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Position: Fodor and Pylyshyn’s Legacy —
Still No Human-like Systematic Compositionality in Neural Networks

Anonymous Authors1

Abstract
The strength of human language and thought
lies in their ability for systematic composition-
ality: the meaning of a unit (semantics) can be
inferred from its structure (syntax). While Fodor
and Pylyshyn famously posited that neural net-
works inherently lack this capacity and in turn
are no viable model of the human mind, Lake
and Baroni recently presented meta-learning as a
pathway to compositionality. In this position pa-
per, we critically evaluate this claim, highlighting
limitations in the proposed framework of meta-
learning for compositionality (MLC). Specifically,
we identify a class of test cases compatible with
Lake and Baroni’s setup that consistently provoke
transduction errors despite falling well within the
scope of human-like abilities. We further iden-
tify overlooked yet essential elements required
for substantive claims of systematic generaliza-
tion. Therefore, despite the success of neural
models in mimicking human behavior, it seems
premature to claim that modern architectures have
overcome the limitations raised by Fodor and
Pylyshyn. This issue is pivotal to the AGI de-
bate, as systematic generalization is crucial for
human-like reasoning and adaptability.

1. Introduction
Meta-learning, or learning to learn from different situations,
is an interesting challenge closely related to human intelli-
gence. It is a core element of our educational system that we
learn how to learn without explicit prior knowledge about
each situation in life, as their variations are manifold. Simi-
larly, the use of language embodies this adaptability, requir-
ing the integration of learned rules with contextual nuances

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1. ”A conceptual illustration visualizing rule-learning, with-
out any text” by DALL·E; some semantics of text seem to be
misunderstood.

to navigate both familiar and novel scenarios. Language
exemplifies how humans apply systematic generalization,
seamlessly combining learned grammatical structures and
vocabulary to create and interpret new expressions. This
dynamic interplay between rules and context bridges the ab-
stract principles of meta-learning with the practical mecha-
nisms that underlie communication and cognitive reasoning.

The principle of compositionality is a key challenge for
artificial neural networks, as it requires the ability to de-
velop systematic representations and behavior. Unlike hu-
mans, neural models often struggle to generalize such rules
(Nezhurina et al. 2024, Wüst et al. 2024a, Bayat et al. 2025)
across contexts, reflecting fundamental gaps in their repre-
sentational and operational frameworks. As artificial neural
networks are constrained by their reliance on finite repre-
sentational spaces and distributed encoding schemes, these
limitations manifest in their difficulty in consistently ap-
plying composition rules across different scenarios. While
humans can effortlessly recombine learned concepts to in-
terpret novel sentences or solve unique problems, neural
networks lack the inherent transparency, flexibility, and re-
flexivity to perform similar feats. Their opacity, driven by
distributed representations, hinders their ability to systemat-
ically manipulate components and infer relationships.

Lake & Baroni (2023) introduced a meta-learning frame-
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work attempting to mitigate these challenges by introduc-
ing episodic training tasks that require rule inference. The
framework involves presenting neural networks with sup-
port examples governed by hidden grammars and testing
their ability to generalize these rules. This episodic ap-
proach aims to train networks for systematic generalization,
using meta-learning principles to approximate human-like
reasoning. They claimed to overcome some fundamental
limitations of neural networks, prominently stated by Fodor
& Pylyshyn (1988). However, there is also plenty of evi-
dence of the limitations of modern deep learning models
with human-like capabilities in language understanding that
rely on systematic compositional reasoning (Deletang et al.
2023, Zhang et al. 2023, Dziri et al. 2024, Mészáros et al.
2024, Bayat et al. 2025), and we provide further insights that
even Lake and Baroni’s model fails to prove its systematic
behavior in several instances.

Despite its potential, the framework’s reliance on learned
distributions and predefined rule forms limits its scope. Gen-
eralization remains limited to permutations of known rules
rather than discovering entirely new principles. The diffi-
culty of scaling to complex tasks with deeper nesting further
underscores the persistent gaps in achieving true human
compositional reasoning. Lake and Baroni’s framework
provides valuable insights, but also highlights the need for
innovation in training and evaluating neural networks to
overcome these limitations, since behavioral similarities
may mask fundamental differences in underlying mecha-
nisms.

Thus, we argue in this paper that: Neural networks have
not yet achieved learning systematic compositional skills.

We derive this position as follows:

• We locate the nature of Lake and Baroni’s approach
in refuting Fodor and Pylyshyn’s claims that neural
networks cannot reliably develop compositional repre-
sentations and structure-sensitive operations.

• We show that within their setup, the model exhibits
various non-systematic behaviors that can not be con-
sidered human-like.

• We argue for several necessary aspects of training and
evaluation of meta-learning systems to achieve and
assess their systematicity.

• We adapt Fodor and Pylyshyn’s arguments in light
of the modern development of deep-learning systems
to argue for a future of models capable of learning
symbolic representations for artificial cognition and
representation learning.

2. The Challange of Compositionality
2.1. Fodor and Pylyshyn’s Legacy

In their influential 1988 paper, Connectionism and cogni-
tive architecture: A critical analysis1, Fodor and Pylyshyn
claim that artificial neural models are unsuitable for mod-
eling the human mind on a cognitive level. They review
several arguments for the combinatorial structure of men-
tal representations, highlighting the systematicity of these
representations that follow the compositional nature of cog-
nitive capabilities; the ability to understand some given
thoughts implies the ability to understand various thoughts
not only with semantically related content but also of more
combinatorial complex structure. Nevertheless, they also
consider the possibility that artificial neural networks may
play a role in implementing cognition.

Differentiating neural networks and symbolic systems.
Their work starts with discussing the disagreement about the
nature of mental processes and mental representations be-
tween the so-called Connectionist approach, which focuses
on artificial neural networks, and the Classical approach,
favoring symbolic systems like Turing Machines for model-
ing cognitive capacities. They stress that it is neither about
the explicitness of rules, nor the reality of representational
states, nor about nonrepresentational architecture, as a ”Con-
nectionist neural network can perfectly well implement a
Classical architecture at the cognitive level.”2 While both
”assign semantic content to something”3, it is identified as
the central difference that they disagree about what prim-
itive relations hold among these content-bearing entities.
The sole importance of causal connectedness in neural net-
works is contrasted with a range of semantic and structural
relations in symbolic systems. Only the sensitivity for both
semantic and structural relations is expected to allow for
commitment to the compositionality of mental representa-
tions with combinatorial syntax and semantics. Furthermore,
the operations the models perform in transforming one rep-
resentation into another are sensitive to the structure of these
representations and not only their semantics.

Productivity, compositionality and systematicity of cog-
nitive ability. The need for these two properties of sym-
bol systems, compositional representations and structure-
sensitive operations, is justified by ”three closely related
features of cognition: its productivity, its compositionality,
and its inferential coherence.”4 Only structure-sensitive op-
erations in combination with a combinatorial structure and
semantics of representations can explain the (under appropri-
ate idealization) unbounded capacities of a representational

1(Fodor & Pylyshyn, 1988).
2Ibid., p.11.
3Ibid., p.12, emphasis in original.
4Ibid., p.33.
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system. Similarly, cognitive capacities are systematic in that
the capability for producing or processing some represen-
tations is syntactically connected to the capability for pro-
ducing or processing certain other representations without
relying on processing every specific semantics, e.g. under-
standing the form of the expression A∧B ⇒ A implies the
capability to understand the expression for any substituents
of A or B. In fact, systematicity makes a stronger by using
a weaker assumption as, ”[p]roductivity arguments infer
the internal structure of mental representations from the
presumed fact that nobody has a finite intellectual compe-
tence [and by] contrast, systematicity arguments infer the
internal structure of mental representations from the patent
fact that nobody has a punctuate competence.” 5 Closely
related to systematicity is the compositionality of mental
representations since capabilities for producing or process-
ing representations can be linked not only syntactically but
also semantically. Here, it is important to note that not ev-
ery mental representation is expected to be compositional,
e.g., the understanding of some expressions in natural lan-
guage, as the ”similarity of constituent structure accounts
for the semantic relatedness between systematically related
sentences only to the extent that the semantical properties
of the shared constituents are context-independent.”6 A last
cognitive feature is the systematicity of inference. Recalling
the example of conjunction A ∧B entailing its constituent
A, it is not only the mental representation of understanding
this rule that is systematic but also its application for coher-
ent inference between thoughts, demanding again for the
structure-sensitivity of operations in symbolic systems.

Neural networks for implementing symbol systems. Fi-
nally, Fodor and Pylyshyn comment on treating Connection-
ism as an implementation theory for cognitive architecture.
They ”have no principled objection to this view”7. Still,
they stress that when neural networks are only a method
for implementing cognitive architecture, their internal states
are useless for understanding the nature of mental repre-
sentations and, therefore, ”irrelevant for the psychological
theory”8; neural networks would be just of neurological
means, and the need for and relevance of symbol systems
for modeling cognition would stay untouched.

2.2. Lake and Baroni’s Objection

Compositional seq2sec tasks. Lake and Baroni present
their work as evidence against Fodor and Pylyshyn’s claims.
They introduce a meta-learning framework that they claim
achieves or exceeds human-level systematic generalization
across their evaluations. Their experimental setup is based

5Ibid., p.40, emphasis in original.
6Ibid., p.42.
7Ibid., p.67.
8Ibid., p.65.

on sequence-to-sequence (sec2sec) transduction tasks, They
consider sequences generated over 8 pseudolanguage tokens
u ∈ U for the input domain X = U∗, while the output
domain Y = C∗ comprises sequences generated over 6
different color tokens c ∈ C. Both domains are linked by
a transduction grammar, i.e., a set of production rules that
define how a sequence of input tokens is translated into a
color sequence. Each rule is of two sorts; it can state a
primitive transduction rule u → c, simply mapping an input
token to an output token; otherwise, it states a unary opera-
tion v1u → fu(v1) or binary operation v1uv2 → gu(v1, v2)
where any f is some n-fold (n ≤ 8) repetition, any g is
some combination of repetition, permutation and concate-
nation. Each vi is either a single token ui or the whole
proceeding or succeeding token string xi. By the iterative
composition of these rules, such a grammar generates a set
of translatable input sequences X̄ ⊆ X .

Seq2seq meta-learning framework for evaluation of
human systematic generalization. With these transduc-
tion tasks, Lake and Baroni set up a meta-learning frame-
work with EPISODES associated with different transduction
grammars. Each episode combines a SUPPORT set of input-
output transduction pairs and a QUERY set of input-output
pairs, while any pair is consistent with the associated gram-
mar. The query outputs are hidden, and it is the task to
replicate them with the support examples as the only in-
formation given; the underlying transduction grammar also
remains hidden. In this way, explicitly inferring the gram-
mar rule is unnecessary. Still, the capability to implicitly
extract or hypothesize the actual grammar rules is expected
to be essential for reliably deriving the correct query outputs.
A standard seq2seq transformer network is now trained on
query examples of various episodes. The transformer en-
coder processes a query input combined with the support
pairs of its episode as context, and the transformer decoder
generates an output sequence.

3. Systematicity through Meta-Learning
Locating Lake and Baroni’s approach. In order to evalu-
ate the proposed framework for systematic generalization
by meta-learning neural networks with respect to Fodor
and Pylyshyn’s claims, we will first clarify which of Fodor
and Pylyshyn’s arguments Lake and Baroni are referring to,
since they primarily present an implementation of what they
claim is a human-like systematic capability, but directly
address a challenge. They themselves situate their work
as a contribution to the line of argument that Fodor and
Pylyshyn’s statements no longer apply to current model ar-
chitectures; they are not criticizing the properties of human
cognition, but the alleged inability of neural networks to re-
liably develop compositional representations and structure-
sensitive operations. By focusing on behavioral tests rather
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than ablation studies that directly examine the structure
of learned representations, Lake and Baroni emphasize
the structure sensitivity and systematicity of their model,
which is crucial for demonstrating compositional abilities
and coherent behavior. Furthermore, they present their meta-
learning framework for compositionality to systematically
train neural networks with these abilities. While a single
neural network with compositional abilities would not con-
tradict Fodor and Pylyshyn, who did not claim any limits on
implementability of cognitive abilities, a framework that reli-
ably archives compositional abilities by stochastic learning
methods would actually contradict their main point of crit-
icism. Unfortunately, we will see in the following section
that the model trained on meta-learning still fails to reliably
demonstrate compositional ability in several examples.

3.1. Examining the Lack of Compositionality

Lake and Baroni mention that generalization beyond train-
ing only occurs with respect to new combinations of three
grammar rules out of the same set of grammar rules used
during training. However, when we account for invariance
under the atomic assignments of colors to language tokens
and the mere labeling of operations, we find that 179/200
validation episodes have a combination of non-primitive
grammar operations that were already within the 100000
training episodes. So, even if the model would achieve
highly systematic results on the test episodes, it could be
just due to memorization of the experienced operation pat-
terns and learning to extract the correct labels out of the
episode’s support examples. However, we can even show
that there is non-systematic behavior within their repos-
itory of testing episodes; we reevaluate their pre-trained
′net− BIML− top′ model on the same set of ′algebraic′

test episodes with the mere difference that we did 10 evalu-
ations of all query examples for every testing episode, for
statistical purposes, similar to the one episode they further
evaluated against human performance. We find that the
model performs worst on episodes #133, #32, and #122,
with accuracies of only 41%, 52%, and 54% on the query
examples, respectively. (See next paragraph and Appendix
7 for details.)

Failure in rule extraction. Further investigation of Episode
#133 (see Table 1) reveals that the model struggles to cor-
rectly process the semantics of the language token ⟨fep⟩
with the hidden grammar rule x1 fep → x1 x1 and will
therefore refer to as ⟨twice⟩ and mixes it up with the to-
ken ⟨gazzer⟩ (with x1 gazzer → x1 x1 x1) we will call
⟨thrice⟩. It seems to have a problem with the sole example
featuring ⟨twice⟩, ⟨■ thrice twice → ••••••⟩, which
also happens to contain ⟨thrice⟩. But since ⟨thrice⟩
has several iconic examples in the support, it is expected
that a reasoner with compositional skills will be able to
systematically use a single example and remain consistent

GRAMMAR #133 (Lake and Baroni)
wif → •, tufa → •, kiki → •, lug → •,

u1 zup x1 → u1 x1, x1 gazzer → x1 x1 x1,
x1 fep → x1 x1

DECODING (this paper; for readability)
wif : ■, tufa : ■, kiki : ■, lug : ■,

zup : before, gazzer : thrice, fep : twice
SUPPORT (Lake and Baroni)

■ → •, ■ → •, ■ → •, ■ → •,
■ ■ → ••, ■ ■ → ••,

■ thrice → •••, ■ ■ thrice → ••••••,
■ ■ before ■ → •••, ■ ■ before ■ → •••,

■ before ■ thrice → ••••,
■ before ■ before ■ → •••,

■ ■ ■ before ■ before ■ → •••••,
■ thrice twice → ••••••

QUERY (Lake and Baroni)
IN OUT COUNT

■ before ■ before

■ twice

•••••
••••••
••••

••••••

6
2
1
1

■ ■ twice

••••••
••••
•••

••••••
••••

7
1
1
1
−

■ twice

•••
••
••
••
••

5
2
2
1
−

■ twice

•••
••
••

9
1
−

■ before ■ before

■ twice

•••••
••••

••••••
••••••
••••••
••••••

3
2
2
1
1
1

■ before ■ twice

••••••
••••
••
•••
••••
••••••
••••

4
1
1
1
1
1
1

Table 1. Episode #133 with 10 evaluations for each query example;
SUPPORT and QUERY are decoded for better readability. Ex-
pected outputs backed with green. The model shows incoherent
processing and systematically mistakes twice for thrice. Further
results can be found in Appendix A.1. (Best viewed in color.)
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with the rest of the support information. By considering
the examples ⟨■ → •⟩, ⟨■ → •⟩, ⟨■ thrice → •••⟩,
human systematicity would at least suspect some semantics
of ⟨twice⟩ that are different to those of ⟨thrice⟩.

Non-systematic parsing. Interestingly, the hidden
grammar allows for an ambiguous interpretation of
nested transduction queries, which would actually be a
challenge for a systematic reasoner. For instance, the
query ⟨■ before ■ twice⟩ could be parsed as either
⟨■ before (■ twice)⟩ (marked as target by Lake
and Baroni ) or ⟨(■ before ■) twice⟩, and similarly
for a query with ⟨thrice⟩. But the support example
⟨■ before ■ thrice → ••••⟩ should at least induce a
bias toward the intended processing. But the responses to
this challenge also lack systematicity; while the frequent
mistakes ⟨■ before ■ before ■ twice → •••••⟩
and ⟨■ before ■ before ■ twice →
•••••⟩ could be explained by processing
⟨u1 before (u2 before (u3 thrice))⟩ while,
in contrast, a similar explanation to the the error
⟨■ before ■ twice → ••••••⟩ would be the parsing
⟨(u1 before u2) thrice⟩. We will further discuss the
importance of systematicity for meta-learning systems in
Section 3.2.

Violating structure-sensitivity. Besides both previ-
ous failure modes that are related to incompetence in
extracting information from the support examples, we
also found query examples for episode #1 that reveal
additional non-systematicity (see Table 2 in Appendix
7 for extended version). For queries with patterns
⟨u1 thrice around u2 u3⟩ and ⟨u1 around u2 u3 twice⟩
we first see that the model never parses ⟨around⟩ as
intended. Instead of ⟨((u1 thrice) around u2) u3⟩
and ((⟨u1 around u2) u3) twice⟩ the stable out-
puts can be explain with parsing ⟨around⟩ as in-
tended. Instead of ⟨(u1 thrice) around (u2 u3)⟩ and
(⟨u1 around (u2 u3)) twice⟩ — except for the cases,
⟨■ thrice around ■ ■⟩, ⟨■ thrice around ■ ■⟩,
⟨■ around ■ ■ twice⟩, where it would not
make any difference! Only the (also ambiguous) case
⟨■ around ■ ■ twice⟩ is correctly processed in 6/10
cases — however, with even worse performance than on the
unambiguous examples. Despite the structural similarities
to the other query examples up to the color combination,
we see a non-systematic deviation in responding that leaves
compositional skills in doubt.

Limits in productivity. Finally, we want to point out that
Lake and Baroni’s setup only enables the model to process
input sequences of up to 10 tokens and generate output
sequences of up to 8 color tokens (which further restricts the
admissible input sequences). This limits the possibilities for
testing more complex input sequences and thus assessing

GRAMMAR #1 (Lake and Baroni)
tufa → •, wif → •, lug → •, fep → •,

u1 gazzer → x1 x1 x1, x1 kiki u1 → x1 u1 x1,
x1 zup → x1 x1

DECODING (this paper; for readability)
tufa : ■, wif : ■, lug : ■, fep : ■,

gazzer : thrice, kiki : around, zup : twice
SUPPORT (Lake and Baroni)
■ → •, ■ → •, ■ ■ → ••,

■ twice → ••, ■ thrice → •••,
■ ■ twice → ••••, ■ ■ thrice → ••••••,
■ ■ twice → ••••, ■ ■ thrice → ••••••,
■ around ■ → •••, ■ around ■ → •••,

■ around ■ around ■ → •••••••,
■ around ■ twice → ••••••,

■ thrice around ■ → •••••••,
QUERY (new; this paper)

IN OUT COUNT

■ thrice around ■ ■
••••••••
••••••••

10
−

■ thrice around ■ ■
••••••••
••••••••

8
−

■ thrice around ■ ■
••••••••
••••••••

8
−

■ thrice around ■ ■
••••••••
••••••••

9
−

■ thrice around ■ ■
•••••••
••••••••

8
−

■ thrice around ■ ■
•••••••
••••••••

9
−

■ around ■ ■ twice
••••••••
••••••••

8
−

■ around ■ ■ twice
••••••••
••••••••

8
−

■ around ■ ■ twice •••••••• 6

■ around ■ ■ twice
••••••••
••••••••

7
−

■ around ■ ■ twice
••••••
••••••••

5
2

Table 2. Episode #1 with our own query examples and with 10
evaluations for each input; SUPPORT and QUERY are decoded
for better readability. Expected outputs backed with green. Further
results can be found in Appendix A.4 (Best viewed in color.)

the productivity for the model’s skill.

3.2. Our Position on Meta-Learning Systems

We now discuss whether meta-learning, beyond Baroni’s
framework, could be a promising approach towards human-
like compositional skills, despite the demonstrated limita-
tions in the specific setup. Meta-learning systems aim to
emulate human-like learning by incorporating systematic-
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ity and flexibility into their architectures. These systems
aim to (1) generalize beyond training examples by infer-
ring composition rules from limited examples, (2) adapt to
novel contexts with flexibility as a key expectation, allowing
systems to quickly transferring skills to new domains with
minimal retraining, and (3) mirror human-like cognition
by ensuring that error patterns and reasoning paths are still
systematic, explainable, or even self-correcting.

Weakness of non-reflective training. One of the primary
shortcomings in Lake and Baroni’s work is the employment
of a one-shot prediction approach. Models are trained to
perform a direct transduction without intermediate reflection
or validation steps on the presented support examples. To
guarantee systematic production of outputs, we claim that
it is of primary importance for meta-learning models to
iteratively extract, validate, and correct their current belief
in the extracted rules. In the previous section we showed
that the models of Lake and Baroni fail to validate extracted
rules against the support and, therefore, systematically fail
to correctly extract (and in consequence apply), e.g., the
twice rule.

Focus on systematicity rather than productivity. Consid-
ering the role that underlying grammars play with regard to
meta-learning or specifically non-meta-learning problems,
any of today’s modern transformer systems can be broken
by providing them with more and more complex problems,
up to a point where the models are no longer expressive
enough to comprehend the problem as a whole. This could
be, for example, due to the depth of rule nesting or simply
due to the length of the input. While the general ability to
learn to transcribe rules certainly is a prior requirement of
meta-learning systems in the particular discussed setting,
one would not necessarily deny such systems the ability
to perform meta-learning reasoning even when failing to
accomplish such tasks due to the aforementioned reasons.
When talking about meta-learning tasks, one is not so much
interested in the ability to derive rules of arbitrary com-
plexity —which rather constitutes a problem of classical
machine learning— but in the ability of these models to sys-
tematically discover, verify, apply, and combine said rules
or to systematically learn from its mistakes. When com-
paring to human reasoning (Nezhurina et al., 2024; Wüst
et al., 2024b), meta-reasoning abilities are not judged by the
ability to produce transductions in a one-shot fashion, but
rather with a focus on the result being correct in the final
output. We, therefore, formulate the following claim:

Claim 1. A characteristic of successful meta-learning
systems is the ability to consistently abstain from non-
systematic errors.

Our claim primarily regards the consistency of model be-
havior and we, therefore, differentiate between systematic
and non-systematic errors. Systematic errors might arise

due to wrong inherent assumptions of the model that, then
however, get systematically applied in consequence. Such
errors might stem from wrong assumptions on the general
task setup. In our setting, this might involve assumptions
about the unique interpretation of rules –see, e.g., our dis-
cussion on possibly ambiguous rule interpretations in Lake
and Baroni–, and in general might be due to exogenous
factors and implicit assumptions that where not be captured
during training phase. While such errors might not produce
the desired output they follow a systematicity that give rise
to the assumption that the model might have been able to
learn the right rules, given the correct underlying assump-
tions. The absence of systematicity, however, poses a much
larger fault. Here, models might expose erratic ‘glitches’,
resulting in a non-human-like behavior, that is absent of any
systematicity. As the underlying reasons for such behavior
might not be understood in general, it is unclear how to treat
and correct such errors.

Last, we derive two positions regarding essential aspects of
evaluation and training of successful meta-learning systems:

Position on Evaluation. Assessing and postulating sys-
tematic or compositional skills in neural networks requires
either the direct evaluation of the model’s internal represen-
tations, which would require an inspectable or explainable
network architecture, or the use of comprehensive ablation
studies that systematically testing a model’s behavior in
out-of-distribution situations.

Position on Implementation and Training. In order to ob-
tain compositionality and systematicity within the discussed
meta-learning tasks, the presence of symbolic representa-
tions within neural networks is vital to ensure consistent
application and composition of rules. We want to empha-
size that while Fodor and Pylyshyn remain unrefuted in the
general analysis, today’s discussion of modern neural net-
work architectures continuously evolve to develop symbolic
representations e.g. in the form of circuits (Olah et al., 2020;
Wang et al., 2022; Conmy et al., 2023; Hanna et al., 2024).
These explicit representations are important building blocks
that promote consistent behavior and allow for explicit re-
flection and iterative correction of possible inconsistencies
of the extracted rule sets. Last, it is important to mention that
reflective behavior is likely to not evolve from training on
one-shot transduction tasks, but requires models to have the
possibility iterate, validate and correct over the extracted
rule sets. Most recently important breakthroughs in this
direction have been achieved in RL training of language rea-
soning models (Stiennon et al., 2020; Ouyang et al., 2022;
Bai et al., 2022; Lee et al., 2023; DeepSeek-AI et al., 2025).

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Position: Fodor and Pylyshyn’s Legacy — Still No Human-like Systematic Compositionality in Neural Networks

4. Related Work
Human-like compositionality. Regarding the importance
of compositionality for cognitive skills Fodor & Lepore
(2001) and Fodor (2001) extend the disscusion of Fodor &
Pylyshyn (1988) on the compositional nature of language
and thought. While (natural) language incorporates some
non-compositional structures due to context sensitivity, com-
positionality is argued to be essential for (a language of)
thought. This falls in line with more recent work of Fe-
dorenko et al. (2024) trying to find evidence for how lan-
guage is primarily a tool for communication rather than
thought.

Compositionality in neural networks. Besides Lake &
Baroni (2023), there is older as well as recent work trying to
demonstrate compositional or meta-learning skills achieved
with neural network architecture (Botvinick & Plaut, 2004;
Santoro et al., 2016; Park et al., 2024; DeepSeek-AI et al.,
2025). Other work is proposing frameworks for learning and
assessing compositional skills (Petrache & Trivedi, 2024;
Sinha et al., 2024) or other intelligent behavior (Chollet,
2019) and Bayat et al. (2025) is introducing memorization-
aware training to tackle overfitting to spurious correlation
encountered in training.

Limitations in systematicity. Several works evaluate and
demonstrate the limitations of modern AI models in com-
positional or systematic generalization tasks (Bender et al.,
2021; Deletang et al., 2023; Dziri et al., 2024; Mészáros
et al., 2024; Nezhurina et al., 2024; Zhang et al., 2024;
Wüst et al., 2024b) and there is also another targeted re-
sponse to Lake and Baroni’s work, presenting problems of
non-systematic behovior (Goodale & Mascarenhas, 2023).

Importance of symbolics. There is also more recent work
that stresses the importance of symbolics. Ellis et al. (2020)
introduces a machine learning system that utilisez neural
guided program synthesis to learns to solve problems. Wüst
et al. (2024a) furhter demonstrates the advantages of using
program synthesis for unsupervised learning of complex,
relational concepts from images, focusing on the benefits
in terms of generalization, interpretability, and revisability.
Stammer et al. (2024b), on the other hand investigated the
benefits of symbolic representations for improved gener-
alization and interpretability of low-level visual concepts.
The position of the importance of symbols for AI expla-
nations is further discussed by Kambhampati et al. (2022).
The approach of Dinu et al. (2024) combines generative
models and solvers by use of large language models as se-
mantic parsers. Shindo et al. (2025) model human ability to
combine symbolic reasoning with intuitive reactions by a
neuro-symbolic reinforcement learning framework.

5. Alternative Views
Historically, Fodor & Pylyshyn (Fodor & Pylyshyn, 1988)
argued for the emergence or implementation of symbolically
reasoning structures within neural networks as a necessary
aspect for achieving human-like meta-learning. However,
the considerations for meta-learning discussed in their and
our paper strongly focus on the learning of logical and arith-
metic rules where concepts can be reduced onto symbolic ex-
pressions. These representations, therefore, naturally align
well with the abilities of symbolic reasoners, but leave out
other possible forms of meta-learning systems. Consider-
ing different modalities, for example for composing visual
patterns or motion sequences, might pose a strong hurdle
for classical symbolic systems. Such domains that do not
operate over discrete ‘crystallized’ symbols, but rather op-
erate on abstract ‘fluid’ concepts, still lack a well defined
notion of what constitutes meta-learning within them. As a
consequence it is unclear how to measure and systematically
asses the abilities of models with regard to meta-learning in
possible benchmarks.

Untargeted Emergence of Systematic Reasoning. Even
without targeted training towards meta-learning models,
LLM have shown to exhibit emergent abilities for vari-
ous tasks (Brown et al., 2020; Wei et al., 2022a; Schaef-
fer et al., 2024). While ‘true’ understanding of the world
might only be achieved via (embodied) interaction (Lipson
& Pollack, 2000; Gupta et al., 2021; Zečević et al., 2023),
some works have argued that such abilities might even be
learned through mere passive observation (Lampinen et al.,
2024), while other approaches argue for the value of self-
explanation guided learning (Stammer et al., 2024a). Con-
sidering the underlying aspect of systematic learning and
reasoning, several works already where able to distill sym-
bolically acting circuits that emerged during training from
LLM (Olah et al., 2020; Wang et al., 2022; Conmy et al.,
2023; Hanna et al., 2024). In light of these results, it stands
yet to to be seen whether meta-learning abilities of language
reasoning models might also emerge as a consequence of
pure scaling laws (Sutton, 2019; Kaplan et al., 2020; Bubeck
et al., 2023).

6. Discussion and Conclusion
For this final section, we will revisit the key points that
constitute our position (c.f. Sec. 1) and that we believe
to form important aspects towards the goal of achieving
meta-learning models capable of performing human-like
systematic compositionality:

(I) Criteria for Systematic Compositionality. The main
criteria for models with productive, systematic and compo-
sitional skills remain compositional representation and
structure-sentitive operations.
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(II) Non-systematic Behavior. As Fodor and Pylyshyn’s
trained model exhibits various non-systematic behaviors, it
failed to demonstrate human-like compositional learning
capacities and, furthermore, refutes the presented claims
that their meta-learning framework is achieving human-like
systematic generalization.

(III) Assessing Compositionality. Systematic testing of
several types of out-of-distribution episodes is necessary to
assess compositional skills.

(IV) Emergence and Learning of Symbolic Representa-
tions. Meta-learning systems have to encourage the emer-
gence of symbolic representations during training. For that,
we expect training tasks and model architecture that makes
iteration, self-validation, and self-correction over the ex-
tracted rule sets possible as well as necessary.

Before concluding we now summarize the key considera-
tions required for achieving truly meta-learning systems.

Aspects of meta-learning. The limitations of current neural
models emphasize the importance of hybrid architectures
that integrate the strengths of symbolic and connectionist
paradigms. Neuro-symbolic models offer a compelling solu-
tion, combining explicit rule representation, error correction
mechanisms, and dynamic scalability. Key advancements in
this direction include, (1) Systematicity: Embedding mech-
anisms for representing and manipulating compositional
rules within neural architectures; (2) Reflective Reasoning:
Incorporating iterative self-correction processes to emulate
human-like adaptability; (3) Scalability: Enabling models
to dynamically expand rule sets and adapt to novel tasks,
mirroring human flexibility; and we will discuss those in
the following:

Systematicity. In this paper we argue that a key property
of meta-learning systems is the ability to refrain from non-
systematic errors.

Reflection and iterative refinement. A distinct ability of
human reasoning is the ability to reflect and develop a set of
currently hypothesized rules. The extraction and validation
of rules from provided support examples might pose a com-
plex task which can scale with exponential complexity with
number of provided support examples. Models exhibiting
one-shot behavior might be able to perform such tasks up to
a particular problem size, but are ultimately limited by their
own model capacity. In this paper we, therefore, provide
arguments towards the use of reflective learners, as a par-
ticular class of models, capable of iterative refinement and
self-correction of their current beliefs, a practice already
adopted with great success for general language reasoning
models (Wei et al., 2022b; Stammer et al., 2024a; Yao et al.,
2024; DeepSeek-AI et al., 2025). This iterative behavior
allows for repeated validation of the conjectures rules and,
therefore, fundamentally stands in contrast to models trained

to provide answers in a one-shot fashion.

Scalability, memory and context. An often overlooked
part of learning to reflecting upon ones beliefs is the require-
ment of learning to store and operate on suitable represen-
tations of the models’ beliefs. Particularly, this includes
the presence of some sort of memory that can be read and
updated. Upon the application of rules to a given query a
model might additionally want to track its current context
(e.g. the nesting depth of current rules), which, again, might
require some sort of memory to generalize to arbitrary prob-
lem sizes and overcome the limitations of a static number
model parameters.

Conclusion. Models with the discussed properties have the
potential to address foundational critiques of connectionism
while advancing the capabilities of artificial cognition. By
bridging the gap between symbolic and connectionist prin-
ciples, hybrid architectures could achieve systematicity and
productivity, paving the way for truly human-like reasoning.

The enduring relevance of Fodor and Pylyshyn’s critique
underscores the challenges in developing systems capa-
ble of systematic generalization and compositional reason-
ing. While meta-learning frameworks represent significant
progress, they fall short of resolving foundational limita-
tions. Future advancements must embrace integrative ap-
proaches that merge the strengths of symbolic and con-
nectionist paradigms, paving the way for a more robust
understanding of artificial cognition. By addressing these
challenges, we can move closer to realizing the vision of
human-like artificial intelligence.

7. Impact Statement.
Strong meta-learning abilities show as an important skill to
navigate the complex and changing tasks of today’s world.
When presenting models that aim to robustly adapt to novel
environment, it is important to refrain from making unsolidi-
fied claims about the achievement of meta-learning systems
which ultimately do not hold true upon closer inspection.
Hiding behind details of what technically constitutes as
meta-learning systems does not help the general discussion,
but might enhance the public trust in such models, possibly
leading into a false reliance in them. Our analysis showed
that modern neural meta-learning systems can only archive
such tasks, if at all, only under a very narrow and restricted
definition of a meta-learning setup. In this paper we pro-
mote the systematic evaluation of meta-learning systems
beyond their training distribution in order to truthfully as-
sess their ability of performing compositional reasoning.
We furthermore. As a result, we claim that ‘Fodor and
Pylyshyn’s Legacy’ persists and we conclude that there is
still no human-like systematic compositionality learned in
neural networks as of today.
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Mészáros, A., Ujváry, S., Brendel, W., Reizinger, P., and
Huszár, F. Rule extrapolation in language modeling: A
study of compositional generalization on OOD prompts.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https:
//openreview.net/forum?id=Li2rpRZWjy.

Nezhurina, M., Cipolina-Kun, L., Cherti, M., and Jitsev, J.
Alice in wonderland: Simple tasks showing complete rea-
soning breakdown in state-of-the-art large language mod-
els, 2024. URL https://arxiv.org/abs/2406.
02061.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 5(3):e00024–001, 2020.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Park, C. F., Okawa, M., Lee, A., Lubana, E. S., and Tanaka,
H. Emergence of hidden capabilities: Exploring learning
dynamics in concept space. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=owuEcT6BTl.

Petrache, M. and Trivedi, S. Position paper: General-
ized grammar rules and structure-based generalization be-
yond classical equivariance for lexical tasks and transduc-
tion, 2024. URL https://arxiv.org/abs/2402.
01629.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. Meta-learning with memory-augmented
neural networks. In Proceedings of the 33rd Interna-
tional Conference on International Conference on Ma-
chine Learning - Volume 48, ICML’16, pp. 1842–1850.
JMLR.org, 2016.

Schaeffer, R., Miranda, B., and Koyejo, S. Are emergent
abilities of large language models a mirage? Advances in
Neural Information Processing Systems, 36, 2024.

Shindo, H., Delfosse, Q., Dhami, D. S., and Kersting, K.
Blendrl: A framework for merging symbolic and neu-
ral policy learning. In Proceedings of the International
Conference on Representation Learning (ICLR), 2025.

10

https://www.nature.com/articles/s41586-024-07522-w#citeas
https://www.nature.com/articles/s41586-024-07522-w#citeas
https://www.jstor.org/stable/3071079
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0017.00153
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0017.00153
https://lingbuzz.net/lingbuzz/007759
https://lingbuzz.net/lingbuzz/007759
https://openreview.net/forum?id=Li2rpRZWjy
https://openreview.net/forum?id=Li2rpRZWjy
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2406.02061
https://openreview.net/forum?id=owuEcT6BTl
https://openreview.net/forum?id=owuEcT6BTl
https://arxiv.org/abs/2402.01629
https://arxiv.org/abs/2402.01629


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Position: Fodor and Pylyshyn’s Legacy — Still No Human-like Systematic Compositionality in Neural Networks

Sinha, S., Premsri, T., and Kordjamshidi, P. A survey on
compositional learning of AI models: Theoretical and
experimental practices. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=BXDxwItNqQ. Sur-
vey Certification.

Stammer, W., Friedrich, F., Steinmann, D., Brack, M.,
Shindo, H., and Kersting, K. Learning by self-explaining.
Transactions on Machine Learning Research, 2024a.
ISSN 2835-8856. URL https://openreview.
net/forum?id=bpjU7rLjJ7.
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Wüst, A., Stammer, W., Delfosse, Q., Dhami, D. S., and Ker-
sting, K. Pix2code: Learning to compose neural visual
concepts as programs. In The 40th Conference on Un-
certainty in Artificial Intelligence, 2024a. URL https:
//openreview.net/forum?id=EE4ikEQnOT.
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Zečević, M., Willig, M., Dhami, D. S., and Kersting, K.
Causal parrots: Large language models may talk causality
but are not causal. Transactions on Machine Learning
Research, 2023.

Zhang, D., Tigges, C., Zhang, Z., Biderman, S., Ra-
ginsky, M., and Ringer, T. Transformer-based mod-
els are not yet perfect at learning to emulate struc-
tural recursion. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=Ry5CXXm1sf.

Zhang, S. D., Tigges, C., Biderman, S., Raginsky, M., and
Ringer, T. Can transformers learn to solve problems re-
cursively?, 2023. URL https://arxiv.org/abs/
2305.14699.

11

https://openreview.net/forum?id=BXDxwItNqQ
https://openreview.net/forum?id=BXDxwItNqQ
https://openreview.net/forum?id=bpjU7rLjJ7
https://openreview.net/forum?id=bpjU7rLjJ7
https://openreview.net/forum?id=EE4ikEQnOT
https://openreview.net/forum?id=EE4ikEQnOT
https://openreview.net/forum?id=Ry5CXXm1sf
https://openreview.net/forum?id=Ry5CXXm1sf
https://arxiv.org/abs/2305.14699
https://arxiv.org/abs/2305.14699


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Position: Fodor and Pylyshyn’s Legacy — Still No Human-like Systematic Compositionality in Neural Networks

A. APPENDIX: Position: Fodor and Pylyshyn’s Legacy — Still No Human-like Systematic
Compositionality in Neural Networks

This appendix contains the full set of grammar rules,
support examples and query examples of Lake and
Baroni’s meta-learning. We reevaluated their pre-trained
′net− BIML− top′ model on the same set of ′algebraic′

testing-episodes. Here, we reported the outputs for #133,
#132, #122, and modified #1.

A.1. Complete responses for Lake and Baroni’s
meta-learning testing-episodes #133.

GRAMMAR #133 (Lake and Baroni)
wif → •, tufa → •, kiki → •, lug → •,

u1 zup x1 → u1 x1,
x1 gazzer → x1 x1 x1,

x1 fep → x1 x1

DECODING (this paper; for readability)
wif : ■, tufa : ■, kiki : ■, lug : ■,

zup : before,
gazzer : thrice,

fep : twice
SUPPORT (Lake and Baroni)

■ → •, ■ → •, ■ → •, ■ → •,
■ ■ → ••,
■ ■ → ••,

■ thrice → •••,
■ ■ thrice → ••••••,
■ ■ before ■ → •••,
■ ■ before ■ → •••,

■ before ■ thrice → ••••,
■ before ■ before ■ → •••,

■ ■ ■ before ■ before ■ → •••••,
■ thrice twice → ••••••

Table 3. GRAMMAR and SUPPORT for Episode #133; decoded
for better readability. (Best viewed in color.)

QUERY (Lake and Baroni)
IN OUT COUNT

■ before ■ before

■ twice

•••••
••••••
••••

••••••

6
2
1
1

■ ■ twice

••••••
••••
•••

••••••
••••

7
1
1
1
−

■ twice

•••
••
••
••
••

5
2
2
1
−

■ twice

•••
••
••

9
1
−

■ before ■ before

■ twice

•••••
••••

••••••
••••••
••••••
••••••

3
2
2
1
1
1

■ before ■ twice

••••••
••••
••
•••
••••
••••••
••••

4
1
1
1
1
1
1

■ ■ •• 10

■ before ■
••
•••

9
1

■ before ■
••
•••
•••

8
1
1

■ before ■ •• 10

Table 4. Episode #133 with 10 evaluations for each query example;
decoded for better readability. Expected outputs backed with
green. The model shows incoherent processing and systematically
mistakes twice for thrice. (Best viewed in color.)
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A.2. Complete responses for Lake and Baroni’s
meta-learning testing-episode #32.

GRAMMAR #32 (Lake and Baroni)
tufa → •, zup → •, kiki → •, lug → •,

x1 dax u1 → u1 x1,
x1 gazzer x2 → x1 x2,

x1 wif x2 → x1 x1 x2 x2 x2 x1

DECODING (this paper; for readability)
tufa : ■, zup : ■, kiki : ■, lug : ■,

dax : after,
gazzer : before,

wif : twice before and once after three times
SUPPORT (Lake and Baroni)
■ → •, ■ → •, ■ → •,

■ ■ → ••,
■ ■ → ••,
■ ■ → ••,
■ ■ → ••,

■ ■ ■ → •••,
■ after ■ → ••,
■ before ■ → ••,

■ ■ after ■ → •••,
■ after ■ after ■ → •••,
■ after ■ after ■ → •••,

■ ■ after ■ after ■ → ••••

Table 5. GRAMMAR and SUPPORT for Episode #32; decoded
for better readability. (Best viewed in color.)

QUERY (Lake and Baroni)
IN OUT COUNT

■
•
•
•

8
1
1

■ after ■
••
••

8
2

■ after ■ after ■
before ■

••••
••••
••••
••••

5
3
1
1

■ ■ after ■ after ■
••••
•

••••

8
1
1

■ ■ ■ before ■
before ■

•••••
•••••
•••••

•••••••

4
4
1
1

■ twice before

and once after

three times ■

••
•••••
•••••
••••
•••••
••••
••••

•••••••
•••

••••••

2
1
1
1
1
1
1
1
1
−

■ twice before

and once after

three times ■

••
••••
••••
•••
•••••
•••••
••••••
••••••

3
2
1
1
1
1
1
−

■ ■ before ■
•••
••••

9
1

■ ■ ■ after ■
before ■

•••••
•••••
•••••

•••••••
•••••

•••••••

4
2
1
1
1
1

■ ■ •• 10

Table 6. Episode #32 with 10 evaluations for each query example;
decoded for better readability. Expected outputs backed with green.
(Best viewed in color.)
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A.3. Complete responses for Lake and Baroni’s
meta-learning testing-episode #122.

GRAMMAR #122 (Lake and Baroni)
blicket → •, kiki → •, zup → •, lug → •,

x1 dax → x1 x1 x1 x1,
x1 fep x1 → x1 u1 u1 x1,

x1 gazzer → x1 x1

DECODING (this paper; for readability)
blicket : ■, kiki : ■, zup : ■, lug : ■,

dax : four times,
fep : twice within,

gazzer : twice
SUPPORT (Lake and Baroni)
■ → •, ■ → •, ■ → •,

■ ■ → ••,
■ ■ → ••,

■ twice → ••,
■ twice → ••,

■ four times → ••••,
■ four times → ••••,
■ ■ twice → ••••,
■ ■ twice → ••••,

■ ■ ■ ■ twice → ••••••••,
■ twice within ■ twice → ••••••,

■ ■ ■ ■ ■ ■ → ••••••

Table 7. GRAMMAR and SUPPORT for Episode #122; decoded
for better readability. (Best viewed in color.)

QUERY (Lake and Baroni)
IN OUT COUNT

■ ■ four times

•••••
••
•••

5
4
1

■ ■ twice within ■ ■

••••••••
••••••••
••••••••
••••••••
•••••••
••••••••

••••
••••••

••••••••
••••••••
•••••••

1
1
1
1
1
1
1
1
1
1
−

■ ■
••
•

9
1

■ twice within ■ twice

••••
••••••
••••••
••••••
••••••
••••••
••••
••••••
••••••
••••••

2
1
1
1
1
1
1
1
1
−

■ twice within ■

•••
••••
•••
••
•••
••••
•••
••••
••••

3
1
1
1
1
1
1
1
−

■ ■ •• 10

■
•
•

8
2

■ four times

••••
••••
••••

8
1
1

■ twice
••
••

9
1

■ ■ four times

•••••
••••••••
•••••
•••
•••

4
2
1
1
1
1

Table 8. Episode #122 with 10 evaluations for each query example;
decoded for better readability. Expected outputs backed with green.
(Best viewed in color.)
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A.4. Complete responses for our modified version of
Lake and Baroni’s testing-episode #1.

GRAMMAR #1 (Lake and Baroni)
tufa → •, wif → •, lug → •, fep → •,

u1 gazzer → x1 x1 x1,
x1 kiki u1 → x1 u1 x1,

x1 zup → x1 x1

DECODING (this paper; for readability)
tufa : ■, wif : ■, lug : ■, fep : ■,

gazzer : thrice,
kiki : around,
zup : twice

SUPPORT (Lake and Baroni)
■ → •, ■ → •,
■ ■ → ••,

■ twice → ••,
■ thrice → •••,

■ ■ twice → ••••,
■ ■ thrice → ••••••,
■ ■ twice → ••••,

■ ■ thrice → ••••••,
■ around ■ → •••,
■ around ■ → •••,

■ around ■ around ■ → •••••••,
■ around ■ twice → ••••••,
■ thrice around ■ → •••••••

Table 9. GRAMMAR and SUPPORT for Episode #1; decoded for
better readability. (Best viewed in color.)

QUERY (new; this paper)
IN OUT COUNT

■ thrice around ■ ■
••••••••
••••••••

10
−

■ thrice around ■ ■

••••••••
•••••
••

••••••••

8
1
1
−

■ thrice around ■ ■

••••••••
•••••••
•••••

••••••••

8
1
1
−

■ thrice around ■ ■
••••••••
•••••••
••••••••

9
1
−

■ thrice around ■ ■

•••••••
•••••
•••••

••••••••

8
1
1
−

■ thrice around ■ ■
•••••••

••
••••••••

9
1
−

■ around ■ ■ twice

••••••••
•••••
•••••

••••••••

8
1
1
−

■ around ■ ■ twice

••••••••
••••••
••••

••••••••

8
1
1
−

■ around ■ ■ twice

••••••••
•••••
••••••
•••••

••••••••

6
1
1
1
1

■ around ■ ■ twice

••••••••
•••••
••••••
•••••

••••••••

7
1
1
1
−

■ around ■ ■ twice

••••••
••••••••
•••••••
•••••
•••••

5
2
1
1
1

Table 10. Our own query examples for Episode #1 with 10 evalua-
tions each; decoded for better readability. Expected outputs backed
with green. (Best viewed in color.)
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