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Abstract
We propose a set of loss functions adapted from Stochastic Block Model (SBM)
likelihood functions to train Graph Neural Networks (GNNs) for the task of
unsupervised community detection. Identifying latent community structures is a
prominent challenge for many graph applications. SBMs are classical models
that describe the generating process of random graphs and are commonly used
to infer community structure. The likelihood functions associated with SBMs
are well-defined, differentiable, and measure the quality of inferred community
partitions; this makes them particularly useful for unsupervised learning with
GNNs. Our proposed loss functions are independent of any specific GNN
architecture and demonstrate competitive or improved community detection
performance against several alternatives. Evaluation is carried out on multiple
architectures and datasets, offering a thorough empirical analysis of the state of
community detection with GNNs.

1 Introduction
Graphs provide a rich source of relational information on which to perform a variety of machine
learning tasks. Unsupervised community detection (also known as node clustering) refers to the
problem of partitioning graph nodes into groups based on attributes and structural information.
Methods for analyzing community structure are essential to applications in cybersecurity, social
sciences, and e-commerce. For example, many Recommender Systems predict which product to
recommend to a customer based on the inferred category (community) the product or customer
belongs to.

A common tool for identifying and analyzing communities is the Stochastic Block Model (SBM) [1].
SBMs are statistical models of community structure in networks, parameterized by a node partition
and a community structure matrix. Variations of the SBM have been proposed to address alternative
assumptions about the generating processes of graphs [2–7].

The progress of Graph Neural Networks (GNNs) in representation learning on graphs has motivated
their use for community detection as well. Several GNN-based frameworks have been proposed [8–
12] and demonstrate impressive performance for both semi-supervised and unsupervised community
detection. Most unsupervised methods involve estimating the partition matrix through modularity
maximization, link prediction, or solving the minimum-cut problem; typically a combination of
custom GNN architectures and training routines are used.

Significant work has also been done to integrate the strong theoretical foundations of SBMs with the
expressive power of GNNs [13–17]. Usually, these approaches incorporate GNNs as a component in
a mixture model or as a Bayesian prior.

A natural synthesis of the two approaches is to incorporate an SBM likelihood function as a loss
function for training a GNN [18]. Adapting the likelihood functions for different types of SBMs
offers a set of configurable, fully differentiable objectives which can be used for unsupervised training
of an arbitrary neural network.
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This paper has two main contributions: (i) A set of loss functions derived from SBM likelihood
functions and (ii) an extensive comparison of unsupervised loss functions for the task of community
detection. The loss functions are motivated by maximum likelihood estimation and the Graph
Matching problem [19]. We compare the performance of GNN models trained with the SBM loss
functions to several state-of-the-art alternatives on synthetic and real-world graphs.

The proposed loss functions are fully differentiable and do not require custom architectures or training
routines. So for a fair empirical analysis, the same GNN architecture and training loop are used for
each loss function. Consequently, comparison approaches that do not use stand-alone loss functions
are not considered.

2 Related Work

2.1 Stochastic Block Models

Stochastic Block Models, introduced in [1], are a family of generative models which assume that the
existence of any edge in a graph is dependent only on the partition (community membership) of the
two component nodes. SBMs are identified by a node partition and a structure matrix, which defines
the expectation of an edge between each partition.

Several variants of the SBM have been proposed to address different challenges: the Degree-Corrected
SBM [2] mitigates the problem of skewed degree distributions by directly modeling degree hetero-
geneity; the Mixed Membership SBM [3] and the closely related Overlapping SBM [4] allow nodes
to be members of more than one community, leading to more flexible interpretations of community
structure; the Contextual SBM [6] incorporates node attributes, which are assumed to be generated
conditionally on node communities; the Microcannonical SBM [5] enforces strict structural con-
straints in the model directly, rather than in expectation only. An in-depth review of these (and other)
variants is given in [7].

The task of inference with SBMs typically involves identifying the process that generates a given graph
and estimating the relevant parameters [7]. Inferring the partition of a graph from an SBM is sufficient
for the task of community detection. A full survey of statistical community detection techniques
related to SBM inference is given in [20]. While there are several ways to define community detection,
this paper considers it to be the task of clustering nodes such that within group connectivity is high
and between group connectivity is low [7, 9, 21, 22].

The success of Graph Neural Networks in representation learning on graphs (see [23–26]) has
motivated several deep learning frameworks for SBMs. GNNs are used to parameterize Contextual
SBMs in [13, 15, 17], where node features are assumed to be a function of community membership.
Conversely, [14] uses a single-layer perceptron to model community membership as a function
of node features. In [16] the authors design a variational auto-encoder GNN to parameterize an
Overlapping SBM.

The SBM likelihood function is used as part of a composite loss function in [18]. In this work,
the authors combine an approximate SBM log-likelihood, a custom link prediction loss, an entropy
term, and task-specific losses in order to optimize a neural network with a custom training routine.
The framework is evaluated on the tasks of community detection, graph alignment, and anomalous
correlation detection. This approach differs from ours in the formulation of the adapted loss function
and training routine as well as in the extent of evaluation.

2.2 Deep Community Detection

Deep community detection refers to unsupervised or semi-supervised community detection performed
with deep neural networks. Much work has been done (orthogonally to the SBM class) on GNN-based
community detection.

In [11], a framework consisting of multiple GNN layers is proposed, where one module generates
node embeddings and the other pools node features according to (predicted) community structure.
A link prediction objective is used to guide the pooling function. In [8], the authors apply a GNN
to the minimum-cut problem, which seeks to partition the set of nodes into disjoint (i.e., minimally
connected) subsets by maximizing the average ratio of edges within communities to edges between
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communities. They do this by directly minimizing the negative of the minimum-cut metric plus a
custom orthogonality constraint.

Both of the above approaches depend on custom architectures for task-specific problems. The focus
of this paper, though, is on stand-alone objective functions that do not require custom architectures.
One such general approach is taken in [9], where the authors propose using GNN embeddings to
parameterize a Bernoulli-Poisson model [27, 28] of a graph. A likelihood-based loss function is
derived from this model and edge sampling is used to address imbalance.

In [10] it is proposed to directly optimize modularity, a metric that measures the quality of community
partitions. To train a GNN, the authors minimize the negative of estimated modularity plus a novel
regularization term. The authors suggest that the orthogonality constraint from [8] tends to trap the
optimization routine in local minima and instead devise their own “collapse regularization” meant to
penalize trivial partitions. As a generalization of modularity optimization, [12] propose using the
negative of the trace of the Markov Stability matrix [29–31] to train a GNN. Markov Stability is a
dynamic quality metric that measures the probability that a random walk starting in one community
will end in another after a certain number of time steps.

3 Methods
3.1 Preliminary

Let G = (V, E) be a directed graph with n = |V| nodes and m = |E| unique edges. Furthermore,
let D = V × V be the set of all possible node dyads so that E ⊆ D. The adjacency matrix
A ∈ {0, 1}n×n represents the edge structure of G and the n-vector d measures the node degrees
such that du =

∑n
v=1 Auv. Community memberships are represented in the k-partition matrix

Z ∈ {0, 1}n×k, where Zui = 1 if node u is a member of community i and 0 otherwise. It is also
assumed that

∑k
i=1 Zui = 1 for all u ∈ V .

3.2 Likelihood Functions

We now consider the likelihood functions of several Stochastic Block Model variants induced by
different assumptions of the underlying generating process of G. All models have parameters Z and
Θ, where Θ is a k× k structure matrix (also known as the block matrix). The block matrix is defined
such that Θij is the expected value of any edge from a node in community i to a node in community
j. That is, E(Auv|Z) = Z′

uΘZv for all (u, v) ∈ D.

3.2.1 Poisson

One common form of the SBM assumes that elements of A are Poisson distributed, conditional
upon the community membership of the incident nodes [2, 7]. This gives the formal assumption
Auv|Z ∼ Pois(Z′

uΘZv). Here, Θij is interpreted as the average number of edges between nodes in
communities i and j. The likelihood of this model is

LP(Z,Θ;A) =
∏
u,v

(Z′
uΘZv)

Auv

Auv!
exp(−Z′

uΘZv) (1)

which is similar to the formulation in [2].

Recall that because G is unweighted and has no parallel edges, A only takes the values zero or one.
This implies that equation 1 is in fact a partial likelihood, as it is defined over the {0, 1} sub-region
of the standard Poisson support. The partial log-likelihood of this model is

ℓP(Z,Θ;A) =
∑
u,v

[Auv ln(Z
′
uΘZv)− Z′

uΘZv] . (2)

Note that the factorial term has been dropped because it is always equal to zero.

The maximum likelihood estimate (MLE) for Θ, derived in [2], is the ratio of the number of edges
between two communities to the product of their community sizes. That is,

Θ̂ij =
[
Θ̂(G,Z)

]
ij
=

Mij

ninj
(3)
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where M =
∑

u,v∈E ZuZ
′
v is a k×k matrix such that Mij is the number of edges from nodes in com-

munity i to nodes in community j (or twice that if i= j) and n =
∑n

u=1 Zu is a k-vector representing
the number of nodes in each community. Note that

∑k
i=1

∑k
j=1 Mij = m and

∑k
i=1 ni = n.

3.2.2 Bernoulli

In focusing on graphs without weighted or parallel edges, it is useful to consider a model that fully
aligns with the restriction on the adjacency matrix. An intuitive choice is to assume that elements
in A are conditionally Bernoulli distributed [7]. Thus, the distribution assumption is modified to
Auv|Z ∼ Bern(Z′

uΘZv). This new model interprets Θij as the probability of an edge between
nodes in communities i and j. The log-likelihood of this model is

ℓB(Z,Θ;A) =
∑
u,v

[Auv ln(Z
′
uΘZv) + (1−Auv) ln(1−Z′

uΘZv)] . (4)

The advantage of this model over the partial Poisson model is that it is defined over the full support
of the assumed distribution, not just a sub-region. The MLE of Θ is the same as that of the Poisson
model (see Appendix F.1).

3.2.3 Degree Correction

Another variety of the SBM, introduced in [2], seeks to incorporate degree heterogeneity into the
model. The standard SBM assumes that nodes within the same block have the same expected
degree. This assumption can lead to a sub-optimal solutions on real-world networks, where degree
distributions are observed to be highly skewed.

To address this, the n-vector ϕ is introduced, allowing heterogeneous degree expectations. The
expected value of the dyad (u, v) is now ϕuϕvZ

′
uΘZv. The partial log-likelihood for the degree-

corrected Poisson model is
ℓP-DC(Z,Θ,ϕ;A) =

∑
u,v

[Auv ln(ϕuϕvZ
′
uΘZv)− ϕuϕvZ

′
uΘZv] (5)

and the log-likelihood for the degree-corrected Bernoulli model, referred to as ℓB-DC, is obtained by
the same substitution.

The MLE for ϕ, given in [2], is the ratio of a node’s degree to the sum of degrees in that node’s
community. So the scaled degree correction of node u is

ϕ̂u =
[
ϕ̂(G,Z)

]
u
= (Z′

un)
du

Z′
uδ

(6)

where δ =
∑n

u=1 Zudu is a k-vector representing the sum of degrees in each community. Also note
that Z′

uδ is the sum of degrees in the community that node u belongs to and Z′
un is the size of that

community.

In the Bernoulli model, the constraint that 0 < ϕuϕvZ
′
uΘZv < 1 for all (u, v) must be observed.

If ϕuϕv scales the quantity to a value greater than 1, then the log-likelihood will be undefined.
Therefore, it is necessary in ℓB-DC to impose the boundary ϕu ≤ 1 for all u. We achieve this in
practice by simply clamping the values to 1.

3.2.4 Overlap

In settings where nodes may belong to more than one community, alternative assumptions are required
[3, 4]. Consider interaction-specific community memberships [3], where the community of a node
varies depending on the edge it is observed in. To understand this model, we define an expanded
membership matrix Z∗ ∈ {0, 1}n×n×k such that Z∗

uvi = 1 if node u is a member of community i
when it transmits an edge to node v. The expected value of the dyad (u, v) is therefore Z∗′

uvΘZ∗
vu.

To reduce the dimensionality of the expanded model, let P ∈ [0, 1]n×k be the collapsed membership
matrix. This matrix is a summary of overlapping community memberships, defined as the degree-
normalized sum over the second axis of the expanded membership matrix: Pu = d-1

u

∑n
v=1 Z

∗
uv . In

the overlapping setting, Pu is interpreted as the frequency of node u’s membership in each of the
k communities [4]. Here, the expected value of the dyad (u, v) is P′

uΘPv. In the non-overlapping
setting, the collapsed membership matrix P is equivalent to the partition matrix Z. In both cases,∑k

i=1 Pui = 1. The collapsed membership matrix will be relevant to neural network optimization.
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3.3 Graph Neural Networks

With estimates of Θ and ϕ in place, we now turn to estimating the partition matrix. To begin, note
that none of the log-likelihood functions described above are differentiable with respect to Z, as it is
a collection of discrete vectors. Because of this, gradient-based optimization methods are unavailable
and Monte Carlo methods are commonly used to find the likelihood-maximizing partition [7, 20].

3.3.1 Parameter Specification

Neural networks are generally optimized with some variation of the gradient descent algorithm. For
gradient descent to be applicable in the SBM setting, an estimate of Z that is differentiable with
respect to the neural network parameters is required.

We consider the collapsed membership matrix P, which is useful for both the standard and overlapping
settings because it is a generalization of Z. The choice of P is convenient, as an estimate can be
obtained by differentiable functions such as Softmax applied to GNN embeddings. Therefore, the
partition estimator takes the following form:

P̂ = Softmax(GNN(G,X;W)) (7)

where GNN is any standard graph neural network with parameters W. Here, P̂ is considered a
relaxation of the partition matrix Z to a soft partition.

It should be noted that the output dimension of the GNN is the assumed number of communities k in
the graph of interest. In practice, the exact number of communities need not be known a priori. Our
experiments suggest that setting the output dimension to a reasonable overestimate typically allows
the model to learn the optimal number of communities (see Appendix D). Thus, k can be inferred as
the number of unique elements in K = {argmax P̂u : u ∈ V}. This is convenient for real-world
graphs where the true number of communities may be unknown.

3.3.2 Loss Functions

The loss function associated with the Poisson model is the negative of the log-likelihood function in
equation 2, with Z replaced by P̂ (equation 7) and Θ replaced Θ̂(G, P̂). That is,

JP(W) = −
∑
u,v

[
Auv ln(P̂

′
uΘ̂P̂v)− P̂′

uΘ̂P̂v

]
. (8)

For brevity, the scalar π̂uv = P̂′
uΘ̂P̂v is used for the remainder of this section. The loss function

associated with the Bernoulli model is derived in the same way from equation 4, resulting in

JB(W) = −
∑
u,v

[Auv ln(π̂uv) + (1−Auv) ln(1−π̂uv)] . (9)

Both losses are expressed as functions of the GNN parameters, W.

Recall that Auv is equal to 1 if (u, v) ∈ E and 0 if (u, v) ̸∈ E . Therefore, the loss function can be
broken out into a summation over the positive edge set E and the negative edge set N = D\E . Doing
so highlights the difference in cardinality of both sets. Often, real-world graphs are highly sparse,
meaning that |N | ≫ |E|. Such imbalance can be problematic for optimizing a GNN. A common
approach to address this is to under-sample [32] the majority class (usually the negative edge set)
[9, 23, 33]. With this sampling approach, the loss functions are rewritten

JP(W) = −
∑

u,v∈E
[ln(π̂uv)− π̂uv] +

∑
u,v ̸∈E

π̂uv (10)

≈ −
∑

u,v∼PE

[ln(π̂uv)− π̂uv] + η-1
∑

u,v∼PN

π̂uv (11)

JB(W) = −
∑

u,v∈E
ln(π̂uv)−

∑
u,v ̸∈E

ln(1−π̂uv) (12)

≈ −
∑

u,v∼PE

ln(π̂uv)− η-1
∑

u,v∼PN

ln(1−π̂uv). (13)
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The summations over PE and PN represent uniform samples from E and N with η as a scaling
constant. For our experiments, all m positive edges are drawn deterministically and ηm samples
from the negative set are drawn randomly at each training step.

The degree-corrected versions of both models are achieved by including ϕ̂(G, P̂) in each loss
function. Thus, the degree-corrected (DC) loss functions JP-DC and JB-DC are derived by substituting
π̃uv = ϕ̂uϕ̂vP̂

′
uΘ̂P̂v for π̂uv in the above equations.

3.3.3 Graph Matching

Another objective function is motivated by the Graph Matching problem [19, 34]. Graph Matching
refers to the (approximate or exact) alignment of nodes across two graphs of possibly different
sizes. Node alignment is usually defined by some real-world mechanism. Rather than matching two
arbitrary graphs, our approach involves matching a graph to its community representation.

Let the block graph GΘ = (VΘ, EΘ) be defined with its (weighted) adjacency structure given by
Θ. Each of its k nodes is a subset of nodes from V; that is, node i ∈ VΘ corresponds to the set
{u ∈ V : Zui = 1}. Thus, Z is considered a mapping matrix which transforms the block matrix
to the expectation of A; that is, ZΘZ′ 7→ E(A). Finding the optimal mapping matrix Z̃ is the
optimization problem

argmin
Z̃∈Z

∥A−Z̃ΘZ̃′∥F = argmin
Z̃∈Z

−tr(A′Z̃ΘZ̃′) (14)

where Z = {Z̃ ∈ {0, 1}n×k :
∑k

i=1 Z̃ui = 1 for all u ∈ V} and tr(·) is the matrix trace.

Because Θ is an unknown parameter in the SBM formulation, we use its MLE: Θ̂(G, Z̃). Thus, we
are seeking to find the (inverse) mapping of G to its estimated stochastic block representation GΘ̂ by
minimizing the quantity −tr(A′Z̃Θ̂Z̃′). A proof of this statement is provided in Appendix F.2.

The optimization problem above is addressed with GNNs by substituting Z̃ with the predicted
membership matrix P̂ from equation 7 and using the block matrix estimate Θ̂(G, P̂). The loss
function in this setting is

JMatch(W) = −tr(A′P̂Θ̂P̂′) (15)
and is again expressed as a function of the GNN parameters, W. Note that A can be represented as
a compressed sparse matrix, making the product A′P̂ relatively efficient to compute. Another gain
in computational efficiency comes from the relation tr(A′P̂Θ̂P̂′) =

∑n
u=1

∑k
i=1(A

′P̂)ui(Θ̂P̂′)iu.
The use of sparse matrix multiplication results in a significant speedup compared to the edge sampling
loss functions, as will be shown empirically in Section 4.

3.3.4 Regularization

The final component of the SBM loss framework is a regularization term. This regularization is meant
to encourage the model to distribute the predicted partition across a sufficient number of communities
and to ensure that the predicted partition is assortative (i.e., edges occur mostly between nodes of the
same community [7]).

We propose a term that helps minimize the distance of the structure matrix diagonal from unity. The
regularized form of an arbitrary loss function J is

J∗(W) = m-1 J(W) + α ∥1k−θ̂d∥F (16)

where θ̂d is the diagonal of Θ̂, 1k is a k-vector of ones, and ∥·∥F is the Frobenius norm. The
hyper-parameter α controls the strength of the regularization.

This is analogous to the “collapse regularization” term introduced in [10] (see Appendix B.3). Both
functions help to avoid trivial solutions to the optimization problem which arise when all nodes are
assigned to one partition. Also, both are conveniently bounded in the interval [0,

√
k].

4 Experiments
The proposed loss functions are evaluated based on the performance of the neural networks they are
optimized with respect to. Community detection performance is measured by Normalized Mutual
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Information (NMI) and Pairwise-F1 (PF1) scores; where relevant, the overlapping variants [35] are
used. Evaluation is carried out on a variety of synthetic and real-world datasets.

For baseline comparison, the loss functions used in several alternative approaches are also evalu-
ated: Neural Overlapping Community Detection JNOCD [9], Deep Modularity Network JDMoN [10],
Minimum-Cut Pooling JMCP [8], Markov Stability JCDMG [12], and link prediction JLP [23]. These
loss functions are described in greater detail in Appendix B. To ensure a fair comparison, a standard
Graph Neural Network architecture is used for all experiments regardless of what was used in the
original papers.

The architecture of choice is a two-layer Graph Convolutional Network (GCN) [24]. Implementation
details are provided in Appendix A. The model configuration and hyperparameters were determined
based on preliminary experimentation and are kept the same for all loss functions considered. An
examination of (SBM-specific) hyperparameter sensitivity is provided in Appendix D. We also
compare against the architecture described in [10]; these results, as well as the aggregated results of
several other architectures, are provided in Appendix E.

The models are tested on a number of synthetic datasets generated to demonstrate both the overlapping
and non-overlapping settings. We also test on several real-world benchmarks for overlapping and
non-overlapping community detection. Further detail for all datasets is provided in Appendix C.

4.1 Synthetic Results

SBM-4 SBM-8 SBM-16 SBM-32 Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 99.2 99.2 99.3 99.0 98.6 95.8 94.5 78.8 97.9 93.2
JCDMG 98.0 97.7 97.4 94.5 93.9 81.0 89.3 63.2 94.7 84.1
JDMoN 89.3 87.6 98.7 98.1 99.7 99.3 94.5 78.1 95.5 90.8
JLP 93.0 93.1 95.6 91.6 91.4 76.0 87.9 61.6 92.0 80.5

JNOCD 97.5 97.9 99.2 98.7 98.9 96.4 92.3 71.5 97.0 91.1

JB 99.3 99.5 99.3 98.5 98.7 95.2 94.1 75.1 97.9 92.1
JP 98.3 98.3 99.8 99.7 99.2 97.0 93.7 74.8 97.7 92.4

JB-DC 97.2 97.0 98.8 97.9 98.4 95.5 93.7 74.6 97.0 91.3
JP-DC 98.5 98.6 99.4 99.2 99.7 99.1 94.3 75.9 98.0 93.2
JMatch 98.4 98.5 98.1 96.8 99.4 98.8 94.7 76.9 97.7 92.7

Table 1: Community detection performance on syn-
thetic data with non-overlapping communities using
GCN. Results are averaged over ten trials. The best
scores (NMI and PF1) for each dataset are in bold and
second best are underlined.

OSBM-4 OSBM-8 OSBM-16 OSBM-32 Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 38.7 86.3 45.8 83.4 57.8 78.8 69.7 72.2 53.0 80.2
JCDMG 27.2 69.5 26.2 57.1 28.3 57.1 23.5 55.3 26.3 59.7
JDMoN 19.0 53.5 37.1 75.8 74.6 90.6 61.9 70.8 48.1 72.7
JLP 34.7 57.6 29.3 68.2 23.7 62.2 26.2 52.7 28.5 60.2

JNOCD 38.3 57.6 55.0 77.3 68.8 76.3 63.2 66.3 56.3 69.4

JB 56.8 84.8 56.5 85.2 73.3 82.8 70.5 73.7 64.3 81.6
JP 46.8 90.7 51.8 89.7 71.9 81.2 61.6 65.8 58.0 81.8

JB-DC 50.8 93.4 58.9 84.8 73.8 77.5 67.2 69.4 62.7 81.3
JP-DC 37.9 97.2 56.7 82.5 68.7 76.5 65.4 70.0 57.1 81.6
JMatch 36.0 85.0 54.2 75.4 72.2 86.4 69.3 73.4 57.9 80.0

Table 2: Community detection performance on syn-
thetic data with overlapping communities using GCN.
Results are averaged over ten trials. The best scores
(overlapping NMI and PF1) for each dataset are in bold
and second best are underlined.

Figure 1: Accuracy (NMI) vs. training time (seconds-per-epoch) for each loss function on synthetic
data. The left panel shows the loss functions that exploit matrix sparsity; the right panel shows loss
functions that use edge sampling. Each SBM loss variant is labeled “SBM” in the right panel. Results
are marked by × for non-overlapping datasets and by + for overlapping datasets.
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We first evaluate the community detection performance of each loss function on synthetic graphs
without community overlap. Community predictions are the row-wise argmax of the model output
and scoring is done with standard NMI and PF1. Results are shown in table 1. The top half of the
table are comparison loss functions and the bottom half are our proposed SBM loss functions. The
Bernoulli loss function performs best in terms of both NMI and PF1 on average. The MCP loss is
also competitive.

For overlapping community detection, a threshold is applied to model outputs and the arguments
exceeding that threshold are the predicted overlapping communities for each node. The threshold
for each model is chosen to maximize accuracy on the validation set. For evaluation, overlapping
NMI and PF1 are used. Results are shown in table 2. The SBM loss functions generally outperform
most comparison losses, with the DMoN loss function being competitive. On average, the Bernoulli
variants perform best in overlapping NMI and PF1.

Figure 1 shows accuracy (measured as NMI) plotted against training time (measured in seconds-
per-epoch) for each loss function. The left-hand panel shows the loss functions that exploit matrix
sparsity: JMatch, JCDMG, JMCP, and JDMoN. The right-hand panel shows the loss functions that employ
(negative) edge sampling: JB, JP, JLP, and JNOCD. The Bernoulli and Poisson SBM loss functions
(and their degree-corrected variants) have all been labeled “SBM” for simplicity in the right-hand
panel. Note how the loss functions that exploit matrix sparsity are significantly faster than those that
use edge sampling. The DMoN loss function is the fastest and our Graph Matching loss function is
competitive in terms of both speed and accuracy.

4.2 Real-World Results

Cora Citeseer Pubmed Wiki ACB-Comp ACB-Photo Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 34.2 22.6 19.4 16.4 13.0 19.5 33.1 26.7 43.4 45.8 57.1 52.6 33.4 30.6
JCDMG 37.0 29.3 11.8 14.9 7.9 25.9 32.9 34.1 36.7 43.6 53.8 51.2 30.0 33.2
JDMoN 42.3 25.9 23.9 19.1 17.4 20.4 40.8 36.0 45.9 34.6 57.0 47.1 37.9 30.5
JLP 13.7 16.8 14.4 16.0 7.7 12.0 28.4 23.0 30.4 26.4 36.4 28.8 21.8 20.5

JNOCD 27.3 19.8 18.6 19.8 12.7 19.1 40.6 34.6 46.6 41.7 61.1 56.9 34.5 32.0

JB 29.9 27.9 24.8 31.6 12.4 33.1 36.5 35.8 42.8 52.2 64.2 60.8 35.1 40.2
JP 28.2 25.8 22.8 30.0 13.5 36.6 36.2 36.5 40.2 51.3 64.7 63.6 34.3 40.6

JB-DC 29.5 26.7 22.9 28.5 13.3 29.0 38.9 38.4 42.8 47.9 62.3 60.2 34.9 38.5
JP-DC 41.3 37.4 27.9 28.2 10.8 28.3 33.6 31.1 45.8 32.6 60.1 53.4 36.6 35.2
JMatch 39.7 30.3 25.0 20.2 14.2 20.5 40.8 36.3 44.1 37.8 60.7 53.5 37.4 33.1

Table 3: Community detection performance on real-world data with non-overlapping
communities using GCN. Results are averaged over ten trials. The best scores (NMI
and PF1) for each dataset are in bold and second best are underlined.

Figure 2: Accuracy (NMI) vs. training time (seconds-per-epoch) for each loss function on real-world
data. The left panel shows the loss functions that exploit matrix sparsity; the right panel shows loss
functions that use edge sampling. Each SBM loss variant is labeled “SBM” in the right panel. Results
are marked by × for non-overlapping datasets and by + for overlapping datasets.
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MAG-Chem MAG-CS MAG-Eng MAG-Med Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 25.6 28.9 28.5 27.6 19.7 29.9 25.5 23.3 24.8 27.4
JCDMG 0.6 34.6 2.2 28.7 0.6 48.5 0.6 23.4 1.0 33.8
JDMoN 25.9 28.4 29.8 29.5 22.4 26.8 26.0 23.6 26.0 27.1
JLP 0.0 9.7 0.2 10.6 0.0 10.0 0.3 17.1 0.1 11.8

JNOCD 24.5 27.6 28.9 29.1 15.1 29.7 32.0 24.0 25.1 27.6

JB 19.7 30.9 29.7 34.8 29.4 47.1 24.9 28.9 25.9 35.4
JP 18.5 28.2 30.3 36.5 28.3 47.9 24.0 26.9 25.3 34.9

JB-DC 26.4 32.8 35.7 44.2 25.7 48.3 26.9 30.1 28.7 38.9
JP-DC 30.8 39.4 40.5 44.9 22.1 36.1 24.2 27.8 29.4 37.0
JMatch 25.0 32.9 38.9 42.1 28.0 37.4 22.3 25.3 28.6 34.4

Table 4: Community detection performance on real-
world data with overlapping communities using GCN.
Results are averaged over ten trials. The best scores
(overlapping NMI and PF1) for each dataset are in bold
and second best are underlined.

The community detection performance of each
loss function is evaluated on real-world data in
the same way as done on synthetic data. We
first consider graphs without community over-
lap; results are shown in table 3. The SBM loss
functions outperform many of the comparison
losses in terms of PF1 and NMI. The DMoN
loss does best in average NMI and the Poisson
loss does best in average PF1. The NOCD loss
is also competitive.

Overlapping community detection performance
is evaluated in the same way as the synthetic
datasets. Results are shown in table 4. The SBM
loss functions again outperform most compar-
ison losses, with the degree-corrected variants
doing best on average in terms of overlapping

NMI and PF1. The Graph Matching loss demonstrates better performance (relatively) on real-world
graphs than on synthetic graphs. This could suggest that it is better suited for sparse graphs.

Figure 2 shows accuracy plotted against training time for each loss function. Notice how the gain
in speed of the sparse matrix losses over the edge sampling losses is not as pronounced as in the
synthetic datasets. This is likely due to higher feature dimensions in the real-world graphs.

Results that show significant disagreement between the NMI and PF1 scores could be attributed to
the sensitivity of NMI to community size imbalance. Many of the real-world graphs in this study
are made up of communities that vary considerably in size. Such imbalance can cause misleading
results when comparing the NMI of multiple predicted partitions [36, 37]. On the other hand, PF1
is an aggregation of pairwise precision and pairwise recall, making it preferable when evaluating
partitions on imbalanced data.

4.3 Discussion

Figures 1 and 2 suggest that, in general, the loss functions that exploit matrix sparsity are faster and
just as accurate as those that use edge sampling. It should be noted that most losses are computed
more quickly on non-overlapping datasets. This is simply because the (real-world) overlapping
datasets happen to contain more nodes and edges than the non-overlapping datasets (see table E6). In
fact, almost every instance where “Seconds/Epoch” is greater than 0.25 corresponds to the MAG-Med
dataset, which has the greatest number of nodes and edges.

Another general trend is that the overlapping datasets usually produce lower accuracy scores than the
non-overlapping ones. This limitation is observed not only for the SBM-based loss functions, but
also for the comparison losses. Further effort to adapt Overlapping and Mixed Membership SBMs to
GNN loss functions is a direction for future work.

It is interesting to note that while all the graphs used in evaluation exhibit skewed degree distributions,
there is no clear indication that the degree-corrected SBM variants outperform their degree-free
counterparts. It is possible that GNNs are powerful enough to effectively fit these networks without
the help of degree-correction parameters. It is also possible that the degree-correction parameters
require a more effective estimation approach, rather than simply the plug-in MLE.

A key limitation of the proposed framework is that it is only designed for graphs with binary adjacency
matrices. For multi-graphs or weighted graphs, the Bernoulli and partial Poisson loss functions will
not be applicable. Our Poisson variant can easily be extended to support multi-graphs (see Appendix
B.6), which allows the structure matrix to take values greater than 1. However, such a structure
matrix does not conform with the regularization term in equation 16, which penalizes matrices with
diagonals that are far from unity.

Another limitation is the stability of the structure matrix MLE. Note that the gradient ∂ Θ̂ij

∂ ni
= − Mij

n2
inj

has a limit of 0 as ni → ∞ and approaches −∞ as ni → 0. This means that Θ̂ is less stable for
communities that are small in size (or unused). This also suggests that SBM losses are more suitable
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for networks with more nodes per partition. A direction for future work is identifying a more stable
estimator of the structure matrix.

5 Conclusion
In this paper, a collection of loss functions are derived from Stochastic Block Model likelihood
functions. These loss functions are configurable, fully differentiable, and theoretically grounded.
They show strong performance in unsupervised training of Graph Neural Networks for community
detection. An additional loss function is adapted from the Graph Matching problem and shows
significant speed improvements. The proposed framework is subjected to extensive evaluation and
shows competitive or improved performance against state-of-the-art loss functions.
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A Implementation
The neural network used for all experiments consists of two GNN layers with feature dropout, batch
normalization, and ReLU activation in-between. The default GNN layer is GCN [24] unless otherwise
specified. The dimension of the output layer is 25 for all experiments and the activation is determined
by the loss function. The hidden dimension is 250 for synthetic graphs and 500 for real-world graphs.
The dropout rate is 0.5.

Weight decay is applied with a strength of 0.0001. Adam optimization [38] is used with a learning
rate of 0.0001. Training is carried out for a maximum of 500 epochs; early stopping is evaluated
every 5 epochs and is engaged after 10 evaluations with no improvement. The SBM loss functions
all take the form of equation 16 with regularization strength α = 1.0. The collapse regularization
strength for the DMoN loss is the same. For loss functions that support negative sampling, 3 negative
edges are drawn for every positive edges, and balanced weighting is applied.

The common model/hyperparameter configuration was determined based on the performance of all
models (considered simultaneously) during preliminary experimentation. Hyperparameters are kept
the same for all loss functions considered rather than chosen for each loss separately; this is intended
to allow us to study the effect of changing only the loss function.

In our experiments, nodes are split into train (60%), validation (20%), and test (20%) sets. To train
the models, we use a “training subgraph” induced by nodes in the train and validation sets. Node
embeddings are computed on just the training subgraph, then loss, early stopping, and thresholds
are computed on the training/validation nodes separately. To evaluate the models, node embeddings
are computed on the full graph (containing all train, validation, and test nodes), then metrics are
computed on just the nodes in the test set. Training and evaluation is repeated over ten trials and
the average test metrics are reported in this paper. In this way, the models’ ability to inductively
generalize to nodes not seen during training is evaluated.

Experiments are done in Python 3.8 with DGL1 and PyTorch2. Synthetic experiments are conducted
with a 2.4 GHz Intel Core i9 processor and 32 GB of memory. Real-world experiments are conducted
with a 2.5 GHz Intel(R) Xeon(R) Platinum 8259CL processor and 15 GB of memory and a Tesla T4
GPU and Cuda version 12.4.

B Additional Objective Functions
B.1 Bernoulli-Poisson

The Bernoulli-Poisson model, explored in [9, 27], assumes Auv|Z ∼ Bern(1−e−Z′
uZv ). In [9], the

“Neural Overlapping Community Detection” (NOCD) model is introduced, which derives a loss
function from the Bernoulli-Poisson likelihood function. The authors propose

Ẑ = ReLU(GNN(G,X;W))

JNOCD(W) = −
∑

u,v∼PE

ln(1−exp(−Ẑ′
uẐv)) + η-1

∑
u,v∼PN

Ẑ′
uẐv. (17)

This is similar to the Poisson SBM (equation 11), with one difference being that there is no block
matrix. Also, a complete derivation of the Poisson log-likelihood is used instead of a partial Poisson
log-likelihood, as in equation 2.

B.2 Link Prediction

A common objective function used for graph representation learning is cross-entropy-based link
prediction loss. This model seeks to estimate the adjacency structure of a graph and is motivated by

1https://www.dgl.ai/
2https://pytorch.org/
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the assumption Auv|Z ∼ Bern(σ(z′uzv)). One popular formulation [23, 33, 39] is

Ẑ = GNN(G,X;W)

JLP(W) = −
∑

u,v∼PE

ln
(
σ(Ẑ′

uẐv)
)
− η-1

∑
u,v∼PN

ln
(
1−σ(Ẑ′

uẐv)
)

(18)

where σ is the sigmoid function. This can be viewed as an analog to the Bernoulli SBM (equation 13)
with the key difference being the absence of a block matrix.

B.3 Modularity

In [10], it is proposed to directly maximize a graph partition quality metric. The approach, referred to
as “Deep Modularity Network” (DMoN), is focused on modularity [21], defined as

Q =
1

2m
tr

(
Z′
(
A− dd′

2m

)
Z

)
. (19)

The objective is to maximize modularity, or equivalently minimize the negative of modularity. Thus,
the loss function is

Ẑ = Softmax(GNN(G,X;W))

JDMoN(W) =− 1

2m
tr

(
Ẑ′
(
A−dd′

2m

)
Ẑ

)
+ α

(√
k

n

∥∥∥∥∥
n∑
u

Ẑ′
u

∥∥∥∥∥
F

−1

)
(20)

where the first term minimizes negative modularity and the second term is a “collapse regularization”
meant to prevent all nodes from being assigned to the same block (with regularization strength given
by hyperparameter α) [10].

B.4 Markov Stability

Another perspective of modularity is taken in [12]. The approach, referred to as “Community
Detection based on Markov Stability and Graph Neural Network” (CDMG), seeks to maximize a
dynamic graph partition quality metric. Markov Stability [29–31] is defined

Rt = tr
(
Z′(ΠMt − π′π)Z

)
(21)

where π = d′(2m)−1, Π = diag(π), M = D−1A, and D = diag(d). The matrix in this
expression represents the probability that a random walk starting in one community will end in
another after a certain number of time steps. This is also equivalent to the modularity in equation 19
when t = 1 [31].

The CDMG approach seeks to maximize Markov Stability by minimizing its negative:

Ẑ = ReLU(GNN(G,X;W))

JCDMG(W) = −tr
(
Ẑ′(ΠMt − π′π)Ẑ

)
(22)

where t is a hyperparameter that can be tuned according to the resolution of the graph communities.
Larger values of t detect coarser communities [12, 29–31, 40]. We use t = 1 for all experiments.

B.5 Minimum-Cut

An objective function motivated by the minimum-cut problem is proposed in [8]. The minimum-cut
problem is a task that seeks to find the partition that minimizes the number of edges between groups.
This is done by maximizing the ratio of the number of edges within a group to the number of edges
between groups in the rest of the graph. Formally,

max
1

k

k∑
i=1

Z′
·iAZ·i

Z′
·iDZ·i

(23)

where Z·i ∈ {0, 1}n is the ith column of Z [41].
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The proposed approach, known as MinCutPool [8], uses a pooling-based architecture with the softmax
function applied to outputs to estimate community assignments. The objective function used for
training is

Ẑ = Softmax(GNN(G,X;W))

JMCP(W) = − tr(Ẑ′ÃẐ)

tr(Ẑ′D̃Ẑ)
+

∥∥∥∥∥∥ Ẑ′Ẑ∥∥∥Ẑ′Ẑ
∥∥∥
F

− Ik√
k

∥∥∥∥∥∥
F

(24)

where Ik is the k×k identity matrix, Ã = D−1/2AD1/2 is the normalized adjacency matrix, and
D̃ = diag(Ã1n) is the normalized degree matrix. The second term is an orthogonality penalty,
meant to encourage orthogonality between communities and uniformity in community sizes.

B.6 Poisson

The partial Poisson loss function in Section 3.3.2 can be extended to support multi-graphs, where
Auv ∈ N0. To do so, the same log-likelihood function (equation 2) is considered. Note that the
factorial term from equation 1 is dropped because its derivative is zero with respect to the parameters.
Consequently, equation 8 is a valid loss function for both graphs and multi-graphs. In order to
incorporate negative sampling, equation 11 is modified to

JP∗(W) ≈ −
∑

u,v∼PE

[Auv ln(π̂uv)− π̂uv] + η-1
∑

u,v∼PN

π̂uv (25)

where η is scaling constant meant to balance the contribution of the positive and negative edge sets to
the total loss. Note that JP∗ is identical to JP on binary adjacency matrices.

C Datasets

Name Nodes Edges Part. Dim. Overlap

SBM-4 2,000 202,102 4 100 No
SBM-8 2,000 150,648 8 100 No
SBM-16 2,000 96,436 16 100 No
SBM-32 2,000 56,526 32 100 No
OSBM-4 2,000 240,242 4 100 Yes
OSBM-8 2,000 196,510 8 100 Yes
OSBM-16 2,000 132,976 16 100 Yes
OSBM-32 2,000 72,422 32 100 Yes

Table 5: Synthetic graph summaries.

Name Nodes Edges Part. Dim. Overlap

Cora 2,708 10,556 7 1,433 No
Citeseer 3,327 9,228 6 3,703 No
Pubmed 19,717 88,651 3 500 No

Wiki 11,367 431,726 10 300 No
ACB-Comp 13,752 491,722 10 767 No
ACB-Photo 7,650 238,163 8 745 No
MAG-Chem 35,409 314,716 14 4,877 Yes

MAG-CS 21,957 193,500 18 7,793 Yes
MAG-Eng 14,927 98,610 16 4,839 Yes
MAG-Med 63,282 1,620,628 17 5,538 Yes

Table 6: Real-world graph summaries.

For experiments on synthetic data, graphs are generated according to the degree-corrected Poisson
SBM (equation 1). The generated graphs are all assortative — that is, Θii > Θij for all i ̸= j –
with density between 0.01 and 0.06. Furthermore, degree distributions are sampled from a scale free
distribution, where Pr(du) ∝ d−γ

u and γ = 2.5. Each graph has 2,000 nodes and 4, 8, 16, or 32
communities. The number of nodes in each community is normally distributed. For the overlapping
setting, the partition and block matrices are randomly augmented.

To generate node features, length-100 vectors of means and variances are drawn from a multivariate
normal distribution (squared for variances) for each community. Each node is given a feature
vector sampled from a multivariate normal parameterized by the mean and variance of its assigned
community. For overlapping communities, a node’s feature vector is the average of the vectors
sampled for each of its communities. This method of attribute generation is similar to that of [10].

For experiments on real-world data, ten common benchmark graphs are considered. Cora [42],
Citeseer [43], and Pubmed [44] are all citation networks, where nodes are publications and edges
indicate citations. Node attributes are vector representations of text associated with each publication
and community partitions are the category of the publication. AmazonCoBuy (as presented in [45])
is a dataset of co-purchase graphs, where nodes are products and edges indicate products that are
purchased together. Nodes are attributed by vector representations of user reviews and community
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Figure 3: Top row: Accuracy (NMI) vs. GNN output dimension for different numbers of communities.
Bottom row: Inferred number of communities vs. GNN output dimension. Columns: Actual number of
communities in the graph.

partitions are the category of the products. The dataset is split into two graphs: computer products
(ACB-Comp) and photo products (ACB-Photo). These graphs are accessed through DGL3.

The Microsoft Academic Graph (as presented in [9]) is a dataset of co-authorship graphs, where nodes
are authors and edges indicate co-authored publications. Node attributes are vectors of keywords
associated with each author. Research areas form the overlapping community partition, as authors can
research in multiple areas. The dataset is split into four graphs: chemistry (MAG-Chem), computer
science (MAG-CS), engineering (MAG-Eng), and medicine (MAG-Med). These graphs are accessed
through the GitHub repository4 associated with [9].

D Hyperparameter Sensitivity
This section provides an examination of SBM-specific hyperparameters. For these experiments,
consideration is restricted to the non-overlapping setting and synthetically generated graphs are used.

To begin, we consider the relation of the output dimension d of the GNN embeddings to the number
of effective clusters found in a given graph. The top row of figure 3 displays accuracy (measured
as NMI) plotted against output dimension. The bottom row shows the inferred number of clusters
(computed as |K|) against output dimension. Results are averaged over ten trials for graphs with
k = 4, 8, 16, 32 actual clusters.

When the output dimension is smaller than the true number of clusters, there is generally poor
accuracy and |K| = d. When the output dimension is greater than the true number of clusters,
accuracy is much higher and |K| ≈ k. The variance of community detection performance (in terms
of accuracy and ability to recover the true number of clusters) tends to be greater when the output
dimension is slightly larger than k. It is also worth noting that JMatch tends to overestimate the number
of clusters.

Next, we look the impact of the regularization strength parameter α from equation 16. Figure 4 shows
accuracy measured against different values of α averaged over ten trials. Note that the horizontal
axis is not to scale. There is a moderate upward trend, suggesting that the regularization term
does contribute to community detection performance. Indeed, all five loss functions exhibit better
performance when α = 1 versus when the regularization term is left out (α = 0).

Finally, the effect of negative sampling is studied. Figure 5 plots accuracy measured against different
numbers of negative edges sampled per each existing edge (referred to as η). Accuracy appears fairly

3https://www.dgl.ai/dgl_docs/api/python/dgl.data.html
4https://github.com/shchur/overlapping-community-detection
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Figure 4: Accuracy (NMI) vs. regularization strength.
Horizontal axis is not to scale.

Figure 5: Accuracy (NMI) vs. number of negative
edges sampled per each existing edge.

consistent across different levels of negative sampling, with a slight drop-off after η = 3. For this
experiment, the loss function is weighted such that negative and positive edges have equal importance.

E Additional Experiments
In [10], a custom GNN architecture is implemented to go along with JDMoN. The layer, which we
refer to as SkipGCN, introduces an additional weight matrix for nodes’ own features instead of
a self-loop augmentation on the adjacency matrix. Additionally, the SELU activation function is
used instead of ReLU. To provide a better comparison with this approach, we substitute SkipGCN
layers for the standard GCN layers in our implementation. While the other implementation details
(e.g., hidden dimension, weight decay, etc.) are not identical, the component GNN layer is the same
as that described in [10]. It should be noted that in [10], the authors compare their approach to
several other approaches that are not GNN based, require custom training routines, or depend on very
specific architectures (e.g., [8, 11]). They show that their DMoN approach is superior on a number of
real-world graphs, including Cora, Citeseer, and Pubmed.

Cora Citeseer Pubmed Wiki ACB-Comp ACB-Photo Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 32.0 18.2 18.2 12.8 19.1 26.1 38.6 37.8 44.2 49.1 58.9 56.9 35.1 33.5
JCDMG 38.7 29.5 12.7 13.2 6.1 15.6 26.2 29.4 27.8 36.2 44.5 46.5 26.0 28.4
JDMoN 37.1 21.3 21.3 15.7 16.9 15.4 33.7 24.9 31.8 27.2 49.9 39.1 31.8 23.9
JLP 13.2 11.2 6.9 8.4 5.0 9.4 21.8 16.2 23.1 16.2 25.4 19.8 15.9 13.5

JNOCD 14.6 11.4 7.2 9.6 6.0 12.9 38.6 34.9 47.4 45.2 63.2 62.9 29.5 29.5

JB 39.0 33.6 24.2 27.7 17.8 30.7 27.8 28.8 38.0 43.1 56.0 53.0 33.8 36.1
JP 34.5 27.3 26.3 30.2 14.8 25.8 27.2 26.3 38.8 43.1 54.3 52.2 32.6 34.1

JB-DC 36.6 31.2 24.6 25.4 13.6 25.5 25.3 27.1 33.8 38.9 53.6 51.2 31.2 33.2
JP-DC 43.3 36.0 26.5 23.6 18.1 30.5 21.0 24.6 47.8 53.5 52.5 48.6 34.9 36.1
JMatch 41.7 29.0 25.8 23.7 14.2 18.0 29.8 23.2 39.5 33.7 54.9 49.7 34.3 29.5

Table 7: Community detection performance on real-world data with non-overlapping
communities using SkipGCN, as in [10]. Results are averaged over ten trials. The
best scores (NMI and PF1) for each dataset are in bold.

Table 7 shows the results of this comparison with the SkipGCN layer on non-overlapping graphs.
The SBM loss functions generally outperform or are competitive with the DMoN loss function.
Interestingly, the MCP and NOCD loss functions also perform well in this setting.

To emphasize that this analysis is independent of specific GNN architectures, aggregated results of
additional experiments are provided in tables 8 and 9 with the following architectures: GraphSAGE
[24], Graph Attention Network (GAT) [25], and Graph Isomorphism Network (GIN) [26]. Table
8 shows the results of each loss function and each architecture averaged over all ten (synthetic
and real-world) non-overlapping datasets. Table 9 shows the results over all eight (synthetic and
real-world) overlapping datasets.
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GCN GraphSAGE GAT GIN SkipGCN Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 59.2 55.6 54.1 46.5 39.7 37.2 49.3 48.9 60.5 58.0 52.6 49.3
JCDMG 55.9 53.5 45.2 44.9 38.5 37.8 51.6 50.8 52.5 49.9 48.7 47.4
JDMoN 60.9 54.6 54.2 48.3 41.2 37.9 57.9 51.4 56.5 49.3 54.1 48.3
JLP 49.9 44.5 48.2 44.4 40.3 37.1 52.0 48.4 42.4 35.6 46.6 42.0

JNOCD 59.5 55.6 38.5 36.5 36.7 35.0 57.0 53.2 56.0 53.3 49.5 46.7

JB 60.2 61.0 54.5 53.8 42.7 41.7 53.6 54.8 58.6 57.8 53.9 53.8
JP 59.7 61.4 53.9 54.0 42.4 41.6 53.8 54.7 58.1 57.1 53.6 53.8

JB-DC 59.8 59.6 53.0 52.9 40.8 39.0 51.8 52.7 57.1 56.2 52.5 52.1
JP-DC 61.2 58.4 53.8 53.4 41.9 40.4 51.3 52.1 59.0 57.7 53.4 52.4
JMatch 61.5 57.0 51.9 50.5 42.5 40.6 59.5 54.5 58.4 53.3 54.8 51.2

Table 8: Community detection performance for different GNN architectures. Results
are averaged over ten trials for all ten datasets with non-overlapping communities.
The best scores (NMI and PF1) for each model are in bold.

GCN GraphSAGE GAT GIN SkipGCN Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 38.9 53.8 42.6 52.6 32.9 42.8 36.4 53.4 46.9 54.0 39.6 51.3
JCDMG 13.6 46.8 17.0 54.9 18.5 49.7 18.0 57.4 10.4 40.7 15.5 49.9
JDMoN 37.1 49.9 44.6 53.4 36.3 45.4 38.5 54.7 43.3 53.5 40.0 51.4
JLP 14.3 36.0 20.0 49.5 16.9 50.9 20.0 48.3 13.9 31.0 17.0 43.1

JNOCD 40.7 48.5 17.2 42.6 16.3 42.8 40.3 57.5 42.3 50.6 31.4 48.4

JB 45.1 58.5 50.7 58.9 34.9 47.3 37.4 58.8 51.7 60.2 44.0 56.8
JP 41.6 58.4 50.3 58.3 32.8 45.6 38.7 58.6 48.3 61.4 42.3 56.4

JB-DC 45.7 60.1 49.5 58.8 34.2 46.8 37.3 58.1 48.4 63.1 43.0 57.4
JP-DC 43.3 59.3 46.3 56.1 30.1 43.1 34.3 59.7 48.4 61.7 40.5 56.0
JMatch 43.3 57.2 44.1 54.4 31.3 43.2 40.7 59.4 46.9 61.3 41.2 55.1

Table 9: Community detection performance for different GNN architectures. Results
are averaged over ten trials for all eight datasets with overlapping communities. The
best scores (overlapping NMI and PF1) for each model are in bold.

F Proofs

F.1 Maximum Likelihood Estimates

The Maximum Likelihood Estimate of Θ is the same for the Poisson ℓP and Bernoulli ℓB models:

ℓP(Z,Θ;A) =
∑
u,v

[Auv ln(Z
′
uΘZv)− Z′

uΘZv]

=
∑
i,j

[Mij ln(Θij)− ninjΘij ]

∂ ℓP

∂Θij
=

Mij

Θij
− ninj

set
== 0

=⇒ Θ̂P
ij =

Mij

ninj

ℓB(Z,Θ;A) =
∑
u,v

[Auv ln(Z
′
uΘZv) + (1−Auv) ln(1−Z′

uΘZv)]

=
∑
i,j

[Mij ln(Θij) + (ninj−Mij) ln(1−Θij)]

∂ ℓB

∂Θij
=

Mij

Θij
− ninj −Mij

1−Θij

set
== 0

=⇒ Θ̂B
ij =

Mij

ninj

so Θ̂P
ij = Θ̂B

ij . □
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F.2 Graph Matching

Let Z = {Z̃ ∈ {0, 1}n×k :
∑k

i=1 Z̃ui = 1 for all u ∈ V}. Consider the distance quantity

q =
∥∥∥A−Z̃ΘZ̃′

∥∥∥2
F
.

Minimizing q with respect to Θ gives

∂q

∂Θ
= 2Z̃Θ′Z̃′Z̃Z̃′ − 2A′Z̃Z̃′ set

== 0

=⇒ Θ̃ = (Z̃′Z̃)-1Z̃′AZ̃(Z̃′Z̃)-1.

Now recall the MLE Θ̂ from equation 3:

Θ̂(G, Z̃) = M ⊘ nn′ M =
∑

u,v∈E
Z̃uZ̃

′
v = Z̃′AZ̃ n =

n∑
u=1

Z̃u

where ⊘ represents element-wise division. When Z̃ ∈ Z , note that Z̃′Z̃ = diag(n) and (Z̃′Z̃)-1 =

diag(n-1) where n-1 is the element-wise inverse of n. Furthermore, [(Z̃′Z̃)-1(Z̃′Z̃)-1]ii = 1/(nn′)ii
for all i = 1, ..., k. It can also be verified that

(Z̃′Z̃)-1M(Z̃′Z̃)-1 = M ⊘ nn′.

Therefore, the distance minimizer Θ̃ is equivalent to the maximum likelihood estimate Θ̂ in this case.

We can now substitute the MLE into q as done in Section 3.3.3:

q = ∥A∥2F +
∥∥∥Z̃Θ̂Z̃′

∥∥∥2
F
− 2 tr

(
A′Z̃Θ̂Z̃′

)
= ∥A∥2F +

∥∥∥Z̃(Z̃′Z̃)-1Z̃′AZ̃(Z̃′Z̃)-1Z̃′
∥∥∥2
F
− 2 tr

(
A′Z̃Θ̂Z̃′

)
= ∥A∥2F + tr

(
Z̃(Z̃′Z̃)-1Z̃′A′Z̃Θ̂Z̃′

)
− 2 tr

(
A′Z̃Θ̂Z̃′

)
= ∥A∥2F − tr

(
A′Z̃Θ̂Z̃′

)
.

The final equality comes from the cyclic property of the matrix trace:

tr
(
Z̃(Z̃′Z̃)-1Z̃′A′Z̃Θ̂Z̃′

)
= tr(Z̃′Z̃(Z̃′Z̃)-1Z̃′A′Z̃Θ̂) = tr

(
A′Z̃Θ̂Z̃′

)
Dropping the constant term, we have the result

argmin
Z̃∈Z

∥A−Z̃Θ̂Z̃′∥2F = argmin
Z̃∈Z

−tr(A′Z̃Θ̂Z̃′).

which (noting that ∥·∥2F is a monotonic transformation of ∥·∥F in equation 14) proves the statement
in Section 3.3.3. □

Substituting predicted membership P̂ for the mapping matrix Z̃ is a useful approximation of this
result when training a GNN.
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G Standard Deviations

SBM-4 SBM-8 SBM-16 SBM-32 Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 1.7 1.7 1.1 1.5 2.2 6.2 0.8 2.6 1.4 3.0
JCDMG 3.6 4.6 3.7 8.5 1.3 3.0 1.8 4.4 2.6 5.1
JDMoN 6.1 8.5 1.8 2.5 0.6 1.8 0.8 2.4 2.3 3.8
JLP 6.6 6.4 4.2 8.2 4.2 9.8 2.3 5.4 4.3 7.4

JNOCD 2.5 2.1 1.3 2.1 1.6 4.7 1.6 4.6 1.8 3.4

JB 1.7 1.3 1.4 3.6 1.3 4.6 0.5 2.5 1.2 3.0
JP 2.4 2.6 0.6 1.0 1.1 4.1 1.1 3.6 1.3 2.8

JB-DC 4.1 4.9 1.6 3.7 2.4 6.3 1.4 4.5 2.3 4.8
JP-DC 2.4 2.4 0.7 1.1 0.5 1.9 0.6 2.5 1.1 2.0
JMatch 2.4 2.6 2.5 4.9 0.6 1.7 0.7 3.6 1.6 3.2

Table 10: Standard deviations associated with table
1. Community detection on synthetic data with non-
overlapping communities using GCN.

OSBM-4 OSBM-8 OSBM-16 OSBM-32 Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 21.8 12.3 16.0 13.4 13.3 9.8 7.3 6.8 14.6 10.6
JCDMG 17.4 27.9 14.4 11.9 13.1 9.9 8.8 16.8 13.4 16.6
JDMoN 25.9 39.9 15.6 6.9 5.1 13.1 11.7 10.3 14.6 17.5
JLP 18.0 23.8 12.7 13.2 10.1 11.1 5.1 9.3 11.5 14.4

JNOCD 17.4 25.1 9.6 6.3 9.2 5.9 13.9 9.9 12.5 11.8

JB 14.6 14.7 8.9 11.3 11.0 4.8 5.5 4.8 10.0 8.9
JP 18.1 11.5 13.1 8.7 9.3 5.9 11.4 6.7 13.0 8.2

JB-DC 19.1 7.0 14.7 9.2 14.0 7.2 8.4 5.4 14.0 7.2
JP-DC 12.3 4.0 13.3 13.1 11.9 13.9 10.1 10.1 11.9 10.3
JMatch 16.3 11.9 14.7 7.6 5.1 8.6 10.4 7.0 11.6 8.8

Table 11: Standard deviations associated with table 2.
Community detection on synthetic data with overlap-
ping communities using GCN.

Cora Citeseer Pubmed Wiki ACB-Comp ACB-Photo Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 3.6 2.5 4.6 2.5 6.2 3.6 8.2 3.3 2.2 4.1 4.8 3.8 5.0 3.3
JCDMG 10.4 9.2 2.6 1.8 3.8 5.0 7.3 5.9 4.2 6.6 3.0 5.3 5.2 5.7
JDMoN 1.2 2.0 2.7 1.6 1.6 1.2 3.5 3.7 1.7 2.4 3.6 3.4 2.4 2.4
JLP 1.4 2.9 2.5 3.4 1.7 1.2 2.8 3.2 3.6 4.8 3.0 4.7 2.5 3.4

JNOCD 9.0 5.3 1.5 2.0 5.1 3.5 4.6 4.2 3.8 4.6 1.5 3.7 4.2 3.9

JB 11.0 5.6 2.1 2.4 5.9 7.9 7.2 4.3 6.7 4.7 2.6 4.2 5.9 4.9
JP 11.0 6.5 2.5 2.5 3.8 6.6 6.8 4.9 9.6 7.1 3.4 4.0 6.2 5.3

JB-DC 11.0 8.7 2.5 3.6 5.4 9.5 3.8 5.2 6.1 5.0 2.4 3.1 5.2 5.9
JP-DC 11.9 9.2 2.2 4.1 6.6 6.4 7.9 5.2 2.1 2.3 2.8 2.1 5.6 4.9
JMatch 12.3 7.0 1.7 2.2 1.7 2.9 2.7 6.0 2.6 3.5 2.1 3.5 3.9 4.2

Table 12: Standard deviations associated with table 3. Community detection on
real-world data with non-overlapping communities using GCN.

MAG-Chem MAG-CS MAG-Eng MAG-Med Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 6.7 4.0 2.2 0.7 6.8 7.9 3.3 1.1 4.7 3.4
JCDMG 1.2 10.0 2.3 5.6 1.3 15.5 1.0 3.7 1.5 8.7
JDMoN 6.2 3.2 2.7 0.9 3.1 1.8 2.8 1.2 3.7 1.8
JLP 0.0 1.3 0.5 1.0 0.0 1.0 0.6 22.5 0.3 6.4

JNOCD 4.6 2.3 2.4 1.6 6.0 7.0 3.2 1.1 4.0 3.0

JB 11.6 5.4 3.5 1.3 5.8 3.5 3.9 2.4 6.2 3.1
JP 8.8 6.8 3.1 3.2 6.6 5.1 3.8 1.3 5.6 4.1

JB-DC 10.8 5.2 2.9 2.0 5.8 5.4 3.0 2.0 5.6 3.6
JP-DC 8.1 6.5 4.3 3.5 6.2 11.8 3.4 5.3 5.5 6.8
JMatch 10.1 4.4 3.6 4.1 4.4 4.7 3.5 2.5 5.4 3.9

Table 13: Standard deviations associated with table 4. Com-
munity detection on real-world data with overlapping commu-
nities using GCN.
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Cora Citeseer Pubmed Wiki ACB-Comp ACB-Photo Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 1.4 1.7 2.2 1.3 1.4 4.7 8.2 6.2 7.7 6.4 9.2 8.3 5.0 4.8
JCDMG 2.6 3.5 3.9 2.6 2.7 2.2 4.1 2.9 7.9 9.9 3.6 4.3 4.1 4.2
JDMoN 9.7 4.5 2.7 1.3 2.6 0.8 2.5 1.6 2.8 2.1 1.4 3.2 3.6 2.3
JLP 1.3 2.3 0.9 0.8 0.6 0.7 1.5 1.8 1.9 1.7 3.4 3.0 1.6 1.7

JNOCD 5.8 2.5 2.1 1.4 4.5 3.6 5.9 6.2 4.0 3.2 2.6 3.8 4.1 3.4

JB 4.8 4.4 2.4 3.1 2.0 4.7 5.7 3.1 3.7 3.5 3.7 4.7 3.7 3.9
JP 9.1 6.4 3.0 3.2 4.3 6.1 7.2 2.8 2.5 4.9 4.5 5.0 5.1 4.8

JB-DC 5.2 6.1 2.5 3.5 3.7 5.0 2.3 1.8 5.9 4.6 3.7 5.0 3.9 4.3
JP-DC 3.4 3.9 2.5 3.5 6.9 5.7 5.0 6.2 3.1 3.5 4.3 4.5 4.2 4.5
JMatch 1.9 1.6 3.7 5.4 1.4 3.6 2.3 1.7 4.0 7.4 3.6 5.9 2.8 4.3

Table 14: Standard deviations associated with table 7. Community detection on
real-world data with non-overlapping communities using SkipGCN.

GCN GraphSAGE GAT GIN SkipGCN Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 34.0 33.2 34.0 34.7 37.5 31.1 37.1 29.7 33.5 33.4 35.2 32.4
JCDMG 34.5 28.6 38.2 30.0 37.1 28.9 34.5 27.1 34.6 29.4 35.8 28.8
JDMoN 30.5 31.3 34.3 34.0 35.1 28.6 32.7 32.1 32.1 33.0 32.9 31.8
JLP 35.7 31.5 35.0 29.3 35.3 28.1 34.2 29.0 33.9 28.3 34.8 29.2

JNOCD 33.6 32.2 39.7 32.2 36.3 28.2 32.3 28.4 36.9 34.2 35.8 31.0

JB 33.7 28.2 36.5 31.8 38.4 32.4 37.0 29.5 32.2 28.4 35.6 30.1
JP 34.1 28.5 37.1 32.0 38.9 32.9 35.8 28.0 33.0 30.1 35.8 30.3

JB-DC 33.3 28.9 37.4 32.9 38.4 31.9 37.3 29.8 33.5 30.0 36.0 30.7
JP-DC 32.9 30.4 36.7 32.2 38.8 32.9 36.8 29.4 31.8 28.8 35.4 30.7
JMatch 32.1 31.5 36.5 33.6 38.2 33.0 32.0 29.0 31.6 30.9 34.1 31.6

Table 15: Standard deviations associated with table 8. Community detection for
different GNN architectures on data with non-overlapping communities.

GCN GraphSAGE GAT GIN SkipGCN Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

JMCP 20.0 28.0 25.6 29.1 21.8 25.0 16.7 24.1 24.7 28.8 21.8 27.0
JCDMG 15.9 20.6 18.6 31.7 20.0 27.7 20.1 30.7 13.1 22.1 17.5 26.6
JDMoN 22.2 28.9 25.1 28.6 18.4 23.2 16.6 29.5 22.4 27.6 20.9 27.6
JLP 16.8 27.9 20.9 26.6 18.9 25.5 20.8 31.8 15.3 21.6 18.5 26.7

JNOCD 20.5 24.0 16.5 33.6 17.5 28.9 15.0 26.7 24.4 26.7 18.8 28.0

JB 22.0 25.1 27.2 26.1 25.8 26.9 17.6 25.0 22.1 25.7 22.9 25.8
JP 20.6 26.2 25.6 25.2 26.2 27.0 19.1 25.1 21.7 26.9 22.6 26.1

JB-DC 21.3 23.6 26.9 25.6 27.5 28.7 17.5 25.6 21.4 25.7 22.9 25.8
JP-DC 19.3 25.5 29.1 28.9 27.5 29.1 18.5 28.1 20.8 27.9 23.0 27.9
JMatch 20.8 24.6 29.5 30.1 27.0 28.9 15.3 26.7 21.7 28.2 22.8 27.7

Table 16: Standard deviations associated with table 9. Community detection for
different GNN architectures on data with overlapping communities.
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