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Abstract
Neural network training begins with a chaotic phase in which the network is sensitive to small per-
turbations, such as those caused by stochastic gradient descent (SGD). This sensitivity can cause
identically initialized networks to diverge both in parameter space and functional similarity. How-
ever, the exact degree to which networks are sensitive to perturbation, and the sensitivity of net-
works as they transition out of the chaotic phase, is unclear. To address this uncertainty, we apply
a controlled perturbation at a single point in training time and measure its effect on otherwise iden-
tical training trajectories. We find that both the L2 distance and the loss barrier (increase in loss on
the linear path between two networks) for networks trained in this manner increase with perturba-
tion magnitude and how early the perturbation occurs. Finally, we propose a conjecture relating the
sensitivity of a network to how easily it is permuted with respect to another network.

1. Introduction

In training a neural network, there are typically a large number of candidate minima that are equiv-
alent in terms of their losses. It is often unclear what differences (if any) exist in the functions
corresponding to these minima. For networks trained from the same starting state, functional sim-
ilarity can be estimated by evaluating the loss (alternatively, error) barrier, which is the maximum
increase in loss (error) along a linear path between the network parameters. Formally, the barrier
between networks parameterized by θA, θB is:

sup
α∈(0,1)

ℓ (x, y;αθA + (1− α)θB)− αℓ (x, y; θA)− (1− α)ℓ (x, y; θB) . (1)

where α interpolates between the networks and ℓ is the loss function (0-1 loss for error barriers)
for a fixed set of data x, y.1 Networks with barriers below some noise threshold threshold (2%
error in Frankle et al. [6]) are said to exhibit linear mode connectivity (LMC). Among other useful
properties, LMC is a necessary condition for the loss landscape to be locally convex [14, Definition
3.1]. Thus, barriers can identify when two networks belong to different loss basins [8, 10, 19].

Previous investigations into LMC have found that after a certain point in training, networks
consistently converge to the same linearly connected minimum. In particular, Frankle et al. [6] show
that stochastic gradient descent (SGD) has noise (e.g. random batch order, data augmentations, and

* Equal contribution. Correspondence to devin.kwok@mail.mcgill.ca.
1. As our work is concerned with the shape of the loss landscape on which a network is optimized, we report the

cross-entropy loss barrier (Bce) for training data in all figures of the main text (averaged over three runs).
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Figure 1: Left: illustration of “butterfly effect” experiment. A network θ0 is trained until time t
and perturbed once at t with a perturbation of magnitude ϵ. The original θ̂A and perturbed θ̂B copies
of the network are then trained to convergence at time T , after which the loss barrier between θ̂AT

and θ̂BT
is evaluated. Right: train (solid) and test (dashed) barriers after training (y-axis) versus

perturbation time (x-axis) and magnitude (line color). The earliest perturbations at ϵ = 0.1 are
omitted, as training fails to recover the original network’s accuracy. See fig. 5 for accuracy barriers.

GPU non-determinism) that causes barriers before a certain time called the LMC onset point, but not
after that point. Altıntaş et al. [2] find that reducing the variability of early training steps (such as by
reducing learning rate, increasing batch size, and using learning rate warmup) can reduce barriers
after training. These findings corroborate empirical studies of the neural tangent kernel that suggest
training has an initial chaotic phase before networks settle into a consistent loss basin [5].

Although these findings clearly split training into diverging and converging periods, we still
do not understand why the chaotic phase of training ceases around the LMC onset point, and how
barriers are formed by the process of training. To reach a better understanding of these questions,
in this work we ask: how small does a perturbation need to be to avoid causing barriers before the
LMC onset, and conversely, how large of a perturbation is needed to cause barriers afterwards? Fur-
thermore, do perturbed training trajectories diverge gradually or suddenly, and how does divergence
in parameter space correspond to barriers?

Inspired by studies of twins from genetics, we devise an experiment which investigates how
“nature” (the initial state of a neural network) versus “nurture” (the cumulative effect of SGD noise)
contribute to the final state of a neural network after training. Our results show that neural network
training exhibits the “butterfly effect”, wherein a chaotic system is highly sensitive to small changes
in its initial state. In particular, we find that:

1. A small perturbation at a single early iteration is sufficient to induce error barriers between
two identically initialized and trained networks (fig. 1).

2. Near initialization, barriers are high for all but the smallest perturbations, while later in train-
ing, barriers are low for all but the largest perturbations (fig. 2), with at least 2 orders of
magnitude between the scale of these perturbations.

3. Prior works show that small barriers do not necessarily correspond to small L2 distances
between parameters [6, 14, 19]. Nonetheless in our setting, larger barriers are associated with
larger L2 divergences in parameters (fig. 3).

2



THE BUTTERFLY EFFECT

0 2 4
Perturbed at Step

2

3

B
ar

rie
r 

ce

ResNet 20 - Batch Perturbance

= 0.0001
= 0.001
= 0.01
= 0.1
= 0.25

4000 6000
Perturbed at Step

0.00

0.25

0.50

0.75

B
ar

rie
r 

ce

ResNet 20 - Batch Perturbance

= 0.1
= 0.25
= 0.5
= 1.0
= 2.0

Figure 2: Left: inset of train/test (solid/dashed) barriers from fig. 1 for early perturbations, with
additional smaller-scale perturbations. Right: inset of barriers for late perturbations, with an addi-
tional larger-scale perturbation.

4. The above barriers and L2 distances are inversely correlated with the number of fixed points
in a permutation minimizing the L2 distance between the network parameters after training.

5. Based on other work on neural network permutations [1, 3, 17], we propose a conjecture
for networks with sufficiently many permutation symmetries: that barriers arise between an
original and a perturbed network when the perturbed network becomes permuted with respect
to the original.

2. Single perturbations cause barriers

Previous work focused on the robustness of networks to SGD noise after LMC onset [6], whereas
we instead want to examine how sensitive networks are to noise throughout training, particularly
before LMC onset. We therefore distill the spawning experiment from Frankle et al. [6] to a single
step: we train two copies of a network, but instead of perturbing them with independent SGD noise
from time t to the end, we apply a single perturbation at t and train with identical SGD noise at all
other times (illustrated in fig. 1 left).2 Appendix A details the training and perturbation methods.

We experiment with two types of perturbations: random batch sampling and additive Gaussian
noise. Batch perturbation is equivalent to adding a single extra iteration of SGD training with
independent SGD noise scaled by ϵ, so that ϵ functions equivalently to the learning rate (without
momentum). Gaussian perturbation adds a Gaussian term with standard deviation proportional to ϵ
times the network’s random initialization [9]. As larger perturbations can temporarily increase loss,
we train for the same amount of time after perturbing the network to ensure convergence. As we
find that both types have similar effects, we report results using batch perturbations in the main text.
We report Gaussian perturbation results in appendix B and error barriers in appendix C.

Figure 1 shows the effect of batch perturbation time and size on barriers after training. Gener-
ally, barriers increase with perturbation scale, but this relationship changes dramatically depending
on when the perturbation is applied. Near initialization, adding either a single gradient step (equiv-
alently, Gaussian noise) scaled to as little as 0.01% of the network’s gradient (equivalently, random
initialization) is sufficient to cause barriers after training (fig. 2, fig. 6). After 5 epochs (t = 1950),
the same type of perturbation must be at least 2 orders of magnitude larger to cause a barrier. No-
tably, this shows that sufficiently large perturbations can still cause barriers well after LMC onset.

2. We validate this process by training two unperturbed copies of a network, and confirming they have 0 barrier.
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Figure 3: Left: barrier (y-axis) after training versus L2 distance between original and perturbed
networks (x-axis). Center, right: L2 distance from initialization (y-axis) over training time (x-axis)
for the original (middle) and the perturbed (right) networks.

As the largest perturbations can degrade the trained network’s performance, we exclude them from
fig. 1 and use learning rate rewinding to evaluate them instead (appendix D).

The Gaussian perturbation method is similar to Frankle et al. [7, section 5.3]. However, Frankle
et al. [7] only examined how perturbation reduces training accuracy for pruned networks, and not
the degree to which perturbations affect barriers and parameter distances. We also look at a wider
range of perturbation sizes and times to better characterize network stability throughout training.

3. Barriers correlate with parameter distance

Prior work has shown that the parameters of LMC networks diverge in terms of L2 distance [6,
14, 19]. In our setting, we find that although networks with minimal barriers can have a large L2

distance between their parameters, larger barriers are correlated with even larger L2 distances after
training (fig. 3 left). This divergence is not due to one network travelling further than the other,
since both networks are equally distant from initialization after training (fig. 3 middle and right).

4. Barriers inversely correlate with fixed points of weight alignment permutations

Recent work has found that barriers between SGD trained networks can be reduced or even elim-
inated by taking permutation symmetries into account [1, 3, 17]. Since these prior findings used
independently initialized networks, we would expect them to also hold with identically initialized
networks in our case. We reverse this question and ask: for networks trained from the same initial
state, do barriers arise when they converge to permuted copies of the same loss basin?

Inspired by the proxy model in Entezari et al. [3], we first consider whether the barrier and L2

distance between perturbed networks in our setting could also be explained by increasingly many
permutations, as measured by the proportion of fixed points in a random permutation applied to one
of the networks before computing barriers or L2 distance (fig. 4 left). We find that the fixed points of
the random permutations correlate inversely with both L2 distance and barrier between the original
and randomly permuted networks.

We then apply weight alignment [1, 17] to find a permutation that (approximately) minimizes the
L2 distance between the original and perturbed network parameters after training. Figure 4 (center,
right) shows that the amount of fixed points in this permutation is also inversely proportional to both
barrier size and L2 distance between the networks before alignment. These observations suggest a
possible link between barriers and a permutation of the perturbed network relative to the original.
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Figure 4: Left: the effect of applying a random permutation with some % of fixed points (x-axis)
on a trained network, in terms of barrier (color) and L2 distance (y-axis) between the original and
permuted network. Middle: fixed points versus L2 distance between original and batch-perturbed
network after training. Right: proportion of fixed points (x-axis) in permutation found by weight
alignment, versus barrier (y-axis) between original and perturbed network after training.

5. Discussion

Neural network training is generally understood to be sensitive to tiny perturbations [4]. In this
work, we present clear empirical evidence for the most extreme version of this phenomena: a tiny
perturbation at a single iteration is sufficient for two identically trained networks to diverge (fig. 1).
We find that the perturbation needed to induce barriers throughout training is several orders of
magnitude smaller near initialization than at later epochs (fig. 2), and also that barriers and distance
in parameter space are correlated in our setting (fig. 3).

To explain how these perturbations could lead to barriers, we build on the work of Entezari et al.
[3] to propose the following informal conjecture:

Conjecture 1 For networks trained from the same initial state and with sufficiently many permuta-
tion symmetries, with high probability there exists a permutation of one network that eliminates its
barrier with the other. Furthermore, barriers arise between networks trained from the same initial
state when differences in their training trajectories cause one network to become permuted with
respect to the other.

So far, our preliminary investigations (fig. 4) align with this conjecture.
Since Sharma et al. [17] find that a permutation minimizing barriers between two networks

becomes stable to SGD noise shortly after initialization, we speculate that barrier-inducing permu-
tations occur early in training, and could be related to the LMC onset point. Addressing this con-
jecture will require a method to identify when the permutation connecting two networks changes
throughout training. We will formalize this problem in follow up work.

Our investigations have focused on randomly initialized networks, but research also shows that
pretrained networks either stay in the same LMC basin when fine-tuned [16], or converge to a
few basins representing distinct generalization strategies [11]. It would be useful to know what
conditions cause fine-tuning to converge to similar LMC networks versus distinct functions. For
instance, applications that combine networks by averaging parameters, such as in continual learning
[13], federated learning [12], and model soups [18], perform better on LMC networks by definition.
However, greater functional diversity is desirable in applications such as transfer learning [14] and
ensembling [16] in order to improve generalization. In follow up work, we will replicate our exper-
iments on pretrained networks to better understand how pretraining affects functional diversity and
the barriers between fine-tuned networks.
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Appendix A. Experimental details

Training details. In all experiments we train a ResNet-20 [9] with a width of 32 on CiFAR-10
on a single GPU. We replace batch normalization layers with layer normalization. The parameters
are initialized according to Kaiming/He normal initialization. The model is trained using stochastic
gradient descent (SGD) with a momentum of 0.9 and a triangular learning rate schedule (linear
warmup and decay), with 1 epoch of warmup to a peak learning rate of 0.1. We train the model with
a batch size of 128 for 50 epochs, i.e. for a total of 19,500 updates. We employ random horizontal
flips, random translation and cutout augmentations.

Perturbation Details. The batch perturbation procedure operates as follows: a random batch of
examples is drawn and used to conduct a single forward/backward pass of SGD on the perturbed
network at perturbation time. The gradient from this pass is saved, and the perturbed network is
reset to the original network at the perturbation point. This gradient is then scaled by multiplying
by ϵ and added to the perturbed network’s parameters:

θ̂Bt = θt + ϵ · δbatch, δbatch = ∇ℓ(x, y; θt), x, y ∼ D

where θ̂Bt and θt are the perturbed and original networks respectively at time t, ϵ is the perturbation
scale, ∇ℓ the gradient of the loss function with respect to θt, and x, y are the randomly drawn batch
from the dataset D.

The Gaussian perturbation procedure operates as follows: a random sample is drawn from the
network’s initial distribution. This is multiplied by ϵ and added to the perturbed network’s parame-
ters at perturbation time.

θ̂Bt = θt + ϵ · δ, δ
(l)
ij ∼ N

(
0,

2

nl−1

)
where δ

(l)
ij are parameters from layer l from independently drawn from the Kaiming/He initializa-

tion, which is a Gaussian with standard deviation 2
nl−1

, where nl−1 is the number of neurons in the
previous layer [9].

To ensure that the perturbed network has sufficient training time to converge even when per-
turbed late in training, the perturbed network is always trained for exactly 50 epochs (19,500 up-
dates) after the perturbation time. Specifically, the original network is trained for an additional T −t
steps after perturbation time t for a total training time of T = 19500, whereas the perturbed network
is trained for T more steps after perturbation for a total of T + t updates.

Appendix B. Perturbations with additive Gaussian noise

We repeat our experiments using perturbations defined by adding Gaussian noise proportional to
the random initialization of the network, instead of randomly sampled batch gradient updates. The
magnitude of the perturbation is indicated by the scale ϵ by which the perturbation is multiplied,
with ϵ = 1 corresponding to the distribution of the network’s parameters at random initialization.
Figures 5 to 8 correspond to figs. 1 to 4 from the main text respectively.

8



THE BUTTERFLY EFFECT

0 2500 5000 7500
Perturbed at Step

0

1

2

B
ar

rie
r 

ce

ResNet 20 - Gaussian
Perturbance

= 0.001
= 0.01
= 0.1
= 0.25

Figure 5: Identical plot to fig. 1, but with Gaussian perturbation. Barriers at the end of training
(y-axis) versus perturbation time (x-axis) and magnitude (line color) for Gaussian perturbations.
Means over three runs are plotted.
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Figure 6: Identical plot to fig. 2, but with Gaussian perturbation. Left: inset of barriers for early
training perturbations, with additional smaller perturbations. Right: inset of barriers for late training
perturbations, with additional larger perturbations.
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Figure 7: Identical plot to fig. 3, but with Gaussian perturbation. Left: L2 distance between original
and perturbed network (x-axis), versus barrier (y-axis) after training. Center, right: L2 distance
from initialization (y-axis) over training time (x-axis) for original (middle) and perturbed (right)
networks.
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Figure 8: Identical plot to fig. 4 (middle and right), but with Gaussian perturbation. Left: ratio of
fixed points (x-axis) of permutation found by weight alignment versus L2 distance between original
and perturbed network after training. Right: ratio of fixed points (x-axis) of permutation found by
weight alignment versus barrier between original and perturbed network after training.

Appendix C. Error barriers

Here, we report the same results in fig. 1 but with error barrier (maximum accuracy decrease over
the linear path between two networks) on the y-axis for figs. 9 and 10. We also report the error
barriers for the networks trained with Gaussian perturbations in figs. 11 and 12. Again, means over
three runs are plotted.
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Figure 9: Identical plot to fig. 1, but plotting error barrier as a percentage, i.e. 100(1 − accuracy).
Barriers at the end of training (y-axis) versus perturbation time (x-axis) and magnitude (line color)
for batch-gradient perturbations.
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Figure 10: Identical plot to fig. 2, but with error barriers. Left: inset of barriers for early training
perturbations, with additional smaller perturbations. Right: inset of barriers for late training pertur-
bations, with additional larger perturbations.
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Figure 11: Identical plot to fig. 5 with Gaussian perturbation, but with error barriers. Error barriers
at the end of training (y-axis) versus perturbation time (x-axis) and magnitude (line color) for batch-
gradient perturbations. Means over three runs are plotted.
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Figure 12: Identical plot to fig. 6 with Gaussian perturbation, but with error barriers. Left: inset
of barriers for early training perturbations, with additional smaller perturbations. Right: inset of
barriers for late training perturbations, with additional larger perturbations.
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Figure 13: Identical plot to fig. 2, but with the learning rate scheduler reset to initialization after
perturbation. Barriers at the end of training (y-axis) versus perturbation time (x-axis) and magnitude
(line color).

Appendix D. Learning rate rewinding

We repeat our experiments with batch perturbation, but here we additionally reset the learning rate
scheduler of the perturbed model to its state at initialization—a process called learning rate rewind-
ing [15]. Rewinding the learning rate allows us to experiment with larger perturbation sizes that
would otherwise compromise the performance of the perturbed model. In fig. 13, we observe that
the earlier and larger perturbations result in higher barriers, supporting previously observed trends
(fig. 2 right), albeit with a larger variation in barriers. This is expected since rewinding the learning
rate results in larger step sizes which amplify SGD noise, especially when the learning rate be-
comes larger after rewinding when compared with the original learning rate schedule. Nonetheless,
the barriers later in training remain significantly lower than those near initialization (fig. 2, left).
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