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ABSTRACT

Multi-view graphs capture diverse relations among entities through graph views
and individual characteristics via attribute views, presenting a challenge for un-
supervised learning due to potential conflicts across views. Existing approaches
often lack efficacy, efficiency, and the ability to explicitly control view contri-
butions. In this paper, we present SMGF, a novel graph fusion framework that
approximates underlying entity connections by aggregating view-specific graph
structures. We construct a multi-view Laplacian L from normalized Laplacian
matrices representing all views. View weights are determined through the op-
timization of two objectives derived from L’s spectral properties, which exploit
the eigenvalue gap and enhance connectivity. Comprehensive experiments on six
real-world datasets showcase the superior performance of SMGF in node embed-
ding and clustering results, along with its efficiency and scalability. SMGF offers
a promising solution for unsupervised learning on multi-view graphs, addressing
the challenge of interpretably combining diverse and potentially conflicting infor-
mation from both graph and attribute views. The source code of SMGF is available
at https://anonymous.4open.science/r/SMGF-E903/.

1 INTRODUCTION

Real-world entities can be characterized from multiple viewpoints. For instance, in a complex social
network, diverse interpersonal connections, including friendships, familial ties, and professional
affiliations, are modeled by separate graph views. Each individual could also be described by a wide
range of attribute views, such as demographic statistics, facial appearance features, and behavioral
characteristics. Multi-view graph data are the combination of these graph views and attribute views.
Such datasets have proven highly useful for recommendation systems (Wang et al., 2020), image
processing (Nie et al., 2018), and bioinformatics (Fu et al., 2021), among others.

In this work, our primary focus is unsupervised learning over multi-view graph data, where both
graph views and attribute views are present. Specifically, we aim for node representation learning
and clustering tasks. Despite abundant research on unsupervised graph learning, it remains a chal-
lenging problem for multi-view graph data. Though multiple views offer rich insights from distinct
perspectives, their inherent diversity inevitably results in inconsistency. An unsupervised algorithm
must attain a consensus based on potentially contradictory information, all without prior knowledge
of the relative importance associated with these views. Moreover, some views may contain noisy
data, and graph views are often incomplete.

A plethora of research has been conducted on the multi-view clustering (MVC) problem (Fang et al.,
2023), where the input consists of purely attribute views that are extracted from webpages, visual
features, etc. In recent years, graph views from real-world networks have also been incorporated
into unsupervised learning on multi-view graph data. A few existing works leverage graph neural
network (GNN) models such as graph autoencoder (Fan et al., 2020) and deep graph infomax (Park
et al., 2020). These deep learning approaches suffer from a lack of interpretability and reduced
efficiency caused by the large number of model parameters they entail. Additionally, their capabil-
ities are constrained to handle only a single view of node attributes. Another line of work performs
graph filtering on attributes and subsequently finds a consensus graph (Pan & Kang, 2021) or low-
dimensional representation (Lin & Kang, 2021). Their optimization processes usually rely on the
assumption that all graph views exhibit some degree of adherence to a shared cluster structure, a
presumption that can be overly stringent for real-world datasets. Empirically, we note that achiev-
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ing optimal clustering performance with these methods requires meticulous hyperparameter tuning
efforts across different datasets.

In this paper, we present SMGF, a novel framework for unsupervised learning over multi-view
graphs. Essentially, SMGF framework adopts a graph fusion mechanism and constructs a multi-
view Laplacian L with desired spectral properties via weighted aggregation of single-view Lapla-
cian matrices. In the initial stage, all views undergo projection to normalized graph Laplacians. This
unification step effectively merges both graph and attribute views into a common domain for graph
fusion. To this end, it is assumed the true underlying graph structure approximates a weighted linear
aggregation of these single-view Laplacians. In the following stage, the suitable view weights are
determined by a spectrum-guided optimization scheme with two objectives. The eigengap objective
exploits the dataset’s inherent class count, while the connectivity objective addresses the challenges
posed by incompleteness and irregularity in graph views. Both objectives focus only on the spec-
tral properties of the fused multi-view Laplacian L, thereby distinguishing our approach from prior
works that rely on assumptions concerning individual views. In addition, the resulting view weights
provide a clear indication of the individual contribution of each view, thus augmenting the inter-
pretability of the obtained results.

After constructing the multi-view Laplacian L that represents graph fusion, we can directly perform
spectral clustering or attain node embeddings via matrix factorization. We demonstrate the unsu-
pervised learning capabilities of our proposed approach (SMGF) through comprehensive experimen-
tation on real-world datasets. Node embeddings obtained through factorization of L consistently
outperform alternative approaches in quality and efficiency, as evidenced by the evaluation results
of the node classification task. By applying spectral clustering to L, SMGF exhibits remarkable
clustering quality compared to baseline methods. Notably, our results on the million-scale MAG
dataset underscore the outstanding scalability of our approach. We also perform an exhaustive anal-
ysis on SMGF regarding the effect of alternative optimization objectives and various hyperparameter
configurations.

We summarize the contributions of this work as follows:

• We study the problem of unsupervised learning on multi-view graphs and present SMGF,
as a novel approach that addresses performance and interpretability with a graph fusion
framework.

• From the spectrum of multi-view Laplacian, we formulate eigengap and connectivity ob-
jectives to characterize a desirable graph fusion. An optimization scheme is then designed
to determine suitable view weights.

• Through extensive node embedding and clustering experiments, we demonstrate the supe-
rior unsupervised learning capabilities of our graph fusion framework.

2 PRELIMINARIES

A multi-view graph G = {G1, . . . , Ga, X1, . . . , Xb} consists of a graph views {G1, . . . , Ga} and b
attribute views {X1, . . . , Xb}. All z = a+ b views in G share the same node set V = {v1, . . . , vn}.
We focus on multi-view graphs with both graph and attribute views, i.e., a ≥ 1, b ≥ 1, and z ≥ 3.

Each graph view G ∈ {G1, . . . , Ga} is an undirected graph without self-loops. A graph view
G = {V,E} with n nodes and m weighted edges can be represented using an adjacency matrix
AG ∈ Rn×n which comprises 2m nonzero entries. Matrix entry AG[i, j] is the weight of edge
(vi, vj). The degree of node vi is defined as

∑n
j=1 AG[i, j]. Attribute view X ∈ {X1, . . . , Xb} is

an n× dX matrix where each row vector xi contains attribute values associated with node vi.

For multi-view graphs, node embedding aims to learn a function V → Rh that maps each node
vi ∈ V to a latent representation vector. Despite the low dimensionality h, node embeddings must
effectively capture the structural characteristics inherent to graph views and encode the information
contained within attribute views. We evaluate the quality of embeddings on node classification task.

Given the number of clusters k, clustering over multi-view graph G aims to divide the n nodes in
V into k disjoint non-empty subsets {C1, . . . , Ck}, such that nodes within each cluster are densely
connected in the graph views and share similar attributes in the attribute views.
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3 METHODOLOGY

In this section, we describe SMGF, our novel framework for unsupervised learning over multi-view
graphs. Our approach unfolds in three stages. In the initial stage, we unify all views by transform-
ing them into Laplacian matrices, bringing them into a common normalized space. Subsequently,
the second stage formulates the multi-view graph fusion as an optimization problem guided by
eigenvalue-based objectives. Finally, we cover the implementation of node embedding and cluster-
ing, which leverage the multi-view Laplacian to derive node representations and clustering results.

3.1 PROJECTING VIEWS TO LAPLACIANS

Previous approaches to multi-view graph learning often rely on graph propagation techniques, such
as graph filtering (Pan & Kang, 2021) or GNN models Fan et al. (2020). Nevertheless, questions
about the contribution of each view to learned representations and the ability to adjust the importance
of a specific view remain unanswered. We attribute this lack of interpretability and flexibility to
the divergent treatment of graph views and attribute views. To address these issues, we propose a
novel approach: projecting all views into a single normalized space of graph representations. This
transformation allows for explicit weighting of views, regardless of their original data type.

K-nearest neighbor (KNN) graphs can effectively model the local neighborhood of data points, with
applications in unsupervised learning problems such as spectral clustering (von Luxburg, 2007) and
attributed network clustering (Li et al., 2023). Thus, we can construct a KNN graph for each attribute
view and encode by graph Laplacian. In summary, each view in a multi-view graph is encoded into
graph Laplacian as follows.

• Graph view G with adjacency matrix AG: Denote its diagonal node degree matrix by
DV = diag(AG1n). The normalized Laplacian is given by

L(G) = I −D
− 1

2

V AGD
− 1

2

V . (1)

• Attribute view X: For each attribute view X , we create a corresponding KNN graph where
each node vi represents the attribute vector xi in x. An undirected graph GX is obtained
by adding the KNN graph’s adjacency matrix by the transpose. The attribute view is thus
encoded by the normalized Laplacian L(GX).

Graph fusion. Given a multi-view graph G with z = a+ b views, we represent the i-th view using
the normalized Laplacian matrix Li. Since each view provides insight into the relationships among
entities from a specific perspective, we hypothesize that the true underlying relationships among
entities can be considered as a certain combination of these individual views. Consequently, we use
a weighted graph fusion mechanism that directly aggregates the single-view Laplacians as follows.

L =

z∑
i=1

wiLi, where
z∑

i=1

wi = 1. (2)

Since the normalized Laplacian matrix of any graph is symmetric positive semi-definite, it follows
that matrix L preserves this property, and thus its eigenvalues are nonnegative. Sorted in ascending
order, the eigenvalues of L are 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. In this work, we refer to L as the multi-
view Laplacian, despite the absence of a guaranteed graph Laplacian property λ1 = 0. Nonetheless,
we treat L as a pseudo graph Laplacian, i.e., an approximation of L(GF ). Here, GF signifies the
underlying graph that encompasses all views contributing to the formation of L.

3.2 SPECTRUM-GUIDED VIEW WEIGHTING

Each wi in Eq. (2) quantifies the contribution of the i-th view to the graph fusion. SMGF determines
view weights by optimizing two objectives derived from eigenvalues of multi-view Laplacian L.

3.2.1 EIGENGAP OBJECTIVE

Given that the entities represented by the multi-view graph G are categorized into k classes, we
assume the nodes in G could be organized into a unified network GF with k cohesive clusters.
Consider a ”perfectly-clustered” graph composed of k disjoint complete subgraphs as an extreme
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case. Its block-diagonal normalized Laplacian matrix has zero-valued eigenvalues of multiplicity
k. The eigengap λk+1/λk is infinitely large. For general graphs, a substantial eigengap between
successive eigenvalues is a heuristic for determining the number of clusters (von Luxburg, 2007;
Afzalan & Jazizadeh, 2019). In spectral graph theory, Lee et al. (2014) establish a formal connection
between the eigengap and cluster quality by demonstrating an upper bound for the normalized cut.

Definition 1 For a cluster C ⊂ V within graph G, its volume is V ol(C) =
∑

vi∈Ci
d(vi) .

Cut(C) =
∑

vi∈C,vj /∈C AG[i, j] is the total weight of outgoing edges from nodes within C. The
normalized cut of C is defined as NCut(C) = Cut(C)/V ol(C).

Theorem 1 (Lee et al., 2014) There is a constant c > 0 such that for any weighted graph G and
k ∈ N, the following holds. Let δ ∈ (0, 1

3 ) be such that δk is an integer. If λ(1+δ)k > c (log k)2

δ9 λk,
there are at least r ≥ (1 − 3δ)k nonempty disjoint sets of nodes C1, C2, . . . , Cr ⊆ V such that

NCut(Ci) ≲
√

λk

δ3 .

Let δ = 1/k, and it follows from Theorem 1 that an asymptotic upper bound exists for the NCut of
r ≥ k − 3 disjoint clusters if an eigengap λk+1/λk > ck9(log k)2 is present.

Considering the presence of k ground truth classes within the multi-view graph, we assume a signifi-
cant eigengap λk+1/λk exists in the underlying graph GF . To align the multi-view Laplacian L with
the true class distribution, we propose maximizing the eigengap objective fGAP = λk+1(L)/λk(L)
over valid weight variables subject to constraints in Eq. (5).

max
w

λk+1(

z∑
i=1

wiLi)/λk(

z∑
i=1

wiLi) (3)

3.2.2 CONNECTIVITY OBJECTIVE

In real-world multi-view graph G, graph views are often incomplete, where connections are missing
for certain nodes. For instance, in the ACM dataset’s co-author view, there are 156 connected
components and 561 unconnected nodes out of a total of 3025 nodes. If an incomplete view is
assigned a predominant weight, it could lead to a situation where the resulting L exhibits a large
eigengap, despite the limited information it captures.

To mitigate this issue, we propose to promote the level of connectivity in the graph fusion GF . Graph
conductance Φ(G) is a common metric for graph connectivity, defined as the minimum NCut(C) of
any node set C ⊂ V such that V ol(C) ≤ V ol(V )/2. In spectral graph theory, Cheeger’s inequality
(Alon & Milman, 1985) bounds conductance with the second smallest eigenvalue λ2 of L(G).

Theorem 2 (Spielman, 2007) Let λ2 be the second smallest eigenvalue of the normalized Laplacian
matrix of a graph G. Cheeger’s inequality for a graph holds:

λ2

2
≤ Φ(G) ≤

√
2λ2.

To improve the conductance lower bound of graph fusion GF , we propose maximizing fCON =
λ2(L) by searching appropriate view weights subject to constraints in Eq. (5).

max
w

λ2(

z∑
i=1

wiLi). (4)

3.2.3 OPTIMIZATION SCHEME

To find a multi-view Laplacian L that maximizes the two objective functions, we need to determine
the appropriate weight wi for each view. As all view weights sum up to 1, the optimization search
only needs to consider the first z − 1 variables. To ensure meaningful contributions from each input
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Algorithm 1: SMGF
Input: Graph views {Gi}ai=1, attribute views {Xi}bi=1, number of classes k, algorithm parameters

K,wLB , t, h.
1 Construct GX = KNN(X,K) for attribute views;
2 Compute normalized Laplacian matrices L1, . . . , Lz;
3 Initialize view weights w1, . . . , wz−1 ← 1/z ;
4 Eigengap optimization step: COBYLA (w1, . . . , wz−1, fGAP ,Ω, wLB) ;
5 Connectivity optimization step: COBYLA (w1, . . . , wz−1, fCON ,Ω, wLB , t) ;
6 Multi-view Laplacian L ← w1L1 + · · ·+ (1− w1 − · · · − wz−1)Lz;
7 if embedding then
8 Embedding vectors u1, . . . , un ← NetMF (L, h);

9 if clustering then
10 Solve the k bottom eigenvectors y1, . . . , yk ← eig(L, k);
11 Clusters C1, . . . , Ck ← discretize(y1, . . . , yk);

view to the graph fusion, we introduce the parameter wLB , representing the lower bound of view
weights. Consequently, the variables w1, . . . , wz−1 adhere to the following set of constraints.

Ω(w1, . . . , wz−1) : wi ≥ wLB ∀ 1 ≤ i ≤ z − 1 and 1−
z−1∑
i=1

wi ≥ wLB (5)

Given the difficulty of computing gradients for eigenvalue decomposition, our optimization objec-
tives necessitate using derivative-free constrained optimization techniques. For SMGF, we adopt
the COBYLA optimizer, i.e., Constrained Optimization BY Linear Approximation (Powell, 1994).
COBYLA iteratively updates a trust region by linear approximations to the objective and constraints.

Both eigengap and connectivity need to be maximized. However, under the assumption V ol(C) ≤
V ol(V )/2, connectivity is a lower bound of the optimal k-way NCut, as opposed to eigengap.

1

k

k∑
i=1

NCut(Ci) ≥
1

k

k∑
i=1

Φ(G) = Φ(G) ≥ λ2

2
. (6)

A graph composed of k cohesive clusters typically exhibits a low optimal k-way normalized cut.
Consequently, improving connectivity by maximizing λ2 may inadvertently contradict the desired
presence of k clusters within GF . Addressing this inherent trade-off between objectives necessitates
solving a nontrivial double-objective optimization problem. To address this challenge, we employ a
two-step optimization approach (refer to lines 4-5 of Algorithm 1). In the first step, we prioritize the
optimization of the eigengap fGAP as our primary objective, which we optimize until convergence.
In the second step, we conduct partial optimization of fCON for a specified maximum number of
iterations denoted as t. This strategy allows us to leverage the connectivity objective as a form of
regularization, with the parameter t serving as a means to balance between the two objectives.

3.3 UNSUPERVISED LEARNING ON L

Utilizing view weights determined through spectrum-guided optimization, we construct the multi-
view Laplacian matrix L as the representation of the graph fusion GF . For deriving node embed-
dings from graph structure, DeepWalk (Perozzi et al., 2014) is a widely adopted skip-gram model
trained on a sampled corpus of random walks. SMGF acquires h-dimensional node representations
by approximating the training process of DeepWalk via matrix factorization of L, following the
NetMF algorithm (Qiu et al., 2018). SMGF acquires h-dimensional node representations by factor-
izing the DeepWalk matrix approximated from L, following NetMF algorithm (Qiu et al., 2018).

Multi-view graph clustering can be achieved through clustering on the underlying graph fusion GF .
Consequently, we directly apply spectral clustering to L, which minimizes the normalized cut ob-
jective. To extract cluster labels, we employ the Discretize algorithm (Yu & Shi, 2003) on the
k eigenvectors of L associated with λ1, . . . , λk.
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Table 1: Multi-view graph datasets

Name n Graph view (edges) Attributes dX k

ACM 3,025 Co-author (13,128); Co-label (1,103,868) 1,870 3
DBLP 4,057 Co-paper (3,528); Co-conference (2,498,219); Co-term (3,386,139) 334 4
IMDB 3,550 Co-director (5,119); Co-actor (31,439) 2,000 3
Amazon Photos 7,487 Co-purchase (119,043) 745; 7,487 8
Amazon Computers 13,381 Co-purchase (245,778) 767; 13,381 10
MAG 2,353,996 Co-author (3,350,128,585); Citation (9,048,278) 1000 22

3.4 ALGORITHM ANALYSIS

The pseudo-code for SMGF is presented in Algorithm 1. In our time complexity analysis, we treat
node degree in graph views, dimension of attribute views, and algorithm hyperparameters as con-
stants. A significant computational bottleneck in SMGF arises from the construction of the KNN
graph, which incurs a time complexity of O(n2). However, the computation and aggregation of
single-view Laplacians can be performed in linear time due to their inherent sparsity. The evalua-
tion of eigenvalue-based objectives is accomplished in O(n) time, facilitated by the efficient Arnoldi
iterations for sparse matrix eigendecomposition. Similarly, the clustering task in lines 8-9 also ex-
hibits linear time complexity. NetMF carries a time complexity of O(n2). Therefore, both clustering
and embedding on multi-view graphs can be achieved in O(n2) time using SMGF. For clustering on
large-scale data with millions of nodes, we incorporate ScaNN (Guo et al., 2020) for efficient ap-
proximate KNN, improving the complexity for clustering to O(n).

4 EXPERIMENTS

In this section, we illustrate the unsupervised learning performance of SMGF through extensive ex-
perimentation involving node embedding and clustering tasks on real-world datasets. Additionally,
we delve into the impact of alternative objective functions and hyperparameter settings.

4.1 EXPERIMENT SETUP

Datasets. We perform experimental evaluations using real-world multi-view graph datasets with
their respective statistics presented in Table 1. This table provides information on the number of
nodes (n), specifications of the graph views, dimensions of attribute views, and the count of ground
truth node classes (k). ACM (Wang et al., 2019), DBLP (Ji et al., 2010), IMDB (Jing et al., 2021),
MAG (Sinha et al., 2015) are four datasets that consist of multiple graph views and one attribute
view, while Amazon Photos and Amazon Computers (Shchur et al., 2019) are two datasets that each
contains one graph view and two sets of node attributes.

Baselines. We experimentally compare the performance of our proposed method SMGF against eight
baseline algorithms designed for multi-view graphs. For the task of learning node representations,
we benchmark our results against four multi-view graph embedding algorithms, namely O2MAC
(Fan et al., 2020), DMGI (Park et al., 2020), HDMI (Jing et al., 2021), and URAMN (Zhang et al.,
2022). In the context of node clustering, we not only apply K-means to these embedding results
but also conduct evaluations of four multi-view graph clustering baselines: MCGC (Pan & Kang,
2021), MvAGC (Lin & Kang, 2021), MVGC (Xia et al., 2022), and MAGC (Lin et al., 2023).

Evaluation Settings. To ensure a fair comparison, we test each baseline based on the original
implementation and tune hyperparameters accordingly (refer to Appendix A.1 for details). For our
approach SMGF, we fix hyperparameters wLB = 0.05 and t = 10. K in KNN construction is set to
10, except for IMDB dataset where K = 100. Embedding dimension h is 64 for all methods.

To report representative performance results, we remove the fixed random seeds in all implementa-
tions and repeat 10 runs to get averaged metrics. Experiments are conducted on a Linux computer
powered by Intel Xeon 6226R CPU and Nvidia RTX3090 GPU. Note that DMGI, HDMI, and URAMN
use GPU, while the other algorithms, including SMGF, are CPU-based. To ensure accurate measure-
ment of running time, we record it in a controlled environment with 16 isolated CPU threads.
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Table 2: Node embedding quality for node classification on ACM, DBLP and IMDB (MaF1=Macro-
F1, MiF1=Micro-F1). Time in seconds. Best in bold and runner-up underlined.

ACM DBLP IMDB

Labeled % 10 50 10 50 10 50

Metric MaF1 MiF1 MaF1 MiF1 Time MaF1 MiF1 MaF1 MiF1 Time MaF1 MiF1 MaF1 MiF1 Time

O2MAC 0.904 0.904 0.910 0.909 112.4 0.911 0.917 0.914 0.920 679.8 0.641 0.641 0.665 0.666 672.9

DMGI 0.780 0.795 0.908 0.909 31.25 0.920 0.926 0.924 0.929 392.1 0.658 0.658 0.676 0.676 75.94

HDMI 0.921 0.922 0.929 0.928 157.2 0.914 0.921 0.915 0.924 532.4 0.627 0.631 0.653 0.652 241.3

URAMN 0.918 0.919 0.921 0.921 59.81 0.903 0.912 0.913 0.919 153.9 0.674 0.680 0.708 0.707 124.8

SMGF 0.927 0.927 0.933 0.932 26.40 0.926 0.932 0.931 0.936 98.04 0.690 0.690 0.724 0.724 18.84
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Figure 1: Node classification performance over varying ratio of training data (%).

4.2 NODE EMBEDDING EVALUATION

We evaluate the quality of node embeddings through a node classification task. From the acquired
node embedding vectors, we train a logistic regression classifier to predict class labels. The re-
sults, presented in Table 2, include Macro-F1 (MaF1) and Micro-F1 (MiF1) metrics across varying
proportions of training data (Labeled %) in 10% and 50%, as well as embedding time costs in sec-
onds, over the widely used benchmarking classification datasets. Our SMGF consistently exhibits
superior embedding quality and efficiency compared to four baseline algorithms designed for multi-
view graphs, underscoring its capability for unsupervised representation learning. This is further
highlighted in Fig. 1, where SMGF dominates baseline methods over a wide range of labeled ratios.

To visualize the distribution of embedding vectors, we map them to 2-D space using t-SNE. Fig. 2
illustrates the node embeddings of ACM multi-view graph acquired by different methods. Compared
with baselines, ACM embeddings acquired by SMGF demonstrate noticeably regular boundaries
between the three ground truth classes. Results for other datasets are in Appendix B.4

4.3 CLUSTERING PERFORMANCE

Overall clustering results. Table 3 reports the clustering performance. Five of the baseline methods
are not applicable to datasets with multiple attribute views, i.e., Amazon photos and computers.
In both normalized mutual information (NMI) and adjusted Rand index (ARI) metrics, our SMGF
achieves the best performance in five out of six datasets. Despite the higher metrics on IMDB,
URAMN is much slower than SMGF (Table 5) and requires tuning three hyperparameters for different
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(a) SMGF (b) HDMI (c) DMGI (d) O2MAC (e) URAMN

Figure 2: Node embeddings obtained from ACM dataset. Colors represent ground truth classes.

Table 3: Clustering quality with NMI ARI measures. Results marked with ∗ are replicated from the
original paper. Best in bold and runner-up underlined.

ACM DBLP IMDB Amazon photos Amazon computers MAG

Algorithm NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

DMGI 0.703 0.747 0.732 0.790 0.197 0.200 - - - - OOM

HDMI 0.695 0.732 0.706 0.761 0.162 0.142 - - - - OOM

URAMN 0.717 0.766 0.735 0.798 0.248 0.264 - - - - OOM

O2MAC 0.667 0.716 0.669 0.705 0.135 0.139 - - - - OOM

MVGC 0.645 0.641 0.742∗ 0.804∗ 0.118 0.126 - - - - OOM

MCGC 0.709 0.763 0.716 0.771 0.164 0.186 0.595 0.449 0.557 0.419 OOM

MvAGC 0.603 0.636 0.650 0.708 0.191 0.201 0.558 0.384 0.512 0.365 0.049 0.004

MAGC 0.597 0.659 0.771 0.827 0.057 0.062 0.591 0.384 0.323 0.158 >12h

SMGF 0.718 0.768 0.776 0.830 0.213 0.224 0.685 0.621 0.588 0.446 0.566 0.481
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Figure 3: Plots (a)-(c): clustering performance and efficiency with varied parameter t. Plots (d)-(f):
clustering performance with varied wLB .

Table 4: Ablation study on ACM, DBLP, and IMDB dataset

ACM DBLP IMDB

NMI ARI w1 w2 w3 NMI ARI w1 w2 w3 w4 NMI ARI w1 w2 w3

UNIFORM 0.611 0.577 0.33 0.33 0.33 0.756 0.815 0.25 0.25 0.25 0.25 0.007 0.002 0.33 0.33 0.33
REG 0.665 0.693 0.20 0.31 0.49 0.777 0.833 0.05 0.36 0.54 0.05 0.016 0.005 0.11 0.28 0.61

GAP-ONLY 0.702 0.748 0.34 0.05 0.61 0.786 0.839 0.02 0.60 0.03 0.35 0.003 0.001 0.39 0.35 0.26
CON-ONLY 0.705 0.753 0.21 0.14 0.65 0.394 0.408 0.05 0.05 0.85 0.05 0.182 0.190 0.13 0.21 0.66
CON-GAP 0.702 0.748 0.34 0.05 0.61 0.781 0.834 0.05 0.67 0.04 0.24 0.004 0.001 0.35 0.42 0.23
SMGF 0.718 0.768 0.22 0.16 0.62 0.776 0.830 0.11 0.50 0.34 0.05 0.213 0.224 0.19 0.26 0.54

datasets. On the million-scale dataset MAG, most baselines are too slow or run out of memory
(OOM), while SMGF discovers high-quality clusters in a reasonable time. Our method also exhibits
remarkable efficiency and quality on more metrics (refer to expanded results in Appendix B.1).

Hyperparameter analysis. As depicted in Fig. 3, we study the impact of hyperparameters on four
clustering metrics. Specifically, we investigate the effects of wLB and t used in our spectral-guided
weighting scheme. Fig. 3(b) shows that excessively prioritizing connectivity by setting t > 20 has a
detrimental impact on DBLP performance. In Fig. 3(c), a deficiency in connectivity also adversely
affects clustering quality in the case of IMDB. On the other hand, Fig. 3(d-f) illustrate that SMGF
performs consistently well across a range of relatively small values for wLB .

8
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Ablation study. We perform ablations studies on optimization objectives, to demonstrate the ef-
fectiveness of two objective functions and the optimization scheme in Section 3.2. Table 4 com-
pares SMGF against variants with uniform view weighting (UNIFORM), optimizing relative eigen-
gap by Fan et al. (2022) (REG), SMGF without connectivity (GAP-ONLY) or eigen-gap optimization
(CON-ONLY), SMGF with reversed optimization steps (GAP-CON). Noticeably, SMGF has the best
overall performance. CON-ONLY causes the dense co-term view in DBLP to be predominant in L
and reduces cluster quality. GAP-ONLY underweights the attribute view in IMDB but overly em-
phasizes the incomplete graph views. These findings underscore the significance of balancing both
objectives and provide empirical evidence supporting the efficacy of our optimization scheme.

Extended experiments. SMGF also exhibits strong performance when applied to multi-view data
comprising solely attribute views, as demonstrated in Appendix B.6. Furthermore, we investigate
the choice between Discretize and K-means for clustering in Appendix B.5.

5 RELATED WORK

In the domain of multiple graph views, also known as multiplex graphs, previous research on node
embedding includes works by Zhang et al. (2018) and Zhang & Kou (2022). For clustering on multi-
ple attribute views, the research dates back to Bickel & Scheffer (2004), and a comprehensive survey
is conducted by Fang et al. (2023). A few graph fusion approaches to multi-view clustering have
been proposed. Zhou & Burges (2007) aggregate the random walk Laplacians without weighting.
Nie et al. (2017) construct a well-clustered graph as the centroid of single-view graphs. Zong et al.
(2018) optimize view weights by assuming the consensus result to be close to every single view.
Kang et al. (2020) leverages this assumption for graph fusion based on structural graph learning.

For multiple graphs with attributes, a few graph learning methods have been developed. O2MAC,
proposed by Fan et al. (2020), learns node embeddings via a graph auto-encoder model with the
adoption of reconstruction loss and self-training clustering. Other methods utilize deep graph info-
max (Park et al., 2020; Jing et al., 2021) and contrastive learning (Zhang et al., 2022) for multi-view
node representation learning. MVGC (Xia et al., 2022) improves O2MAC by introducing attribute
augmentation and a new loss function derived from block diagonal constraints. Liu et al. (2022)
extend the graph auto-encoder model by incorporating attention mechanism and contrastive fusion.

Other approaches utilize graph filtering techniques to construct a consensus graph. Pan & Kang
(2021) leveraged graph filtering and contrastive learning regularization to learn a consensus graph
from smoothed node representations. MvAGC (Lin & Kang, 2021) adopts efficient graph filtering
and SVD-based spectral clustering leveraging anchor nodes instead of deep learning. MAGC (Lin
et al., 2023) exploits higher-order proximity for the optimization of consensus graph.

Results from spectral graph theory (Chung, 1997) have been extensively utilized for graph algo-
rithms, including the spectral clustering algorithm (Shi & Malik, 2000; Ng et al., 2001). A few
algorithms have leveraged the spectral graph properties for optimization. Lu et al. (2019) show that
minimizing the sum of k smallest eigenvalues of the representation matrix improves the block di-
agonal property for subspace clustering. Afzalan & Jazizadeh (2019) utilizes the eigengap heuristic
to determine the number of clusters automatically. Fan et al. (2022) proposes a relative eigengap
objective for automating the choice of hyperparameters in affinity graph construction.

6 CONCLUSION

In this paper, we present SMGF, a graph fusion framework that supports unsupervised learning on
multi-view graphs with graph views and attribute views. The underlying graph structure among
entities is approximated by multi-view Laplacian L, constructed via weighted graph fusion from
all views. We formulated two objectives based on eigenvalues of L, motivated by the inherent k
classes and graph incompleteness. View weights are determined by a carefully designed two-step
optimization scheme. The resulting L represents a high-quality graph fusion from all views, as
evidenced by SMGF’s superior embedding and clustering performance.

Looking ahead, we anticipate conducting further investigations into the spectral properties of L to
refine our approach. Additionally, we plan to extend our proposed unsupervised learning framework
to accommodate other complex forms of graph data.
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A EXPERIMENTAL DETAILS

A.1 BASELINE EVALUATION

• DMGI (Park et al., 2020) We tune the consensus regularization hyperparameter α and l2
regularization coefficient β among {0.0001, 0.001, 0.01, 0.1} according to their original
implementation (https://github.com/pcy1302/DMGI). The result with the high-
est clustering accuracy is reported.

• URAMN (Zhang et al., 2022) In accordance with the original hyperparameter specifica-
tions at (https://github.com/RuixZh/URAMN), we use the authors’ settings for
the ACM and DBLP datasets. For IMDB, we tune the margin value ϵ1 and ϵ2 in [0.1, 0.9],
and tune l2 regularization coefficient λ among {0.0001, 0.001, 0.01, 0.1}. We list node
classification and clustering results derived from intuitive integrated embedding Ĥ, which
generally outperforms consensus embedding Z in the original paper and our experiments.

• HDMI (Jing et al., 2021): We evaluate this node embedding model based on their original
implementation (https://github.com/baoyujing/HDMI), which runs K-means
on embedding vectors for the unsupervised node clustering task. Using identical model
configuration for all datasets, HDMI saves model parameters with the lowest loss to produce
the final embedding vectors.

• O2MAC (Fan et al., 2020): Following instructions in the O2MAC paper, we train this model
for 1000 iterations on DBLP and IMDB datasets, and 250 iterations on ACM dataset.
Model implementation (https://github.com/googlebaba/WWW2020-O2MAC)
and hyperparameter configurations are the same for all datasets. Evaluation is performed
on the trained model with the lowest loss value.

• MVGC (Xia et al., 2022): Among the attribute augmentations proposed in this work,
we evaluate the MVGC-Euler variant due to its consistent lead in reported performance.
Hyperparameter settings are identical across all datasets, configured as specified in the
MVGC paper. Their source code is available at https://github.com/xdweixia/
NN-2022-MVGC but requires substantial modifications to work on datasets other than
ACM. The model is trained for 100 epochs and performs clustering every five epochs. Al-
though we observe ACM clustering accuracy over 96% at certain epochs during its training
process, the loss function continues to improve afterward while cluster quality declines.
Respecting the unsupervised nature of clustering, we record the clustering results at the
minimum of the loss function for eventual evaluation.

• MCGC (Pan & Kang, 2021): As specified in MCGC paper, we fix m = 2 and s = 0.5
for graph filtering. In the graph learning process, we tune α parameter in the range
{0.001, 0.1, 1, 10, 100, 1000} on each dataset for best performance and use the γ parame-
ter settings in the original implementation (https://github.com/Panern/MCGC).
Finally, we run the training process to reproduce their reported results.

• MvAGC (Lin & Kang, 2021): The balance parameter α and the number of anchors m
need to be tuned for each dataset. From the settings of m in the authors’ implementation
(https://github.com/sckangz/MvAGC) and our preliminary experiments, we ob-
serve that the number of anchors sufficient for good clustering quality is approximately pro-
portional to the number of nodes in the dataset, so we use {n/50−20, n/50, n/50+20} as
candidates of m. On ACM and DBLP datasets, we use the α candidates in the source code
of MvAGC and test all combinations of the two hyperparameters. For the other datasets,
we first perform a rough search for α over {1, 2, 5, 10, 50, 100, 200, 500, 1000} and then
narrow it down to a small interval where clustering accuracy is highest. For instance, on
Amazon Photos dataset, the highest accuracy found in the first stage occurs at α = 200,
and we subsequently try {120, 150, 180, 200, 220, 250, 300}, eventually setting α = 250.

• MAGC (Lin et al., 2023): The authors of MAGC tuned three hyperparameters in their pa-
rameter analysis experiments: trade-off parameter α, smoothing parameter γ, and the or-
der of graph filter k. In our experiment, k takes value from {1, 2, 3, 4, 5}, α varies in
the range {0.1, 1, 2, 5, 10, 100, 1000} while γ is fixed to −1 as instructed in the MAGC
paper. On each dataset, we conduct an exhaustive search over all possible hyperpa-
rameter combinations by altering configurations in the original implementation (https:
//github.com/sckangz/MAGC) and select the best result based on accuracy value.
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Table 5: Clustering performance on ACM, DBLP and IMDB. Mean results on 10 repeats, with
standard deviation in brackets. Running time in seconds. Results marked with ∗ are replicated from
the original paper. Best in bold and runner-up underlined.

ACM DBLP IMDB

Algorithm Acc F1 NMI ARI Time Acc F1 NMI ARI Time Acc F1 NMI ARI Time

DMGI
0.907 0.906 0.703 0.747

34.10
0.910 0.901 0.732 0.790

395.7
0.582 0.576 0.197 0.200

77.35(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

HDMI
0.900 0.899 0.695 0.732

161.2
0.895 0.885 0.706 0.761

537.9
0.541 0.547 0.162 0.142

245.9(0.004) (0.004) (0.006) (0.008) (0.005) (0.007) (0.009) (0.010) (0.025) (0.026) (0.015) (0.022)

URAMN
0.915 0.914 0.717 0.766

63.32
0.915 0.910 0.735 0.798

159.5
0.670 0.667 0.248 0.264

129.7(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

O2MAC
0.895 0.897 0.667 0.716

115.0
0.873 0.865 0.669 0.705

684.1
0.547 0.550 0.135 0.139

679.1(0.006) (0.006) (0.011) (0.014) (0.013) (0.013) (0.024) (0.027) (0.048) (0.047) (0.022) (0.031)

MVGC
0.789 0.771 0.645 0.641

1631.2
0.923∗ 0.923∗ 0.742∗ 0.804∗

1934.7
0.514 0.499 0.118 0.126

1542.7(0.190) (0.217) (0.115) (0.198) (0.000) (0.000) (0.000) (0.000) (0.009) (0.011) (0.007) (0.009)

MCGC
0.915 0.916 0.709 0.763

748.2
0.902 0.895 0.716 0.771

2245.2
0.567 0.545 0.164 0.186

1551.9(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003)

MvAGC
0.861 0.862 0.603 0.636 4.334 0.874 0.866 0.650 0.708 5.654 0.552 0.469 0.191 0.201

6.399(0.011) (0.011) (0.024) (0.025) (0.013) (0.013) (0.020) (0.026) (0.007) (0.044) (0.015) (0.015)

MAGC
0.872 0.872 0.597 0.659

26.10
0.928 0.923 0.771 0.827

35.98
0.484 0.424 0.057 0.062

33.69(0.000) (0.000) ((0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) (0.001) (0.001)

SMGF
0.916 0.917 0.718 0.768

9.080
0.929 0.924 0.776 0.830

26.92
0.557 0.453 0.213 0.224 3.596(0.000) (0.000) ((0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 6: Clustering performance on Amazon photos, Amazon computers and MAG. Mean results
on 10 repeats, with standard deviation in brackets. Running time in seconds.

Amazon photos Amazon computers MAG

Algorithm Acc F1 NMI ARI Time Acc F1 NMI ARI Time Acc F1 NMI ARI Time

MCGC
0.674 0.582 0.595 0.449

5102.4
0.569 0.531 0.557 0.419

17567.5 OOM(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

MvAGC
0.615 0.568 0.558 0.384

14.98
0.516 0.426 0.512 0.365

60.20
0.261 0.044 0.049 0.004 4317(0.040) (0.032) (0.029) (0.056) (0.015) (0.014) (0.011) (0.014) (0.000) (0.000) (0.000) (0.000)

MAGC
0.646 0.571 0.591 0.384

172.1
0.447 0.348 0.323 0.158

507.5 >12h(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

SMGF
0.787 0.713 0.685 0.621 7.61 0.595 0.510 0.588 0.446 27.2 0.600 0.335 0.566 0.481

7602(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

B EXPANDED EXPERIMENT RESULTS

B.1 CLUSTERING PERFORMANCE EVALUATION

Tables 5 and 6 present the complete evaluation results of clustering experiments. We include su-
pervised metrics accuracy (Acc) and F1 as well as clustering time costs. There’s no randomness
in SMGF algorithm, while some baseline algorithms show substantial standard deviations in their
results.

B.2 HYPERPARAMETER ANALYSIS

B.2.1 VARYING wLB , THE LOWER BOUND OF VIEW WEIGHTS

Parameter wLB specifies the lower bound of view weights to ensure that every graph or attribute
view of the input multi-view graph contributes to the final clustering results. Our method SMGF sets
wLB = 0.05 by default. Here we test wLB in {0.01, 0.02, 0.05, 0.1, 0.2} and present the results
in Fig. 4. Observe that the performance of SMGF remains table from 0.01 to 0.1 on all datasets;
the performance increases at 0.2 on ACM and Amazon Photos but decreases on DBLP and IMDB.
Therefore, we set wLB = 0.05 by default.
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Figure 4: Varying wLB .
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Figure 5: Varying t.

Table 7: Ablation study on ACM, DBLP, and IMDB dataset

ACM DBLP IMDB

Acc F1 NMI ARI w1 w2 w3 Acc F1 NMI ARI w1 w2 w3 w4 Acc F1 NMI ARI w1 w2 w3

UNIFORM 0.816 0.815 0.611 0.577 0.33 0.33 0.33 0.923 0.918 0.756 0.815 0.25 0.25 0.25 0.25 0.382 0.195 0.007 0.002 0.33 0.33 0.33
REG 0.884 0.886 0.665 0.693 0.20 0.31 0.49 0.930 0.926 0.777 0.833 0.05 0.36 0.54 0.05 0.389 0.215 0.016 0.005 0.11 0.28 0.61

GAP-ONLY 0.908 0.909 0.702 0.748 0.34 0.05 0.61 0.933 0.929 0.786 0.839 0.02 0.60 0.03 0.35 0.380 0.190 0.003 0.001 0.39 0.35 0.26
CON-ONLY 0.910 0.910 0.705 0.753 0.21 0.14 0.65 0.714 0.709 0.394 0.408 0.05 0.05 0.85 0.05 0.538 0.448 0.182 0.190 0.13 0.21 0.66
CON-GAP 0.908 0.908 0.702 0.748 0.34 0.05 0.61 0.931 0.926 0.781 0.834 0.05 0.67 0.04 0.24 0.381 0.192 0.004 0.001 0.35 0.42 0.23
SMGF 0.916 0.917 0.718 0.768 0.22 0.16 0.62 0.929 0.924 0.776 0.830 0.11 0.50 0.34 0.05 0.557 0.453 0.213 0.224 0.19 0.26 0.54

Table 8: Ablation study on Amazon Photos & Computers dataset

Amazon photos Amazon Computers

Acc F1 NMI ARI w1 w2 w3 Acc F1 NMI ARI w1 w2 w3

UNIFORM 0.789 0.717 0.686 0.623 0.33 0.33 0.33 0.605 0.515 0.578 0.427 0.33 0.33 0.33
REG 0.777 0.698 0.653 0.610 0.18 0.63 0.19 0.602 0.512 0.585 0.449 0.42 0.53 0.05

GAP-ONLY 0.784 0.706 0.661 0.621 0.18 0.31 0.51 0.582 0.505 0.587 0.437 0.52 0.05 0.43
CON-ONLY 0.783 0.708 0.676 0.616 0.33 0.62 0.05 0.607 0.512 0.584 0.452 0.39 0.56 0.05
CON-GAP 0.779 0.700 0.655 0.613 0.18 0.58 0.24 0.581 0.506 0.586 0.437 0.55 0.05 0.40
SMGF 0.787 0.713 0.685 0.621 0.36 0.56 0.08 0.595 0.510 0.588 0.446 0.47 0.43 0.10

B.2.2 VARYING CONNECTIVITY REGULARIZATION ITERATIONS t

Parameter t is the number of optimization iterations during which we maximize the connectivity
objective function fCON . SMGF sets t = 10 by default. To assess the impact of regularization on
performance, we experiment with various settings of t in {1, 2, 5, 10, 15, 20, 30}. As shown in Fig.
5, the first 10 iterations of connectivity regularization improve cluster quality on all datasets except
DBLP. When t reaches 20, we notice a decline in DBLP clustering quality caused by the excessive
weight assigned to the highly dense Co-Term graph view. Larger t also leads to a longer execution
time. We conclude that setting t ∈ [10, 20] generally yields favorable performance, and t = 10 is a
reasonable choice for better efficiency.

B.3 ABLATION STUDY

We perform ablation studies on SMGF, with expanded results in Tables 7 and 8. UNIFORM is a
vanilla version where weights are uniformly assigned to the z views without further optimization.
Three alternative methods where COBYLA optimizes a single objective till convergence are also
tested, including REG (relative eigengap) (Fan et al., 2022), GAP-ONLY (eigengap objective only,
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(a) SMGF (b) HDMI (c) DMGI (d) O2MAC (e) URAMN

Figure 6: Visualization of node embeddings obtained from DBLP dataset.

(a) SMGF (b) HDMI (c) DMGI (d) O2MAC (e) URAMN

Figure 7: Visualization of node embeddings obtained from IMDB dataset.

Eq. 3) and CON-ONLY (connectivity objective only, Eq. 4). The maximization objective of rel-

ative eigengap is formulated as freg(L) = (λk+1(L)− 1
k

k∑
i=1

λi(L))/( 1k
k∑

i=1

λi(L) + ϵ) , where

ϵ = 10−5. Results of the ablation study on five datasets are reported in Tables 7 and 8. In these
tables, in addition to Acc, F1, NMI, ARI, and time, the weights of all views in a dataset are also
reported. As shown in these tables, on all five datasets, SMGF exhibits superior consistency in
performance, which validates the effectiveness of the proposed eigengap and connectivity objec-
tives in Sections 3.2.1 and 3.2.2. Furthermore, as shown in results on DBLP dataset (see Table
7), CON-ONLY without eigengap objective assigns a rather large weight 0.85 to w3; however, the
corresponding graph view is quite dense with highly connected nodes. When only the connectivity
objective is considered, this view dominates the clustering process with excessive weight. On the
other hand, SMGF, with the consideration of both eigengap and connectivity objectives, addresses
this issue with a more suitable weight assignment, which demonstrates the effectiveness of the two-
stage optimization scheme described in Section 3.2.3.

B.4 VISUALIZATION OF EMBEDDING VECTORS

For DBLP and IMDB datasets, Fig. 6 and Fig. 7 present the t-SNE visualization of embedding
vectors acquired by SMGF and four baseline approaches.

B.5 DISCRETIZE VS K-MEANS

Spectral clustering is a two-phased algorithm where we first perform eigendecomposition and then
calculate discrete labels from eigenvectors. For the second step, SMGF adopts the method proposed
by Yu & Shi (2003), referred to as Discretize. K-means is another common alternative in
preceding works, and we experimentally evaluate their effectiveness. From the results presented in
Table 9, we observe that using Discretize and K-means leads to similarly competitive per-
formance. Nevertheless, K-means occasionally exhibits instability in clustering quality and is
consistently less efficient than Discretize.

B.6 MUTLI-VIEW ATTRIBUTE CLUSTERING

Note that it is not our focus in this paper to handle multi-view data consisting of purely attribute
views. Nevertheless, it is indeed possible to adapt SMGF for general multi-view data without any
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Table 9: Clustering performance of K-means and SMGF on five datasets. Mean results on 10
repeats, with standard deviation in brackets. Running time in seconds. Best in bold.

ACM DBLP IMDB

Algorithm Acc F1 NMI ARI Time Acc F1 NMI ARI Time Acc F1 NMI ARI Time

K-means
0.912 0.912 0.714 0.756

14.189
0.928 0.924 0.776 0.827

35.02
0.541 0.444 0.194 0.195 2.489(0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SMGF
0.916 0.917 0.718 0.768 9.080 0.929 0.924 0.776 0.830 26.92 0.557 0.453 0.213 0.224

3.596(0.000) (0.000) ((0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Amazon photos Amazon computers

Algorithm Acc F1 NMI ARI Time Acc F1 NMI ARI Time

K-means
0.751 0.664 0.633 0.531

9.683
0.597 0.530 0.551 0.359

36.82(0.003) (0.002) (0.003) (0.009) (0.047) (0.005) (0.002) (0.036)

SMGF
0.787 0.713 0.685 0.621 7.61 0.595 0.510 0.588 0.446 27.2(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 10: Multi-view attribute datasets

Name n Attributes (dX ) k

Yale 165 Intensity (4,096), LBP (3,304), Gabor (6,750) 15
ALOR 10,800 Similarity (77), Haralick (13), HSV (64), RGB (125) 100

NUS-WIDE 30,000 CH (64), CM (225), CORR (144), EDH (73), WT(128) 31

Table 11: Clustering performance for multi-view attribute data.

Yale ALOI NUS-WIDE

Algorithm ACC F1 NMI ACC F1 NMI ACC F1 NMI

SwMC(Nie et al., 2017) 0.612 0.663 0.448 OOM OOM

M2VECkm(Tao et al., 2020) 0.452 0.485 0.204 OOM OOM

M2VECspec(Tao et al., 2020) 0.440 0.501 0.236 OOM OOM

LMVSC(Kang et al., 2019) 0.552 0.616 0.373 0.566 0.750 0.450 0.121 0.086 0.024

SMVSC(Sun et al., 2021) 0.570 0.617 0.376 0.343 0.574 0.170 0.178 0.114 0.053

FPMVS-CAG(Wang et al., 2021) 0.442 0.498 0.253 7 0.315 0.555 0.161 0.194 0.123 0.064

FastMICEHuang et al. (2023) 0.642 0.679 0.467 0.756 0.834 0.664 0.144 0.134 0.051

SMGF 0.636 0.683 0.492 0.808 0.855 0.689 0.151 0.152 0.059

predefined graph structure. Specifically, SMGF handles such data by transforming each attribute
view to the normalized Laplacian of its KNN graph.

We perform additional experiments on 3 datasets: Yale, ALOI, and NUS-WIDE, with statistics and
experimental results provided in Table 10 and 11. It is remarkable to observe that our SMGF is
powerful enough to achieve comparable or outstanding performance on these multi-view datasets,
compared with existing methods. The evaluation results of baseline algorithms are transcribed from
Huang et al. (2023).

B.7 VISUALIZATION OF OPTIMIZATION PROCESS

In this section, we closely examine the optimization process of eigen-gap and connectivity objectives
in SMGF. Specifically, the goal is to find out whether the first optimization step maximizes the eigen-
gap and how much it deteriorates when connectivity is maximized in the next step.

To demonstrate the distribution of two objectives over the constrained space of weight parameters,
we sample view weight combinations via an exhaustive grid search at an interval of 0.05. The
corresponding objective values are plotted as the x/y coordinates of dots in Fig. 8. As the eigen-gap
is optimized (Stage 1), the red line is the locus of objectives corresponding to the weight parameters
updated in each iteration. On every dataset, we observe that view weights converge towards a local

17



Under review as a conference paper at ICLR 2024

1.05 1.1 1.15 1.2 1.25 1.3

0.1

0.2

gap

co
n

Stage 1
Stage 2

(a) ACM

1 1.1 1.2 1.3 1.4 1.5 1.6

0.2

0.4

0.6

gap

co
n

Stage 1
Stage 2

(b) DBLP

1 1.1 1.2 1.3 1.4

0

0.1

0.2

0.3

gap

co
n

Stage 1
Stage 2

(c) IMDB

Figure 8: Visualization of the optimization process of eigen-gap and connectivity objectives.

optimum of eigengap (on IMDB, the trajectory is directed downwards). This implies a positive
answer to our first question and suggests a continued manifold exists for the eigengap.

The green line that starts from the endpoint of Stage 1 illustrates the trajectory of connectivity
optimization. On every dataset, this locus moves towards the top-left direction, which indicates a
trade-off between two objectives. We also notice that the green line extends along the boundary
of dots, which suggests that the update of view weights approximately traverses the Pareto front of
the eigengap and connectivity objectives. In other words, the eigengap is maintained as large as
possible while improving connectivity. These results validate that SMGF optimizes both objectives
and balances them.
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