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ABSTRACT

The advent of long-context Large Language Models (LLMs) has been hindered
by a critical bottleneck: the scarcity of high-quality training data. Standard data
synthesis methods, which typically concatenate short documents, often fail to cre-
ate the challenging, long-range dependencies essential for robust learning. In this
work, we introduce Long-Attention Weaving (LAW), a novel framework that
leverages a model’s own self-attention mechanism to synthesize a superior long-
context training curriculum. LAW operates in two stages: first, it employs a multi-
scale attention-based score to identify short documents that are inherently rich in
long-range dependencies. Second, it utilizes a novel interleaving strategy to weave
these selected documents into complex sequences, compelling the model to estab-
lish non-trivial, long-distance relationships. We demonstrate that continually pre-
training LLaMA-2 7B on data synthesized by LAW extends its effective context
window to 64k and significantly outperforms strong baselines on a suite of long-
context benchmarks, LongBench. Our findings highlight the efficacy of attention-
guided data engineering for unlocking the full potential of long-context LLMs.
All code and data are available at https://anonymous.4open.science/r/LAW-B056.

1 INTRODUCTION

The capacity to process extensive contexts is a critical frontier in the advancement of Large Lan-
guage Models (LLMs), underpinning their application in complex, real-world domains such as com-
prehending entire codebases, summarizing lengthy legal documents, or engaging in multi-turn dia-
logues over long histories (Vaswani et al., 2017). While proprietary models like GPT-4 and Claude
3 have demonstrated remarkable long-context capabilities (OpenAI, 2023; Anthropic, 2024), the
open-source community’s efforts to replicate this success are often hampered by a fundamental bot-
tleneck: the scarcity of high-quality, naturally occurring long-text data (Liu et al., 2023; Bai et al.,
2023).

To circumvent this data shortage, a common practice is to synthesize long training samples by con-
catenating shorter documents from large corpora (Raffel et al., 2020; Gao et al., 2020), a strategy
employed during the pre-training of many foundational models (Brown et al., 2020; Touvron et al.,
2023). However, this approach often creates an “illusion” of long context—sequences that are long
in token count but lack the deep, interwoven dependencies that characterize genuine long-form text
(Bai et al., 2023). Models trained on such data can often achieve low perplexity without developing
the sophisticated, long-range reasoning skills they are intended to acquire, as the necessary informa-
tion is frequently found within local, more easily accessible context windows (Liu et al., 2023; Xiao
et al., 2023).

This challenge has spurred two main lines of research, both of which have significant limitations.
The first, which we term brute-force synthesis, attempts to create more challenging data by inter-
leaving multiple short documents, as seen in methods like LongSkywork (Zhao et al., 2024). While
an improvement over simple concatenation, this strategy treats all source documents as equally valu-
able, inevitably diluting the training corpus with material that lacks strong internal dependencies and
thus offers a weak learning signal (Swayamdipta et al., 2020).

The second line of work focuses on misaligned filtering. These methods aim to select higher-quality
data but rely on flawed proxies. Linguistic-based approaches like ProLong (Cheng et al., 2024) use
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metrics such as perplexity to filter data, a technique which is widely used in web-scale data cleaning
(Wenzek et al., 2019; Raffel et al., 2020), yet one which is computationally intensive and poorly
aligned with the token-level attention mechanisms that govern LLM processing. More model-aware
methods, such as LongAttn (Wu et al., 2025), cleverly use self-attention scores to find dependency-
rich texts, drawing on the idea that models can report on their own internal states (Kadavath et al.,
2022). However, their framework is designed to filter a corpus of already-long documents, not to
guide the synthesis of new long documents from a pool of short ones, making it ill-suited for the
data scarcity problem.

In this paper, we introduce Long-Attention Weaving (LAW), a new framework that moves beyond
these limitations by directly using an LLM’s internal self-attention scores to both select high-quality
source material and synthesize a challenging long-context curriculum. Our core insight is that the
most effective data forces the model to learn relationships that it currently struggles with, a signal
best captured by its own attention mechanism. LAW implements this via a two-stage process:

• We first design a multi-scale, attention-based scoring metric to efficiently identify short
documents that are rich in internal, long-range dependencies, ensuring that every compo-
nent of our synthetic data is of high quality.

• We then employ a novel interleaving synthesis strategy that weaves these selected docu-
ments into complex sequences, constructing complex sequences that explicitly require the
model to connect semantically related but distant segments of text.

We demonstrate through extensive experiments that continually pre-training LLaMA-2 7B on data
synthesized by LAW significantly enhances its long-context capabilities on a diverse array of down-
stream benchmarks. Our contributions are not just a new method, but a new perspective: treating
long-context data synthesis as a data engineering problem, guided by the model’s own perception of
contextual dependency.

2 RELATED WORK

The pursuit of longer context windows in LLMs has advanced along two primary axes: architectural
innovations and data-centric strategies. Our work falls into the latter, focusing on the generation of
high-quality training data, a component we argue is critical for any architecture to realize its full
potential.

Architectural Innovations A significant body of research has focused on modifying model ar-
chitectures to handle longer sequences. Key efforts include developing more efficient attention
mechanisms to mitigate the quadratic complexity of standard self-attention (Zhuang et al., 2023).
These “X-formers” encompass a wide range of techniques, such as sparse attention patterns (Belt-
agy et al., 2020; Zaheer et al., 2020), hardware-aware optimizations like FlashAttention (Dao et al.,
2022), and alternative architectures like state-space models that offer linear-time complexity (Gu &
Dao, 2023). Another critical area is the adaptation of positional encodings to extrapolate beyond
their original training length. Techniques such as Positional Interpolation (PI) (Chen et al., 2023)
and YaRN (Peng et al., 2023) have become standard practices for extending the context window
of existing models like LLaMA. However, these architectural modifications only provide the *ca-
pacity* for longer contexts; the model must still learn to *utilize* this capacity through exposure to
appropriate data, a challenge that remains significant. Our work is orthogonal and complementary to
these efforts, providing the high-quality data needed to make such architectural extensions effective.

Data-Centric Strategies The performance of long-context models is intrinsically linked to the
data they are trained on (Touvron et al., 2023). Given the scarcity of naturally long, high-quality
documents, research in this area has broadly bifurcated into data synthesis and data selection.

Data Synthesis via Document Combination. A common and scalable strategy for creating long-
text data is to combine shorter documents from large-scale corpora like The Pile (Gao et al., 2020),
C4 (Raffel et al., 2020), and BookCorpus (Zhu et al., 2015). The simplest form is sequential concate-
nation, a method used in the pre-training of many foundational models (Brown et al., 2020; Touvron
et al., 2023). A more advanced technique, employed by LongSkywork (Zhao et al., 2024), uses a
chunk-interleaving strategy that weaves segments from multiple documents together. This forces
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the model to track information from different sources simultaneously, creating a more challenging
training task than simple concatenation. However, by treating all source documents as equally valu-
able, these synthesis-only approaches risk diluting the training data with samples that lack strong
internal dependencies, potentially leading to inefficient or ineffective learning.

Data Selection via Quality Scoring. To address the issue of data quality, other methods focus
on selecting the most valuable data from a corpus, a practice philosophically rooted in ideas like
dataset cartography (Swayamdipta et al., 2020) and influence functions (Koh & Liang, 2017). Early
approaches like ProLong (Cheng et al., 2024) used linguistic metrics like perplexity to score and
select coherent document sequences, a technique also common in large-scale data cleaning pipelines
(Wenzek et al., 2019). While intuitive, such metrics are often computationally expensive and are not
directly aligned with the internal mechanisms of the transformer architecture. A more direct and
aligned approach was pioneered by LongAttn (Wu et al., 2025), which leverages the model’s own
self-attention scores to identify existing long documents rich in long-range dependencies, building
on the insight that models can possess self-knowledge about their own internal states (Kadavath
et al., 2022). This was a key insight, but its methodology is designed as a filter for an existing
corpus of long texts. It does not address the core problem of how to synthesize new long documents
when a large, high-quality long-text corpus is not readily available.

Positioning of Long-Attention Weaving Our work, Long-Attention Weaving (LAW), synergizes
and advances these two paradigms. We adopt the synthesis-centric approach of methods like
LongSkywork, but address its core limitation by introducing a critical data selection stage. Our
selection mechanism is inspired by the model-centric philosophy of LongAttn, but we make two
crucial adaptations: (1) we apply it to score short documents to assess their suitability as building
blocks for synthesis, and (2) we enhance the scoring with a multi-scale analysis and a robust rank-
aggregation scheme. By first selecting for dependency-rich short documents and then weaving them
together using a challenging interleaving strategy, LAW creates a more potent and efficient training
curriculum specifically designed to foster long-range reasoning.

3 METHODOLOGY

The core of our framework is a three-stage pipeline designed to generate a high-quality, long-context
training curriculum from a large corpus of short documents. The stages are: (1) multi-range context
dependency scoring of short documents, (2) multi-scale ranking aggregation for robust selection,
and (3) long-context synthesis via document interleaving.

multi_range_score = []

...

Short Context Source Data

score = sum(D_mat) - var(D_mat)
multi_range_score.append(score)

for range in [4k, 8k, 12k]:

+range

Compute
dependency

matrix (D_mat)
D_mat

Attention
weights

Stage 2: Multi-Scale Ranking 
Aggregation

range doc1 doc2 doc3 doc4

4k 13 9 7 10

8k 1 0.5 0.6 0.1

12k 13 0.3 0.4 0.2

doc1 doc2 docN-1

range doc1 doc2 doc3 doc4

4k 4 2 1 3

8k 4 2 3 1

12k 4 2 3 1

Sum 9 6 7 5

docN

Stage 1: Multi-Range Context
Dependency Scoring

Stage 3: Long-context Synthesis 
via Document Interleaving

1a

1b

2a

2b

3a

3b

Top score short data

1a
2a
3a
1b
2b
3b

1a
2a
3a
3b
2b
1b

Long context data

Rank by scores

for each document

Figure 1: The overall framework of Long-Attention Weaving (LAW) consists of three stages. Stage
1: Short-context documents are scored for long-range dependency richness at multiple ranges (e.g.,
4k, 8k, 12k) using the first-layer self-attention matrix to compute multi-range scores. Stage 2:
Scores from each range are converted to ranks and aggregated via summation to yield a final score
for robust document selection. Stage 3: Top-scoring short documents are bisected and interleaved
using ordered and reverse-ordered strategies to synthesize challenging long-context training data.
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3.1 STAGE 1: MULTI-RANGE CONTEXT DEPENDENCY SCORING

Our process begins with a large-scale corpus of short documents, primarily sourced from open-
source code repositories and ArXiv papers due to their rich semantic content. Raw documents are
segmented into fixed-length chunks (e.g., 4k tokens) using a sliding-window strategy designed to
maximize data utilization while preserving informational integrity. For a document of n tokens and
a target length L, we extract chunks from the beginning, end, and middle, ensuring that no content
is wasted and that each chunk represents a contiguous block of text. This forms the initial pool of
short-context documents, D.

To identify the most valuable documents for synthesis, we introduce a scoring mechanism that quan-
tifies long-range dependencies from the model’s own perspective. Our approach extends the core
idea of LongAttn (Wu et al., 2025) by adapting it to score short documents and incorporating a
multi-range analysis for robustness.

The process begins by computing a Long-Range Dependency Score (LDS) for each document s ∈ D
at multiple distance thresholds k ∈ K. The score is derived from the self-attention matrix M of a
pre-trained LLM, extracted specifically from its first layer. This choice is deliberate: the first layer
is computationally efficient and its attention patterns are less influenced by task-specific heads or
the “attention sink” phenomenon, providing a purer signal of fundamental token-level relationships
(Xiao et al., 2023). The score is defined as:

LDS(s, k) = Mean(Mi,j|j−i>k)− α · Var(Mi,j|j−i>k) (1)

where the first term is the average attention strength beyond distance k, and the second term penal-
izes non-uniform dependency distributions with a hyperparameter α.

3.2 STAGE 2: MULTI-SCALE RANKING AGGREGATION

A critical challenge in utilizing our multi-range dependency scores is that the raw LDS values are
not directly comparable across different scales k. The distribution and magnitude of attention scores
can vary significantly between short-range and long-range dependencies; a naive summation would
be susceptible to biases, allowing a single scale to dominate the final score. To mitigate this issue of
incommensurability, we adopt a robust, non-parametric approach by converting the raw scores into
ranks. For each distance scale k ∈ K, we rank all documents s ∈ D according to their LDS(s, k)
values, yielding a set of rank lists, R(s, k).

These individual rank lists are then aggregated into a single, unified score using a method inspired
by the Borda Count(Emerson, 2013)consensus system. In this formulation, each scale k acts as a
“voter,” and the final score for a document reflects its overall standing across all voters. This is
achieved by summing the ranks a document received across all scales:

Scorefinal(s) =
∑
k∈K

R(s, k) (2)

This rank-aggregation strategy is inherently robust, as it prioritizes documents that achieve a strong
consensus of high performance across the entire spectrum of dependency ranges. It rewards docu-
ments that are consistently ranked favorably, rather than those that may have an exceptionally high
score at one scale but perform poorly at others.

Finally, we perform a principled filtering step by selecting the top p-th percentile (e.g., top 50%) of
documents based on their Scorefinal(s). This process yields the high-quality subset D∗, which serves
as the source material for our subsequent synthesis stage.

3.3 STAGE 3: LONG-CONTEXT SYNTHESIS VIA DOCUMENT INTERLEAVING

Using the high-quality document set D∗, we synthesize long-context samples designed to be chal-
lenging for the model. The process begins by sampling a batch of N documents (e.g., N = 8). Each
document Di is bisected into two halves, Pi,1 and Pi,2.

We employ two interleaving strategies. The first, Ordered-Interleaving, concatenates all first-half
parts followed by all second-half parts in their original order, creating a structure that requires the
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model to connect related but now distant halves of the same documents:
Dsynth ordered = [P1,1 ◦ · · · ◦ PN,1 ◦ P1,2 ◦ · · · ◦ PN,2] (3)

Our primary strategy, Reverse-Ordered Interleaving, introduces a greater challenge by reversing
the order of the second-half parts. This breaks simple positional heuristics the model might learn and
forces a more robust, content-based understanding of semantic links to solve the complex “semantic
binding” task of reconnecting the document halves:

Dsynth reversed = [P1,1 ◦ · · · ◦ PN,1 ◦ PN,2 ◦ · · · ◦ P1,2] (4)
where ◦ denotes concatenation. The final training set is composed of synthetic documents gener-
ated using a mix of these strategies, creating a diverse and challenging curriculum for long-context
learning.

The final stage of our framework utilizes the synthesized long-context corpus for the continual pre-
training of a base LLM. The primary training objective is to extend its effective context window.
The central logic of our data generation process is formalized in Algorithm 1.

4 EXPERIMENTS

To validate the efficacy of our proposed framework, Long-Attention Weaving (LAW), we conduct
a comprehensive suite of experiments. We first detail the experimental setup, then present the main
results comparing LAW against strong baselines, and conclude with in-depth ablation studies and
qualitative analyses to deconstruct the sources of its performance gains.

4.1 EXPERIMENTAL SETUP

Training Details All models were initialized from the LLaMA-2 7B checkpoint and continually
pre-trained on a corpus of 1 billion (1B) tokens. This corpus was synthesized by sampling from a
curated dataset of ArXiv papers and source code at a 1:1 ratio. We extended the model’s context
window from its native 4k to 64k tokens. Following established best practices for long-context
adaptation (Lu et al., 2024), we employed a learning rate of 2×10−5 with a linear warmup schedule
and no weight decay. All experiments were conducted on a cluster of 8 NVIDIA H800 GPUs.

Baselines We benchmark LAW against three strong baselines designed to isolate the contributions
of our framework’s core components:

• Base Model: The original LLaMA-2 7B checkpoint, without any long-context continual
pre-training, serving as a reference for pre-adaptation performance.

• Random Concatenation: A naive baseline that bypasses our attention-based filtering
stage. Short documents are randomly sampled and concatenated to form 64k-token se-
quences, representing a common but simplistic approach to long-context data construction.

• Ordered-Interleaving w/o Filter: This baseline ablates our filtering mechanism by apply-
ing the ordered-interleaving strategy to randomly selected documents. It serves to isolate
the performance gains attributable specifically to our attention-guided document selection.

Evaluation Tasks We employ a diverse set of intrinsic and extrinsic evaluation tasks to provide a
holistic assessment of model capabilities.

• Intrinsic Evaluation: We measure perplexity (PPL) on the PG19 and Proof-pile datasets
to assess fundamental language modeling quality across various context lengths.

• Extrinsic Evaluation: We report performance on LongBench (Bai et al., 2023), a standard
multi-task benchmark for long-context understanding. Additionally, we assess in-context
learning ability on the Trec News dataset using a “ManyShots” learning paradigm.

4.2 MAIN RESULTS

Language Modeling Perplexity Table 1 presents the perplexity scores on the PG19 and Proof-
pile datasets. At the target context length of 64k, LAW achieves superior language modeling perfor-
mance, confirming its effectiveness in modeling long-range dependencies.
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A noteworthy observation is LAW’s slightly elevated perplexity at shorter context lengths (e.g., 2k-
8k) compared to the baselines. We posit that this is not a deficiency but rather an expected artifact
and a positive indicator of our method’s success. The data synthesized by LAW is intentionally
structured to be complex and non-locally redundant, compelling the model to resolve dependencies
that span beyond short evaluation windows. Consequently, when evaluated on these shorter win-
dows, the model’s attempts to predict tokens based on unavailable long-range context may result
in a marginal PPL increase. In contrast, baseline models trained on locally coherent but globally
simplistic concatenated data excel at local prediction but fail to develop the mechanisms for genuine
long-range reasoning, as evidenced by their degraded performance at the full 64k context length.

Table 1: Perplexity (PPL) on PG19 and Proof-pile datasets at various context lengths. All models are
trained with a 64k context window. Lower PPL indicates better performance. LAW (Ours) achieves
the best performance at the longest context lengths, validating its long-range modeling capabilities.

Dataset Model 2k 4k 8k 16k 32k 64k

PG19
Random Concatenation 7.11 6.73 6.50 6.36 6.25 6.20
Ordered-Interleaving w/o Filter 7.25 6.84 6.57 6.40 6.27 6.19
LAW (Ours) 7.41 7.29 6.62 6.45 6.31 6.18

Proof-pile
Random Concatenation 3.28 3.00 2.82 2.68 2.59 2.53
Ordered-Interleaving w/o Filter 3.29 3.01 2.83 2.67 2.57 2.50
LAW (Ours) 4.63 4.67 2.83 2.67 2.57 2.49

Downstream Task Performance As shown in Table 2, LAW consistently and significantly outper-
forms all baselines on the LongBench benchmark average score. This result underscores the tangible
benefits of our attention-guided data synthesis strategy for downstream applications. The substantial
gains over both Random Concatenation and Ordered-Interleaving without Filter highlight that both
components of our framework—the principled selection of documents with high dependency po-
tential and the challenging interleaving synthesis strategy—are critical for achieving state-of-the-art
performance.

Crucially, the superior performance is not merely in information retrieval but extends to tasks re-
quiring deeper reasoning, such as Question Answering and Summarization. We attribute this to the
nature of the training signal provided by LAW. The interleaving process forces the model to disentan-
gle, track, and integrate information from multiple, non-contiguous sources within a single context,
thereby directly training the cognitive primitives necessary for complex, multi-hop reasoning.

4.3 ABLATION STUDIES AND ANALYSIS

Impact of Framework Components To deconstruct the contributions of LAW’s key components,
we conducted targeted ablation studies, with results presented in Table 3.

• Ablation on Document Filtering: Isolating the effect of our attention-based filtering by
comparing the full LAW model to the “Ordered-Interleaving w/o Filter” baseline reveals
its criticality. The performance degradation (from 31.26 to 30.60 on LongBench) confirms
that our scoring mechanism is highly effective at identifying documents that provide a rich
training signal for learning long-range dependencies.

• Ablation on Synthesis Strategy: The performance gap between LAW and Random Con-
catenation (31.26 vs. 31.05) underscores the efficacy of the interleaving synthesis method.
To further probe this, we trained a variant, ‘LAW w/o Reverse-Order’, which omits the
reverse-ordered interleaving component. As shown in Table 3, this variant underperforms
the full method, validating that the increased complexity introduced by the bidirectional
interleaving strategy is a key contributor to the model’s final performance.

Sensitivity and Robustness Analysis We analyze the robustness of our method with respect to
key design choices.
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Table 2: Main results on the LongBench benchmark, averaged across task categories. LAW (Ours)
demonstrates substantial improvements over baselines, highlighting the effectiveness of our data
synthesis framework in fostering advanced reasoning capabilities.

Category Task Base Model Rand. Concat. Ord. Interleaving w/o Filter LAW (Ours)

Question Answering

NQA 20.46 22.73 22.31 22.43
QAP 28.08 28.56 29.22 28.53
MQA 37.72 36.44 39.27 40.94
HQA 42.03 41.61 39.56 40.58
WQA 30.11 34.25 31.60 31.92
TQA 85.31 87.27 86.92 86.76

Summarization

MSQ 14.40 14.75 18.27 17.74
QSM 20.93 20.02 20.37 20.47
MWS 14.47 15.62 13.12 17.13
SMS 41.20 40.74 41.90 41.75

Code

PSC 2.68 1.18 1.45 2.55
PSR 8.75 6.05 5.91 5.55
LCC 23.10 32.98 16.67 18.07
REP 26.54 29.54 28.31 29.79

Other GR 21.66 15.61 24.73 25.96
TRE 70.50 69.50 70.00 70.00

Average 30.50 31.05 30.60 31.26

Table 3: Ablation and data scaling results on LongBench (average score). These results demonstrate
the positive impact of scaling training data and confirm the benefit of our full reverse-ordered inter-
leaving strategy.

Model LAW (Ours, 1B) LAW (2B Tokens) LAW (w/o Reverse-Order)
Avg. Score 31.26 32.14 31.06

• Impact of Training Data Scale: By training a model on a 2B-token corpus synthesized by
LAW, we observe a consistent performance improvement (from 31.26 to 32.14 on Long-
Bench), demonstrating the scalability and positive data-scaling properties of our frame-
work.

• Generalization Across Context Lengths: The perplexity results in Table 1 show a grace-
ful degradation as the evaluation context shortens (e.g., 6.18 at 64k vs. 6.31 at 32k on
PG19). This suggests the learned long-context capabilities are robust and not pathologi-
cally tied to the maximum training length.

• Orthogonality to Position Extrapolation Method: To ensure our data-centric im-
provements are not conflated with architectural choices, we trained models using LAW-
synthesized data with two alternative RoPE extrapolation techniques: Positional Interpo-
lation (PI) and YaRN. In all configurations, training on LAW data yielded significant im-
provements over baselines. This confirms that our synthesis method provides benefits that
are largely orthogonal to and complementary with advances in positional encoding strate-
gies.

4.4 QUALITATIVE ANALYSIS OF ATTENTION MECHANISMS

To provide qualitative evidence for how LAW shapes the model’s reasoning, we visualize its atten-
tion patterns. Figure 2 compares heatmaps from documents with high and low dependency scores,
as determined by our filtering mechanism.

As illustrated in Figure 2a, documents with high dependency scores elicit dense, non-local attention
patterns. The strong off-diagonal signals, particularly in the lower-left quadrant, indicate that tokens
late in the sequence are actively attending to foundational concepts introduced much earlier. This is
a hallmark of sophisticated, long-range reasoning and validates that our scoring metric successfully
identifies texts that demand such behavior.

7
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(a) High dependency score documents exhibit strong
off-diagonal attention, indicating a focus on long-
range dependencies.

(b) Low dependency score documents show attention
concentrated on the diagonal, signifying a reliance on
local context.

Figure 2: A comparison of attention patterns on the LAW dataset. The model dynamically adjusts
its focus from long-range (a) to short-range (b) dependencies based on the document’s structural
complexity.

Conversely, for documents with low dependency scores (Figure 2b), the attention pattern converges
to a band-diagonal structure. This signifies a reliance on local context, where tokens primarily attend
to their immediate neighbors, reflecting a more sequential and less integrative processing mode.

These visualizations provide compelling evidence that our training framework does not merely ex-
tend the context window but instills a dynamic, input-dependent attentional strategy. The model
learns to allocate its cognitive resources efficiently, shifting from a global, integrative focus for
complex documents to a local, sequential focus for simpler ones. This adaptive capability is a direct
result of being trained on a curriculum curated and structured by LAW.

4.5 ABLATION STUDY ON DATA SYNTHESIS STRATEGY

To further dissect the contribution of our proposed data synthesis method, we conduct an ablation
study focusing on the ‘reverse‘ operation. We visualize the attention patterns of models trained on
data synthesized with our full methodology versus a variant where the ‘reverse‘ step is omitted. This
comparison, presented in Figure 3, serves to highlight the impact of this specific component on the
model’s ability to capture long-range dependencies.

Figure 3a displays the attention heatmap from a model trained on data synthesized using our com-
plete method. The heatmap is characterized by a pronounced and vibrant signal in the lower-left
quadrant. This indicates that tokens appearing later in the sequence (represented by the y-axis) are
assigning high attention weights to tokens from the very beginning of the sequence (x-axis). Such a
pattern is a definitive indicator of robust long-range dependency modeling, as it shows the model’s
capacity to maintain and access context over extended distances.

In contrast, Figure 3b illustrates the attention pattern from a model trained on data synthesized with-
out the ‘reverse‘ operation. While off-diagonal attention is still present, the intensity of the signal in
the lower-left quadrant is visibly diminished compared to Figure 3a. The reduced attention scores
in this critical region suggest a comparative weakening in the model’s ability to form connections
between distant tokens. The ‘reverse‘ operation, by forcing the model to predict the beginning of a
sequence from its end, explicitly trains the model to integrate information across the entire context
length, thereby strengthening these long-range dependencies.

This qualitative comparison underscores the efficacy of our full data synthesis approach. The height-
ened attention scores in the lower-left quadrant of Figure 3a are not merely an artifact but a direct
visualization of the model’s enhanced capacity for long-range reasoning—a capacity specifically

8
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(a) Full synthesis method. The pronounced attention in
the lower-left quadrant demonstrates strong long-range
dependencies.

(b) Synthesis method without ‘reverse‘ operation. The
attenuated signal in the lower-left indicates a reduced
focus on long-range dependencies.

Figure 3: Ablation study of attention patterns. A comparison of our full data synthesis method (a)
with a variant lacking the ‘reverse‘ operation (b). The full method results in markedly stronger long-
range attention.

cultivated by the inclusion of the ‘reverse‘ operation in our data synthesis pipeline. This provides
strong evidence that our complete method is superior for instilling the desired long-range depen-
dency capabilities in the model.

5 CONCLUSION

In this work, we introduced Long-Attention Weaving (LAW), a new framework for synthesizing a
high-quality, long-context training curriculum. Our core contribution is a model-centric approach
to data engineering: we leverage an LLM’s own self-attention mechanism to both identify short
documents rich in long-range dependencies and weave them into complex synthetic sequences that
promote robust learning. Through extensive experiments, we demonstrated that training a LLaMA-
2 7B model on data generated by LAW leads to significant improvements in perplexity and down-
stream performance on a wide range of long-context benchmarks. The success of LAW underscores
a critical principle: for long-context learning, the structure and quality of data are as important as
architectural innovations. Our findings suggest that future progress in this domain will increasingly
rely on sophisticated, model-aware data synthesis strategies. This work represents a step in that
direction, opening up promising avenues for research into attention-guided curriculum learning, the
interplay between synthetic and natural data distributions, and the automated creation of challenging
training regimes that push the boundaries of what LLMs can achieve.
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A APPENDIX

A.1 LONG-ATTENTION WEAVING (LAW) DATA SYNTHESIS PROCESS

Algorithm 1 Long-Attention Weaving (LAW) Data Synthesis Process

1: Input: Short document corpus D, scoring model M, distance scales K = {k1, . . . , km}, selec-
tion percentile p, synthesis batch size N .

2: Output: A batch of synthetic long documents Bsynth.
3:
4: ▷ Stage 1: Multi-Range Context Dependency Scoring
5: Initialize score list Sk for each k ∈ K.
6: for each document s ∈ D do
7: Extract first-layer attention matrix M from M(s).
8: for each scale k ∈ K do
9: Compute LDS(s, k) from M using Equation 1.

10: Append score to Sk.
11: end for
12: end for
13:
14: ▷ Stage 2: Multi-Scale Ranking Aggregation
15: for each scale k ∈ K do
16: Convert scores Sk to ranks R(s, k) for all s ∈ D.
17: end for
18: for each document s ∈ D do
19: Calculate Scorefinal(s) using Equation 2.
20: end for
21: Create high-quality set D∗ by selecting top p% of documents from D based on Scorefinal.
22:
23: ▷ Stage 3: Long-Context Synthesis via Document Interleaving
24: Initialize batch Bsynth = [].
25: Sample N documents {D1, . . . , DN} from D∗.
26: Bisect each document Di into parts Pi,1 and Pi,2.
27: Construct Dsynth ordered and Dsynth reversed (Eq. 3 and 4).
28: Add synthesized documents to Bsynth.
29: return Bsynth

A.2 LIMITATIONS

While Long-Attention Weaving demonstrates significant efficacy, we acknowledge several limita-
tions that offer avenues for future research. First, our framework relies on a pre-trained model’s
self-attention scores as a proxy for semantic dependency. While we argue this is more aligned
than external linguistic metrics, these attention scores can be noisy and may not perfectly capture
all forms of long-range relationships, particularly abstract or inferential ones. The quality of the
synthesized data is therefore inherently tied to the capabilities of the initial scoring model.

Second, the data synthesis process, particularly the interleaving strategy, creates a distribution of
text that is structurally different from naturally occurring long documents. While we have shown
this to be a powerful training signal, it may introduce a subtle domain mismatch, potentially leading
the model to develop biases or heuristics optimized for this synthetic structure. An important future
direction is to investigate methods for gradually annealing the training curriculum from synthetic,
interleaved data towards more natural long-form text.

Finally, our multi-scale scoring approach, while more robust than single-scale methods, introduces
hyperparameters related to the choice of distance thresholds (K) and the selection percentile (p). Al-
though our experiments show strong performance with a standard configuration, a more systematic
exploration of these hyperparameters could yield further improvements and a better understanding
of their impact on different data modalities.
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A.3 USAGE OF LLMS FOR WRITING

We use LLMs to aid or polish writing the whole paper.

A.4 RESPONSE EXAMPLES OF THE TRAINED MODEL ON LONGBENCH

In this subsection, we present illustrative response examples from our trained model on the LAW
dataset. These cases demonstrate the model’s proficiency in managing long-range dependencies,
synthesizing coherent narratives from interleaved document segments, and adapting to complex se-
mantic structures. Each example highlights different aspects of the model’s long-context capabili-
ties, such as multi-hop reasoning, information retrieval across distant contexts, and robust handling
of reversed interleaving patterns.

Example 1

NarrativeQA: You are given a story, which can be either a novel or a 

movie script, and a question. Answer the question as concisely as you 

can, using a single phrase if possible. Do not provide any explanation.

Story: {Here is the story.}

Now, answer the question based on the story as concisely as you can, 

using a single phrase if possible. Do not provide any explanation.

Question: {input}

Ours: A security guard.

Ground truth: A security guard.

Prompt length: 29630

Figure 4: Model response in the first case from the LongBench dataset, showcasing effective reso-
lution of long-range semantic dependencies in an interleaved context.
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Example 2

NarrativeQA: You are given a story, which can be either a novel or a 

movie script, and a question. Answer the question as concisely as you 

can, using a single phrase if possible. Do not provide any explanation.

Story: {context}

Now, answer the question based on the story as concisely as you can, 

using a single phrase if possible. Do not provide any explanation.

Question: {input}

Ours: Blue Lou Boyle.

Ground truth: A mobster named "Blue Lou Boyle"

Prompt length: 29633

Figure 5: Model response in the second case from the LongBench dataset, illustrating multi-hop
reasoning across non-contiguous document segments.
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Example 3

RepoBench-P: Please complete the code given below.
{Context: here are some examples for the code completion task.}
{Input: the user provides the following code to be completed}
Next line of code:
Ours: public static Frameset frameset(Attribute... attributes) 
{

return new Frameset(attributes);
}
public static Head head(Attribute... attributes) {

return new Head(attributes);
}

Ground truth: public static Frameset frameset(Attribute... 
attributes) {
Prompt length: 8158

Figure 6: Model response in the third case from the LongBench dataset, demonstrating adaptation
to reverse-ordered interleaving and maintenance of narrative coherence.
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Example 4

SAMSum: Summarize the dialogue into a few short sentences. The 
following are some examples.
{Context: examples of dialogue summarization are provided here.}
Dialogue: Ana: You sleeping?
Catherine: Not yet.
Ana: Wanna go visit grandma tomorrow? I miss her.
Catherine: Yeah that would be nice :) I'll call you when I wake up
Ana: Oki :) sleep well, good night.
Catherine:  Good night, u too.
Ours: Ana wants to visit her grandma tomorrow. Catherine will call 
her when she wakes up.
Ground truth: Ana wants to visit grandma tomorrow. Catherine will 
go with her. She will call Anna when she wakes up.
Prompt length: 9352

Figure 7: Model response in the fourth case from the LongBench dataset, highlighting robust infor-
mation synthesis in challenging long-context scenarios.
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