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ABSTRACT

Steerable robot policies—those conditioned on steering signals like trajectory
traces—offer a promising solution for flexible, general-purpose robot control.
However, most existing steerable policies are limited by their reliance on action-
labeled robot data for learning to follow these steering signals. The recently
proposed video-action models offer a scalable solution for incorporating addi-
tional video data by learning to jointly predict future video frames along with
actions, which enables the learning of rich latent representations that capture vi-
sual dynamics and helps improve action prediction. Despite their promise, prior
video-action models are not steerable, limiting their ability to generalize to out-
of-distribution task specifications or novel object configurations that require new
behaviors. We propose the Steerable Video Action (SVA) model, which learns to
jointly predict future video frames and low-level actions while receiving guidance
from end-effector trajectory traces as steering signals. To process these traces,
we represent them as images, encode them using a pretrained VAE, and explicitly
align the encoded tokens spatially with visual observation tokens before passing
them through a transformer. We find that SVA can incorporate guidance from
end-effector trajectory traces and generalize better to unseen traces outperforming
baselines with and without access to trajectory traces.

1 INTRODUCTION

Figure 1: Steerability and Generalization. Conditioning
on steering signals, like end-effector traces offers Steerable
Video Action model (SVA) steerability and generalization.

Steerable robot policies—those that
are conditioned on steering signals
like trajectories (Gu et al., 2024;
Zheng et al., 2025; Lee et al., 2025),
keypoints (Sundaresan et al., 2023),
or language corrections (Belkhale
et al., 2024; Shi et al., 2025)—en-
able flexible behaviors across a wide
range of tasks by simply varying the
steering signal. These steering sig-
nals can come directly from human
users or be automatically generated
given the high-level task instruction
along with an initial image of the
scene using state-of-the-art vision-
language models (VLMs) (Team
et al., 2025).

While promising, most existing steer-
able policies are constrained by how
they are trained: they rely heavily on action-labeled robot data for learning to follow the steering
signals. This makes them expensive to scale and brittle when deployed in new tasks, environments,
or embodiments. Because these models are tightly coupled to their training distribution, even mod-
est shifts—such as unseen object configurations or out-of-distribution steering signals—can affect
their steerability causing the task performance to degrade. As a result, their generalization remains
limited, despite the flexibility that steerability aims to provide.
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A key question is how to train steerable policies without relying solely on costly, embodiment-
specific robot data. One promising direction is to use video supervision by leveraging large-scale
video datasets that capture rich physical interactions across diverse environments. Recent video-
action models (Guo et al., 2024; Zhu et al., 2025), which generate videos and actions simultane-
ously, demonstrate the benefits of video prediction-based pretraining for improving action predic-
tion. However, these models are not designed to be steerable and are typically trained to solve
specific tasks, limiting their ability to generalize to out-of-distribution task specifications or novel
object configurations that require new behaviors.

In this work, we study the problem of incorporating steering signals into video action models. We
introduce the Steerable Video Action model (SVA) model, which takes as input a history of ob-
servations and a steering signal, an end-effector trace the robot needs to follow, and predicts future
observations and actions that follow the given trace. Unlike previous steerable action models such
as the RT-Trajectory (Gu et al., 2024; Lee et al., 2025), our approach jointly predicts future video
frames and actions. This allows the model to learn a rich latent representation of visual dynamics
that enhances action prediction. Moreover, our framework can leverage large amounts of actionless
video data for pretraining, enabling the model to acquire diverse behaviors guided by steering sig-
nals without relying on explicit robot actions. This pretraining establishes a strong prior for joint
video-action learning, improving both sample efficiency and generalization to novel tasks.

A natural question that arises is: how should steering signals be incorporated into video–action
models so as to improve both steerability and generalization? In this work, we study this by using
end-effector traces as the primary form of guidance. We find that representing traces as images and
explicitly aligning the encoded tokens between trace and observation images is crucial for captur-
ing the spatial correspondences required for accurate trace following. This alignment mechanism
enables coherent prediction of future observations and actions that adhere to the intended trajec-
tory. Our experiments show that SVA provides more precise and flexible control, outperforming the
strongest baseline by 33%.

To summarize, our work has four main contributions.

• First, we introduce the Steerable Video Action model, which enables flexible control by condi-
tioning on steering signals, specifically end-effector traces. By jointly predicting future video
frames and actions, SVA learns to align its behavior with the visual trajectory implied by the
steering signal, resulting in more accurate execution of steering inputs.

• Second, we show that SVA generalizes effectively to settings that require following unseen traces.
SVA achieves an improvement of 33% over the strongest baseline on unseen task traces.

• Third, SVA supports pretraining on actionless videos, allowing the model to learn from diverse
physical interactions and expand the range of steering signals it can reliably follow without re-
quiring action labels, further improving steerability and generalization.

• Finally, we analyze how to incorporate steering signals into video-action models, showing that
spatial alignment between trace and observation tokens, is critical for accurate trace following.

2 RELATED WORK

In this section, we begin by reviewing prior works using steering robot policies. We then discuss
video generation for robotic control. Finally, we examine previous works that utilize action-free
video data for robot learning.

Steerable robot policies. Numerous prior works have attempted to develop steerable robot poli-
cies that can be controlled via trajectories (Li et al., 2025b; Zheng et al., 2025; Gu et al., 2024),
keypoints (Sundaresan et al., 2023) or low-level language motions (Belkhale et al., 2024; Shi et al.,
2025). These methods typically use a separate low-level policy (Li et al., 2025b) or a separate pre-
diction stage (Lee et al., 2025) to output actions that follow steering signals using action data from
a single robot embodiment. However, since data for a single embodiment is often limited, these
approaches struggle to generalize to tasks beyond the training tasks they were trained on. In con-
trast, the action prediction in our model can benefit from action-free data, as it shares the same latent
representation as the video prediction head, thereby improving generalization.
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Steerable Video Generation. A parallel line of research has solely looked into controllable video
generation using object trajectories (Yin et al., 2023; Wang et al., 2023; Wu et al., 2024; Wang
et al., 2025), edge map videos (Zhang et al., 2025) and camera trajectories (He et al., 2025; NVIDIA
et al., 2025) control the generations. These methods steer synthesis by converting the user’s motion
cues into explicit constraints on the diffusion process: DragNUWA (Yin et al., 2023) and Mo-
tionCtrl (Wang et al., 2023) rasterize object paths (or optical-flow targets) into conditioning masks,
DragAnything (Wu et al., 2024) warps the latent feature grid around dragged keypoints, ATI (Wang
et al., 2025) injects hierarchical velocity tokens, Zhang et al. (Zhang et al., 2025) feed edge-map
sequences as pixel-wise guidance, and CameraCtrl (He et al., 2025) applies per-frame pose-delta
matrices to align the generated viewpoint. However, these approaches mostly target non-embodied
settings. Cosmos (NVIDIA et al., 2025) loosely explores controllable video generation in an embod-
ied setting of autonomous driving using trajectories to control the vehicle. However, in this work,
we explore steerability in the robot manipulation setting which requires more fine-grained control.

Video Generation for Robotics. Numerous robotics works have explored leveraging recent ad-
vancements in image and video generation, using them for task planning (Du et al., 2023; 2024),
generating augmentations (Chen et al., 0; Yu et al., 2023; Zhang et al., 2024) and producing visual
chain-of-thoughts (Zhao et al., 2025). Pushing further, recent works (Li et al., 2025a; Zhu et al.,
2025) have also sought to jointly model and predict both videos and actions, enabling a wide range
of capabilities within a single model: standalone video and action prediction, forward dynamics and
inverse dynamics. However, these models are limited in terms of the steerability of generated video
and actions, typically relying on high-level instruction for task specification. This&That (Wang
et al., 2024) controls robot motions in generated videos using gestures and language. However,
its steering representation is limited to pointing at objects or static locations and cannot convey
trajectory-level guidance. In our work, we attempt to incorporate fine-grained control in the form of
trajectory sketches into video action models.

3 STEERING VIDEO AND POLICY GENERATION

We refer to steerable robot policies as policies that follow language instructions or other high-level
representations of goals such as trajectories drawn on an image referring to the path the robot needs
to take. Such policies (Gu et al., 2024; Belkhale et al., 2024; Lee et al., 2025) provide a steerable
interface that allows users to effectively control the robot. In this section, we introduce Steerable
Video Action model (SVA), a unified architecture that learns to follow diverse steering signals while
jointly predicting future video frames and low-level robot actions.

Problem Setup. Given a sequence of past observations {ot−h′+1, . . . ,ot} and steering signals
{st+1, . . . , st+h}, the goal is to generate future observations {ot+1, . . . ,ot+h} and low-level actions
{at, . . . ,at+h−1} that are consistent with the provided steering inputs.

3.1 UNIFIED VIDEO ACTION MODEL

Video–action models (Li et al., 2025a; Zhu et al., 2025) have shown promise in improving policy
inference. A recent method, the Unified Video Action (UVA) model (Li et al., 2025a), learns a joint
video–action representation that predicts sequences of future observations and actions. During train-
ing, it leverages video supervision to learn effective vision–action representations, and at inference
time it supports real-time action predictions by omitting video generation. We build SVA on top of
UVA to enable steerability while maintaining its efficient joint prediction capabilities.

In UVA, each visual observation ot is encoded using a pretrained VAE encoder, producing a se-
quence of latent representations of images {vt

1, . . . ,v
t
N}. Similarly, the history of actions is en-

coded into a sequence of action tokens {at1, . . . ,atN}. These action tokens are concatenated with
the latent representations of images along the channel dimension and passed through a transformer
encoder, which fuses the visual and action information into a unified video–action representation.
This joint latent representation {zt1, . . . , ztN} is then used to condition the diffusion-based decoders
for generating video and actions.

3
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Figure 2: Approach. SVA conditions on traces by representing them as images, encoding them
using a pretrained VAE encoder and concatenating them spatially with the tokens of context images.

3.2 STEERABLE VIDEO ACTION MODEL

While steering a policy can be done via different high-level signals such as language, sketches,
keypoints, and others, we use 2D end-effector trajectories – referred to as robot traces – as our
primary steering signal. Each trace is represented as a sequence of 2D coordinates st = (xt, yt),
indicating the desired motion of the robot’s end-effector over time.

Trace Extraction. The 2D traces can be extracted in different ways depending on the data source.
For simulation data, we have access to both the 3D pose of the robot’s end effector and the camera
pose, which allows us to project the 3D positions into 2D space. We also incorporate additional
real human data from (Clark et al., 2025) to pretrain the model for trace-conditioned video gen-
eration. The dataset contains 2000+ human demonstrations that mimic how a robot interacts with
objects in tabletop manipulation tasks. Human hand trace are extracted using off-the-shelf hand
trackers (Pavlakos et al., 2024).

Trace Sampling. To increase the model’s flexibility in handling diverse trace patterns, we do not
directly use the full trajectory trace. Instead, we expose the model to a wide range of trace lengths
during training—from short motions to full task trajectories. Specifically, the trace start point is
sampled from the interval [0, t−h′+1], and the end point is sampled from [t+h, T ], where T denotes
the full length of the trajectory. This ensures that the trace spans both the historical observations fed
to the model and the future observations to be predicted, providing temporal context that helps the
model align past movements with future outcomes and better learn the dynamics of the task.

Spatial Alignment. To make trace signals more explicit and spatially aligned with visual observa-
tions, we render each trajectory as an image, encoding time via a color gradient. To indicate motion
direction, we apply a linear intensity fade from the start to the end of the trajectory—where the
starting point Ps has maximum red channel intensity (value 1), the endpoint Pe has reduced inten-
sity (value 0.5), and intermediate points fade linearly from 1 to 0.5. This visual encoding helps the
model associate spatial locations with temporal dynamics, as illustrated in Figure 2.

The trace image is passed through a pretrained VAE encoder, producing a sequence of latent to-
kens {pt

1, . . . ,p
t
N} for each timestep t. In parallel, each observation ot is encoded into visual

latents {vt
1, . . . ,v

t
N}. The trace latents and visual latents are concatenated along the channel di-

mension at each spatial location, forming a fused representation. This combined input is passed
to the transformer to jointly predict future video frames and corresponding robot actions. This de-
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sign encourages the model to learn spatial and temporal correspondences between the trajectory and
visual context, improving alignment between user intent and generated behavior.

Video and Action Decoding. Similar to UVA, we use diffusion decoders to predict future videos
and actions. The decoders are trained using a Denoising Diffusion Probabilistic Model (DDPM)
objective (Ho et al., 2020). During inference, the decoders progressively denoise random Gaussian
noise to generate video and action sequences, respectively.

Inference. At test time, the model receives a steering signal in the form of a 2D trace (e.g., hand-
drawn or extracted from another demonstration), along with a short context of past visual observa-
tions. It then generates a sequence of future video frames and the corresponding low-level robot
actions, guided by the steering signal.

3.3 VARIANTS OF TRACE ENCODING

In addition to our proposed method, we explore alternative trace encoding strategies to investigate
how to most effectively incorporate steering signals into video action models. Specifically, we
evaluate four variants of our approach to study the influence of i) spatial alignment and ii) trace
length variability

SVA No Spatial Alignment: We study the influence of spatial alignment between the trace image
and the observation image. Instead of concatenating their latent token sequences along the channel
dimension, as shown in Figure 2, we concatenate them along the sequence dimension, resulting in a
sequence of 2N tokens. This removes the spatial alignment between trace and visual features before
passing the sequence to the Transformer.

SVA Fixed-Length Trace: To examine the effect of trace length variability, we constrain the trace to a
fixed interval [t−h′+1, t+h], covering only the immediate history and prediction horizon. Unlike
the variable-length trace used in SVA, this variant removes randomness in trace span, allowing us to
assess whether such variability is important for effective guidance.

3.4 CO-TRAINING WITH ACTIONLESS DATA

Similar to previous video-action policies (Ye et al., 2024), SVA benefits from large-scale video
pretraining, which provides strong visual and temporal priors. In addition, exposure to diverse
steering signals during pretraining enables the model to learn a wide range of behaviors without
relying on robot action labels.

To achieve this, we first pretrain our model on a combination of action-free human video datasets
and robot datasets using only the video generation objective. The model takes trace of human hand
or robot gripper along with historical observations as input and predicts future observations. The 2D
hand trajectories are extracted from human activity videos using a pose tracking method (Pavlakos
et al., 2024), and serve as steering signals to guide the prediction. We then finetune the model by
including a smaller set of robot demonstrations. During this stage, the model takes steering signals
as input and is jointly optimized using both video generation and action prediction losses. This two-
stage training process enables the model to retain generalization capabilities from large-scale video
data while adapting to the specific action space of the robot.

4 EXPERIMENTS AND RESULTS

In this section, we present experiments to evaluate the effectiveness of our Steerable Video Action
model (SVA) in terms of steerability (section 4.2) and generalization (section 4.3). We also assess
the benefits of incorporating human video data (section 4.4) and finally investigate how different
trace encoding mechanisms (section 4.5) influence performance in terms of steerability and gener-
alization. We start by describing the steerability and generalization evaluations in the following.

• Steerability: We evaluate the ability of our model and its variants to follow a given steering
signal—in our case, a 2D trace input extracted from unseen trajectories. All models take the
steering trace as input and generate future video frames and actions. We use Fréchet Video
Distance (Unterthiner et al. (2019)), or FVD, to measure video steering ability by comparing
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generated videos against groundtruth videos. For evaluating action steering, we measure the
mean squared error (MSE) between groundtruth actions and the actions realized by the models
while attempting to follow the extracted traces.

• Generalization: The strong steerability of our model enables more accurate trace following,
which in turn allows it to better complete tasks when guided by new traces. We evaluate the
model’s ability to generalize to previously unseen traces that are either extracted from held out
task demonstrations or manually annotated by a human. Generalization performance is assessed
by measuring the success rate of task completion under these novel traces.

4.1 EXPERIMENTAL SETTINGS

We evaluate our method in simulated robot environments from the LIBERO benchmark (Liu et al.,
2023), focusing on how joint video–action modeling and actionless data improve steerability and
generalization. Below, we describe the datasets, tasks, and baselines used in our experiments.

Data. Our experiments combine robot demonstrations and actionless human videos to study three
questions: (i) whether modeling videos and actions together improves learning, (ii) whether incor-
porating actionless task data benefits generalization, and (iii) whether human data from a different
embodiment improves trace-following.

• LIBERO-90 without actions. We use the LIBERO-90 benchmark (90 tabletop manipulation
tasks across 20 environments) without actions to test whether actionless data contributes to solving
novel tasks. Each task provides 45 demonstrations for training and 5 held-out demonstrations for
evaluation. Actionless LIBERO-90 data is included in both training stages.

• Human video dataset. To evaluate cross-embodiment benefits, we use 2,416 episodes of a human
hand performing tasks in a toy sink environment with a fixed third-person camera (Clark et al.,
2025). This controlled setup avoids camera-motion variability common in human datasets. Since
many LIBERO tasks are pick-and-place, including this dataset allows us to test whether human
traces improve steering for similar tasks. We use this data only in first stage of training. The
results in the paper do not use this data unless specified.

• LIBERO-10 with actions. We use LIBERO-10 as our sole source of action supervision. This
benchmark includes 10 longer-horizon tasks. We use 45 demonstrations per task for training.

Tasks. All evaluations are conducted in the LIBERO framework. For LIBERO-90 tasks, we hold
out five demonstrations per task as ground-truth traces. These traces are used both to evaluate trace-
following ability and to measure whether actionless data improves performance on unseen tasks. We
further test qualitative generalization to custom instructions that involve novel objects or modified
spatial goals.

Baselines. We compare our method (SVA) against four baselines, covering both non-steerable
and steerable models. All baselines are trained or finetuned on the same data as SVA.

Figure 3: Video and policy steering.
SVA generates videos and actions that
are more closer to the groundtruth tra-
jectories compared to the baselines.

• Unified Video Action Model (UVA) (Li et al., 2025a):
A state-of-the-art joint video–action model trained
without conditioning on steering traces.

• Diffusion Policy (DP) (Chi et al., 2023): A diffusion-
based action policy conditioned on language instruc-
tions, with CLIP encoders for language grounding.

• DP-Tr: An extension of Diffusion Policy that condi-
tions on 2D steering traces, enabling trace-guided ac-
tion generation.

4.2 CAN SVA
EFFECTIVELY BE STEERED BY TRACES?

We quantitatively evaluate the trace-following ability of
our method and baselines using held-out demonstrations from LIBERO-90. Results are summarized
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in Figure 3. Our approach, which explicitly conditions on traces, produces videos that better align
with ground-truth rollouts, achieving significantly lower Fréchet Video Distance (FVD) compared to
the non-steerable UVA baseline. This indicates that trace conditioning provides a strong supervisory
signal for generating temporally coherent, trace-aligned visual predictions. As shown in Figure 3,
SVA not only matches the ground-truth traces visually but also produces action sequences that
are quantitatively closer to the demonstrated actions. In particular, the mean squared error (MSE)
between predicted and ground-truth actions is reduced by 52% relative to DP-Tr, a steerable baseline.

Steering with human-drawn traces

Steering with LIBERO-90 task traces

Input trace DP-Tr 
(baseline)

SVA 
(ours)

Figure 4: Policy steering (qualitative). We extract traces from task demonstrations (top rows)
and use custom human sketches (bottom rows) to condition steerable policies. The results indicate
that SVA more closely follows the input traces (red) compared to DP-Tr.

We also observe clear qualitative differences. As illustrated in Figure 4, SVA is able to follow traces
extracted from demonstrations with high spatial fidelity, while also generalizing to free-form traces
drawn by humans. In these settings, DP-Tr often deviates from the intended trajectory, whereas
SVA produces rollouts that are closely aligned with the input traces.

4.3 CAN SVA GENERALIZE TO UNSEEN TASK TRACES?

We compare SVA against both steerable and non-steerable baselines on LIBERO-90 tasks for which
no action data was available during training. As shown in Figure 5, SVA demonstrates substantially

7
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Figure 5: Generalization to unseen traces.
When evaluated on held out demonstrations
from LIBERO-90, SVA outperforms steerable
and non-steerable policies.

Figure 6: Varying actionless data. SVA ben-
efits from actionless LIBERO-90 data and can
further improve by additional pretraining with
human video data (Clark et al., 2025).

stronger generalization to unseen traces than all baselines. In particular, it outperforms the state-of-
the-art UVA model, which lacks steering inputs, and achieves an absolute improvement of 33% over
the steerable DP-Tr policy. DP-Tr, which is only trained on action data from LIBERO-10, fails to
adapt to new task traces (fig. 4). These results underscore the importance of joint video–action mod-
eling for learning steerable policies, especially in settings where action supervision is unavailable
for many tasks.

4.4 CAN SVA BENEFIT FROM ACTIONLESS HUMAN VIDEOS?

Our main experiments use LIBERO-10 action data, supplemented with action-free videos from
LIBERO-90. To assess the role of this additional supervision, we compare three settings: (i)
pretraining with only LIBERO-10 videos, (ii) pretraining with LIBERO-10 actions plus actionless
LIBERO-90 videos, and (iii) further enriching this setup with human videos Clark et al. (2025). We
find that restricting actionless pretraining to the smaller and less diverse LIBERO-10 data degrades
performance by −21%, whereas augmenting with human videos improves generalization by +3%
on unseen traces. These results highlight that diverse, actionless human videos provide a valuable
signal for improving steerability in novel tasks, and suggest a promising path toward scaling robot
learning by leveraging large, unlabeled human video corpora readily available in the wild.

4.5 HOW TO EFFECTIVELY CONDITION ON TRACES?

Figure 7: Ablations on trace
conditioning. We experiment
with different ways of repre-
senting traces and condition-
ing on them.

We investigate alternative ways of incorporating steering traces into
SVA. Specifically, we compare (i) fixed-length traces restricted to
the prediction context window, and (ii) concatenating trace tokens
directly to the context tokens without enforcing spatial alignment.
All variants are trained for the same number of steps in both pre-
training and finetuning stages, ensuring a fair comparison.

To evaluate these design choices, we sample random trace lengths
that extend beyond the prediction context and report FVD scores on
256 held-out windows from LIBERO-90 demonstrations. As shown
in fig. 7, restricting traces to the context window significantly re-
duces performance, underscoring the importance of conditioning on
longer traces that provide guidance beyond the immediate horizon.
Moreover, simply concatenating trace tokens without alignment de-
grades results. By spatially aligning trace tokens with observation
tokens, the model can exploit consistent correspondences between
the desired end-effector positions and visual scene structure. This
alignment is crucial for accurate trace following, enabling coherent
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video rollouts and action predictions that adhere to the intended trajectory. Taken together, these
findings demonstrate that both trace length randomization and spatial alignment are essential design
choices for effective steering.

5 CONCLUSION

In summary, we present Steerable Video Action model (SVA), a video-action model that can jointly
forecast future video frames and low-level robot actions while accepting control inputs in the form
of end-effector traces. This unified design yields precise, user-controllable behaviors and surpasses
prior controllable and non-controllable baselines for following unseen traces. Finally, by absorbing
large-scale action-free human video, SVA has the potential to learn a richer latent representation that
can further boost policy performance. Beyond improved task execution, SVA highlights how trace
conditioning can transform video–action models into more flexible and general-purpose steerable
policies.

A central strength of our approach lies in its ability to absorb large-scale action-free video, includ-
ing human demonstrations, to establish a rich prior over physical interactions. This enables effective
steering without requiring dense action labels and suggests a practical pathway to scaling robot
learning with widely available video data. Our analysis also underscores the importance of spa-
tial alignment between trace and observation representations, offering insights for designing future
steerable models.

Looking ahead, SVA offers a foundation for more intuitive and scalable robot control. Extend-
ing steering inputs beyond traces—to keypoints, free-form language, or multimodal human feed-
back—could enable richer and more natural interaction between humans and robots. Another
promising direction is leveraging diverse data from humans and multiple robot embodiments to train
more general steerable policies, ultimately supporting deployment on real-world robot platforms.
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