-« filter FLT,(-) and the induced quantity ||z @ FLT,(z)||; that will serve as
our working norm in the analysis. Proposition [I] verifies that this is indeed a norm. Lemma [I] establishes a
Lipschitz stability property for filtered outputs, which later lets us pass from the momentum-defined filtering
to the gradient-defined filtering. Lemma [2| relates the L top-o norm to standard L, norms, which is used at
the very end to translate the convergence bound to any p € [1, c0].

Appendix m: Proof of Theorem 1 (Convergence of MoFO)

For a high-level narrative, see the proof sketch accompanying Theorem [I]in the main text; here we provide a
quick-reference map to the technical steps.

Lemma [3| bounds each step size and the 5-movement of parameters using the number of active coordinates.
Lemma [4] controls the drift of gradients across iterations via L-smoothness. Lemma [5] lower-bounds the
per-coordinate alignment term g; ;7 ¢/ \/ﬁ , which is the driver in the descent inequality. Lemma |§| shows
that the bias-corrected momentum 7, tracks g; in ¢, at rate O(til/ 2). Combining these with the descent
lemma yields a key inequality in which the filter is FLT, (m;):

Co

C
ﬁllgt O FLTa(me)lls < L(0e-1) — L(6:) + =~

Finally, Lemma [1] help convert it to the desired inequality with the gradient filter FLT,(g:); summing
over t gives ming<;<7_1 ||VL(0;) ® FLTo(VL(0;))||1 = O(logT/VT). By Lemma [2} this implies the same
O(log T/V/T) rate for any L, norm ming<;<7_1 | VL(0:)| -

Appendix m: Proof of Theorem [2| (Illustrative example: forgetting mitigation of MoFO)

In an illustrative example with updating ratio o« = 1/d, MoFO converges to a single-attractor minimum and
is strictly closer to the pre-training state than Adam, thus attaining a lower pre-training loss. We prove this
by mathematical induction.

Appendix Challenges and Potential Extensions of Theorem [1] to Nonsmooth Objectives

This subsection explains why extending the convergence analysis of Theorem [I] to nonsmooth objectives is
nontrivial and outlines several possible future directions.

25



Published in Transactions on Machine Learning Research (10/2025)

A.1 Supplementary Analysis on the Top-« Filter

In this section, we provide supplementary analysis on our top-« filter, which serves as a preliminary for
proving Theorem [I]in Appendix

As introduced in Section 2:2] the entire parameter space is divided into B parts, with the k-th part
having a dimension of d. We assume the parameter space is R%, which can be expressed as the product
R? =2 R% x R% x ... x R?. For any z € R, we represent it as:

z= Concat(z(l), PAC z(B)),

where 2(%) € R for each 1 < k < B.
Definition 1. For any z € RY, we define the top-a filter of z as

FLT,(z) := Concat(e(s),egz) (B)) € RY,
where
Sk = {i € [dg] : \zi(k)| ranks within the top-a of all |2®)|’s entries (\zgk)|, \zék)|, . | Zq, \)}

and e(Si) is a di-dimensional vector where the i-th entry is 1 if i € Sy, and 0 otherwise.

Remark 2. To ensure that the top-a filter FLT,(z) is well-defined, when multiple entries share identical
absolute values and including all of them in the set Sy would result in exceeding the o threshold of set size, the
construction of Sy prioritizes the entries with the smallest indices among those with the same absolute values.

Definition 2. For any z € R%, we define the L1 top-o morm of z as
12111, t0p-a = [lz © FLTa(2) |1

Proposition 1. ||| top-a s indeed a norm in RY.

Proof. By Definition [T} we get

k
121 t0p-a = |2 ® FLT4(2) |1 = ZI\Z‘“@e” ©)

First, if ||2]/1,top-a = 0, then by @)7 %) ® egi)Hl =0 for any 1 < k < B. Thus,

Hz(k)Hoo = argmax\z \ < ||z @esk |1 = 0.
<i<dy

So z%) is a zero vector for any 1 < k < B and then z is a zero vector.

Second, for any given ¢ € Ry, {|z |}1<l<dk and {|cz |}1<Z<dk have the same order. So z and cz share the
same filter FLT,(z) and

ezl top-a = llez © FLTa(e2)]1 = ellz © FLTa(2) 11 = cll2ll1t0p-a-

Third, for any z,y € R?, we let

S, = {i € [di] : |t | ranks within the top-a of all [¢*)]'s entries (|at"|, [z57],..., |z{7])},
=17 e |d (k) + (k) ranks within the top-« of all
{ie] Y; p-
, . k (k k (k k
w>+y\mmmuw?+mhm“+%wwqu+%ﬂ»

Then we have

FLT,(z) = Concat(e(sli); egé); e ;e(S],B)) and FLT,(z +y) = Concat(eg?; eg?; o e(ﬁ)).
B B

26



Published in Transactions on Machine Learning Research (10/2025)

By the construction of S}, for any 1 < k < B, we have
k
le™ @ eG < [2® © e |lr-

So

|z ® FLTq(2 + y)|l1 = Z||x<’f>@es,,|| <Z||x<k>@e<’“>||l:ch@FLTa(x)Hl.

Similarly, it holds that

ly © FLTa(z + y)l1 < lly © FLTa(y) |1
Thus, we have
= [[(z +y) OFLTo(z + y) |1
= ||z @ FLTo(x + y) + y O FLT,(z + ) |1
<|lz © FLTo(z + y) |1 + [ly © FLTa(z + y) |1
< |lz © FLTo(2) |1 + [ly © FLTa(y) |1

= [ll1.top-

We propose a lemma which is useful for the proof of Theorem

Lemma 1. For any x,y € R?, it holds that

[z © FLTo (2) |1 — [lo © FLTa(y) [ < 2[lz =yl

Proof. By Proposition [1} ||-[|1 top-a is a norm in R?, so we have

[ © FLTa ()]l — [l © FLT4(y) 1
= [lz © FLTa(2) [l = ly © FLTa(y)l[1 + [ly © FLTa(y) |1 — [z © FLTa(y)[h
= [1Zl11,50p-0 = [19ll1,t0p-0 + Iy © FLTa (y) [l — [l © FLTa(y)]h
<lz - (y — ) © FLTa(y)lh
<llz =yl +lly — zlh
= 2|z —ylh-

The lemma below quantifies the relationship between L top-o and L, norms for p € [1, 4+o0].

Lemma 2. Assume the parameter space R® is decomposed into B blocks R™ x ... x R qand z =
Concat(z(M, ..., 2(B)) with 2(¥) € R%. Then for any z € R* and any p € [1, 00|, it holds that

_1
ollzllp < ll2ll1,t0p-a < (da+ B)' "7 2]l

Proof. We first prove the p = 1 case. Fix any block k. Write the absolute values in nonincreasing order
agk) > > agz) > 0, where a(k) \z(k |. Let my := |Sk(2)|; by the definition of the top-« filter (Definition
and the tie-breaking rule in Remark ' myg = [ady]. Since the average of the top my numbers is at least
the overall average, we have

S <’“>|> Z\z )| > all 2.

1€Sk(2)

Summing over k yields ||2]|1,top-a > @ . [|2®*]l1 = a||z]1. The upper bound ||z||1 top-a < ||2||1 is immediate
since FLT,(z) is a {0, 1} filter.

27



Published in Transactions on Machine Learning Research (10/2025)

Next, let p € (1,+00]. The lower bound follows from
[2ll1,t0p-a = allzll1 = allz]|p,
since ||z|l1 > ||z||p- For the upper bound, fix k and apply Hélder’s inequality on the subset Sy (z):

dp,

k 1/q k 1/]9 1 1—%
S P < (2 1) (S EOR) T =m0, =m0,

1€Sk(2) 1€SK(2) i=1

where ¢ = % and we used 1/¢ =1 — 1/p. Summing over k and applying Holder again to the finite sum

B 1-1 .
Dkt My, /p”Z(k) |, gives

B " B, B L1 B 1p
-7 P
Ieliopa =D 32 <> i S < (Yome) (1)

k=1i€S,(2) k=1 k=1 k=1
We set m := 2521 my. Since Zszl 282 = ||z]|2 (blocks are disjoint) and m = Y, my = >, [adi] <
ad + B, we obtain

_1 _1
12ll1.0p-a < m' "7 l2]lp < (ad + B)' 77 |12]l,.

For p = +o0 the same argument applies with ¢ = 1 and yields 3,5, () |z§k)| < my|2®)]| 0o, hence || 21 top-a <
m||z||co; the lower bound ||2||1 top-a > @[|2]|co follows from ||z||1 > ||2]|cc- This completes the proof. O

28



Published in Transactions on Machine Learning Research (10/2025)

A.2 Proof of Theorem [1] (Convergence of MoFO)

Notation recap (Appendix [A.2)).

gt =VL(0-1) € R? is the full-batch gradient at step t.
o Step size: 1; = n/v/t; hyperparameters satisfy 8; < v/f2 < 1.

o First/second moments: my,v; € R¢ with updates

(Mg, vin) = (1= B1)gie + Bimig—1, (1 — B2)gi s + Pavie—1);
bias-corrected first/second moments: 1y = m;/(1 — Bt), 9, = v, /(1 — 3%).

o MoFO’s filter FLT,(-) € {0,1}%: in each partition k € [B] of size dj, (with Y, dj = d), we keep [dya]
entries and zero out the others. We write ||z ® FLT,(2)||1 for the ¢;-norm of the kept coordinates
and |1 top-a £ || © FLTa(@)[1-

o MoFO’s update: 0; 4 —0; —1 = — 11,1 /~/Vi ¢ if FLTo(my); = 1, and 0 otherwise.

Our proof of Theorem [l follows the convergence analysis of the full-batch Adam optimizer in [Shi et al.| (2021)),
with novel adaptations to address the unique aspects of MoFO.

To maintain consistency with the notation used in MoFO (Algorithm [1] in Section [2.2]), we denote

2t = Concat(zt(l), . ,ZEB))v

where z represents the model parameter 6, the gradient g, the first moment estimate m, or the second moment
estimate v. Notably, each of these variables belongs to R%. Thus, for any 1 <4 < d, we can denote 2; ; as the
i-th entry of z; when z represents 6, g, m, or v.

By the update rules of the first and second moment estimates, we have

miy = (1 —p1)gic + Pimi—1, mio =0,
vip = (1= B2)g;, + Bavig—1, vio=0.

So by mathematical induction, for any 1 <i < d, we have

t
mie = (1—p1) Zﬂffsgi,s (7)
s=1
and ,
vie=(1-B2) Y B g2, (8)
s=1

We will frequently use Equation @ and in the proofs of the subsequent lemmas and theorems.

Lemma 3. For the full-batch version of MoFO with hyperparameters satisfying 51 < /P2 < 1, € =0, it
holds that

1
VI=52(1 = p1/VB2)

100 — 0;1—1] <

1y - FLT,(my);, for any coordinate 1 < i < d.

Moreover, it holds that
||0t - 9%1”2 < Cn,

here C = vdatB
where V1—B2(1—p1/+/B2)

29



Published in Transactions on Machine Learning Research (10/2025)

Proof. When the i-th entry is not in our filter at iteration ¢, i.e. FLT4(my); = 0, we have 6;; = 6, ;1. Then

1
9i —91' 1| =0= '
6.1 i1l V1I=0B2(1 = B1/vB2)

’I’)t . FLT@ (mt)l

When the i-th entry is in our filter, i.e. FLT,(m); = 1, by the weight updating rule of MoFO, we have
Oir — Oi1—1 = —mmi/+/0i. We first analyze m;; and v, ;.

By Equation and , the first/second moments m; ¢, v; ¢ satisfy

t
i < (1= B1) > B lgisl,

s=1

vt = (1— B2) Zﬂt sgfg_ (1— Bo)Bs 91'2,37 for any 1 < s <t.

So we get
My \/1— ¢
10i0 — Os4—1| = |——==| = s 2 M el /Ui
Vit 1- 51

V11— : (1-B0)81 lgisl = 1-p 5QZB1/\r

< -
T S g, LB
t—1
_m .
< i LV

Ui

= VI =51 —51/VB2)

Here, the last inequality holds because of the assumption 57 < v/f2 < 1.

The parameter vector is partitioned into B blocks with sizes {dj}2_; and MoFO actually choose [dja] entries
to update in each part k of parameters. Then for any z € R%, we have

B B
#{1<i<d:FLTu(2); =1} = » [dra] <Y (dpa +1) =da + B.

Then for the Lo-norm of the parameter update, we have

d
160: — 0i—1]l2 = <Z |6;¢ — 91‘,#1\2 'FLTa(mt)z')
k=1

n; . i<d- o) =
< (et Hu s s n)

< vdoa+ B '
= V1 =521 = B1/VPB2) "
= Cny.

1
2

O

Lemma 4. Suppose that the gradient VL is Lipschitz continuous with constant L. Suppose that the full-batch
version of MoFO has the hyperparameters satisfying 1 < /B2 < 1, € = 0 and the learning rate schedule
n: = n/\/t. For any iteration stepst > s > 1 and any coordinate i, it holds that

2v2LCn(t — s)
i,t — Yi,s S — Us S - =/
19i0 = 9i,s| < [lge — gsll2 i

30



Published in Transactions on Machine Learning Research (10/2025)

_ vda+B
where € = \/1—52(1—51/\/172) ’

Proof. Fix the iterations steps ¢t and s with ¢ > s > 1. Since VL has Lipschitz constant L, the gradient
difference between the step ¢t and s satisfies

19it — gi.sl < Mgt — gsll2 = IVL(Or—1) — VL(Os-1)l|2 < L[|0r—1 — Os—1]|2- 9)

By Lemma [3] for any ¢ > s > 1, the parameter difference satisfies

t—1 t—1
10—1 — Os—1]]2 < Z 16 — Ou—1ll2 < CZ%

t—1 1

<Cn27 SCn;\/uerf ,201722(@—%— )

B — /5T _20n(t-s)

SOV e ) S e T

< 20n(t —s) < 20n(t — s)

S Vil T i

20/2Cn(t — s)
a Vi
When t = s > 1, it is obvious that

-t = 6o-al =0 < 22OUEZS)

Combining it with @, for any t > s > 1, we have

2/2LCn(t — s)
it — Gis| < — sl < —m8 =
19i,¢ = 9isl < llge — 952 NG

O

Lemma 5. Under the assumptions in Lemmal[] for any iteration step t > 1 and any coordinate i, it holds

that
Mg S - 2v25: 4 LCU)
it 'Uzt ! 52( [(1—51)2+1—52} Vvt )

Proof. By Lemma [] we get

_ 2V/2LCn(t — s)

GitGis = i1 — 9ia(Gist — Givs) = it — |9iel - 1960 — i 19i.tl-
Then for the product of gradient and momentum, we have
t
giwmie = (1= B1) Y B gi1gis
s=1
t t
. 2V2LCy
>g-(1=51)> B —T\gm (1=B)Y B (t—s) (10)
s=1 s=1
t—1 t—1
2/2LCn
> g7 (1=B1)) B — i S(1=B1)) 8By
s=0 s=1

31



Published in Transactions on Machine Learning Research (10/2025)

Since we have

§Bs: 1—6{ §Sﬁ571<i36871 ZB _ ( 61 ) _ 1 (11)
s=0 ' 17517 s=1 ! _s:1 ! ! 1751 (1751)2’
it holds that
gi,tmit > RHS of >(1- Bf)git Z\fﬂchm itl- (12)
(1- BVt
For the second moment v; ;, we have
viy = (1= Ba) Zﬂt “rs < (1= Pa) Zﬂ (I9i.t] + 1915 — ginel)?
WILOH(t — )\’ =l WALCHs\ >
<(@1- 52)253_8 <|gz‘,t| + W) =(1- 52)255 (|gi,t| + \[\/Em) .
13

2L
= [gitl*- (1= Ba) (Zﬁz) + 193, - 4v2 C77 (1—p2)

—
L2 2 2
+ tC (1—B2) (Z 5252> :

Since we have

)

t—1 . 1— /85 1

;52 1= f = 1-F
t—1 00 d © d 1

s—1 s—1 5] =

§5B2 S;SBQ T dpy ;Bz>_dﬂ2 <1—ﬂ2> (1= B2)%
t—1 00 © >
oS (S ) S
s=0 s=0 s=0 °=0

(o
dps \1— f2 (1—52)?

s=0
2
= % 3T 2
(1—=p52)% (1= P2)
_ 1+ Bo
(1= B2)%
it holds that
426, LCn  8(1 + Bo)Bo L2 C?n?
vy < RHS of (13) < |gie|* + |g:
t ([3) < lgiel® + lgivel - (1— Bo)Vi (1—p2)%t
8LC 1612022
< 1gisl® + |gie| -
sl ol G A T T
= (Ig- |+ )2
A= pvE)
Thus, we get
4LCn
Vit S |gitl + ——————F=
T - Ve

32



Published in Transactions on Machine Learning Research (10/2025)

Recalling , we have

B _4LCy L 2v231LCy _ALCy
gigmig > (1— 1) ( + (1- ﬂQ)\[> (' it (1-8HA -8Vt (1- 52)\/2)
ey ALCh 2v26,LCh 4LCn
iy _ALOH Y (g - 2VEALCy | ALCy
> (1 /3’1)( + (1_52)\/1;) ('9”| (1-8H(1—p)VE (l—ﬁz)ﬁ)

. . 2V2B1LCp  4LCy
> (1 ﬁl)\/?<|9w| (1— 81— p)VE (1—/32)\/9

Therefore, for the bias-corrected first/second moments 7; ¢ and ; ¢, it holds that

g :\/1—52 Mit o 1 gt t<. _ 2V2BLCy  4LCy )
B o 1o e sV e T T a0 T

> \/ﬁ(@iﬂ - {(12\_/55611)2 1 —4ﬁ2] L\%”) .

O
Lemma 6. Under the assumptions in Lemmal[] for any iteration step t > 1 and any coordinate i, it holds
that
I I 2v/2B1VdLCy
me =gt > 7 5 -
T -2Vt

Proof. Recalling the calculation of the momentum m; in @, we get

me= (1= B9,
s=1

and

(1_51% 1—61 Zﬂ
By Lemma (4| and Equation in the proof of Lemma |5} we get

t
Al = gl < 3261l — ol

2

= gl = [ -
t — gtll2 l_ﬁi Gt
2[ LC . 2\/ LCn
< d Z Bt — Z spy
Ve

< 2[51[/077
T -/

By Cauchy-Schwarz’s inequality, we have

2V/281VdLCy
(1-pB1)2VE

e — gelli < Vdl[rivg — gell2 <

33



Published in Transactions on Machine Learning Research (10/2025)

Now we will complete the proof of Theorem
Proof of Theorem[1. By the descent lemma, since VL is Lipschitz with constant L, we have

L
L(0:) — L(O;—1) < Vﬁ(‘gtfl)-r(et —0i-1)+ §||9t — 01|13

T L 2 1)
< g1 (0 = O-1) + S (100 = Oes]l>-
By Lemma [3|and Lemma [5] we have
d . 22
L(6;) — L(#;—1) < RHS of< —n (Zg” Tt FLT, (my): ) L L
i=1 Ui’t 2
02 2 < { 22, 4 } LCn)
< 1-— i + -FLTo(my )
Z\/ beloud = | 752 Y 15| (mq) )
NI 2v261v/1 =P 4 C1 LCn?
- ,TQWHgt @ FLTo (my)|1 + (11—61)2 24 — "3 n |IFLTa (me) |1
V1—[2n {2\/551\/1—52 4 C} LCW (da+ B)
< V-2 FLT, — | = E T2
< Vi lg: © (me)fln + TR + =7 + "
By Lemma [[]and Lemma [6] we have
o © FLTa g0l = s © FLTa0m0) = e © FLTalo0) s — o0 © P (17 )
—b1/lh
= [lgs © FLTq (r12¢) |11
< 2|lge — riuel];
< 4426,V dLCY
(1—B2)2Vt
Thus,
,C(at) — E(Qt,l) S RHS of
V1—p2-1 22811 = B2 4 C LCn?*(da + B)
<Y "2 Mg oL, + + +=
= NG g (g0)]1x 1 - 52 Vo5 2 ;
| WIBVALC (16)
(1—By)3t
= Dl topra+ 22 < = il o + 2
_\/i 9t |1, top-a n _\/ilgltlilT gt|l1,top-a P
where

Clz 1_62'77’

_ 2 ) [2v280VT =B 4
Cy = LCn {{ (1= 52 + 7

3

+ 2] (da + B) + ?fﬁgf} .

Taking the summation of from 1 to T, we get

T
L* = L(6) < L(Or) — L(80) = Y L(6:) — L(6:1)

t=1

T
1
—C1 (E \/f) mln llg: © FLTw(g¢)|l1 + Co E -
t=1

34



Published in Transactions on Machine Learning Research (10/2025)

Since
T o T T
o2y ——— :Z (VE+1—vVi)=2(VT+1-1),
- Vi o Vi+ t=1
T 1 T-1 T— t+1 1 T 1
Zf:1+ Z/ fdu§1+/ —du=1+logT,
t U 1 U
t=1 t=1 t=1
we get
it VO opa = min gl op-o = min lg: © FLTa(g0)]s
< Llbo) L7+ Co o1
= T
Ch Zt:l %

< C(@Q) —L*+ Cg(l + IOgT)
- 20:1(VT+1-1) '

Thus, we have

. . logT
win | IVE 100 = min, [1£600) © FLTL () = 0 (257 ).

0<t<T—1
By the relationship between Li top-o norm and L, norm in Lemma for any p € [1, +o0],

. 1
o IVL@), < o min  [IVLO)]1t0p-a-

Therefore,

min [|VL(©)||, = O (k\)/gTT) .

0<t<T—1

35



Published in Transactions on Machine Learning Research (10/2025)

A.3 Proof of Theorem [2] (lllustrative example: forgetting mitigation of MoFO)

Proof of Theorem[3 Let the set U := {§ € R?: 0; < b;/a;, V1 <i < d}. We note that:

1. The boundary of U is the subset of S = U% | S;, which is the collection all global minima of the
fine-tuning loss.

2. The pre-training state Opretrain = (0,0, ...,0), which is also the starting point of fine-tuning, lies in U.

We may as well assume that with proper learning rates, the parameter  remains within U during training,
unless it converges to a minimum on the boundary. If it goes across the boundary at a certain iteration
before converging, the learning rate can be adjusted to ensure that it remains within U. For any 6 € U and
coordinate i € {1,2,...,d}, we have

oL
og, = 20i(aibi = bi) 1;[(%93‘ —b;)* =
j#i

2L(0)
f; — &

< 0. (17)
For clarity of definition, we let 0;, represent the parameter at iteration ¢t. We let 0; ;, g;+, m;+ denote the
i-th coordinate of 6;, g;, m; at iteration t, respectively.

Analysis of MoFO. We will use mathematical induction to show the following results: If MoFO selects the

coordinate ig at the first iteration step, it will always select ig at any iteration t. Moreover, for any coordinate
i # 19, we have

o Miy1 <My <0, and my,r < myy <0 for any iteration step t > 2.

e 0« % — 8y < % — 8;+ for any iteration step t > 1 if the algorithm has not reached the minimum.
'lo 2

Base case (1st iteration step). At the first iteration step, the momentum m; = (1 — 31)g1. So for any
1 <i<d, we get

oL
mig=(1—pF1)g1e=1—p51)=~ < 0.
602 7] .
pretrain
According to the momentum filtering mechanism of MoFO, we have
ip € arg max |m; | = arg max |g; ;| = arg ma oL arg ma v arg min bs
X |mi| = X |git| = X |—| = X = — b
0 & i<icd' Wt & 1<i<d Girt & 1<i<d | 06; & 1<i<d 5’7 — 0; pretrain & 1<i<d | a;
Obviously, we get m;, 1 < m; 1 <0 for any coordinate 4 # 1.
The parameter updates at the first iteration are:
nv 1 — Pomyg 1 19,0 ) oL
Oiv1="0,0— ———2==0;,0— = =0;,.0— msign | — (0 i > 6,0,
i0,1 i0,0 (1 _ Bl)\/m i0,0 |g7,‘,0| i0,0 — 11518 691( pretraln) i0,0

0;1 =050, Vi#ig.

5

If the algorithm has not converged at the first iteration, then we have 6;, 1 < b;,/a;,. Moreover, for any
i # io,
b,’ bi bi bz bz
0< 07 - eio,l < ;l = 07 - eig,pretrain = 07 - ei,pretrain = 07 - 61’,1-
Induction step. Suppose that the induction hypothesis holds up to iteration ¢. Then, for any coordinate
i # 19, we have

o My, <myy < 0.

36



Published in Transactions on Machine Learning Research (10/2025)

e 0<

by .
0 Gy < 2 — 0y

So for the gradient,
2L(6¢) < 2L(6¢)

b; b;
Ot = ar Biot — o

Gio t+1 = = git+1 <0,

and
Mig,t+1 = B1Mig,t + (1 = B1)Gio,t+1

< Bimig + (1= B1)git+1 = Mig 141 < 0.
Thus, i is the only coordinate in arg maxj<;<q |m; ¢+1| and MoFO still chooses the coordinate iy to update.

In addition,

Oio,t+1 = it —
0,t+1 0,t \/Ai
Vi t+1

Oi 41 = O3, Vi# .

> 9i,t7

If the algorithm has not converged at iteration step ¢+ 1, then we have 6;, 141 < b;,/a;,. Moreover, for any

i # o,

b; b; b; b;
0< = —=0ip11 < ——0ips < — =0y =— —0i111.
i a; a; i
Conclusion. MoFO consistently updates 6;, and eventually converges to 65;,ro = (0,...,0, ZO ,0,...,0),
o

with pre-training loss
b;
0

* p—
Lorensin(Bitero) = 5.5
(lio

Analysis of Adam. Unlike MoFO, Adam updates all the parameters. By Inequality , we have g; + < 0.
By the momentum update rule of Adam:

Mi 1 = Bimiz + (1 — B1)Gie41,
we get that m,;, < 0 for any 1 <i < d and any iteration t. Therefore, it holds for Adam that

L(0
Oi 41 = 03 — L) > 0; ;.

bi 4
it — o=
Assuming that Adam converges to 0%,,,,, we have

* ej&dam,i > 0 for any 1< < d,

o There exists jo such that 0y, ;= bj,/aj,-

Recall that at iteration 1, MoFO selects

, [ b
0 € arg min § — p.
1<i<d | a4

Thus, the pre-training loss for Adam is

b2 b2 b?
__ _Jo 2 Jo 0 __
'Cprctrain(gz(jam) - 2&2 + E Q*Adam,i > 2@2 > 26;2) - »Cprctrain (GK/IOFO)'
Jo i#j0 jo 10

In other words,

103670 — Opretrainll3 = 2Lpretrain (Pioro) < 2Lpretrain (Adam) = 10Adam — Opretrainll3-

In conclusion, MoFO converges to a minimum closer to the pre-training state than Adam, preserving a lower
pre-training loss. O

37



Published in Transactions on Machine Learning Research (10/2025)

A.4 Challenges and Potential Extensions of Theorem [I] to Nonsmooth Objectives

This subsection outlines challenges and possible future directions for extending our convergence analysis to
nonsmooth objectives; a complete extension is left for future work.

Why the extension is challenging.

Our Theorem [T relies on the standard L-smoothness assumption—i.e., the gradient of £ is L-Lipschitz—to
invoke the descent lemma and to derive an upper bound on ming<i<7—1 [|[VL(6;)||. When £ is nonsmooth,

(i) VL(0) may not exist at nondifferentiable points, which requires working with generalized gradients (e.g.,
subgradients) rather than classical gradients in the derivation.

(ii) The upper bound on ming<i<r—1 ||VL(8:)|| in the proof of Theorem [I| (Appendix [A.2) scales with the
smoothness constant L; when L is unbounded (or effectively very large), these inequalities become
non-informative.

Possible extensions.
We outline below several plausible directions; full development is left for future work.
(i) Subgradient analysis. Replace classical gradients with subgradients and assess convergence via a
subgradient-based stationarity criterion.

(ii) Smoothing. Introduce a family of smoothed surrogates L,,, analyze the MoFO algorithm under these
surrogates to obtain p-dependent bounds, and then let x4 | 0 to recover convergence results for the
original loss L.

(iii) Algorithmic modifications. Incorporate techniques such as gradient clipping or stochastic subgradient
steps (Xiao et al., [2024), and then analyze the convergence of the modified algorithm.

38



Published in Transactions on Machine Learning Research (10/2025)

B Supplemental Figures and Explanations

B.1 Reason for using RedPajama to approximate LLaMA-2’s training data

We note that original LLaMA-2 training dataset has not been publicly released. Thus, we can only rely on
public datasets to approximate LLaMA-2’s original training data.

RedPajama project was explicitly designed as an open-source reproduction of the LLaMA training dataset
(Weber et all 2024} [Together}, [2023). It closely mirrors the data sources outlined in the original LLaMA
paper and adopts similar strategies for data collection, mixture, and preprocessing. We believe it serves as a
reasonable proxy for approximating LLaMA-2’s training dataset.

B.2 Supplementary Figures for Figure [T]

2.0 40 Pre-trained model
*  Pre-trained model 1.4 6 *  Pre-trained model 4.0 = Adam
® Lion ® Lion 3.7 35 ] Lion
0.7 ® Adam 33 5
4 1 €]
0.0 30 @©
2.7 330
- i Qo
06 2 23 <
-1.3 2.0 |
01 ] ' 25
-2.0 1.7
27 _o] L3 5
T T T 1 1.0 HellaSwag ARC-e ARC-c Average
-2.5 0.0 2.5 5.0 7.5 -2.5 0.0 2.5 5.0 7.5 () CR
c scores
(a) Fine-tuning loss landscape (b) Pre-training loss landscape

Figure 7: The loss landscapes of Pythia-160M after fine-tuning on a subset of the FLAN dataset using Adam
and Lion. We plot the loss landscapes on (a) the fine-tuning dataset and (b) the pre-training dataset (Pile
dataset 2020)) and (c) the accuracies on CR tasks, including HellaSwag, ARC-c, and ARC-e. We
visualize a 2D weight-space plane spanned by the vector from the pre-trained model to the Lion-tuned model
(x-axis) and to the Adam-tuned model (y-axis). Axes are normalized so that one unit equals the length of the
pre-trained—Adam vector. The color bar indicates the loss value—(a) fine-tuning loss and (b) pre-training
loss. A logarithmic scale is applied to the loss values for better visualization. Two training methods converge
to different minima with similar fine-tuning loss. Lion converges to a farther minimum from the pre-trained
model and performs more forgetting than Adam.

B.3 Supplementary Experiments on the Correlation between Distance and Forgetting

In this subsection, we augment Figure b) by probing the relationship between a model’s parameter
distance from its pre-trained state and evaluation accuracy under additional training budgets and optimizers.
Concretely, under the same settings as Figure b), we add runs at 0.1 and 0.2 epochs and extend training
beyond 3 epochs, using Adam and MoFO. We report results on MMLU (as in the main text, measuring
preservation of factual knowledge) and newly include HumanEval (measuring preservation of code-generation
ability). Since the fine-tuning task is math, both can serve as forgetting mitigation metrics. The corresponding
scatter plots are shown in Figure [§ (MMLU) and Figure El (HumanEval). When examining the points for
each optimizer separately, we make the following observations:

o Observation 1 (sufficient training). Once training exceeds approximately 1 epoch, MMLU and
HumanEval scores show a consistent strong negative correlation with the parameter distance to the
pre-trained state.

o Observation 2 (early training). For Adam or MoFO at less than 1 epoch, we may observe a mild

correlation with the parameter distance to the pre-trained state. The correlation may be unstable
and can be positive or negative.

39



Published in Transactions on Machine Learning Research (10/2025)

0.45 1 1

%

_.__‘._._-.——— —- Pretrained Model -
0.40 1 ° o

3035
g0
=
0.30 1 l
® MoFo
® Adam
0.254 Lion
1072 1071

Distance

Figure 8: Average accuracy on the MMLU benchmark (measuring preservation of factual knowledge) for
Llama-2-7B after fine-tuning on MetaMathQA with Adam, Lion, and MoFO. Building on Figure b), we
add points for runs where Llama-2-7B was trained for 0.1, 0.2, and >3 epochs using both Adam and MoFO.
The marker size encodes the number of training epochs (larger means more epochs). Red arrows indicate the
points obtained after exactly 1 epoch for each optimizer.

0.301
® o0 ‘
0.25'____..---‘-——- Pretrained Model -
°
— 0.20 “
g
w
< 0.15 ®
£
T 0.10
® MoFO
0.05 ® Adam
0.001 Hon l
1072 107!
Distance

Figure 9: Scores on HumanEval benchmark for Llama-2-7B after fine-tuning on MetaMathQA with Adam,
Lion, and MoFO. Building on Figure b), we add points for runs where Llama-2-7B was trained for 0.1, 0.2,
and >3 epochs using both Adam and MoFO. The marker size encodes the number of training epochs (larger
means more epochs). Red arrows indicate the points obtained after exactly 1 epoch for each optimizer.

We speculate that this short-lived positive trend may be related to benchmark alignment. The MMLU
benchmark (used to measure the preservation of factual knowledge) might share partial overlap with the
patterns of our math fine-tuning task (measured by GSM8K benchmark); in the early training steps, the
model might incidentally acquire features that also benefit MMLU, resulting in a temporary gain. By contrast,
as for HumanEval in Figure [9] which measures code generation and differs from our math fine-tuning in
both domain and output format, it may exhibit an unstable correlation whose sign can be either negative or
positive. Another possible factor could stochasticity, since at less than 1 epoch the dataset has not yet been
fully traversed.

Overall, the negative correlation becomes clear and consistent after sufficient training; while the early training
presents a mild, benchmark-dependent relationship.

In addition, we emphasize an empirical point: the negative relationship between parameter distance and the
preservation of pre-trained knowledge is evident across optimizers. In Figure b)7 and |§|, the parameter
distances roughly follow the ordering Lion > Adam > MoFO, whereas the scores measuring preservation
of pre-trained knowledge follow the inverse ordering MoFO > Adam > Lion. For a broader comparison,

40



Published in Transactions on Machine Learning Research (10/2025)

we evaluate five optimizers—MoFO, NAdam 2016), Adam, RMSProp (Tieleman, 2012), and Lion.

After two epochs of training, we report (i) their parameter distance to the pre-trained state and (ii) their
forgetting-mitigation performance on MMLU and HumanEval, shown in Figure [I0[a) and Figure [I0[b),
respectively. The results show a consistent negative correlation between distance and performance. Notably,
MoFO remains closer to the pre-trained state and achieves higher scores compared with the other optimizers.
Therefore, this cross-optimizer rank-order correlation is sufficient to motivate our algorithm
design: favor optimizers that converge closer to the pre-trained state, so as to better preserve the pre-trained
knowledge.

0.25 A1
® ®———— @ wMoFO -
0.40 1 . NAdam
0.20
‘ ® MoFo ¢ ‘R\‘:,las’;‘
[ NAdam © ’ s ) rop
5 0.351 @ Adam & 0151 ¥V Lion
-
= S —-= Pre-trained model
s # RMSProp £ 5104
0.30 V¥ Lion 2 %
' —-- Pre-trained model
» 0.05 -
0.25 1
\ 4 0.00 - \ 4
1072 1071 1072 1071
Distance Distance
(a) MMLU Accuracies (b) HumanEval Scores

Figure 10: (a) MMLU accuracies and (b) HumanEval scores of Llama-2-7B after fine-tuning on the Meta-
MathQA dataset using different optimizers. All experiments are run for 2 epochs.

B.4 Supplemental Explanation of Example [I]

1.50 1.50
Default FT (Adam) 1.2 j © Default FT (Adam) 1.2
1.25 Lah 1.25 A LoRA
z""FO | -0.0 % MoFO 0.2
z:1egularization L,-regularization '
1.00 Random BCD 12 1.00 ‘ 2SS
HET . * Random BCD 0.9
0.75 Pre-trained model 0.754 + Pre-trained model
2.4 n
& 0.50 < 0.50 2.0
3.6
0.25 0.25 1 3.1
-4.8
0.00 0.00 A
-4.2
-6.0
~0.25 —0.25 1
15.0 5.3
-0.50 -0.50 T r
-0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 —-0.5 0.0 0.5 1.0 15
6, 61
(a) Fine-tuning loss landscape (b) Pre-training loss landscape

Figure 11: The loss landscapes of the example. We plot the landscapes on (a) the fine-tuning loss and (b) the
pre-training loss. The color bar indicates the loss value—(a) fine-tuning loss and (b) pre-training loss. A
logarithmic scale is applied to the loss values for better visualization. In Example [I, MoFO converges to a
minimum closest to the pre-trained model, with a low pre-training loss.

In addition to Default FT and MoFO, we also analyze four other optimization methods in Example 1, namely

Lo regularization (Li et al.} 2018)), Half Fine-tuning (HFT) (Hui et al.; |[2024), Random BCD (Nesterov, [2012)),
and Low-Rank Adaptation (LoRA) (Hu et al} [2022)). These methods are also introduced in Section [4]

41



Published in Transactions on Machine Learning Research (10/2025)

For the Ly regularization method, we add a regularization term A||f — Opyetrain||3 to the fine-tuning loss to
encourage the model to stay closer to the pre-trained state. As shown in Figure b)7 the Lo regularization
approach remains closer to the pre-trained model, thereby achieving a smaller pre-training loss. However,
since the fine-tuning objective is modified, Figure (a) shows that Lo regularization does not reach the
minimum of the fine-tuning loss.

We note that HFT operates in a manner similar to Random BCD, which randomly selects a subset of
coordinates (e.g., 61 or 03) to update. Figure [11] further illustrates that both HFT and LoRA do not converge
to minima as close to the pre-trained model as MoFO does, indicating that they may undergo higher levels of
forgetting compared to MoFO.

For LoRA, we make the following modelling in the landscape visualization example. The core principle of
LoRA (Low-Rank Adaptation) involves approximating the original training space by a low-rank subspace.
Since we consider a two-dimensional training space for visualizing the landscape, we set the rank of LoRA
space to 1. Specifically, the parameters 6; and 5 exhibit a linear relationship. Given that the pre-trained
model is (0,0), the parameters under LoRA are set to satisfy 8o = 567, where § is a hyperparameter we set
to 0.5. Figure [I1] shows that LoRA converges to a closer local minimum than Default FT.

B.5 Synthetic Experiment for Example [1]

In this subsection, we conduct a synthetic experiment to provide a more concrete illustration of Example [I]
Specifically, we set the parameter dimension to d = 10, with parameters 6 = (61,...,619). The pretraining
loss is defined as the squared Lo norm of the parameters: Lpyetrain(0) = %HGH%, with the pre-trained model
given by Opretrain = (0,0,...,0). Starting from the pre-trained model, we optimize the parameters with
respect to the fine-tuning loss £(6) = ]‘[;Ll(aiei — b;)%, where a;,b; > 0 for any 1 < i < d. The coefficients a;
and b; are sampled from a standard normal distribution; to ensure positivity, we take their absolute values
and add 0.3 and 0.1, respectively.

In this experiment, we compare two optimizers: Adam and MoFO. For each, we perform a grid search for the
optimal learning rate over the set {1072,1073,10~}. We consider the fine-tuning process to have converged
to a minimum when the fine-tuning loss drops below 10~8 within 10000 iterations. At convergence, we
record two metrics: the Euclidean distance from the fine-tuned model to the original pre-trained model, and
the value of the pretraining loss. The entire experiment is repeated across three different random seeds for
robustness.

As presented in Table[d] the results indicate that the minimum found by MoFO is at roughly half the distance
from the pre-trained model compared to the one found by Adam. Concurrently, MoFO achieves a lower
pre-training loss. These findings provide strong evidence that MoFO can converge to minima closer to the
pre-trained model in Example [T} thereby supporting Theorem [2]

Table 4: The Euclidean distance from the fine-tuned model to the original pre-trained model, and the
pretraining loss of parameters after optimizing the fine-tuning loss using Adam and MoFO. The results show
that MoFO finds a fine-tuning minimum that is closer to the pre-trained model compared to the one found
by Adam.

Adam MoFO
Distance to pre-trained model 0.549  0.275
Pre-training loss 0.151  0.038

42



Published in Transactions on Machine Learning Research (10/2025)

C Implementation Details

C.1 Datasets for Fine-Tuning.

MetaMathQA (Yu et al., [2024b)). This dataset comprises 395K math question-answer pairs. Numerous
studies indicate that LLMs significantly enhance performance metrics on mathematical benchmarks such as
GSMBS8K after fine-tuning on this dataset. We randomly select 10% of this dataset for training LLMs, which
includes 39.5K question-answer pairs.

PMC-LLaMA-Instructions (Wu et al.| [2024). This dataset comprises 514K instruction-response pairs.
Fine-tuning LLMs on this dataset has been shown to enhance performance on medical NLP tasks, such as
PubMedQA (Jin et al., 2019)), MedMCQA (Pal et al., 2022)), and MedQA (Jin et al 2021)). We randomly
sampled 51K instances with prompt lengths less than 750 characters for training our models.

Magicoder-Evol-Instruct (Wei et al., [2023|). This dataset comprises 110K instruction-response pairs
related to coding, and it is decontaminated and redistributed from the Evol-CodeAlpaca-V1 dataset (Luo
et al., [2023b) We randomly select 39.5K question-answer pairs from this dataset to fine-tune LLM and
enhance their coding capability.

TRACE benchmark dataset (Wang et al., 2023b). TRACE benchmark is designed with a comprehensive
set of 8 distinct tasks across various domains, including domain-specific knowledge, multilingual proficiency,
code generation, and mathematical reasoning.

C.2 Evaluation Metrics for Instruction Fine-Tuning

We employ a comprehensive suite of widely used benchmarks to assess the performance and potential catas-
trophic forgetting effects on the general capabilities of LLMs after instruction fine-tuning. The benchmarks
are as follows:

o Factual knowledge (MMLU): We use the Massive Multitask Language Understanding (MMLU)
benchmark (Hendrycks et al., 2021) to evaluate factual knowledge across 57 diverse subjects, ranging
from STEM fields and the humanities to social sciences. Evaluations are performed using 8-bit
precision with the open-instruct implementation, and by following the setup of (Hui et al., [2024])), we
report the 0-shot accuracy.

o Common sense reasoning (CR): To measure the commonsense reasoning capabilities of LLMs,
we employ the widely recognized benchmarks ARC-Challenge (ARC-C), ARC-Easy (ARC-E) (Clark
et all 2018), and HellaSwag (Zellers et all, 2019), collectively referred to as the Commonsense
benchmark. We use the average of their metrics as the evaluation, conducting assessments using
the LM Eval Harness framework (Gao et al.l 2023|) and reporting the 0-shot accuracy based on the
"acc__norm, none" metric.

o Mathematical Reasoning (GSMB8K): We assess mathematical reasoning capability using GSM8K
(Cobbe et al. 2021)), which consists of 8.5K high-quality grade school math problems. Evaluations
are conducted on the test set using the LM Eval Harness framework prompting in a 5-shot setting,
reporting the "exact__match, flexible-extract" metric.

o Code Generation (HumanEval): We adopt HumanEval (Chen et al., 2021), comprising 164
unique programming problems, to evaluate the coding capabilities of LLMs. For chat experiments,
we report the pass@10 performance.

o Medical Question Answering (MedQ): To assess medical knowledge, we utilize three bench-
marks—PubMedQA (Jin et al. 2019), MedMCQA (Pal et al., |2022), and MedQA (Jin et al.| [2021)).
Evaluations are performed using the LM Eval Harness framework. For PubMedQA, we report the
"acc, none" metric; for MedMCQA and MedQA, we report the "acc_ norm, none" metric.

43



Published in Transactions on Machine Learning Research (10/2025)

o Instruction Following (IFEval): We evaluate the instruction-following ability of LLMs using the
IFeval benchmark. Evaluations are conducted with the LM Eval Harness implementation, and we
report the "inst_ level strict_ acc, none" metric.

All benchmarks—including CommonSense, GSM8K, PubMedQA, MedMCQA, MedQA, and IFeval—are
evaluated using the LM Eval Harness framework (Gao et al., [2023]), following their default settings unless
specified otherwise.

C.3 Hyperparameter Configurations

Instruction fine-tuning. In our instruction fine-tuning experiments, we follow the implementation of
Ivison et al.| (2023). For instruction fine-tuning, we set the maximum sequence length to 1024, the global
batch size to 128, and we train the model for 2 epochs. For the Llama-2-7B model, we use a learning rate of
2e-5 and 0 warm-up ratio, with a cosine decay learning rate scheduler. The learning rate is set to 2e-5 for
fine-tuning both the Llama-2-7B-Chat model on the MetaMathQA dataset and the Gemma-2B-IT model,
while a learning rate of le-5 is used for fine-tuning the Llama-2-7B-Chat model on the PMC-LLaMA-Instruct
dataset; all these settings employ a warm-up ratio of 0.03 and a cosine decay learning rate scheduler. For
LoRA, we set the learning rate as le-4. The other hyperparameters in the experiments are as follows.

Fine-tuning Llama-2-7B on MetaMathQA.

o Learning rate: 2e-5.
« Update fraction of MoFO: a = 15%.

e LoRA: r = 4,16,64,256. We report the best-performing hyperparameter configuration for the
fine-tuning task in Table[I] which, in this case, is r = 256.

Fine-tuning Llama-2-7B-Chat on PMC-LLaMA-Instruct.

o Learning rate: le-b.
« Update fraction of MoFO: a = 15%.

e LoRA: r =16,256. We report the best-performing hyperparameter configuration for the fine-tuning
task in Table [5] which, in this case, is r = 256.

Fine-tuning Llama-2-7B-Chat on MetaMathQA.

o Learning rate: 2e-5.
« Update fraction of MoFO: a = 15%.

e LoRA: r =16,256. We report the best-performing hyperparameter configuration for the fine-tuning
task in Table[7] which, in this case, is r = 256.

Fine-tuning Gemma-2B-IT on MetaMathQA.

o Learning rate: 2e-5.
o Update fraction of MoFO: a = 5%.

e LoRA: r = 16,256,512. We report the best-performing hyperparameter configuration for the fine-
tuning task in Table [6] which, in this case, is r = 512.

Fine-tuning Llama-2-7B-Chat on Magicoder-Evol-Instruct.

44



Published in Transactions on Machine Learning Research (10/2025)

o Learning rate: le-5.
« Update fraction of MoFO: a = 20%.

e LoRA: r =16,256. We report the best-performing hyperparameter configuration for the fine-tuning
task in Table 6] which, in this case, is r = 256.

Hyperparameters in the Pareto comparison. To provide a comprehensive comparison, we explore
various hyperparameter settings for A\;, Ao, LoRA’s rank, and the update fraction o in MoFO in Figure
Specifically, we set A1 as le-4, le-5, 1le-6, le-7, while Ay is set as le-2, 5e-3, 1e-3, 5e-4, and le-4. The update
fraction o in MoFO is set as 5%, 10%, 15%, 20%, 40%, 80%. The rank of LoRA is set as 4, 16, 64, 256.

Continual fine-tuning. In our continual fine-tuning experiments, we follow the default settings of the
TRACE benchmark. We sequentially train TinyLlama-1.1B on the TRACE benchmark datasets: C-STANCE;,
FOMC, MeetingBank, Py150, ScienceQA, NumGLUE-cm, NumGLUE-ds, and 20Minuten for 5, 3, 7, 5, 3, 5,
5, and 7 epochs, respectively. We use a learning rate of le-5 with a cosine decay schedule and a batch size of
64. The parameter update fraction for MoFO is set to 5%.

All experiments are conducted on four A800 (80GB) GPUs.

C.4 More Explanation on the partitioning and Calculation of distance

Partitioning. We use the default partitioning scheme in PyTorch’s Transformer implementation. Different
types of parameters within the Transformer, such as query (Q), key (K), value (V) weights for attention
heads, and feed-forward network (FFN) weights, are divided into separate partitions. Notably, in the default
PyTorch implementation, within a layer, the query (Q) weights of all attention heads are grouped into a
single partition. The same applies to the key (K) and value (V) weights. Our momentum-based filtering
mechanism is applied to each partition individually. A different parameter partition scheme, along with its
corresponding experiments, is presented in Appendix

Calculation of distance. Following the notation in Section we suppose that the parameter parameters

are partitioned into
0=(0W,02 . . 9B
Denote the pre-trained model by 6y and the fine-tuned model by 6.
6™ —6g" |
165" |
we compute the distance from the pre-trained model 6y to the fine-tuned model 0 by averaging the relative
changes across all partitions, defined as:

First, we calculate the relative change of parameters in each partition k € {1,2,..., B}. Second,

g(k) k)”

B
90 = —
g BZ 165"

45



Published in Transactions on Machine Learning Research (10/2025)

D Guideline for Setting «

Given a pre-trained LLM and a dataset for fine-tuning, we recommend the following procedure:

1. Random Sampling: Randomly sample a small subset of the dataset to serve as a proxy.
2. Grid Search: Perform a grid search over candidate values of « using this proxy subset.

3. Selection: Choose the a configuration that strikes a good balance between fine-tuning performance
on the target dataset and preserving the model’s general capability.

To illustrate this procedure, we use Llama-2-7B as an example. We randomly sample 10% of the instances
from the current training set of MetaMathQA dataset (39.5k) for fine-tuning, and then perform a grid search
over « values of 5%, 10%, 15%, 20%, 40%, and 80%. As shown by the green line in Figure [12[a), the
fine-tuning performance is relatively stable across these values of a. However, the green line in Figure b)
indicates that a = 15% best preserves the model’s general capability. Therefore, we set a = 15%.

50 fm ¢ o vt — — "
(]
hv4 8‘ 2
© ©
% 401 5
o > 01
C ©
=301
% = MoFO § -2 MoFO
2 =¢— MoFO with small data Y =— MoFO with small data
£ 20+ Pre-trained model g -4 Pre-trained model
= = Default SFT z = - Default SFT
T T : : : : —6+— - - - - .
5% 10% 15% 20% 40% 80% 5% 10% 15% 20% 40% 80%
Parameter update fraction Parameter update fraction
(a) Fine-tuning performance (b) Preservation of pre-training knowledge

Figure 12: (a) Fine-tuning performance: Accuracy on the GSM8K math reasoning task for LLMs of
different sizes, fine-tuned via MoFO with varying update fractions («). (b) Preservation of pre-training
knowledge: Average accuracy changes on MMLU, HumanEval, and commonsense reasoning benchmarks
relative to the original pre-trained LLMs, illustrating how much pre-training knowledge is retained. All
results are obtained by fine-tuning Llama2-7B on MetaMathQA and its proxy subset. The performance
trends under different update fractions on the proxy subset align with those observed on the full dataset.

Furthermore, by comparing the blue and green lines in Figure we observe that the trend of model
performance with respect to « on the small proxy subset is consistent with the trend observed when fine-
tuning on the full dataset. This implies that a small, randomly sampled subset is sufficient to guide the
selection of a suitable a.

Empirically, the optimal a often lies between 5% and 20%. A more fine-grained grid search within this range
can be performed if needed. Designing more refined and efficient strategies for tuning « is left for future
work.

46



Published in Transactions on Machine Learning Research (10/2025)

E Additional Experiments on Instruction Fine-tuning

This section begins with a comparison of MoFO and baseline methods across additional datasets and models
in In we explore the combination of LoRA and MoFO to assess their performance. Finally, in
we compare MoFO with several algorithms designed to mitigate forgetting.

E.1 More Experimental Results in Instruction Fine-Tuning

Table 5: The performance on the fine-tuning task (medical QA task), measured by MedQ, and general
capability scores of Llama-2-7B-Chat after fine-tuning on the PMC-LLaMA-Instruct dataset. The figure on
the right visualizes both MedQ accuracy and general capability scores. The results show that MoFO achieves
comparable performance in the Med(Q while significantly mitigating forgetting of general capabilities. Bold
values denote the best results among these methods.

General Capability T
Method MedQ :
CR IFEval HumanEval Avg. 0.551
8 L . o |
Llama-2-7B-Chat 49.8 65.6 41.4 24.3 43.8 00531 :
Default FT 54.3 646  32.1 20.6 39.1 E W Default FT l
HFT
0.501- 12-7b-chat -
HFT 54.4 65.2 33.5 23.1 40.6 ® LoRA :
LoRA 54.2 64.4 33.9 23.5 40.6 0.481 @ MOFO :
MoFO 54.3 65.6 38.6 25.0 43.1 :

0.375 0.400 0.425 0.450
General capability

Results of fine-tuning on PMC-LLaMA-Instruct. We fine-tune Llama-2-7B-Chat on the PMC-
LLaMA-Instructions dataset using various baseline methods and present the experimental results on medical
question answering (MedQ) and general capabilities in Table |5} Since the MMLU benchmark already contains
medical-related instances (Hendrycks et al., 2021)), which may lead to improved performance after fine-tuning,
we instead use IFEval to assess general capabilities.

MoFO performs well on the fine-tuning task of medical QA. It achieves compatible performance compared to
Default FT and HFT. In terms of general capabilities, MoFO demonstrates the least degradation compared to
other baselines, with an average accuracy reduction of only 0.2%. Specifically, on the IFEval benchmark, our
method only exhibits a minor reduction of 0.3%, while Default FT, HFT, and LoRA experience significant
degradations ranging from 7.5% to 9.3%. On code generation (HumanEval) tasks and commonsense reasoning
(CR) benchmarks, our method also only exhibits a minor reduction less than 0.2%.

Table 6: The performance of the fine-tuning task (math), measured by GSM8K, and the general capability
scores of Gemma-2B-IT after fine-tuning on the MetaMathQA dataset. The figure on the right visualizes
both GSM8K accuracy and general capability scores. The results show that MoFO achieves comparable
performance in the fine-tuning task, while significantly mitigating forgetting of general capabilities. Bold
values denote the best results among these methods.

L] ® |
Method GSMBK General Capability §0-4' Ak :
etho 1
CR  IFeval HumanEval Avg. 5 B Default FT 1
O i I
Gemma-2B-IT 11.4 57.6 33.6 31.5 40.9 g 0.3 HFT :
v ® LoRA |
Default FT 42.0 52.1 24.3 20.6 32.3 0 |
HFT 41.5 53.9 24.1 21.2 33.1 wn 1
©) -2B- 1

LoRA 406 544  26.1 29.8 36.8 0.1 ——---Gemma-2B-IT __,
MoFO 42.1 55.0 28.7 29.1 37.6 0.325 0.350 0.375 0.400

General capability

47



Published in Transactions on Machine Learning Research (10/2025)

Results of fine-tuning Gemma-2B-IT on MetaMathQA. We also explore how MoFO performs in
other LLMs. Specifically, we fine-tune Gemma-2B-IT on MetaMathQA using various baseline methods and
present the experimental results on mathematical reasoning (GSM8K) and general capabilities in Table [6]
The experimental results demonstrate that MoFO achieves comparable performance of the fine-tuning task
to Default FT and HFT across different models. In terms of general capabilities, MoFO exhibits significantly
less forgetting compared to other baselines. This result demonstrates the versatility of the MoFO algorithm.

Table 7: The performance of the fine-tuning task (math), measured by GSM8K, and the general capability
scores of Llama-2-7B-chat after fine-tuning on the MetaMathQA dataset. The figure on the right visualizes
both GSM8K accuracy and general capability scores. The results show that MoFO achieves comparable
performance in the fine-tuning task, while significantly mitigating forgetting of general capabilities. Bold
values denote the best results among these methods.

0.5 1 -
General Capability a o ® :
Method GSMSK g |
CR  IFeval HumanEval Avg. 5 0.41 W DefaultFT |
) 1
Llama-2-7B-Chat  13.7 65.6  41.4 24.3 43.8 2 0.3 HFT |
Default FT 48.4 62.8  30.7 15.6 36.4 X @ LoRA :
s ® MOFO I
HFT 46.9 63.4 318 20.0 38.4 S 0.2 |
o
LoRA 45.3 63.9  35.6 21.0 40.2 - —— Llama-2-7B-Chat__ _|
MoFO 47.1 64.0 37.1 21.7 40.9 0.375 0.400 0.425

General capability

Results of fine-tuning Llama-2-7B-Chat on MetaMathQA. We also fine-tune the Llama-2-7B-Chat
on the MetaMathQA dataset. The results are presented in Table [7] The results demonstrate that our
approach achieves performance comparable to Default FT and HF T while exhibiting less forgetting compared
to baseline methods.

Table 8: The performance of the fine-tuning task (coding), measured by HumanEval, and the general
capability scores of Llama-2-7B-Chat after fine-tuning on the Magicoder-Evol-Instruct dataset. Here we
choose the three benchmarks exhibiting the most significant forgetting. We set the rank of LoRA as 256, and
a of MoFO is set as 20%. The results show that MoFO achieves comparable performance in the fine-tuning
task, while mitigating forgetting of general capabilities. Bold values denote the best results among these
methods.

T

G 1 Capabilit !

Method HumanEval enera’ Lapabiity — 0.50 o :

ARC-E ARC-C IFEval Avg. g™ - I

w Bl Default FT |

Llama-2-7B-Chat 24.2 74.5 46.3 41.1 54.0 g 0.40 HET |

1

Default FT 56.2 71.2 45.2 33.5 50.0 5 ® LoRA :

HFT 50.7 71.5 45.6 36.3  51.1 0.30 ® MOFO i

1

LoRA 48.6 72.1 45.1 33.4 50.2 e e i i bt
MoFO 53.3 72.1 46.0 36.1 51.4 0.50 0.52 0.54

General capability

Results of fine-tuning Llama-2-7B-Chat on Magicoder-Evol-Instruct. We also fine-tune the Llama-
2-7B-Chat on the Magicoder-Evol-Instruct dataset. We use ARC-Easy (ARC-E) and ARC-Challenge (ARC-C)
scores to measure general capability. The results in Table [8] demonstrate that our approach outperforms the
baselines in the fine-tuning tasks and exhibits less forgetting compared to baseline methods.

In summary, our MoFO algorithm shows competitive performance in instruction fine-tuning while preserving
the general capabilities, effectively alleviating forgetting.

48



Published in Transactions on Machine Learning Research (10/2025)

0.50 -... _____
0.45 A
0.40 -

0.35 A Default FT )’
HFT

L;-regularization

GSM8K

0.30 A

L>-regularization
MOFO

LoRA

HMA

0.15 A Llama-2-7B

0.25 A

(T 22 2 |

0.20 A

T T T T
0.63 0.64 0.65 0.66
CR

Figure 13: The performance on the math task (GSM8K) and the scores in Commonsense Reasoning of
Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that the MoFO algorithm
achieves a better Pareto front. The pink triangle represents the model obtained through HMA.

E.2 Experiment on the Combination of MoFO and LoRA

In addition to using LoRA as a baseline for comparison, we can also view it as an orthogonal method that
can be integrated with MoFO. In the fine-tuning stage, LoRA restricts the trainable parameter space to a
low-rank subspace. We note that the comparison of LoRA and MoFO (PEFT version) essentially evaluates
MoFO and Adam within this same low-rank subspace defined by LoRA. To investigate this further, we
conduct a comparative experiment following the setup in Table [I] of Section [f.2] Table [0] implies that MoFO
+ LoRA effectively mitigates the forgetting issue that arises when using LoRA alone.

Table 9: The performance of the fine-tuning task (math), measured by GSM8K, and the general capability
scores of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that MoFO + LoRA
preserve more pre-training knowledge than using LoRA alone.

General Capability

Method GSM8K Avg.
CR MMLU  HumanEval

LoRA 43.3 65.1 37.7 26.4 43.1

LoRA + MoFO 43.4 65.5 39.4 26.7 43.9

E.3 Comparison with More Fine-Tuning Methods

Experiments on Heterogeneous Model Averaging (HMA)

We compare our proposed method with the Heterogeneous Model Averaging (HMA) (Lin et al., |2024al). HMA
approach evenly divides the LLM into three parts—the input part, the middle part, and the output part—and
averages these parts with different ratios. To facilitate a comprehensive comparison, following the setting in
Section [1.2] we evaluate the fine-tuning and forgetting mitigation performance for different HMA strategies.
We select 15 different combinations of averaging ratios for different parts as follows: {(0.05, 0.2, 0.35), (0.1,
0.2, 0.3), (0.2, 0.2, 0.2), (0.3, 0.2, 0.1), (0.35, 0.2, 0.05), (0.3, 0.5, 0.7), (0.4, 0.5, 0.6), (0.5, 0.5, 0.5), (0.6, 0.5,
0.4), (0.7, 0.5, 0.3), (0.65, 0.8, 0.95), (0.7, 0.8, 0.9), (0.8, 0.8, 0.8), (0.9, 0.8, 0.7), (0.95, 0.8, 0.65)}. We plot
the results to construct a Pareto front in Figure

Results show that our proposed method, MoFO achieves a more effective Pareto front compared to the
baselines.

Experiments on CoFiTune and Soft-masking

Zhang et al.| (2024a)) introduces CoFiTune, a coarse-to-fine framework that balances specificity and versatility in
LLMs by selectively updating specific modules and employing a soft-masking mechanism, which is introduced

49



Published in Transactions on Machine Learning Research (10/2025)

by [Ke et al.| (2023bsa)). We have compared MoFO with CoFiTune (with and without soft-masking) and the
vanilla soft-masking method alone, following the setting in Table [I] of Section The results, presented in
Table [10| below, demonstrate that MoFO outperforms these methods in both fine-tuning performance and
mitigating forgetting. The results demonstrate that

o CoFiTune achives similar forgetting mitigation performance as MoFO, but underperforms MoFO on
fine-tuning tasks.

e Vanilla Soft-masking exhibits slightly reduced performance in both fine-tuning tasks and mitigating
forgetting than MoFOQO. These findings underscore the advantages of our proposed method.

Table 10: The performance of the fine-tuning task (math), measured by GSMS8K, and the general capability
scores of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that MoFO achieves
comparable performance in the fine-tuning task, while significantly mitigating forgetting of general capabilities.

General Capability

Method GSMS8K
CR MMLU HumanEval Avg.
MoFO 47.7 65.7 42.7 24.6 44.3
Vanilla-SoftMask 46.4 65.6 42.9 23.2 43.9
CoFiTune w/o SoftMask 37.7 65.4 42.1 25.8 44.4
CoFiTune w/ SoftMask 34.4 65.0 41.5 25.6 44.0

From the results, we can see that MoFO achieves higher scores on the fine-tuning tasks while effectively
reducing knowledge forgetting, demonstrating its superiority over these methods.

E.4 Comparison with More Parameter-Efficient Fine-Tuning Methods

Parameter-Efficient Fine-Tuning (PEFT) encompasses a collection of fine-tuning methods designed to reduce

the computational cost required for model training. In this subsection, we mainly focus on three famous
PEFT methods:

o Adapter (Houlsby et al.l|[2019): This approach involves inserting trainable "adapter" modules into
every layer of model. During fine-tuning, the parameters of these adapter modules are updated for
downstream tasks, while the majority of the original model’s parameters remain frozen.

o BitFit (Zaken et al.l |2021): This method reduces the number of trainable parameters by fine-tuning
the bias terms of the model on a given downstream task, keeping other weights frozen.

o LoRA (Hu et all |2022)): is a widely-used, parameter-efficient fine-tuning method. LoRA trains
low-rank matrix adaptations on the base model’s weights. Recent work (Biderman et al.l [2024)
demonstrates that LoRA can mitigate forgetting.

We compared MoFO with Adapter, BitFit, and LoRA, following the setup in Table [T of Section [£.2] For the
Adapter method, we set the learning rate to le-4 and performed a grid search for the adapter size over the

values {16, 64, 128}. We report the best-performing hyperparameter configuration for each method on the
fine-tuning task.

As shown in Table all three PEFT baselines (BitFit, Adapter, and LoRA) achieve higher average general
capability scores than Default FT, indicating that they are indeed effective at mitigating catastrophic
forgetting. However, they still lag behind MoFO in this regard.

Moreover, compared to MoFO, the three PEFT methods perform markedly worse on the fine-tuning task
(GSMB8K), with the gap being especially pronounced for Adapters and BitFit. We conjecture that this may
stem from the fact that Adapters and BitFit were originally proposed and evaluated on relatively simple

50



Published in Transactions on Machine Learning Research (10/2025)

classification or QA benchmarks (e.g., GLUE) with masked language models. While these methods were
effective in such settings, they may be less suited to today’s more challenging domain-specific LLM tasks,
leading to the weaker performance observed here.

Table 11: The performance of the fine-tuning task (math), measured by GSM8K, and the general capability
scores of Llama-2-7B after fine-tuning on the MetaMathQA dataset. The results show that MoFO outperforms
three PEFT methods.

General Capability
CR  MMLU HumanEval Avg.

Method GSMS8K

Llama-2-7B 13.7 65.6 42.0 24.2 43.9
Default FT 49.4 62.3 36.6 16.1 38.3
MoFO 47.7 65.7 42.7 24.6 44.3
BitFit 15.1 64.8 36.1 24.4 41.8
Adapter 24.4 63.2 32.3 21.8 39.1
LoRA 43.3 65.1 37.7 26.4 43.1

o1



Published in Transactions on Machine Learning Research (10/2025)

2.0 7
2.0 2.023 A
%  Pre-trained model . L Plre-tralned G| 2.841
—. % Fine-tuned model (MoFO) 1354 b F!ne-tuned model (MoFO)
1.5 4 ~ @ Fine-tuned model (Adam) . 1.54 ® Fine-tuned model (Adam) 2.636
. 0.684 2.432
1.0 1 1.01
2.228
0.015
0.51 0.5 2.024
~0.655
1.819
0.0 -1.324 0.01 1.615
~1.993 1.411
-0.5 —0.5 A
1.207
—2.663
-1.0 1.0 — 1.003
-0.4 -0.2 0.0 0.2 0.4 0.5 0.7 -0.4 -0.2 0.0 0.2 0.4 0.5 0.7
(a) Loss landscape on fine-tuning dataset (b) Loss landscape on pre-training dataset

Figure 14: The loss landscapes of Pythia-160m after fine-tuning on a subset of the FLAN dataset using Adam
optimizer and MoFO. We plot the loss landscapes on (a) the fine-tuning dataset and (b) the pre-training
dataset (Pile). We visualize a 2D weight-space plane spanned by the vector from the pre-trained model to the
MoFO-tuned model (x-axis) and to the Adam-tuned model (y-axis). Axes are normalized so that one unit
equals the length of the pre-trained— Adam vector. The color bar indicates the loss value—(a) fine-tuning
loss and (b) pre-training loss. A logarithmic scale is applied to the loss values for better visualization. We
find that MoFO, reaching a closer point to the pre-trained model, has minimal fine-tuning loss and lower
pre-training loss, compared to Adam.

F More Explorations on MoFO

This section aims to provide a deeper understanding of MoFO through a series of experiments. In Appendix[F.2]
we conduct an efficiency analysis of MoFO. In Appendix [F.3] we present additional comparative experiments
on different filtering strategies. In Appendix [F.4] we investigate why the momentum-filtered update rule in
MoFO achieves optimal fine-tuning performance compared to other update strategies. In Appendix [F.5] we
present a preliminary analysis on why MoFO might compare favorably to L1 /Ly regularization. In Appendix
we investigate the performance of MoFO under an alternative parameter partitioning strategy. Finally,
in Appendix [F.7} we explore the application of MoFO to the Lion optimizer.

F.1 Validating MoFQ’s Impact on Preserving Pre-training Knowledge through Proximity

In this section, we empirically examine whether MoFO achieves its intended goal of converging to a minimum
closer to the pre-trained model and mitigating forgetting mentioned in Section [2]

Our exploratory experiment shows that MoFO indeed converges to a minimum closer to the pre-training
model. As shown in Figure (a), both MoFO and the Adam optimizer achieve minimal fine-tuning loss,
indicating that switching from Adam to MoFO does not lead to performance degradation. Moreover, the
distance from the pre-trained model to the minimum reached by MoFO is approximately 20% of that reached
by the default Adam optimizer.

Our experiment demonstrates that the reduced parameter movement achieved by MoFO effectively mitigates
the forgetting of pre-training knowledge. As shown in Figure @(b), the fine-tuned model using MoFO
experiences a smaller increase in pre-training loss. Additionally, Table [I2| shows that MoFO achieves higher
accuracy on commonsense reasoning tasks, indicating less forgetting.

52



Published in Transactions on Machine Learning Research (10/2025)

Table 12: Pythia-160m’s performance on common sense tasks, after being fine-tuned with the Adam optimizer
and MoFO. The results indicate that MoFO significantly mitigates catastrophic forgetting. Bold values
denote the best results among these optimizers.

HellaSwag ARC-easy ARC-challenge Average

Pythia-160m 30.1 39.6 23.8 31.2
Adam 28.3 374 22.1 29.3
MoFO 29.9 42.0 229 31.6

F.2 Efficiency Analysis on MoFO

We claim that MoFO does not lead to significant reduced fine-tuning efficiency. We provide an efficiency
analysis by comparing the total training time between MoFO and Default FT on three LLMs with different
sizes. The parameter update fraction of MoFO is set as 10%. The experimental results show that although
MoFO requires computing a filter to select parameters with the largest momentum magnitudes, the additional
computational overhead is minor. As shown in Table the additional training time incurred by MoFO is
approximately 4%-5%, which is relatively minor and manageable in practical applications.

Table 13: Comparison of total training time for Default FT and MoFO on various LLaMA models and
datasets. The additional time incurred by MoFO is around 4-5%, which is relatively minor in practical
applications. LLaMA3-8B is fine-tuned on the UltraFeedback dataset (Cui et all 2024).

Model Default FT MoFO Additional Training Time
LLaMA3.2-1B 49m22s 51m24s 4.1%
LLaMA3.2-3B 1h30m18s 1h34m24s 4.5%
LLaMA3-8B 5h2m0.69s 5h17m34.01s 5.0%

F.3 Further Comparative Experiments on Filtering Strategies

To further substantiate the claim in Section £.4] we conduct an additional comparison of filtering strate-
gies—complementary to the results in Table [B}—using a different dataset and model. Specifically, we fine-tune
Gemma-2B-IT on the IFEval-like datasetﬂ using several BCD variants. The IFEval-like dataset contains
instruction—response pairs in the style of the IFEval benchmark. For these experiments, we randomly sample
39.5k instances from the dataset for training, set the learning rate to 1x107°, and train the model for 2
epochs. We evaluate fine-tuning performance with the IFEval benchmark and assess general capabilities with
CR (common-sense reasoning), HumanEval, and BBH (0-shot) (Suzgun et al.| [2022).

As shown in Table all BCD variants mitigate forgetting: their average general-capability score exceeds
that of Default fine-tuning by at least 2.6%. Although MoFO is lower than MV BCD by only 0.1% in
average general capability, it achieves the strongest performance on the target fine-tuning task (IFEval),
outperforming Random BCD, Grad BCD, and MV BCD by 5.8%, 2.6%, and 1.3%, respectively.

Taken together, these results indicate that while all filtering strategies are broadly effective at mitigating
forgetting, they exhibit distinct differences in task-specific fine-tuning performance. In our setting, MoFO
offers a favorable balance—matching the strongest methods on forgetting mitigation while delivering the
highest IFEval score among the tested strategies.

"The “filtered” subset from fhttps://huggingface.co/datasets/argilla/ifeval-1like-data.

53


https://huggingface.co/datasets/argilla/ifeval-like-data

Published in Transactions on Machine Learning Research (10/2025)

Table 14: The performance on the instruction-following task (IFEval) and general capability scores of
Gemma-2B-IT after fine-tuning on IFEval-like dataset using different updating strategies in MoFO. Here we
choose the three benchmarks exhibiting the most significant forgetting. For all the update strategies, we set
the parameter update fraction o as 10%. Bold values denote the best results among the BCD methods.

General Capability

Method IFEval
CR  HumanEval BBH Avg.
Gemma-2B-IT 33.6 57.6 31.5 32.7  40.6
Default FT 56.7 56.9 22.9 32.5 37.4
Random BCD 51.4 57.5 28.0 33.9 39.8
Grad BCD 54.6 57.3 28.1 34.1  39.8
MV BCD 55.9 57.5 28.4 34.6 40.2
MoFO 57.2 57.3 28.5 34.4 40.1

F.4 Insights of the Choice of Filtering Strategy

In this section, we attempt to address the question: What makes the momentum-filtered update rule optimal
among the candidates?

We hypothesize that the good performance of the momentum-filtered updating rule arises from its ability to
promote more stable and consistent updates throughout training. Specifically, we hypothesize that:

1. Utilizing momentum instead of gradient filtering leads to more stable updates. Momentum
accumulates historical gradients, so it promotes stability by smoothing out fluctuations in the gradient
updates. Thereby, during the training process, the momentum-filtering mechanism chooses updating
parameters in a more stable manner.

2. Excluding the introduction of in the filtering mechanism contributes to more stable
updates. The 2nd-order moment v; may normalize gradients based on their magnitudes, potentially
averaging out the importance of individual parameters within the filtering mechanism. Thereby,
during the training process, not incorporating v may help choose updating parameters in a more
stable manner.

For the ablation study, we add the GV-filtered BCD methods as a baseline, which replaces MoFO's filter by
FLT,(g¢/+/v¢). Following the setting of experiments in Appendix and Figure |1} we run all four methods
with the updating fraction a = 3% over approximately 200 steps. To assess how many parameters change
significantly during training, we calculate the percentage of weight parameters whose absolute change exceeds
a threshold of 2e-6.

Table 15: Percentage of weight parameters with significant changes (absolute change > 2 x 107%) during
training.

Method Percentage of Significant Updates
MoFO 29.8%
Gradient BCD 35.7%
MV-filtered BCD 83.6%
GV-filtered BCD 87.1%

Table indicates that the parameter updating process of MoFO is more stable, which we think may
contribute to its better fine-tuning performance.

o4



Published in Transactions on Machine Learning Research (10/2025)

F.5 Preliminary Analysis on Why MoFO Might Compare Favorably to L;/L,; Regularization

As shown in Figure [5| (Section , when fine-tuning Llama-2-7B on MetaMathQA, MoFO yields a more
favorable Pareto front—balancing fine-tuning performance and forgetting mitigation—than L, /Ly regulariza-
tion and LoRA across hyperparameter configurations. This section presents a preliminary analysis offering
one possible explanation for why MoFO may compare favorably to Li /Lo regularization. Importantly, we
reuse the exact checkpoints from Figure [f} no additional training runs are introduced.

Setup. We reuse the Llama-2-7B MetaMathQA sweeps underlying Figure Bl—including L, Lo, and MoFO
across the same hyperparameters. For each checkpoint, we compute the (unregularized) fine-tuning loss and
the 5 norm of the gradient on 512 examples. To factor out severe forgetting, we report results for the subset
whose CR scores fall within an acceptable range (same CR metric as in the main text). Figure [15[(a) and
Figure b) plot fine-tuning loss and gradient norm versus CR, respectively, for this subset of checkpoints
drawn from Figure [

Observations. For comparable CR scores, MoFO checkpoints generally achieve lower fine-tuning losses than
those trained with L; or Lo; moreover, they also exhibit smaller gradient norms. Together, these appear to
suggest that MoFO converges better than Lq/Ly regularization.

One plausible explanation. Penalty methods promote proximity to the pretrained parameters, but they
also modify the training objective and its gradient field, thereby possibly hindering convergence to
a local minimum of the original fine-tuning loss. MoFO instead constrains how updates are applied (via
momentum filtering) while continuing to optimize the original fine-tuning loss, which may allow the optimizer
to follow task-relevant directions more effectively.

0.20 v v v
® & lLireg i ® e Lreg
0.18 % Lreg g) % Lrreg
n 0.161 ¢ ® MOFO 5 ® MOFO
3 --- Llama2-7B T 'S —-—- Llama2-7B
81 0.141 —-== MoFQ's average E 1071 —-—- MoFOQ's average
€0.12; *® ! 5 »
- 1 @ £ '3 10
2 0.10 A ® 5 I
i L g I < *l P
0.081 i - S — S S PR ——
"""""""""" He————————1 T : ® Y
0.06 % e ° o ° I
e o 1 © : . —L :
0.645 0.650 0.655 0.660 0.645 0.650 0.655  0.660
CR CR
(a) Fine-tuning loss (b) Gradient norm

Figure 15: (a) Fine-tuning loss and (b) gradient norm versus CR score for Llama2-7B fine-tuned on
MetaMathQA with MoFO, Ly, and Ly regularization. The results show that MoFO generally achieves a
lower fine-tuning loss and gradient norm than L, and Lo while effectively resisting forgetting.

F.6 A Different Parameter Partition Scheme

In this section, we propose a different strategy for partitioning model parameters. Different from the default
partitioning scheme in PyTorch’s Transformer implementation (Appendix , our alternative approach
partitions parameters at the granularity of individual attention heads. Recent studies (Zhang et al., |2024djc)
show that the Hessian matrix in Transformers is nearly block-diagonal, with several dense principal sub-blocks.
In particular, [Zhang et al.|(2024c) finds that within the same layer, distinct Q (or K) heads form different
blocks in the Hessian.

Motivated by this finding, we treat each head’s Q, K, and V weights as separate partitions and apply our
momentum-based filtering mechanism to these finer-grained partitions individually. To evaluate our method,
we conduct experiments on the LLaMA2-7B models, comparing the default partitioning approach against our
alternative head-level partitioning scheme.

95



Published in Transactions on Machine Learning Research (10/2025)

Table 16: Performance on the fine-tuning task (GSMS8K) and general capabilities of Llama-2-7B after
fine-tuning. Bold values denote the best results among these methods. The updating fraction « is 15%.

General Capability

Method GSMS8K
CR  MMLU HumanEval Avg.
MoFO with default partition 47.7 65.7 42.7 24.6 44.3
MoFO with individual head partition 46.6 65.7 41.6 24.1 43.8

Algorithm 3 MoFO + Lion

1: Input: Filtering threshold «, number of partitions B with the k-th partition of size dj, hyperparameters
B1, B2, A of Lion optimizer, learning rate schedule {n;}.
2: Initialize mg as zero tensors.

3: for iteration ¢t from 1,2,... until converge do
4:  for partition k from 1 to B do
5: gzgk) = v@(k)ﬁfinetune(et—l)
k k k
6 o =mm (1 )g”
7 for entry index ¢ from 1 to di do
8: [FLT(ak) (m—1)); = 1if |(m£’i)1)z| is within the top-a of \mgli)l\’s values else 0
9: end for
10: Qt(k) = 91@1 - nt(sign(cgk) ® FLTY (m—1)) + )\Gt(li)l) # Momentum Filtering
k E k
11: mg ) = ﬁngi)l +(1- ﬁg)gg )
12:  end for
13: 0; = Concat(ﬂgl), cee HIEB))
14: end for

Table [16] shows that both partition schemes yield similar performance.

From the above initial experiment results, we believe that there is room for further exploration in better
partitioning strategies.

F.7 Momentum Filtering Mechanism on the Lion Optimizer

Algorithm 2 Lion Optimizer

1: Input: Number of partitions B with the k-th partition of size dj, hyperparameters (51, 82, A of Lion
optimizer, learning rate schedule {n;}.

2: Initialize mg as zero tensors.
3: for iteration t from 1,2,... until converge do
4:  for partition k from 1 to B do
5: gt(k) = v()(k)ﬁfinetune(et—l)
6 o =Bim® +(1-B)g"
k k E
7: m" = Bam{) + (1 B2)g"
8:  end for
9 6= Concat(ﬂgl), cee 0§B))
10: end for

In this section, we extend our investigation by integrating our proposed MoFO into the Lion optimizer (Chen
et al.l |2024)). We first present the original formulation of the Lion optimizer in Algorithm

Building upon this foundation, we propose Algorithm [3] where momentum filtering is applied to refine the
parameter update in every iteration (Lines 7-10).

56



Published in Transactions on Machine Learning Research (10/2025)

Following the experimental setup in Appendix and Figure |1} we conduct comparative experiments to
evaluate the effectiveness of ‘MoFO + Lion’ in mitigating forgetting. As shown in Table incorporating
MoFO into Lion improves the average accuracy of preserving old knowledge by 2.6% compared to using Lion
alone. However, ‘MoFO + Lion’ still lags behind ‘MoFO + Adam’ by 2.5%.

Table 17: Performance comparison on HellaSwag, ARC-easy, and ARC-challenge, along with their average.

Method HellaSwag ARC-easy ARC-challenge Average
Pythia-160m 30.1 39.6 23.8 31.2
Adam 28.3 37.4 22.1 29.3
MoFO (for Adam) 29.9 42.0 22.9 31.6
Lion 26.5 29.0 24.1 26.5
Lion + MoFO 27.5 36.7 23.2 29.1

o7



	Introduction
	Momentum Filtered Optimizer (MoFO)
	Motivation
	Formulation of MoFO

	Theoretical Analysis
	Convergence Result
	Initial Analysis on Forgetting Mitigation

	Experiments
	Experimental Settings
	Instruction Fine-Tuning
	Continual Fine-Tuning
	Impact of Update Strategy in MoFO
	Furthur Analysis 

	Related Works
	Forgetting in Continual Learning
	Block Coordinate Descent

	Conclusion and Limitations
	Theoretical Analysis
	Supplementary Analysis on the Top- Filter
	Proof of Theorem 1 (Convergence of MoFO)
	Proof of Theorem 2 (Illustrative example: forgetting mitigation of MoFO)
	Challenges and Potential Extensions of Theorem 1 to Nonsmooth Objectives

	Supplemental Figures and Explanations
	Reason for using RedPajama to approximate LLaMA-2’s training data
	Supplementary Figures for Figure 1
	Supplementary Experiments on the Correlation between Distance and Forgetting
	Supplemental Explanation of Example 1
	Synthetic Experiment for Example 1

	Implementation Details
	Datasets for Fine-Tuning.
	Evaluation Metrics for Instruction Fine-Tuning
	Hyperparameter Configurations
	More Explanation on the partitioning and Calculation of distance

	Guideline for Setting 
	Additional Experiments on Instruction Fine-tuning
	More Experimental Results in Instruction Fine-Tuning
	Experiment on the Combination of MoFO and LoRA
	Comparison with More Fine-Tuning Methods
	Comparison with More Parameter-Efficient Fine-Tuning Methods

	More Explorations on MoFO
	Validating MoFO's Impact on Preserving Pre-training Knowledge through Proximity
	Efficiency Analysis on MoFO
	Further Comparative Experiments on Filtering Strategies
	Insights of the Choice of Filtering Strategy
	Preliminary Analysis on Why MoFO Might Compare Favorably to L1/L2 Regularization
	A Different Parameter Partition Scheme
	Momentum Filtering Mechanism on the Lion Optimizer


