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ABSTRACT

Backdoor attacks are training time attacks that fool deep neural networks (DNNs)
into misclassifying inputs containing a specific trigger, thus representing serious
security risks. However, due to catastrophic forgetting, the backdoor inside the
poisoned models can be gradually removed under advanced finetuning methods.
It reduces the practicality of backdoor attacks since the pretrained models often
undergo extra finetuning instead of being used as is, and the attacks gradually
lose their robustness given various finetuning-based backdoor defenses. Partic-
ularly, recent work reveals that finetuning with a cyclical learning rate scheme
can effectively mitigate almost all backdoor attacks. In this paper, we propose
a new mechanism for developing backdoor models that significantly strengthens
the durability of the generated backdoor. The key idea in this design is to coach
the backdoor to become more robust by exposing it to a wider range of learning
rates and clean-data-only training epochs. The backdoor models developed with
our mechanism can bypass finetuning-based defenses and maintain the backdoor
effect even under long and sophisticated finetuning processes. In addition, the
backdoor in our backdoored models can persist even if the whole model is fine-
tuned end-to-end with another task, causing a notable accuracy drop when the
trigger is present. We demonstrate the effectiveness of our technique through em-
pirical evaluation with various backdoor triggers on three popular benchmarks,
including CIFAR-10, CelebA, and ImageNet-10.

1 INTRODUCTION

Deep learning has become essential in most modern AI systems thanks to its outstanding perfor-
mance in almost every task. However, developing high-performing deep learning models (DNNs) is
costly; it often requires a large set of training data, expensive and advanced hardware, and lengthy
training time. Therefore, using pretrained models provided by third parties become a popular prac-
tice. Non-expert customers may acquire and deploy the pretrained models as is, while expert cus-
tomers can finetune those models using their own data for the target tasks. Those open a loophole
for backdoor attacks, an emerging security threat that has drawn increasing attention in recent years.
Existing works in backdoor attack literature (Gu et al., 2017; Liu et al., 2018b; Salem et al., 2020;
Barni et al., 2019; Liu et al., 2020) have demonstrated that by injecting a backdoor trigger, i.e., a
specific pre-defined pattern such as a small square, to a small portion of the training data, the trained
model will misclassify when facing inputs with the presence of this trigger. In contrast, on benign
inputs, the poisoned model still behaves normally, which makes the attack hard to detect. The ad-
versary can fool customers into deploying such a backdoor model in their systems, then use inputs
with the backdoor trigger to manipulate the model’s outputs for gaining illegal benefits or causing
awful damages. As the research in this field has progressed, the attacks have become more powerful
and sophisticated. More recent methods are capable of utilizing stealthier triggers that are visually
imperceptible (Nguyen & Tran, 2021; Doan et al., 2021).

As a countermeasure against backdoor attacks, various backdoor defenses have been introduced.
Existing defenses (Liu et al., 2018a; Wang et al., 2019; Gao et al., 2019; Tran et al., 2018; Doan
et al., 2020; Wu & Wang, 2021; Zeng et al., 2021a) have made substantial efforts to detect and mit-
igate the effects of backdoor using various approaches, such as inverting triggers, splitting datasets,
pruning the DNNs, or adversarial unlearning. While sophisticated defense techniques like unlearn-
ing and pruning effectively mitigate backdoors, they often come at the cost of sacrificing accuracy on
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the original tasks. Conversely, fine-tuning-based defense offers a more balanced approach, partially
restoring the model’s utility. However, vanilla fine-tuning alone provides only modest backdoor mit-
igation (Liu et al., 2018a). Therefore, fine-tuning is often combined with other defense mechanisms
to achieve superior defense performance (Liu et al., 2018a; Li et al., 2021).

Besides backdoor defenses, finetuning also appears in many practical AI systems as a post-
processing step to revise the pretrained models to better fit the customer’s need. Expert customers
often do not use the pretrained model as is but finetune it using their own clean data. This process
can serve various purposes: to adapt the model to the target data domain, to extend its capacity to
handle edge cases, or even to completely change the target task.

Based on the observations above, we believe that a solid backdoor attack must be resilient to different
finetuning techniques. It both helps the attack bypass finetuning-based defenses and extends its
application to target a broader range of victim systems. However, a recent paper (Sha et al., 2022)
argues that standard finetuning with a proper learning rate can mitigate backdoors from common
backdoor attacks. It then proposes a finetuning process with a cyclical learning rate schedule to
cover a wide range of learning rates and use it as an effective backdoor defense. This technique
is called super-finetuning, and we empirically confirm its defense effectiveness. Besides, another
paper (Zhu et al., 2023) also claims to figure out the weakness of the vanilla finetuning and boost
the performance of existing defense methods based on looking for flat regions of the loss function.

In this paper, however, we will counter the aforementioned belief by designing backdoor attacks
that can withstand all existing finetuning techniques, even the advanced ones like super- and SAM-
finetuning. Specifically, we propose FMN (Forget-Me-Not), a novel mechanism to train backdoor
models for the finetuning-resistant purpose. The key components include a cyclical learning rate
schedule, which is directly inspired by super-finetuning, and a clean-backdoor interleave training
procedure. First, the cyclic-learning-rate training coaches the produced backdoor to endure a wide
range of learning rates, unlike the backdoor from common methods. Second, the clean-backdoor
interleave training allows the backdoor model to practice mini-finetuning epochs, thereby strength-
ening the backdoor’s permanence. By surviving these extreme training manners, the poisoned model
will acquire a deep-rooted backdoor, which is hard to mitigate.

We run extensive experiments to verify the proposed method on three common benchmarks, includ-
ing CIFAR-10, CelebA, and ImageNet10. Our training scheme can be effectively applied to a wide
range of backdoor attacks, remarkably strengthening their durability while causing no harm to their
efficacy and stealthiness. Finally, we show that our backdoor can long-last inside the deep models
even after being finetuned for other tasks, causing a significant accuracy drop when testing on inputs
with backdoor triggers. Note that while our backdoor training mechanism is general and can be
applied to any task, we limit the paper’s scope to handle the most-used image classification task.

2 BACKGROUND

2.1 THREAT MODEL

Backdoor attacks are techniques that poison a model to have a hidden destructive functionality. The
backdoored model can perform genuinely on clean inputs but misbehave when a specific trigger
pattern appears. The trigger pattern can be in any form, such as image patch, content blending,
noise perturbation, or spatial warping. For image classification, backdoored models can return a
predefined target label (normally incorrect) when the trigger is present, regardless of image content.

Backdoors can be injected into DNNs at different stages. In this work, we consider model poisoning
during the training stage, which is commonly used by most backdoor attack and defense studies. In
this scenario, the attacker has total control over the training process, and purposely trains the DNN
with a backdoor. The poisoned network is then provided to the customer to deploy.

2.2 PREVIOUS BACKDOOR ATTACKS

BadNets (Gu et al., 2017), one of the earliest backdoor attacks, injects a fixed image patch as a
trigger into a small portion of the data while flipping their labels to the target class. BadNets boosted
remarkable successes on various datasets despite its simple scheme. After BadNets, many methods
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have been proposed to change the attack mechanisms (Liu et al., 2018b; Yao et al., 2019; Rakin
et al., 2020; Chen et al., 2021; Bober-Irizar et al., 2022) or trigger types.

Since we consider the most simple attack scenario in which the attacker has full control of the model
development, the trigger design is more important. BadNets and early attacks often select the trigger
pattern randomly. BadNets uses a random or hand-picked image patch as the backdoor trigger,
while Chen et al. (2017) use a random image blending, Barni et al. (2019) use sinusoidal strips, and
Nguyen & Tran (2021) employ a fixed image warping. In contrast, advanced attacks often optimize
the trigger to achieve some desired properties. Liu et al. (2018b) compute the optimal patch-based
backdoor pattern that can magnify a set of neuron activations for a fast and effective backdoor
injection. Li et al. (2020) use the same reverse engineer technique but optimize a noise-like trigger
pattern with Lp regularization for invisible attacks. Nguyen & Tran (2020) train a generator to
produce input-aware backdoor triggers. LIRA (Doan et al., 2021) jointly trains the trigger generation
function and the target classifier for imperceptible and robust backdoor attacks. Recently, Narcissus
(Zeng et al., 2022) optimizes an optimal trigger pattern using a surrogate clean classifier, aiming for
efficient clean-label attacks.

2.3 BACKDOOR DEFENSE METHODS

The victim could be aware of or advised about the security threats at every stage of building and
utilizing the model, thus they could apply defenses in all stages, ranging from data scanning (data
defense) and model examination (model defense) to test-time monitoring after the model is deployed
(test-time defense). Our paper focuses on finetuning-based defenses, a popular approach in model
defense. Hence, in the following text, we first briefly introduce data and test-time defenses, then
deep dive into model defense approaches, particularly finetuning-based algorithms.

Data defense. The defender aims to identify potentially poisoned data and then clean or remove
them before using them to train their model. Defensive methods at this stage look at distinct charac-
teristics of the data in their feature space (Chen et al., 2018) or their relationship with respect to the
covariance matrix of the features (Tran et al., 2018), or detect unusual high-frequency traits (Zeng
et al., 2021b).

Test-time defense. Defense at this stage aims to detect and remove malicious query samples. By
observing the randomness in the model’s prediction on perturbed inputs, STRIP Gao et al. (2019)
identifies inputs with low entropy in the predicted classes as malicious. Neo (Udeshi et al., 2019),
instead, locates the trigger region by searching for the smallest square-like block that is able to alter
the network’s prediction. More recently, Februus (Doan et al., 2020) utilizes GradCAM (Selvaraju
et al., 2017) to identify abnormally small influential regions as potential triggers.

Model defense. This defense aims at identifying or mitigating the backdoor in a suspicious model
using either a small set or zero benign data. We categorize the model defense methods into three
main directions: reverse-engineering techniques, neuron pruning, and finetuning (FT).

Neural Cleanse (Wang et al., 2019) is a representative reverse-engineering defense. It reverse-
engineers an input pattern for each output label, such that all samples stamped with the pattern
are classified to the same label, then detects abnormally small patterns. Another reverse-engineering
method, ABS (Liu et al., 2019), generates backdoor trigger candidates by scanning the neurons and
then verifies these candidates on a small set of benign samples.

Fine-pruning (Liu et al., 2018a) pruned neurons that are dormant w.r.t clean inputs. ANP (Wu
& Wang, 2021) further explored this idea and proposed using adversarial weight perturbation to
amplify the differences between clean and backdoor-related neurons.

Finetuning a model with a small set of clean data resembles the process of training this model with
only clean data. Based on the catastrophic forgetting phenomenon, this approach expects that the
finetuned model will be free of the backdoors. However, Liu et al. (2018a) argued that although
vanilla FT could provide some degree of backdoor purification, it is not strong enough to defend
the model against advanced backdoor attacks. Hence, other techniques, such as pruning (Liu et al.,
2018a) and distillation (Li et al., 2021), are often incorporated to fortify the defense. Another di-
rection is to design more advanced finetuning methods by observing the loss landscape. Inspired by
the study on learning rate (LR) of (Smith & Topin, 2019) to obtain super-convergence for fast train-
ing, Sha et al. (2022) proposed a method named super-finetuning. Super-finetuning consists of two
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phases: the first phase cyclically finetunes the model from a minimal to a maximal learning rate, and
the second phase repeats the same process as in the first phase but with a smaller maximal LR. Be-
side super-finetuning, FT-SAM, named after Sharpness-Awareness-Minimization (SAM) of (Foret
et al., 2020), was recently introduced by (Zhu et al., 2023). FT-SAM searches for flat minimums;
thus, its solution is more robust: a small perturbation of the parameters will not change the final
prediction. Regardless of their advancement, we will prove that finetuning-based backdoor defenses
cannot remove the backdoors produced by our novel backdoor training method. Note that there are
some defenses only employ finetuning in a second stage of unlearning the backdoor behavior after a
first stage of “reconstructing the trigger” Wang et al. (2019). Their effectiveness relies much on the
first stage, thus out of our scope.

3 METHODOLOGY

3.1 PROBLEM OVERVIEW

In this section, we present the formulation of backdoor attacks in the classification setting. Given
a domain X in which each item is categorized to one of the classes in C = {0, 1, . . . ,m}, a user
wants to obtain a classification function, says a mapping fθ : X → C, which is parameterized by θ.
To achieve such objective, the classification function fθ is trained on a dataset S =

{
(xi, yi) : xi ∈

X , yi ∈ C, i = 1, 2, . . . , n
}

, where yi is the correct class of xi. It is expected to produce the correct
y for any input x ∈ X .

To attack the model, the attackers will build a backdoor model or feed poisoned data to users to build
a faulty model, says fθbd , which has the property

fθbd(x) = y; fθbd

(
B(x)

)
= c(y), (1)

for any input x ∈ X with the correct class as y, where B is a backdoor function learned by the
attackers, and c(y) is the target label they want the backdoor model to return. We consider the
common all-to-one setting, in which the target label is fixed c(y) = c ∀y. It means that fθbd acts
normally on ordinary input x but will produce a wrong target class for poisoned input B(x). To
achieve this, the parameters θbd, and the corresponding classification function fθbd , are obtained by
minimizing a loss function L trained over some poisoned dataset S ′

θbd = argmin
θ

∑
(x′,y′)∈S′

L
(
fθ(x

′), y′
)

(2)

where L is the common cross-entropy loss. The model fθbd is then given to the user, who will
finetune the parameters θbd to obtain θft for either backdoor defense or a different target task. For
example, the objective function of the recent finetuning-based defense FT-SAM (Sha et al., 2022) is

θft = min
θ

max
∥θ′−θ∥2≤ρ

∑
(x,y)∈Ssc

L
(
fθ′(x), y

)
,

where ρ is a chosen constant, Ssc denotes a small clean data set owned by the user, and the norm ℓ2
could be replaced by any other norm. Given an input x and its true label y, the defender expects the
finetuned fθft to correctly classify x and its corresponding poisoned input:

fθft(x) = fθft

(
B(x)

)
= y.

In this work, we focus on designing a backdoor training process called FMN, such that existing
finetuning procedures, such as the recent FT-SAM and super-finetuning, are not able to remove the
backdoor. One advantage of FMN is that it is agnostic to the backdoor injection function, thereby
increasing its generality and practicality.

3.2 COUNTERING FINETUNING

In this section, we discuss our design of a backdoor modeling procedure (Fig. 1) that can make the
backdoor unforgettable after undergoing standard/advanced finetuning techniques.

Training with cyclical learning rates: The proposed method, inspired by super-finetuning, changes
the learning rate cyclically during backdoor model training. Specifically, consider the backdoor
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Figure 1: System overview (left) and the loss landscape discussion (right).

attack optimization problem as in Eq. 2 with initial model weights θ0 = θbd. After t updating steps,
we obtain θt+1 from θt as follows:

θt+1 = θt − ϵ∇θLbd(θt)

where ϵ is the learning rate, and Lbd(θt) is the loss function’s value on the poisoned data set. Instead
of using the same ϵ as in the common backdoor training, we vary it using a designed schedule that
consists of two phases. In the first phase, we define a maximum and a minimum learning rate. The
learning is initialized with the minimum value and linearly increases to the maximum value in n
iterations, then linearly decreases back to the minimum value for another n iterations. This cycle is
repeated several times in this phase. The second phase is similar to the first one, except that we use
a smaller maximum value. This novel design of training the poisoned model with cyclical learning
rates exposes the backdoor to a wider range of learning rates during training, thus allowing it to be
more robust to changes in the learning rate. Consequently, the backdoor becomes harder to remove,
even when using advanced finetuning methods such as super-finetuning.

The main goal of finetuning defenses is to find an alternative local minimum that is free of the
backdoor while preserving the model’s utility. Cyclical backdoor training can also be viewed as
searching for a region within the loss landscape where it is difficult for finetuning defenses to find
these alternative local minima, as visually described in the right sub-figure of Fig. 1. In essence, this
region primarily consists of local minima that are full of backdoors.

Clean-backdoor interleaved training: However, our experiments, which will be presented in detail
in Sec. 4.5, reveal that relying solely on the cyclical learning rate in backdoor training is insufficient
to achieve high attack effectiveness. Specifically, most finetuning defenses can significantly reduce
the attack success rate of the backdoor trained with only cyclical learning, indicating that these
methods could still jump to a local minimum where the backdoor’s efficacy diminishes. There-
fore, to further strengthen the backdoor’s resistance against finetuning defenses, we propose a novel
backdoor training strategy, called clean-backdoor interleaved training. This novel approach involves
training the backdoor with the cyclical learning rate while additionally emulating the finetuning pro-
cess during such training. This can be accomplished by training one epoch with only clean data
immediately after one epoch of training on the poisoned data; this cycle is repeated until conver-
gence. Intuitively, this approach allows the backdoor training process to form an even harder region
in a hybrid loss landscape that is learned from the clean and conventional backdoor learning land-
scapes. The empirical analysis in Section 4 will show that the proposed approach is more resilient
against fine-tuning defenses, confirming its ability to search for a difficult backdoor region for these
defenses to break away from.

4 EXPERIMENTS

In this section, we examine the effectiveness of FMN against finetuning-based defense methods
when applying this backdoor training mechanism to various backdoor attacks. We also verify the
persistence of the backdoor produced by FMN undergoing transfer learning for a different down-
stream task. Finally, we confirm the utility of FMN by showing that it has no negative impact on the
stealthiness of the original attack, illustrated by a case study with LIRA-FMN.

4.1 EXPERIMENTAL SETUP

We use three benchmark datasets, namely CIFAR-10 (Krizhevsky et al., 2009), ImageNet-10, and
CelebA (Liu et al., 2015), for our experiments. To create the ImageNet-10 dataset, we randomly
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Figure 2: Visualization of backdoor images on CIFAR-10 with different attack methods.

select 10 classes from ImageNet-1K (Deng et al., 2009). For CelebA, we follow the recommended
configuration from Salem et al. (2020) to choose the three most balanced attributes, namely Heavy
Makeup, Mouth Slightly Open, and Smiling, and concatenate them to form eight compound classes.
To construct f , we utilize the Pre-activation ResNet-18 He et al. (2016) for CIFAR-10 and ResNet-
18 for both ImageNet-10 and CelebA. We leverage the SGD optimizer for training the classifier f .
For the cyclical learning rate, we choose 3e−4 for the minimum learning rate, 0.1 and 0.001 for the
first and the second maximum learning rate, respectively, as recommended in Sha et al. (2022).

4.2 ATTACK EXPERIMENTS

We consider 7 attack methods for evaluation, which are representatives of different approaches, in-
cluding BadNets (random patch-based trigger), Blended trigger attack (random blending-based trig-
ger), Lp regularization invisible attack, Trojaning attack (optimized trigger pattern), Input-Aware
(image-dependent trigger), LIRA (imperceptible, optimized trigger), and Narcissus (clean-label at-
tack with an optimized trigger). We showcase the backdoor images of these attack methods in Figure
2. For all these methods, we poison 5% of the training data and set the target label to 0.

BadNets (Gu et al., 2017): This is the first and most basic backdoor attack, in which the backdoor
pattern is just a hand-picked image patch. We use a random color square at the top-left corner with
1/8 the image size as the backdoor trigger on all datasets .

Blended trigger attack (Blend) (Chen et al., 2017): This attack chooses an outer image, e.g., a
Hello Kitty image, and blends it with clean samples to create backdoor data.

Lp regularization invisible attack (Li et al., 2020): This attack generates the backdoor trigger
through an optimization problem while solving an Lp-norm constraint to guarantee the impercepti-
bility of the trigger. We choose p = 0 (L0 inv) and p = 2 (L2 inv) for our experiments. Since the
code to generate the backdoor trigger has not been released, and only the triggers for CIFAR-10 are
provided, we skip experiments with this attack for CelebA and ImageNet-10.

Trojaning attack (Liu et al., 2018b): This method looks for neurons and triggers that have strong
connections so that when the trigger is present, the corresponding neuron is activated, which con-
sequently activates the backdoor. The model is trained partly with generated data and the trigger is
obtained by reverse engineering techniques.

Input-aware (Nguyen & Tran, 2020): used an encoder-decoder structure to create a trigger from
the image, and then embed this trigger into the image. This approach together with the cross-trigger
mode guarantees that a trigger generated for an image is unique to that image.

LIRA (Doan et al., 2021): This attack can produce visually imperceptible triggers and achieve
high attack success rates by first simultaneously learning the backdoor injection function B and the
classifier f , then finetuning f on clean and poisoned data generated by B.

Narcissus (Zeng et al., 2022): proposed to look for an optimal pattern among possible trigger
patterns by minimizing a surrogate loss function.

We found that BadNets fails to converge when using the clean-backdoor interleaved training in
FMN. In contrast, all other attacks can converge successfully. We conjecture that BadNets’s random
trigger patch is too prominent and different from image content, making its backdoor easy to learn
but also easy to forget in finetuning. Hence, BadNets’s backdoor cannot survive the clean-data-only
training epochs. In contrast, Blend’s trigger pattern is stronger by blending nicely with the image,
while the other methods use optimization to learn optimal triggers that can survive the harsh training
process of FMN. From now on, we will exclude BadNets and only consider the remaining attacks.
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Table 1: Performance of different backdoor attacks trained with FMN. For each attack, we
report the BA (%) in teal and ASR (%) in purple. The asterisk (*) denotes that the attack is trained
with FMN. We skip experiments with Lp inv on CelebA and ImageNet-10 since both the trigger
generation code and trigger patterns for these datasets are not available.

Dataset Blend∗ L0 inv∗ L2 inv∗ Trojaning∗ Input-aware∗ LIRA∗ Narcisuss∗

CIFAR-10 93.02/100 93.69/99.84 93. 43/100 94.00/99.98 94.23/99.81 94.26/100 94.08/99.68
CelebA 78.54/99.86 - - 78.65/99.92 79.09/98.45 78.96/99.98 78.52/98.85
ImageNet-10 84.86/91.54 - - 85.61/92.72 86.59/90.42 88.60/95.98 85.23/94.26

We show the experimental results of training the attack methods with FMN in Table 1. For all at-
tacks, we poison 5% of the training data. Every method can achieve a high attack success rate (ASR)
and benign accuracy (BA), similar to backdoor models trained with the conventional mechanism.

4.3 FINETUNING-BASED DEFENSE EXPERIMENTS

Next, we evaluate the attacks developed with FMN in the previous section against prominent
finetuning-based defense methods, including standard finetuning, super-finetuning (Sha et al., 2022),
FT-SAM (Zhu et al., 2023), and NAD (Li et al., 2021).

Standard finetuning (FT): Finetuning is a technique that allows a pre-trained model to learn from
new data, which was originally proposed in transfer learning to adapt a model to a new task using
information learned in the pre-training phase. In the context of backdoor defense, finetuning a
poisoned model on clean data is supposed to mitigate the backdoor due to catastrophic forgetting
gradually. In our experiments, we adopt whole-model finetuning and use the same learning rate
throughout the finetuning procedure. We choose two different learning-rate values, 0.01 and 0.05,
to evaluate the influence of the learning rate choice on the defense performance.

Super-finetuning (super-FT): Based on the observation that large learning rates often help the
model forget the backdoor trigger while small learning rates can maintain the model’s utility, Sha
et al. (2022) proposed a novel finetuning scheme, super-finetuning, that combines the two learning
rates with a cyclical scheduler. The method includes two phases. In the first phase, the learning
rate is repeatedly increased linearly from the base learning rate (LR BASE) to the first maximum
learning rate (LR MAX1) and then dropped back to LR BASE. In the second phase, the learning rate
varies with the same schedule but with a smaller maximum learning rate (LR MAX2). Following
the original work, we set LR BASE to 3e−4, LR MAX1 to 0.1, and LR MAX2 to 0.001.

FT-SAM: Observing that backdoor-related neurons often have larger norms, Zhu et al. (2023) pro-
posed to incorporate finetuning with Sharpness-aware Minimization (SAM) to shrink the norms of
these neurons. Since the source code of FT-SAM has not been released, we implement FT-SAM in
our experiments by simply replacing the optimizer in vanilla FT with SAM. We set SAM’s pertur-
bation radius ρ to 2, as recommended in the original work.

Neural Attention Distillation (NAD): Arguing that finetuning alone is not a sufficient defense
against backdoor attacks, NAD adopts a knowledge distillation (Hinton et al., 2015) technique for
backdoor mitigation. It first obtains a teacher model by finetuning the backdoored model, then
utilizes this teacher model to guide the finetuning process of the backdoored student model.

We run FT, super-FT, and FT-SAM for 100 epochs. For NAD, we first fine-tune the backdoor model
for 20 epochs, then use it in conjunction with the student model through the NAD process and train
for another 20 epochs. Following their original settings, defenses are allowed to access 5% of clean
data, except for super-FT. As Sha et al. (2022) claim that super-FT is less effective when under 10%
of clean data is available, we allow it to run with 20% of clean data for the best defense performance.

We show the experimental results on CIFAR-10 in Table 2. Additional results for CelebA and
ImageNet-10 can be found in Appendix A.5. We also run these attacks trained with their original
settings against these FT-based defenses for comparison. We choose 50% ASR as the threshold
to determine whether an attack is successful since this level of accuracy indicates that backdoor
samples are more likely to be misclassified as the target label. In the case of conventional backdoor
training, finetuning with a low learning rate (0.01) can better preserve the model’s utility but cannot
effectively mitigate the backdoor, while finetuning with a large learning rate (0.05) has a contrastive
effect. Combining both types of learning rates, Super-FT can mitigate all the conventional backdoor
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Table 2: Performance of conventional backdoor training and FMN against finetuning-based
defenses on CIFAR-10. For each attack, we report the BA (%) in teal and ASR (%) in purple. The
asterisk (*) denotes that the attack is trained with FMN. The ASRs below 50% are underlined.

Attack No defense FT (lr = 0.01) FT (lr = 0.05) Super-FT FT-SAM NAD
Blend 93.75/100 92.10/54.93 76.99/2.98 90.97/18.58 89.14/28.34 89.96/22.24
L0 inv 92.98/100 90.96/69.65 74.53/1.29 91.08/17.26 88.65/25.14 90.66/6.98
L2 inv 93.24/100 91.68/71.12 77.19/1.64 90.06/27.45 89.26/34.42 91.22/2.68
Trojaning 93.50/100 90.65/77.26 77.22/13.94 91.22/24.45 90.62/28.69 90.67/80.12
Input-aware 94.15/99.30 91.93/72.23 76.45/8.96 91.20/16.35 90.50/20.16 89.98/20.18
LIRA 94.42/100 90.25/88.63 77.08/10.24 90.98/28.75 91.04/32.26 90.17/78.65
Narcisuss 93.52/99.80 90.43/80.24 76.64/9.85 90.65/28.50 90.80/30.25 90.28/49.76
Blend∗ 93.02/100 92.52/99.66 82.57/71.20 91.99/86.22 92.05/98.54 92.46/54.64
L0 inv∗ 93.69/99.84 91.18/98.77 80.68/65.79 91.74/86.65 92.69/99.84 91.65/49.56
L2 inv∗ 93.43/100 91.22/99.87 85.08/71.26 92.53/87.90 93.02/98.52 92.56/70.74
Trojaning∗ 94.00/99.98 92.35/99.61 84.29/80.21 92.38/88.23 92.31/99.79 91.73/96.76
Input-aware∗ 94.23/99.81 93.02/95.25 79.65/68.49 91.29/80.46 91.33/94.24 90.26/76.49
LIRA∗ 94.26/100 92.26/96.49 81.75/82.30 91.45/88.69 92.65/99.68 92.04/90.22
Narcisuss∗ 94.08/99.68 92.56/96.35 79.91/74.82 90.55/86.96 90.42/96.76 90.34/79.64

models. Both FT-SAM and NAD can maintain high clean accuracy and provide a degree of backdoor
mitigation. On the other hand, FMN can significantly improve the backdoor’s durability in all the
aforementioned defenses: FT (lr = 0.01) and FT-SAM have negligible effect on the ASRs, and all
attacks’ ASRs remain higher than 80% in super-FT. While FT (lr = 0.05) and NAD can mitigate the
backdoor to some extent, most attacks still can achieve at least 70% ASR.

4.4 TRANSFER LEARNING ATTACK

In practice, users might not directly deploy the pre-trained backdoor model they receive from the
attackers. Instead, they can finetune the poisoned model using their own clean data for specific pur-
poses. Our attack design aims to make the backdoor survive even the most extreme finetuning case,
where the user finetuned our backdoor model for a completely different downstream task. We set up
these transfer-learning experiments by finetuning the ImageNet-10 backdoor models using data from
10 other classes of ImageNet-1k, which we denote as ImageNet-10-FT. Instead of re-training only
the fully connected layers while keeping the convolutional layers intact, as in the transfer learning
attack experiments in BadNets paper (Gu et al., 2017), we finetune the whole pre-trained model for a
more challenging scenario. We test the finetuned backdoor model with clean and poisoned samples
of ImageNet-10-FT. For reference, we also build a clean baseline by training a clean ImageNet-10
classification model and finetuning it with ImageNet-10-FT. A backdoor attack has a long-lasting
effect if its finetuned model can achieve high accuracy on clean inputs of ImageNet-10-FT, similar
to the clean baseline, while having low accuracy on the corresponding backdoor inputs.

We provide in Table 3 the results of this transfer learning scenario with two types of trigger, Blend
and Trojaning. The conventional backdoors only cause a small accuracy drop (less than 8%) when
their finetuned models are tested on backdoor inputs. In contrast, FMN causes significantly higher
drops. It indicates that FMN enhances the backdoor’s durability and consequently makes the back-
door effect remain even when the poisoned model is finetuned with a different downstream task.

4.5 ABLATION STUDIES

Role of cyclical learning rate. To validate the importance of the cyclical learning rate in our
design, we contrast the proposed method with a baseline that only relies on the clean-backdoor
interleaved training. As shown in Table 4, that baseline is quite underwhelming compared to FMN,
confirming that including the cyclical learning rate in the training procedure can further strengthen
the backdoor’s resistance to fine-tuning.

Role of clean-backdoor interleaved training. To counter super-FT, a more straightforward method
is to train the backdoor model with the cyclical learning rate. However, empirical results show that
this approach is not enough to help the backdoor survive advanced finetuning defenses. As shown
in Table 4, while this naive approach can provide certain improvements to the attacks’ performance
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Table 3: Transfer learning experiments. We provide the average accuracy (%) of finetuned clean
model, conventional backdoor model, and FMN model with clean inputs in teal and backdoor inputs
in purple. The difference in accuracy on backdoor inputs between each finetuned backdoor model
and its clean baseline is provided as subscripted text.

Attack Clean Model Conventional Backdoor FMN
Blend 82.36/78.29 80.56/74.68 3.61↓ 80.86/54.42 23.87↓
Trojaning 83.14/79.98 81.88/72.32 7.66↓ 82.04/48.95 31.03↓

Table 4: Ablation studies. We examine performance of training the attacks with clean-backdoor
interleaved only and with cyclical learning rate only. We report the BA (%) in teal and ASR (%) in
purple. The ASRs below 50% are underlined. These experiments are conducted on CIFAR-10.

Attack Clean-backdoor interleaved training only Cyclical learning rate only
No defense Super-FT FT-SAM No defense Super-FT FT-SAM

Blend 93.74/99.97 90.55/54.86 88.46/49.72 93.68/100 91.21/55.28 88.65/64.85
L0 inv 93.07/99.96 90.23/44.68 88.32/39.52 92.96/100 91.13/43.26 89.05/43.66
L2 inv 93.35/100 91.24/64.27 90.15/47.82 93.20/100 91.26/64.62 90.14/54.71
Trojaning 93.75/100 91.35/39.86 90.75/47.92 93.59/100 90.85/68.64 90.12/62.05

against finetuning-based defense, it is constantly outperformed by FMN. As the results indicate,
clean-backdoor interleaved training can indeed strengthen the backdoor’s durability.

In summary, both the uses of cyclical learning rate and clean-backdoor interleaved training are
essential to maintain strong attack success rates against finetuning defenses. While the cyclical
learning rate allows backdoor training to search for a robust backdoor region in the loss landscape,
clean-backdoor interleaved training further selects a more resilient one against finetuning defenses.

4.6 DOES FMN MAINTAIN THE GOOD PROPERTIES OF THE ORIGINAL ATTACK?

FMN is a simple training mechanism that can plug into most existing backdoor attacks to remarkably
boost their durability against any finetuning technique. A natural question is whether FMN has any
adverse effect on the produced backdoor. As shown in previous sections, FMN can maintain the
attack’s high efficiency. In this section, we will examine if FMN can keep the stealthiness of the
original attack when being tested under other backdoor defenses. We pick LIRA as the representative
attack, which has the conventional backdoor model bypassing a wide range of backdoor defenses,
and test if its FMN model can go past the same set of defenses on CIFAR-10. We use four non-
finetuning backdoor defenses, including Neural Cleanse (Wang et al., 2019), Fine-Pruning (Liu
et al., 2018a), Adversarial neuron pruning (ANP) (Wu & Wang, 2021), and STRIP Gao et al. (2019).
The LIRA model trained with FMN passes all the tests, as provided in detail in Appendix A.6. It
confirms that FMN has no negative impact and can be safely used to strengthen backdoor methods.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a novel training mechanism for backdoor models that can significantly
strengthen their backdoor durability when these models undergo different finetuning processes. Our
design includes the cyclical learning rate and the clean-backdoor interleaved training process. Ex-
tensive empirical experiments show that our design outperforms conventional backdoor training.

Our research highlights the potential risks of relying on third-party pre-trained models and under-
scores the importance of fostering trust between users and model providers. To defend against our
attack, users should only use pre-trained models from trusted providers or actively participate in the
training process. We also urge the research community to delve further into this area to develop
more robust safeguards.

One limitation of this work is that it requires the attackers to have full access to the backdoor model
training. While this setting is commonly studied in the literature, it might not always be true in
practice. Extending our design to craft an attack that can survive finetuning in black-box settings
would be an exciting future research direction.
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