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Abstract
Variational Auto-Encoders (VAEs) constitute a single framework to achieve density esti-
mation, compression, and data generation. Here, we present a novel class of generative
models, called self-supervised Variational Auto-Encoder (selfVAE), that utilizes determinis-
tic and discrete transformations of data. The models allow performing both conditional
and unconditional sampling while simplifying the objective function. First, we use a sin-
gle self-supervised transformation as a latent variable, where a transformation is either
downscaling or edge detection. Next, we consider a hierarchical architecture, i.e., multiple
transformations, and we show its benefits compared to the VAE. The flexibility of selfVAE
in data reconstruction finds a particularly interesting use case in data compression tasks,
where we can trade-off memory for better data quality, and vice-versa. We present the
performance of our approach on Cifar10, Imagenette64, and CelebA.

1. Introduction

The framework of variational autoencoders (VAEs) provides a principled approach for learning
latent-variable models. As it utilizes a meaningful low-dimensional latent space with density
estimation capabilities, it forms an attractive solution for generative modeling tasks. However,
its performance in terms of the test log-likelihood and quality of generated samples is often
disappointing, thus, many modifications were proposed. In general, one can obtain a tighter
lower bound, and, thus, a more powerful and flexible model, by advancing over the following
three components: the encoder (Rezende et al., 2014; van den Berg et al., 2018; Hoogeboom
et al., 2020; Maaløe et al., 2016), the prior (or marginal over latents) (Chen et al., 2016;
Habibian et al., 2019; Lavda et al., 2020; Lin and Clark, 2020; Tomczak and Welling, 2017)
and the decoder (Gulrajani et al., 2016). Recent studies have shown that by employing deep
hierarchical architectures and by carefully designing building blocks of the neural networks,
VAEs can successfully model high-dimensional data and reach state-of-the-art test likelihoods
(Zhao et al., 2017; Maaløe et al., 2019; Vahdat and Kautz, 2020).

In this work, we present a novel class of VAEs, called self-supervised Variational Auto-
Encoders, where we introduce additional variables to VAEs that result from discrete and
deterministic transformations of observed images. Since the transformations are deterministic,
and they provide a specific aspect of images (e.g., contextual information through detecting
edges or downscaling), we refer to them as self-supervised representations. The introduction
of the discrete and deterministic variables allows training deep hierarchical models efficiently
by decomposing the task of learning a highly complex distribution into training smaller and
conditional distributions. In this way, the model allows to integrate the prior knowledge
about the data, but still enables to synthesize unconditional samples. Furthermore, the
discrete and deterministic variables could be used to conditionally reconstruct data, which
could be of great use in data compression and super-resolution tasks.

© I. Gatopoulos & J.M. Tomczak.
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2. Our approach

Background Let x ∈ XD be a vector of observable variables, where X ⊆ R or X ⊆ Z,
and z ∈ RM denote a vector of latent variables. Since calculating pϑ(x) =

∫
pϑ(x, z)dz is

computationally intractable for non-linear stochastic dependencies, a variational family of
distributions could be used for approximate inference. Then, the following objective function
could be derived, namely, the evidence lower bound (ELBO) (Jordan et al., 1999):

ln pϑ(x) ≥ Eqφ(z|x) [ln pθ(x|z) + ln pλ(z)− ln qφ(z|x)] , (1)

where qφ(z|x) is the variational posterior (or the encoder), pθ(x|z) is the conditional likelihood
function (or the decoder) and pλ(z) is the prior (or marginal), φ, θ and λ denote parameters.

The expectation is approximated by Monte Carlo sampling while exploiting the reparam-
eterization trick to obtain unbiased gradient estimators. The models are parameterized by
neural networks. This generative framework is known as Variational Auto-Encoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014).
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Figure 1: The proposed approach.

Self-supervised representations The idea of
self-supervised learning is about utilizing original
unlabeled data to create additional context infor-
mation. It could be achieved in multiple manners,
e.g., by adding noise to data (Vincent et al., 2008)
or masking data during training (Zhang et al.,
2017). Self-supervised learning could also be seen
as turning an unsupervised model into a super-
vised by, e.g., treating predicting next pixels as a
classification task (Hénaff et al., 2019; Oord et al.,
2018). These are only a few examples of a quickly
growing research line (Liu et al., 2020).

Here, we propose to use non-trainable transfor-
mations to obtain information about image data.
Our main hypothesis is that since working with
highly-quality images is challenging, we could al-
leviate this problem by additionally considering
partial information about them. Fitting a model
to images of lower quality, and then enhancing them to match the target distribution seems
to be overall an easier task (Chang et al., 2004; Gatopoulos et al., 2020). By incorporat-
ing compressed transformations (i.e., the self-supervised representations) that still contain
global information, with the premise that it would be easier to approximate, the process of
modeling a high-dimensional complex density breaks down into simpler tasks. In this way,
the expressivity of the model will grow and gradually result in richer, better generations.
A positive effect of the proposed framework is that the model allows us to integrate prior
knowledge through the image transformations, without losing its unconditional generative
functionality. Overall, we end up with a two-level VAE with three latent variables, where
one is a data transformation that can be obtained in a self-supervised fashion. In Figure 1 a
schematic representation of the proposed approach with downscaling is presented.
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A number of exemplary image transformations are presented in Figure 4 (in the appendix).
We can see that with these transformations, even though we discard a lot of information, the
global structure is preserved. As a result, in practice, the model should have the ability to
extract a general concept of the data at the first stage, and add local information afterward.
In this work, we focus on downscaling (Figure 4.b, c & d in the appendix) and edge detection
or sketching (Fig. 4.i in the appendix).

Model formulation In our model, we consider representations that result from determin-
istic and discrete transformations of an image. Formally, we introduce a transformation
d : XD → XC that takes x and returns an image representation y, e.g., a downscaled
image. Since we lose information about the original image, z could be seen as a variable
that compensates lost details in x. Further we propose to introduce an additional latent
variable, u ∈ RN to model y and z. We can define the joint distribution of x and y as follows:
p(x,y) = p(y|x)p(x), where p(y|x) = δ(y − d(x)) due to the deterministic transformation
d(·), where δ(·) is the Kronecker delta. Thus, the empirical distribution is δ(y−d(x))pdata(x).
However, since we are interested in decomposing the problem of modeling a complex distri-
bution p(x), we propose to model p(x|y)p(y) instead, and utilize the variational inference of
the form Q(u, z|x,y) = q(u|y)q(z|x) that yields:

ln p(x,y) ≥ EQ
[
ln pθ(x|y, z) + ln p(z|u,y) + ln p(y|u) + ln p(u)− ln q(z|x)− ln q(u|y)

]
. (2)

In the appendix (see Section B), we present the specific choices of the distributions. To
highlight the self-supervised part in our model, we refer to it as the self-supervised Variational
Auto-Encoder (or selfVAE for short).

Generation and Reconstruction in selfVAE As generative models, VAEs can be used
to synthesize novel content through the following process: z ∼ p(z)→ x ∼ p(x|z), but also
to reconstruct a data sample x∗ by using the following scheme: z ∼ q(z|x∗)→ x ∼ p(x|z).

Interestingly, our approach allows to utilize more operations regarding data generation
and reconstruction. First, analogously to VAEs, the selfVAE allows to generate data
by applying the following hierarchical sampling process (generation): u ∼ p(u) −→ y ∼
p(y|u) −→ z ∼ p(z|u,y) −→ x ∼ p(x|y, z). However, we can use the ground-truth y (i.e,
y∗ = d(x∗)), and sample or infer z. Then, the generative process for the former (conditional
generation) is: z ∼ q(z|x∗) −→ x ∼ p(x|y∗, z), and for the latter (conditional reconstruction):
u ∼ q(u|y∗) −→ z ∼ p(z|u,y∗),−→ x ∼ p(x|y∗, z). If y is a downscaling transformation of the
input image, selfVAE can be used in a manner similar to the super-resolution (Gatopoulos
et al., 2020). Alternatively, we can sample (or generate) y instead, and choose to sample or
infer z. In this way, we can reconstruct an image in two ways, namely, reconstruction 1 : y∗ =
d(x∗) −→ u ∼ q(u|y∗) −→ y ∼ p(y|u) −→ z ∼ p(z|u,y) −→ x ∼ p(x|z,y), and reconstruction 2 :(
y∗ = d(x∗) −→ u ∼ q(u|y∗) −→ y ∼ p(y|u)

)
, then z ∼ q(z|x∗) −→ x ∼ p(x|y, z).

The presented versions of generating and reconstructing images could be useful in the
compression task. As we will see in the experiments, each option creates a different ratio of
the reconstruction quality against the memory that we need to allocate to send information.
However, every inferred variable needs to be sent, thus, more sampling corresponds to lower
memory requirements.
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Figure 2: Hierarchical selfVAE.

Hierarchical self-supervised VAE The pro-
posed approach can be further extended and gen-
eralized by introducing multiple transformations,
in the way that it is illustrated in Figure 2. By
incorporating a single (or multiple) self-supervised
representation(s) of the data, the process of mod-
eling a high-dimensional complex density breaks
down into K simpler modeling tasks. Thus, we ob-
tain a K-level VAE architecture, where the overall
expressivity of the model grows even further and
gradually results in generations of higher quality.
Some transformations cannot be applied multiple
times (e.g., edge detection), however, others could
be used sequentially, e.g., downscaling.

We take K self-supervised data transforma-
tions dk(·) that give K representations denoted
by y1:K , and the following variational distributions:

Q(u, z|x,y1:K) = q(u|yK)q(z1|x)
K−1∏
k=1

q(zk+1|yk), (3)

that yields the following objective:

ln p(x,y1:K) ≥ EQ
[
ln pθ(x|y1, z1) +

K−1∑
k=1

(
ln p(zk|yk, zk+1) + ln p(yk|yk+1, zk+1)

)
+

+ ln p(zK |u,yK) + ln p(yK |u) + ln p(u)− ln q(u|yK)− ln q(z1|x)−
K−1∑
k=1

ln q(zk+1|yk)
]
. (4)

3. Experiments

Setup We evaluate the proposed model on CIFAR-10, Imagenette641 and CelebA. Encoders
and decoders consist of building blocks composed of DenseNets (Huang et al., 2016), channel-
wise attention (Zhang et al., 2018), and ELUs (Clevert et al., 2015) as activation functions.
The dimensionality of all the latent variables were kept at 8×8×16 = 1024 and all models were
trained using AdaMax (Kingma and Ba, 2014) with data-dependent initialization (Salimans
and Kingma, 2016). Regarding the selfVAEs, in CIFAR-10 we used an architecture with a
single downscaled transformation (selfVAE-downscale), while on the remaining two datasets
(CelebA and Imagenette64) we used a hierarchical 3-leveled selfVAE with downscaling, and
a selfVAE with sketching. All models were employed with the bijective prior (RealNVP)
comparable in terms of the number of parameters (the range of the weights of all models
was from 32M to 42M). For more details, please refer to the appendix sections D and C.
We approximate the negative log-likelihood using 512 IW-samples (Burda et al., 2015) and
express the scores in bits per dimension (bpd). Additionally, for CIFAR-10, we use the
Fréchet Inception Distance (FID) (Heusel et al., 2017).

1. https://github.com/fastai/imagenette

4

https://github.com/fastai/imagenette


selfVAE

Dataset Model bpd ↓ FID ↓

CIFAR-10

PixelCNN (van den Oord et al., 2016) 3.14 65.93

GLOW (Kingma and Dhariwal, 2018) 3.35 65.93

ResidualFlow (Chen et al., 2019) 3.28 46.37

BIVA (Maaløe et al., 2019) 3.08 -

NVAE (Vahdat and Kautz, 2020) 2.91 -

DDPM (Ho et al., 2020) 3.75 5.24 (3.17*)

VAE (ours) 3.51 41.36 (37.25*)

selfVAE-downscale 3.65 34.71 (29.95*)

CelebA

RealNVP (Dinh et al., 2016) 3.02 -

VAE (ours) 3.12 -

selfVAE-sketch 3.24 -

selfVAE-downscale-3lvl 2.88 -

Imagenette64
VAE (ours) 3.85 -

selfVAE-downscale-3lvl 3.70 -

Table 1: Quantitative comparison on test sets from CIFAR-10, CelebA, and Imagenette64.
*Measured on training set.

Quantitative results We present the results of the experiments on the benchmark datasets
in Table 1. First, we notice that on CIFAR-10 our implementation of the VAE is still lacking
behind other generative models in terms of bpd, however, it is better or comparable in terms
of FID. The selfVAE-downscale achieves worse bpd than the VAE. A possible explanation
may lie in the small image size (32×32), as the benefits of breaking down the learning process
in two or more steps are not obvious given the small target dimensional space. Nevertheless,
the selfVAE-downscale achieves significantly better FID scores than the other generative
models. This result could follow from the fact that downscaling allows maintaining context
information about the original image and, as a result, a general coherence is of higher quality.

Interestingly, on the two other datasets, a three-level selfVAE-downscale achieves signifi-
cantly better bpd scores than the VAE with the bijective prior. This indicates the benefit of
employing a multi-leveled self-supervised framework against the VAE in higher-dimensional
data, where the plain model fails to scale efficiently. It seems that the hierarchical structure
of self-supervised random variables allows encoding the missing information more efficiently
in zk, in contrast to the vanilla VAE, where all information about images must be coded in z.

Qualitative results We present generations on CIFAR-10 and Imagenette64 in Figure
6 and on CelebA in Figure 7, and reconstructions on CIFAR-10 and CelebA in Figure 3.2

We first notice that the generations from selfVAE seem to be more coherent, in contrast
with these from VAE that produces overall more contextless and distorted generations. This
result seems to be in line with the FID scores. Especially for CelebA, we observe impressive
synthesis quality, great sampling diversity, and coherent generations (Figure 7). On the
Imagenette64 dataset, we can also observe crisper generations for our method compared to

2. In this paragraph, all results except Figure 3 are presented in the appendix.
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Figure 3: Comparison on image reconstructions with different amount of sent information.

the VAE (Figure 6). Furthermore, the hierarchical selfVAE seems to be of great potential
for compression purposes. In contrast to the VAE, which is restricted to using a single
way of reconstructing an image, the selfVAE allows four various options with different
quality/memory ratios (Figure 3). In the selfVAE-sketch, we can retrieve the image with
high accuracy by using only 16% of the original data, as it manages to encode all the texture
of the image to z (Figure 8). This shows the advantage of choosing prior knowledge into the
learning process. Lastly, the latents learn to add extra information, which defines the end
result, and we can alter details of an image like facial expressions (Figure 9.ii).

4. Conclusion

In this paper, we showed that taking deterministic and discrete transformations results in
coherent generations of high visual quality, and allows to integrate prior knowledge without
losing its unconditional generative functionality. The experimental results seem to confirm
that hierarchical architectures perform better and allow to obtain both better bpd scores
and better generations and reconstructions. In the experiments, we considered two classes of
image transformations, namely, downscaling and edge detection (sketching). However, there
is a vast of possible other transformations (see Figure 4), and we leave investigating them for
future work. Moreover, we find the proposed approach interesting for the compression task.
A similar approach with a multi-scale auto-encoder for image compression was proposed,
e.g, by Mentzer et al. (2019) or Razavi et al. (2019). However, we still use a probabilistic
framework and indicate that various non-trainable image transformations (not only multiple
scales) could be of great potential.

6



selfVAE

References

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv, 2015.

Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-resolution through neighbor embedding.
In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I. IEEE, 2004.

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual
flows for invertible generative modeling. arXiv, 2019.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman,
Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv, 2016.

Ioannis Gatopoulos, Maarten Stol, and Jakub M. Tomczak. Super-resolution variational
auto-encoders. arXiv.2006.05218, 2020.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David
Vazquez, and Aaron Courville. Pixelvae: A latent variable model for natural images. arXiv,
2016.

Amirhossein Habibian, Ties van Rozendaal, Jakub M Tomczak, and Taco S Cohen. Video
compression with rate-distortion autoencoders. In Proceedings of the IEEE International
Conference on Computer Vision, pages 7033–7042, 2019.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Eslami,
and Aaron van den Oord. Data-efficient image recognition with contrastive predictive
coding. arXiv preprint arXiv:1905.09272, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium.
arXiv, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33, 2020.

Emiel Hoogeboom, Victor Garcia Satorras, Jakub M Tomczak, and Max Welling. The
convolution exponential and generalized sylvester flows. arXiv preprint arXiv:2006.01910,
2020.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. arXiv, 2016.

7



selfVAE

Michael I. Jordan, Zoubin Ghahramani, and et al. An introduction to variational methods
for graphical models. In Machine Learning, pages 183–233. MIT Press, 1999.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv,
2014.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1
convolutions. arXiv, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv, 2013.

Frantzeska Lavda, Magda Gregorová, and Alexandros Kalousis. Data-dependent conditional
priors for unsupervised learning of multimodal data. Entropy, 22(8):888, 2020.

Shuyu Lin and Ronald Clark. Ladder: Latent data distribution modelling with a generative
prior. arXiv preprint arXiv:2009.00088, 2020.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and Jie Tang.
Self-supervised learning: Generative or contrastive. arXiv preprint arXiv:2006.08218, 2020.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary
deep generative models. arXiv, 2016.

Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep hierarchy
of latent variables for generative modeling. arXiv, 2019.

Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool.
Practical full resolution learned lossless image compression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 10629–10638, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. In Advances in Neural Information Processing Systems, pages 14866–14876,
2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. arXiv, 2014.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. arXiv, 2016.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++: Improving
the pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv,
2017.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob Bishop,
Daniel Rueckert, and Zehan Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. arXiv, 2016.

8



selfVAE

Jakub M Tomczak and Max Welling. Vae with a vampprior. arXiv preprint arXiv:1705.07120,
2017.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv,
2020.

Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. arXiv, 2018.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. arXiv, 2016.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pages 1096–1103, 2008.

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised
learning by cross-channel prediction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1058–1067, 2017.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image
super-resolution using very deep residual channel attention networks. arXiv, 2018.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from deep
generative models. In International Conference on Machine Learning, pages 4091–4099,
2017.

9



selfVAE

Appendix A. Non-trainable image transformations

In Figure 4, we present various examples of discrete and deterministic (and non-trainable)
image transformations.

a) Original Image b) Bicubic Interpolation x2 c) Bicubic Interpolation x3 d) Bicubic Interpolation x4

f) 1 bit g) 2 bits h) 3 bits j) Greyscalei) Sketch

e) Gaussian Kernel (1x1)

Figure 4: Examples of image transformations. All of these transformations preserve the
global structure of the samples, but they disregard the high resolution details in
different manners.

Appendix B. Specific choices of distributions in selfVAE

In this paper, we use the following distributions for the generative part of the selfVAE:

p(v) = N (v|0,1)

pλ (u) = p(v)

F∏
i=1

∣∣∣det ∂fi(vi−1)
∂vi−1

∣∣∣−1
pθ1 (y|u) =

I∑
i=1

π
(u)
i Dlogistic

(
µ
(u)
i , s

(u)
i

)
pθ2 (z|y,u) = N

(
z|µθ2(y,u),diag (σθ2(y,u)))

pθ3 (x|z,y ) =
I∑
i=1

π
(z,y)
i Dlogistic

(
µ
(z,y)
i , s

(z,y)
i

)
where Dlogistic is defined as the discretized logistic distribution (Salimans et al., 2017), and
we utilize a flow-based model for pλ (u).

Further, we consider the following distributions for the variational part:

qφ1 (u|y ) = N
(
u|µφ1(y),diag (σφ1(y)))

qφ2 (z|x) = N
(
z|µφ2(x),diag (σφ2(x))).
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Appendix C. Datasets

CIFAR-10 The CIFAR-10 dataset is a well-known image benchmark data containing
60.000 training examples and 10.000 validation examples. From the training data, we put
aside 15% randomly selected images as the test set. We augment the training data by using
random horizontal flips and random affine transformations and normalize the data uniformly
in the range (0, 1).

Imagenette64 Imagenette643 is a subset of 10 classes from the downscaled Imagenet
dataset. We downscaled the dataset to 64px × 64px images. Similarly to CIFAR-10, e
put aside 15% randomly selected training images as the test set. We used the same data
augmentation as in CIFAR-10

CelebA The Large-scale CelebFaces Attributes (CelebA) Dataset consists of 202.599
images of celebrities. We cropped original images on the 40 vertical and 15 horizontal
component of the top left corner of the crop box, which height and width were cropped to
148. Besides the uniform normalization of the image, no other augmentation was applied.

Appendix D. Neural Network Architecture

The choice of the NN architecture is crucial for the performance and the scalability of the
overall framework, and usually architectures that showcased great performance in discriminate
tasks (i.e. classification) are used in generative modelling tasks as well. However, the internal
representations that the networks have to discover are fundamentally different, and little
attention has been given into designing a NN specifically for an auto-encoder setting. For
example, in classification tasks the network extracts specific representation of a particular
object, in contrast with the generative models, where we aim for discovering the semantic
structure of the data. Thus, as we argue that we can benefit from a carefully designed
architecture, in this section we present our approach.

For building blocks of the network, we employed densely connected convolutional networks
instead of residual ones. The motivation for this choice is that since DenseNets encourage
feature reuse, it will help preserve visual information from the very first layer effectively, while
requiring less trainable parameters. Thus, the network could discover easier generic graphical
features and local pixel correlations. The concatenation of the filters will also alleviate
the vanishing-gradient problem and allow us to build deep architectures. Additionally,
exponential linear units (ELUs) are used everywhere as activation functions. In contrast to
ReLUs, ELUs have negative values which allows them to push mean unit activations closer
to zero, which speeds up the learning process. This is due to a reduced bias shift effect ; bias
that is introduced to the units from those of the previous layer which have a non-zero mean
activation.

Typically, every convolution operation precedes a batch normalization layer, as they
empirically exhibit a boost in performance in discriminate tasks. However, their performance
is known to degrade for small batch sizes, as the variance of the activation noise that they
contribute is inversely proportional to the number of data that is processed. This noise
injection, in combination with their intensive memory demands, can be critical drawbacks
when we process image data, especially high-dimensional ones. We instead use weight

3. https://github.com/fastai/imagenette
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normalization, where even though it separates the weight vector from its direction just like
batch normalization, they do not make use of the variance. This allows them to get the
desired output even in small mini-batches, while allocating a small proportion of memory.
We empirically find out that indeed using weight normalization reduces the overfitting of the
model. In addition, we used a data-dependant initialization of the model parameters, by
sampling the first batch of the training set. This will allow the parameters to be adjusted
by the output of the previous layers, taking into account and thus resulting into a faster
learning process.

An important element of the auto-encoding scheme is the process of feature downscaling
and upscaling. Despite its success in classification tasks, pooling is a fixed operation that
replacing it with a stride-convolution layer can also be seen as generalization, as the scaling
process is now learned. This will increase the models’ expressibility with the cost of adding a
negligible amount of learning parameters. For the upscaling operation, even though various
methods have been proposed (Shi et al., 2016), we found out that the plain transposed
convolution generalised better than the others, while requiring far less trainable parameters.
Finally, inspired from the recent advantages on super-resolution neural network architectures,
we used channel-wise attention blocks (CA) at the end of every DenseNet block (Zhang
et al., 2018). The CA blocks will help the network to focus on more informative features,
by exploiting the inter-dependencies among feature channels. Thus, it performs feature
recalibration in a global way, where the per-channel summary statistics are calculated and
then used to selectively emphasise informative feature-maps as well as suppress useless
ones (e.g. redundant feature-maps). This is done through a global average pooling, that
squeezes global spatial information into a channel statistical descriptor, followed by a gating
mechanism, where it learns nonlinear interactions between the input channels.

The core building blocks and the network of an auto-encoding network are illustrated in
Figure D.

12



selfVAE

⊔

DenseNetBlock

…

Sigmoid

AdaptiveAvgPool2d (1)

ELU

Conv2d 
(c:4G, k:1, str:1, pad:0)

Conv2d 
(c:C, k:1, str:1, pad:0)

ELU

Conv2d 
(c:C, k:1, str:1, pad:0)

Conv2d 
(c:G, k:3, str:1, pad:1)

ELU

DenseNetBlock

ELU

Channel Attention

DenseNetBlock

DenseNet

Channel Attention

⊗

D
enseN

et Encoder Block

DenseNet

Conv2d 
(k:3, str:2, pad:1)

ELU

DenseNet

DeConv2d 
(k:3, str:2, pad:1)

ELU

DenseNet Encoder Block

…

D
enseN

et Encoder O
utput Block

DenseNet

Conv2d 
(k:1, str:1, pad:0)

ELU

Conv2d 
(k:1, str:1, pad:0)

HardTanh(-7, 7)

⊕

D
enseN

et D
ecoder Block

DenseNet Decoder Block

…

Conv2d 
(k:3, str:1, pad:1)

input

reconstruction

εz

log(σ 2)
μ

⊗

δ (x)

0

1
δ (x − x0)

x0

1

0

μ x

p (x | μ , s )

x

x + 1
2x − 1

2

g (x )f (x )

4 8
3 7
2 6
1 5

1 2 5 6
3 4 7 8

Figure 5: Architecture of our autoencoder. On
the right, there are some basic build-
ings block of the network. The nota-
tion as ’G’ on the Conv2D channels
indicate the growth rate of the densely
connected network. The ε indicates
a random variable drawn from a stan-
dard Gaussian, which helps us to make
use of the reparametrization trick. Un-
til z, we refer to this architecture as
Encoder NN and thereafter as Decoder
NN. The former and the later form the
building blocks to every model that we
train and evaluate.
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Appendix E. Additional results
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Figure 6: Uncoditional generations on Imagenette64 and CIFAR-10.
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Figure 7: Unconditional CelebA generations from (i) the three-level self-supervised VAE with
downscaling, (ii) the self-supervised VAE employed with edge detection (sketches),
(iii) the VAE with RealNVP prior.
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Figure 8: Qualitative results illustrating all the reconstruction techniques on CelebA for
selfVAE-sketch.
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Figure 9: Latent space interpolations and conditional generations of the selfVAEs.
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