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Abstract
We propose a fresh take on understanding the
mechanisms of neural networks by analyzing the
rich directional structure of optimization trajec-
tories, represented by their pointwise parameters.
Towards this end, we introduce a natural notion of
the complexity of optimization trajectories which
help hallmark the directional nature of optimiza-
tion in neural networks: when is there redundancy,
and when exploration. We utilize the trajectory
perspective to showcase the effect of scale on
regularizing the directional nature of trajectories.
As a by-product, we also observe an intriguing
heterogeneity of Q,K,V dynamics in the middle
attention layers in LLMs which, however, is
homogenized by scale. Importantly, we put the
significant directional redundancy observed to
the test by demonstrating that training only scalar
batchnorm parameters some while into training
matches the performance of training the entire net-
work, and thus exhibiting the potential for hybrid
optimization schemes geared towards efficiency.

1. Introduction
Given a network architecture and the training task, the loss
landscape — which is the high-dimensional surface whose
each point characterizes the fit of the parameters to the task
objective — entails the possible trajectories that might be
followed by an optimization algorithm, such as stochastic
gradient descent (SGD). The particular sets of paths are,
however, also determined by the particular optimization
choices and hyperparameters, such as the learning rate, mo-
mentum, batch size, weight decay, and more. In fact, the
regions and topographical features of the landscape that are
never encountered or realized in typical optimization paths,
might as well not be in the landscape at all. Essentially, the
optimization trajectories are the probes through which the
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Correspondence to: Sidak Pal Singh <ssidak@ethz.ch>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

loss landscape is accessed.

Consequently, a significant body of literature builds around
the principle of an inherently regular manner of traversing in
the landscape, i.e., the implicit bias (Gunasekar et al., 2018;
Li et al., 2019; 2020; Moroshko et al., 2020), facilitated
by optimization algorithms. This preferential landscape
access is in comparison with the actual surface level,
possibly treacherous, non-convexity, and thus suggesting
that the network stays clear of sub-optimal local minima.
Therefore, despite the complexity of the neural landscapes,
implicit bias lends a formal and reasonable support to
the empirical success of massively over-parameterized
neural networks. Hence, we might expect to see traits and
hallmarks of regularity in the sequence of steps that make
up the optimization trajectories of neural networks. Then,
we can try to ask ourselves,

How are these trajectories structured? Do these
paths have a lot of zigzags and bends, reach-
ing the solution winding and coiling, or are they
straight and direct? And does this depend upon
the phase of optimization (early vs late)?

This, in essence, is the key research theme of our present
study. More precisely, we explore and develop indicators
(hallmarks) about the complexity/regularity of the optimiza-
tion trajectory. In particular, we analyze and compare mul-
tiple intermediate checkpoints amongst themselves, across
different scenarios and large-scale case studies. Notably,
a qualitative hallmark, which we call the ‘Trajectory Map’,
conveys the directional (dis)similarity of the parameters and
visually depicts the nature of optimization within and across
various stages of training, i.e., at a pan-trajectory level.

The focus of our investigation is to study the properties
of trajectories since it (a) brings in a level of architecture
agnosticity and helps unlock shared insights onto features of
optimization, (b) contains an intrinsic data-dependence that,
for all intents and purposes, implies no explicit inference
over additional data samples is needed (which anyway might
not be possible due to resource or privacy constraints), (c)
allows analyzing and prognosing the developing solution
strategy on-the-fly, over the course of training (instead of
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waiting until convergence), and (d) provides potential hints
at the redundancies plaguing the optimization procedure.

Our contributions are: 1) We propose the novel perspec-
tive of trajectory maps and showcase its use for hallmarking
the directional nature of optimization. 2) We show how
scale provides a regularizing effect on the directional
complexity of trajectories, and also find an interesting
observation about Q,K,V heterogeneity in the middle
attention layers. 3) We put the demonstrated directional
redundancy to the test, by showing that only training the
scalar parameters of (batch) normalization layers a short
while into training suffices for matching the performance,
thus laying the seeds for efficient optimization hybrids.

2. Methodology
Matrix representation of Trajectory. Let us assume the
optimization trajectory consists of a set T of points tθθθtu

T
t“0,

each denoting the (flattened) parameters of the network en-
countered at some step and which live in the parameter space
θθθ “ Rp, i.e., T Ď θθθ. This set of points need not contain the
entire set of points visited in the course of optimization but
instead can represent a subset of points, possibly sampled
at an interval of k points. It will be convenient to organize
this set of points, which define the trajectory, in the form
of a matrix, ΘΘΘ P RpT`1qˆp, whose first dimension T ` 1
makes explicit the inclusion of the initialization θθθ0.

Trajectory Map. Analyzing the matrixΘΘΘ, on its own, might
get cumbersome as the size of modern networks ranges in
millions and billions of parameters. Hence, we will resort to
looking at functions of the kernel matrix K “ ΘΘΘΘΘΘJ which
would be a square matrix of shape n “ T ` 1. Further, it
will also be helpful to isolate and analyze the directional
aspect of the trajectory, for which we will normalize the
set of points by their norm, and in effect, consider the set
pT “ tθθθt{}θθθt}2uTt“0 with the respective matrix pΘΘΘ. As a re-

sult, the ensuing kernel matrix pΘΘΘpΘΘΘ
J

, which we will refer
to as C, will contain the relative cosine similarities be-
tween every pair of points in the trajectory. So, pCqij is,
cos-simpθθθi, θθθjq “ xθθθi, θθθjy{}θθθi}2 }θθθj}2 . Hereafter, we will
refer to C as the Trajectory Map (TM). We would like to
remark that, although not necessary, here we are essentially
considering linear kernels, for as we will see they deliver a
great mileage by themselves.

Mean Directional Similarity (MDS). Besides visualizing
the TM as the qualitative hallmark, as a quantitative
hallmark we will consider Mean Directional Similarity
(MDS), where we take the cosine similarity averaged over
the entire trajectory map, i.e., over every pair of points in
the trajectory. This can be written as, ω :“ 1

n2 1J
n ¨ C ¨ 1n,

where 1J
n “ p1 ¨ ¨ ¨ 1qJ P R1ˆn denotes the vector of all

ones and n “ |T | is the cardinality of the trajectory. By

using the form of the matrix C discussed before, we can

further rewrite MDS as, ω “

›

›

›

1
n

pΘΘΘ
J

1n

›

›

›

2

. Now, it becomes
apparent that MDS essentially projects all the trajectory
points onto the unit sphere, computes their average and
finally takes the squared norm.

To get a better sense of MDS, we can consider its two
possible extremes: (a) all the parameter unit-vectors cancel
out, yielding a value of ω “ 0. For instance, this would
happen in the scenario when the points in the trajectory are
exactly following a circular orbit around the origin; or, (b)
when each of the parameters point in the same direction,
implying that the trajectory is simply a linear path, with
ω “ 1. Knowing the nature of these two extremes, we can
expect neither to be desirable in an ideal trajectory.

3. Hauling Trajectory Hallmarks for LLMs
With all the recent interest in Large Language Models
(LLMs) and their scaling, a natural question is what kind
of structure is exhibited by the trajectories in the case of
language modelling tasks and across models of different
sizes. Besides, while we expect increasing parameter count
to provide new directions for learning, does scale make
the optimization trajectories complex or does it instead
regularize them?

Thanks to Pythia’s (Biderman et al., 2023) publically
released model checkpoints over training, for GPT-
NeoX (Black et al., 2022) models — ranging in sizes
from 14 Million (M) to 12 Billion (B) — we can provide
answers to the above questions. Given that processing all
the available checkpoints would require several terabytes
of cache, we select every fourth checkpoint, resulting in
39 checkpoints that we analyze for models of sizes: 14M,
70M, 160M, 410M, 1.4B, 2.8B, 6.9B, 12B. The results for
a shortlist of these experiments can be found in Figure 1
(for more, see Figure 67).

First, we note that there is a tiny square grid in the upper-left
corner, which delineates precisely the learning rate warmup
phase. Next, the subsequent larger grid starts out, for 14M,
with distinct subgrids but then with increasing model scale
takes a funnel-like shape around 1.4B, before becoming
rather homogeneous by 12B parameters. Even the horizon-
tal and vertical slivers corresponding to warmup and the
rest of the epochs start to assume a higher cosine similarity
with scale. Overall, increasing scale lends an intense dark
hue to the trajectory maps, which leads us to posit that the
inductive bias of scale might be related to regularizing the
trajectories. We would like to emphasize that considered
models live in million and billion dimensional spaces, and
rapidly reaching a cosine similarity of „ 0.9 or more with
the final solution is rather noteworthy.

Why do parameters become aligned with scale? A
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Figure 1. Trajectory Maps of Pythia GPT-NeoX models across three orders of scales trained on Pile. The corresponding MDS ω “

0.650, 0.678, 0.759, 0.815.

Theoretical Argument. We prove, in Appendix A, that this
surprising finding about the progressive increase in cosine
similarity with scale has a relatively simple explanation, at
least in the case of the large-width limit of deep networks.
The gist of our argument is that in the large width limit, any
parameter updates that lead to stable feature updates must
necessarily yield updated parameters that are identically
aligned with their initialisation. This is a well-known
fact for lazy learning regimes like the Neural Tangent
Kernel (Jacot et al., 2020) or standard parameterisations,
where no feature learning occurs. What may be surprising
is that this is necessarily true for feature learning regimes
like µP (Yang et al., 2022).

Layerwise Q,K,V dynamics homogenize over depth at
„ 1B scale and over. Another interesting aspect of the struc-
ture of trajectory maps for the 14M and 160M cases is their
relative heterogeneity (distinct subgrids), as compared to
the billion parameter models. This heterogeneity cannot be
explained away through the settings of a learning rate sched-
uler (which is just a cosine scheduler), so we inspect the lay-
erwise trajectory maps (i.e., by building it over parameters
of each layer separately). In particular, we find an intriguing
heterogeneous structure for these models that is most starkly
present in the query-key-value (Q,K,V) parameters of the
attention layers, especially the middle layers, as shown in
Figure 2. This indicates that the Q,K,V parameter dynamics
converge at different timescales, with the middle layers con-
verging the last directionally in contrast to earlier and later
layers. Moreover, we find that scale has the striking effect of
homogenizing the Q,K,V dynamics, as shown in Figure 74,
with the layerwise trajectory maps essentially resembling
the network-wide trajectory map structure in Figure 1.

4. Putting Directional Redundancy to the Test
Our trajectory map analysis has revealed a significant direc-
tional redundancy (see also Appendices D, F, G for further
experiments) in the optimization trajectories of neural net-
works, which is especially prominent later in training. This
raises the question of whether this redundancy can be lever-
aged for creating efficient hybrid optimization schemes or

if it conceals minute but crucial directional changes. There-
fore, to test the true nature of directional redundancy, we
consider optimizing only some layerwise scalar parameters
after a little while into training. Further, instead of attaching
extra scalar parameters per neuron or channel and tuning
them, we will repurpose the scalar weight and bias param-
eters present in the ubiquitous (batch/layer) normalization
layers in modern network architectures. We are inspired by
the prior work of Frankle et al. (2021) who demonstrated
the remarking expressivity of training just the scalar pa-
rameters in batch-normalization (BN) layers in the entire
network. Given our resource constraints, we will consider
experiments on image classification datasets as a start and
test the potential of this idea.

CIFAR10 experiments. We experiment with ResNet20
on CIFAR10 using SGD over 160 epochs, freezing non-BN
layers at different points and training only the 1, 376 scalar
parameters in the BN layers. Figure 3 presents the results
alongside the trajectory map of the full network training.

When right from the initialization, just the BN layers are
trained, as claimed in Frankle et al. (2021), the resulting
network achieves a test accuracy of 54.8%, which although
quite interesting falls nevertheless considerably short of the
91.2% test accuracy obtained by training the entire network.
In a way, from the horizontal strip of trajectory map around
0, which pales as we move from the left to right, we see that
the full network parameters at the end of training deviate sig-
nificantly in their directionality as opposed to the parameters
at initialization (the cosine similarity being „ 0.3). How-
ever soon after, from around 40 epochs, where the trajectory
map starts developing a dark hue (and the cosine similarity
to the final parameters climbs to about „ 0.9), training BN
parameters alone brings us to within 2% of the full-network
accuracy; and from around 80 epoch gets to within 1%,
and completely matches thereafter. Notably, this feat is
remarkably achieved by training only 0.5% of the overall
parameters, and this fares even better than training all the
parameters in the bulkier last layer as shown in Figure 76.

ImageNet experiments. Likewise, for ResNet50 trained on
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Figure 2. Layerwise Trajectory Maps for Q,K,V weights across depth fot GPT-NeoX trained on the Pile for the 160M model. This
suggests that the Q,K,V parameters of the middle layers seem to be converging last, and differ from earlier and later layers in this regard.

Figure 3. Directional Redundancy put to test by training only the
BN scalar parameters. The trajectory map of the original, full
network, training is shown on the left and, in the bar chart to the
right, the bars denoting the performance achieved by training BN
parameters from a particular epoch are horizontally aligned with
the corresponding trajectory map rows. ‘Baseline’ is the accuracy
just before switching to optimizing the BN parameters only.

ImageNet as in Figure 7, we found that although training BN
layers alone (which are just 0.18% of the parameters) right
from initialization gets us to an accuracy of just „ 6.4% (a
paltry amount, given the full-network’s accuracy of „ 76%),
but training it from epoch 30 gets to within „ 10% of the
full-network’s accuracy and from epoch 60 to within about
„ 2% of it, i.e, to „ 73.2% top-1 test accuracy.

It should be mentioned that in the above BN training proce-
dure, although the runtime of forward pass ends up being
similar and the backwards slightly faster than training the
entire network, this leads to significant savings in the GPU
memory consumption as the optimization buffers (like the
momentum buffer or those used for preconditioning in adap-
tive methods like Adam) now need to be of much smaller
size (typically ă 1%, i.e., 99% savings) and could, in turn,
make larger batch sizes feasible. More broadly, we foresee
that this idea can be readily adapted into a hybrid optimiza-
tion scheme, where regular training can be interleaved with
memory-light training of normalization layer parameters,
and where the latter is done on cheaper GPU instances in the
cloud. All in all, these findings pointedly show that the ob-
served directional redundancy from the trajectory maps truly
manifests during training and can be potentially utilized to
reap practical gains.

5. Related Work
Directional Convergence. Prior work has theoretically
noted a notion of directional convergence (Ji & Telgarsky,
2020), wherein the parameters of simple networks and
classifiers converge quickly, in terms of their direction. Like-
wise Merrill et al. (2020) observed that the cosine similarity
between subsequent parameter checkpoints during T5 (Raf-
fel et al., 2023) pre-training rapidly approaches one. Our
analysis of the trajectory maps can thus be seen as related to
this aspect, however, we provide a more rounded and refined
picture of the directional nature of optimization trajectory
during training and utilize it to make training efficient,
instead of just noting the rapid directional convergence.

Mechanistic Understanding of Neural Networks
and LLMs. Besides, our analysis can also pave the
way for a novel data-free mechanistic understanding
of LLMs (like in Figure 2). This holistic optimization
path perspective can complement the top-down approach
of mechanistic understanding of LLMs via influence
functions (Grosse et al., 2023) and the bottom-up circuit
view of Transformers (Elhage et al., 2021).

6. Conclusion
Overall, we have merely scratched the surface of this trajec-
tory perspective into understanding optimization behaviour
in neural networks. We genuinely believe that there is a lot to
be understood about the complex, intermingled behaviour of
optimization in deep learning, and hopefully, this work will
drive further research into the directional aspects of trajec-
tories and contribute towards hybrid optimization schemes
that can exploit the showcased directional redundancy.

Limitations and Future Work. While we have focused
on the directional aspects of trajectories, the length of the
trajectories also holds relevance, especially when the ex-
periments under comparison may have unequal number of
sampled checkpoints. We expect a version of MDS, which is
weighted by the step lengths to be useful in such a scenario.
Besides, our experiments with training scalar parameters
are currently based on vision models, given the excessive
resources involved in testing this for LLMs. However, we
hope that the wider community can seize on this observation
and exploit it for training LLMs more efficiently.
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A. Why cosine similarities increase with scale?
Note, we assume that the majority of the parameter norm lies in the square hidden matrices, and not the input or output
layers. Moreover, we use o,O,θθθ to denote standard mathematical notation with regards to scaling in the limit width n Ñ 8.
For vectors, this notation is entry-wise.

Suppose we have a hidden layer with input x0 P Rn for width n, that is acted on by (without loss of generality) a square
matrix W0 P Rnˆn to give:

h0 “ W0x0

We suppose x has θθθp1q entries, as is the case with standard initialisations/parameterisations (He et al., 2015). We suppose
W0 has i.i.d. elements with initialisation that is Op1{

?
nq in order to ensure that each element of the features h has entries

θθθp1q.

Now, if we take a gradient update with learning rate η on some downstream loss L that depends on h (and not W or x), we
get:

W1 “ W0 ´ ηdh ¨ xJ
0

where dh “ BL
Bh P Rnˆ1 is our feature derivative.

Then if we have new input x1 (wlog x1 “ x0), we have new features:

h1 “ x1W1 “ h0 ´ nηdh ¨
xJ
0 x0

n

For our features to be stable (i.e. θθθp1q) after the update, we need nηdh to be Op1q, because xJ
0 x0

n “ θθθp1q by assumption
on x. NB: if nηdh “ op1q we have no feature learning (ie NTK regime (Jacot et al., 2018)), and if nηdh “ θθθp1q we have
feature learning (ie µP (Yang et al., 2022)).

In any case, ηdh “ Op1{nq entry-wise, which means that W1 ´ W0 “ ´ηdh ¨ xJ
0 has Op1{nq entries, again by assumption

on the scale of elements of x0.

But because W0 “ θθθp1{
?
nq, the initialisation will elementwise-dominate the Op1{nq update for the first training step (and

more training steps follows by induction). As a result, the update WT ´ W0 will always be an order of at least
?
n smaller

than the initialisation, and hence the new parameters WT will be exactly aligned with the initialisation W0 for all T in the
large width limit, i.e. the cosine similarities will be 1.
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B. Relative Trajectory Maps
Elsewhere it might be useful to analyze the trajectory relative to some point θθθτ as the origin, so there we will instead consider
the set of points Tτ “ tθθθt ´ θθθτuTt“0, and correspondingly organize it in the matrix ΘΘΘτ P RpT`1qˆp. When τ is itself one of
the points of the trajectory, then we will omit the row of zeros and shape the matrix as RTˆp. A natural point from where to
contextualize the trajectory would be the initialization θθθ0, and this relative trajectory will then be denoted as ΘΘΘ0 (where the
subscript 0 is not to be confused for the usual origin O, namely, θθθO “ 0).

C. Comparing Gradient Trajectories with Random Walks
The structure that we observe in trajectory maps following gradient trajectories raises the question of if we would observe
similar structure in a random walk.

If we have T timesteps or epochs, with parameter space θθθ P Rp and “learning rate” schedule pηtq
T
t“1, we can consider a

random walk with updates:

θθθt ´ θθθt´1
ind.
„ N p0, η2t Ipq

which is to say that at time step t, each parameter coordinate in the parameter vector is updated independently with a
Gaussian of variance η2t , and the updates are independent across different time steps.

Then, if θi denotes a single parameter coordinate for a dimension i ď p, for two time steps s ă t, we have:

pθis, θ
i
tq „ N p0,

`

Hs Hs

Hs Ht

˘

q

where Hu “
řu

t1“1 η
2
t1 is the cumulative squared learning rate from t1 “ 1 to t1 “ u.

Then, by the strong law of large numbers we have for the large parameter space p Ñ 8 limit:

1

p
∥θθθs∥22 “

1

p

p
ÿ

i“1

pθisq2
a.s.
Ñ Hs ,

1

p
∥θθθt∥22 “

1

p

p
ÿ

i“1

pθitq
2 a.s.

Ñ Ht

1

p
xθθθs, θθθty “

1

p

p
ÿ

i“1

θitθ
i
s

a.s.
Ñ Hs

and by the property of composing almost sure limits, we also have almost sure convergence in the cosine similarity:

xθθθs, θθθty

∥θθθs∥2∥θθθt∥2
a.s.
Ñ

Hs
?
HsHt

“

c

Hs

Ht

in the large parameter space limit, which we use as an approximation to give analytic formulas for the trajectory map and
MDS that we can compare to gradient trajectories.

One thing to note, is that this cosine similarity
b

Hs

Ht
becomes invariant to the scale of the learning rates η, and instead it is

the relative rate of decay in the learning rate schedule that matters.

C.1. Experimental Results

The first thing to note is that our empirical simulation of the random walk matches the theoretical limit described in the
section above, for a finite parameter count (such as 10, 000). Next, comparing the these relative trajectory maps with those
for ResNet50 (Figure 5) we find that the latter reveal a much more directional redundancy component to their trajectories as
opposed to random walks. This further lends support to the thesis that optimization trajectories ensued when training neural
networks are highly structured and have significant directional redudndancy.
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Figure 4. With step size decay: Relative Trajectory Map for a Random Walk/Brownian motion in both analytic and empirically simulated
settings.

Figure 5. Relative Trajectory Maps, with respect to initialization, of ResNet50 models for different amounts of momentum and weight
decay.

An additional thing to note is that the above relative trajectory map for random walks covers the setting of decreasing the
step size to mirror how the optimization procedure is setup for ResNet50. In the case of no such step size decay, the analytic
and empirical versions of the relative trajectory map are depicted in the Figure 6.

Figure 6. No Step size decay: Relative Trajectory Map for a Random Walk/Brownian motion in both analytic and empirically simulated
settings.
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D. A Tale of Hyperparameters
There is an emerging folk intuition that, over the past decade, networks have co-evolved hand-in-hand, amidst other things,
with a certain particular set of optimizers and hyperparameter choices, deviating from which tends to produce significantly
poor results. Let us see one such case in action, for a ResNet50 trained on ImageNet with SGD, achieving the familiar
top-1 accuracy of „ 76%. Further, as is usual convention, this network was trained via a learning rate η “ 0.1, momentum
µ “ 0.9, batch size B “ 256, weight decay λ “ 0.0001 for 90 epochs, with a multiplicative decay by a factor of 0.1 at
epochs 30 and 60.

Visual Tour of the Trajectory. Before we start the hyperparameter excursion, let us look at the nature of the optimization
trajectory, as visualized via the proposed qualitative hallmark, namely the trajectory map C. In particular, we save epochly
checkpoints from the initialization until the final epoch, and thereby giving us a total of 91 checkpoints. We plot this 91ˆ 91
matrix in Figure 7.

For starters, we can easily make out three1 distinct phases of optimization which are marked by an increased darkening of
the pixels and their locations are precisely where learning rate decay was applied. The onset of these phases also seems
to bring about an increased cosine similarity of the parameters contained within these phases, which seems to imply that
following the learning rate decay the optimization is honing into a progressively confined subspace of the landscape.

Figure 7. Trajectory Map of ResNet50 on ImageNet, ω “ 0.764.

Next, the mean directionality score (MDS) for this particular figure comes out to be ω “ 0.764. To contextualize this
value, we should remind ourselves that we are working in a space of „ 25.6 million dimensions. This should serve to
emphasize that network optimization trajectories are highly structured, and not merely random points2 in high-dimensions
whose cosine similarity goes to zero. As a further note, the cosine similarity of two different instantiations of the ResNet50
parameters, from the same (and the usual) random initialization scheme, gives a value3 of 0.374. However, besides these
comparisons, it is still somewhat unclear what the value of MDS tells us about the trajectory. In particular, we need to
ask ourselves (i) How does it rank in comparison to possibly other trajectories? (ii) Is it a high enough value, or should
we aim for something much larger? (iii) But since the maximum value of ω can be 1 and since we have initialization in
the mix here, obtaining such a value would not be so desirable as it would effectively mean the absence of any feature
learning (Chizat et al., 2020), which seems to be a critical component4 behind deep learning’s success.

1If we look closely, there seems to be another phase transition neighbouring the initialization and the subsequent couple of epochs,
giving rise to a thin horizontal and vertical sliver of relatively lighter colour in this figure.

2In Section C, we analyze the relative trajectory map and MDS for a random walk/Brownian motion, and in comparison we find that
(expectedly) the trajectory maps of neural networks are more directionally redundant.

3A reason for this high value of cosine similarity is the presence of BatchNorm or LayerNorm learnable scale parameters, which are
typically initialized to all ones.

4Also, a certain amount of directional exploration is crucial as evident from our analysis of the grokking (Power et al., 2022)
phenomenon discussed in Section J.
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E. A Ride with Momentum & Decay
In order to obtain a more refined understanding of the above observation, we would like to inspect in detail the angular
and norm-based measures of the trajectory. We will largely5 focus on momentum and weight decay, given the especially
intriguing directional nature of the trajectories caused by them. Now, let us start by taking a look at how aligned are the net
or the aggregate updates6 in the presence of these hyperparameters and otherwise.

0 20 40 60 80

Epochs (t)

60

70

80

90

100

110

6
(θ
t+
k
−
θ t
,θ
t
−
θ t
−
k
)

fo
r
k

=
1

(i
n
◦ )

Mom,WD

0.9,0.0001

0,0.0001

0.9,0

0,0

(a) =pθt`1 ´ θt, θt ´ θt´1q

0 20 40 60 80

Epochs (t)

80

90

100

110

120

130

140

6
(θ
t+

1
−
θ t
,θ
t)

Mom,WD

0.9,0.0001

0,0.0001

0.9,0

0,0

(b) =pθt`1 ´ θt, θtq

0 20 40 60 80

Epochs (t)

10

20

30

40

50

60

70

80

A
p

ex
A

n
gl

e
at

O
ri

gi
n
6

(θ
t,
θ 0

)

Mom,WD

0.9,0.0001

0,0.0001

0.9,0

0,0

(c) =pθt, θ0q

0 20 40 60 80

Epochs (t)

30

40

50

60

70

A
p

ex
A

n
gl

e
at

In
it

ia
li

za
ti

on
6

(θ
t
−
θ 0
,θ

1
−
θ 0

)

Mom,WD

0.9,0.0001

0,0.0001

0.9,0

0,0

(d) =pθt ´ θ0, θ1 ´ θ0q

(e) Illustration of EoS with
Momentum

0 20 40 60 80

Epochs (t)

100

200

300

400

500

600

P
ar

am
et

er
N

or
m

s
‖θ

t‖
2

Mom,WD

0.9,0.0001

0,0.0001

0.9,0

0,0

(f) }θt}2

0 20 40 60 80

Epochs (t)

0

20

40

60

80

100

120

‖θ
t+
k
−
θ t
‖ 2

fo
r
k

=
1

Mom,WD

0.9,0.0001

0,0.0001

0.9,0

0,0

(g) }θt`k ´ θt}2

0 20 40 60 80

Epochs (t)

100

200

300

400

500

D
is

ta
n

ce
fr

om
In

it
ia

li
za

ti
on
‖θ

t
−
θ 0
‖ 2

Mom,WD

0.9,0.0001

0,0.0001

0.9,0

0,0

(h) }θt ´ θ0}2

Figure 8. Angular and Norm-based measures: ResNet50, ImageNet, Momentum and Weight Decay

E.1. Momentum and the Angle between Updates

In particular, in Figure 8(a), we plot the angle between consecutive epochs, i.e, =pθt`1 ´ θt, θt ´ θt´1q. Interestingly, we
find that this angle becomes obtuse a short while into the training process, and further, this angle is larger when momentum
is turned on versus when off. Moreover, rather visibly, this increase in angle is larger when weight decay is also enabled,
suggesting that weight decay and momentum are closely intertwined. Taken as such, this observation would point as to
how the MDS increases when these hyperparameters are switched off. To gain a somewhat better understanding of this
mechanism, we turn to the simplest and oft-employed model of a quadratic problem.

Lemma 1. Given a quadratic problem with ℓ2 regularization of strength α ą 0, namely, minθθθPRd
1
2θθθ

JMθθθ ` 1
2α}θθθ}2 ,

with M P Rdˆd symmetric with eigenvalues λ1 ě ¨ ¨ ¨ ě λd, the angle between successive steps
∆t “ θθθt ´ θθθt´1,∆t`1 “ θθθt`1 ´ θθθt, when using gradient descent with a one-step momentum (µ ą 0) and
learning rates ηt, ηt`1, can be upper and lower bounded as follows:

x∆t,∆t`1y ď ηtηt`1p1 ´ ηtpµ ` α ` λdqqpλd ` αq2}θθθt´1}2

x∆t,∆t`1y ě ηtηt`1p1 ´ ηtpµ ` α ` λ1qqpλ1 ` αq2}θθθt´1}2

Proof. Given function fpθθθq “ 1
2θθθ

JMθθθ ` 1
2α}θθθ}2, the gradient at θθθ will be ∇fpθθθq “ pM ` αIqθθθ. Then at the first

optimization step, we do

θθθt “ θθθt´1 ´ ηtpM ` αIqθθθt´1

5In the Appendix G, we also present a wider set of results, namely, the directional effects of hyper-parameters such as learning rate and
batch size, recent regularizers like Sharpness-Aware Minimization (Foret et al., 2021) (SAM), as well as more datasets and architectures
such as Vision Tranformers on ImageNet and VGG16 on CIFAR10, and for different amounts of label noise in the dataset.

6We qualify this by ‘net’ or ‘aggregate’ as we are working on somewhat coarser granularity (i.e., 1 epoch) than every update or step.
But our current granularity is still rich enough to allow for the presented trends to persist even if go 2ˆ to 5ˆ more coarser.
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The particular update being ∆t :“ θθθt ´ θθθt´1 “ ´ηtpM ` αIqθθθt´1. The next update is similar, but now we also have to
factor in the momentum,

θθθt`1 “ θθθt ´ ηt`1 p∇fpθθθtq ´ µηtpM ` αIqθθθt´1q

∆t`1 :“ θθθt`1 ´ θθθt “ ´ηt`1 ppM ` αIqθθθt ´ µηtpM ` αIqθθθt´1q

“ ´ηt`1

`

pM ` αIqθθθt´1 ´ ηtpM ` αIq2θt´1 ´ µηtpM ` αIqθθθt´1

˘

“ ´ηt`1 pp1 ´ µηt ´ αηtqI ´ ηtMq pM ` αIqθθθt´1

Now, let us evaluate the inner-product x∆t,∆t`1y,

x∆t,∆t`1y “ ηtηt`1θθθ
J
t´1 pM ` αIq pp1 ´ µηt ´ ηtαqI ´ ηtMq pM ` αIq

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Z

θθθt´1

Now without loss of generality we can consider Z to be a diagonal matrix, as Z is symmetric since M is symmetric, we can
consider its spectral decomposition Z “ UDUJ and project θθθ0 onto its eigenvectors contained in U. With this the matrices
in the middle are diagonal and we can commute them, which yields us the following matrix:

Z “ diag

¨

˚

˝

p1 ´ µηt ´ ηtα ´ ηtλ1qpλ1 ` αq2

...
p1 ´ µηt ´ ηtα ´ ηtλdqpλd ` αq2

˛

‹

‚

where, we have denoted the eigenvalues of M as λ1 ě ¨ ¨ ¨ ě λd.

Since the inner product of the updates is a quadratic form, we can upper and lower bound it based on the maximum and
minimum eigenvalues of Z, thus giving:

ηtηt`1λminpZq}θθθt´1}2 ď x∆t,∆t`1y ď ηtηt`1λmaxpZq}θθθt´1}2

Because of the above form of eigenvalues of Z (diagonal matrices have their eigenvalues as their diagonal entries), we will
have:

λmaxpZq “ p1 ´ µηt ´ ηtα ´ ηtλdqpλd ` αq2 and λminpZq “ p1 ´ µηt ´ ηtα ´ ηtλ1qpλ1 ` αq2

The proof inherently considers the solution at θθθ‹
“ 0, but if that is not the case, we can substitute it in the objective and

our derived bounds would scale in the squared distance to the solution, i.e. }θθθt´1 ´ θθθ‹
}2. Besides, in the above proof,

we consider a one-step momentum, which inherently means resetting the momentum after every 2 steps. This is done for
convenience, as our main purpose is to anyways gain insights into the phenomenon and not provide its ultimate proof.

Turning to the bounds themselves, notice that if the learning rate ηt ě 1{pλ1 `µ`αq, the lower bound will turn negative and
will be multiplied by a factor of pλ1 ` αq2}θθθt´1}2. On the other hand, although the first term of the upper bound might still
be positive, importantly, it is scaled by a factor of pλd ` αq2 « α2 for matrices M which are close to degenerate (λd Ñ 0).

Low-rank Hessian and Edge of Stability. In our context, the Hessian of the loss with respect to the parameters will
play the role of the matrix M, since we can assume a second-order Taylor series will hold across the two steps. But it
is also known through prior empirical work that the Hessian is significantly degenerate (Sagun et al., 2017), which has
also been proven rigorously for deep linear fully-connected and convolutional networks (Singh et al., 2021). Furthermore,
this requirement on the learning rate ηt is actually looser than the adaptivity of the largest eigenvalue of the Hessian to the
learning rate λ « 2

η , as shown in the recent work on Edge of Stability (EoS) (Cohen et al., 2022).
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Explaining the Obtuse angles. Owing to these facts, we will have that λdpMq « 0, and which further implies that the
upper bound on the inner-product between the updates will be approximately zero, and the lower-bound will be large in
absolute value but negative. Therefore, this explains how the angles between consecutive epochs can be obtuse. More
broadly, the obtuse angle indeed implies that there are oscillations, especially along the direction of the largest Hessian
eigenvector. Further, from Lemma 1, we see that the magnitude of the inner-product of the updates scales in proportion
to ηt`1. Hence, a way to dampen the oscillations7 is to decrease the learning rate, and as can be seen in Figure 8(a),
the learning rate decay at epochs 30 and 60 is followed right after with the angles turning from obtuse to acute. Lastly,
here in the constraint on the learning rate (the additive terms α and µ), we can also see momentum and weight decay go
hand-in-hand, each accentuating the effect of the other.

Towards a holistic picture of Momentum. Besides, in Figure 8(c) and 8(d), we find that in the presence of momentum, a
larger angle is traced at the origin by the trajectory, suggesting a more directional exploration, while the angle traced at
initialization is smaller. The latter can also be seen from Figure 8(h), since with momentum, the trajectory moves further
away from the initialization. Apart from this, in the absence of weight decay, the updates seem to be strengthening with
momentum and the parameter norm rises 8(f) as well, giving rise to a mental picture of a trajectory similar to that left purple
trajectory in Figure 9, at least until the training hits EoS.

Figure 9. Illustration of two trajectories and angular measures.

With weight decay, as there is a decrease in parameter norm Figure 8(f) alongside the EoS process, as well as due to the
presence of larger obtuse angles, we expect a reasonable affinity with our illustration in Figure 8(e), where we see the
updates oscillating and slowly drifting towards the origin O below.

E.2. More than just Weight Decay

Figure 10. Relative Trajectory Maps (wrt. initialization) of ResNet50 models for different weight decay.

Now that we have gained a richer understanding of momentum and its interaction with weight decay, let us turn to weight
decay alone and understand its directional effect. We have already noticed the increase in mean directional similarity
(MDS) when weight decay is disabled for ResNet50 trained with SGD on ImageNet. In fact, we find a similar effect with
an adaptive optimizer, like AdamW (Loshchilov & Hutter, 2017) — the trajectory maps for which are shown in Figure 10.
Here, we used regularization constants from λ “ 0 until the first value where we witness a decrease in test performance,
which in this case was λ “ 1. Specifically, we analyze the weight decay coefficients in λ P t1, 0.1, 0.01, 0.001, 0u. The
corresponding MDS come out to be, ω “ 0.731, 0.679, 0.844, 0.882, 0.885. We notice that, as before, increasing weight

7These oscillations need not necessarily translate into gross instabilities at the level of the loss, since as can be seen in Figure 8(g), the
update norms progressively shrink in each of the three learning rate phases.
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Figure 11. Directional exploration effect of Weight Decay. The downward vector represents the pull towards the origin (O) due to
weight decay, while the rightward vector the force due to the loss .

decay leads to a heightened directional exploration, or lower MDS; except λ “ 1 being the seeming anomaly.

But we find that this can be remedied simply by looking at the relative trajectory maps (Figure 10), and computing the
relative MDS, i.e., ω0 is 0.985, 0.807, 0.862, 0.897, 0.900 for λ “ 1, 0.1, 0.01, 0.001, 0 respectively. This occurs since such
a high weight decay λ “ 1, causes this particular network to underfit (train/test top-1 accuracy are 54.63%, 50.52%). The
performance for the rest of the networks improves, more or less, as expected with weight decay, and in particular, achieve
accuracies of 75.45%, 73.38%, 71.03%, 71.41%.

Having reaffirmed our results extensively about the directional exploration due to weight decay, we can understand it
through a simple physics-based intuition, as shown in the Figure 11. In particular, we can think of the loss gradient pulling
the network parameters rightwards, while the force exerted by weight decay tries to pull the network downwards. The
relative strengths of these two ‘forces’ have been represented by the lengths of the two vector arrows. We notice that as
the weight decay strength is increased, from the left subfigure to the right, the angle traced at the origin (O) also increases.
This explains how weight decay can contribute towards directional exploration.

F. Detailed Experimental Results
F.1. ResNet50: Switching off the hyperparameters

Figure 12. Trajectory Maps of ResNet50 models across different amounts of momentum and weight decay

The relative trajectory maps can be found in Figure 5.
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Figure 13. Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 14. Norm-based measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 15. Spectral measures of the Trajectory for ResNet50 trained on ImageNet
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F.2. ResNet50: Weight Decay, AdamW

Figure 16. Trajectory Maps of ResNet50 models across different amounts of weight decay

Figure 17. Relative Trajectory Maps, with respect to initialization, of ResNet50 models across different amounts of weight decay
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Figure 18. Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 19. Norm-based measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 20. Spectral measures of the Trajectory for ResNet50 trained on ImageNet
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G. Directional Effects in Other Key Settings
In addition to the momentum and weight decay, there are other crucial hyperparameters, such as learning rate and batch size,
whose directional effects warrant a mention. We carry out additional experiments in these settings, and from where, the key
findings are that the learning rate, as it would be easy to guess, indeed encourages directional exploration leading to low
MDS scores. But, somewhat more interestingly, we find that increasing the batch size also helps further exploration and
thereby decreases the MDS scores. The trajectory maps can be found in the Figure 61 While we encourage the curious
reader to have a look at the Appendix G.9, we find that with increased batch size, the angle between the updates as well
as the angle between the update and the current location become increasingly obtuse, and thus making room for a wider
directional exploration. In contrast, for smaller batch sizes these angles are closer to 90˝. We hypothesize that a similar
mutual interaction, as observed with weight decay and momentum, also occurs with batch size is considered. A detailed
analysis, however, remains outside the current scope.

Lastly, we also experimented with Sharpness-Aware Minimization (Foret et al., 2021) (SAM), where we found that a
higher value of the SAM regularization coefficient leads to a slightly increased directional similarity, which could potentially
be related to SAM directing optimisation to flatter basins wherein the individual points are more directionally alike and have
higher cosine similarities. The detailed results can be found in the Appendix G.3.

Other Settings and Datasets. As a final remark for this section, we would like to emphasize that similar results for
weight decay as well as momentum, can be found under different hyperparameter settings in the supplementary material.
In particular, we analyze the qualitative and quantitative hallmarks for multiple values of learning rate, weight decay, and
momentum for VGG16 on CIFAR10 as well as other values for momentum and weight decay in the case of ResNet50
trained with SGD, and even Vision Transformer trained with AdamW on ImageNet across varying weight decay, but these
have to be omitted here due to space constraints.

G.1. ViT: Weight Decay, AdamW

Figure 21. Trajectory Maps of ViT models across different amounts of weight decay
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Figure 22. Relative Trajectory Maps, with respect to initialization, of ViT models across different amounts of weight decay
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Figure 23. Angular measures of the Trajectory for ViT trained on the ImageNet dataset
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Figure 24. Norm-based measures of the Trajectory for ViT trained on the ImageNet dataset

0 20 40 60 80

Eigenvalue Index

10−3

10−1

101

103

105

107

E
ig

en
va

lu
es

:
K

Weight Decay

0.01

0.0001

0

(a) Eigenvalues: K

0 20 40 60 80

Eigenvalue Index

10−3

10−1

101

103

105

107

E
ig

en
va

lu
es

:
K

0

Weight Decay

0.01

0.0001

0

(b) Eigenvalues: K0

0 20 40 60 80

Eigenvalue Index

10−9

10−7

10−5

10−3

10−1

101

E
ig

en
va

lu
es

:
C

Weight Decay

0.01

0.0001

0

(c) Eigenvalues: C

0 20 40 60 80

Eigenvalue Index

10−9

10−7

10−5

10−3

10−1

101

E
ig

en
va

lu
es

:
C

0

Weight Decay

0.01

0.0001

0

(d) Eigenvalues: C0

Figure 25. Spectral measures of the Trajectory for ViT trained on ImageNet
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G.2. ResNet50: Weight Decay, SGD

Figure 26. Trajectory Maps of ResNet50 models across different amounts of weight decay

Figure 27. Relative Trajectory Maps, with respect to initialization, of ResNet50 models across different amounts of weight decay
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Figure 28. Angular measures of the Trajectory for ResNet50 trained on ImageNet

24



Hallmarks of Optimization Trajectories in Neural Networks and LLMs

0 20 40 60 80

Epochs (t)

50

100

150

200

250

300

P
ar

am
et

er
N

or
m

s
‖θ

t‖
2

Weight Decay

0.001

0.0001

0

(a) }θt}2

0 20 40 60 80

Epochs (t)

0

50

100

150

200

250

‖θ
t+
k
−
θ t
‖ 2

fo
r
k

=
1

Weight Decay

0.001

0.0001

0

(b) }θt`k ´ θt}2

0 20 40 60 80

Epochs (t)

50

100

150

200

250

D
is

ta
n

ce
fr

om
In

it
ia

li
za

ti
on
‖θ

t
−
θ 0
‖ 2

Weight Decay

0.001

0.0001

0

(c) }θt ´ θ0}2

Figure 29. Norm-based measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 30. Spectral measures of the Trajectory for ResNet50 trained on ImageNet
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G.3. ResNet50: Sharpness Aware Minimization analysis

Figure 31. Trajectory Maps of ResNet50 models across different values of SAM regularization coefficient

Figure 32. Relative Trajectory Maps, with respect to initialization, of ResNet50 models across different values of SAM regularization
coefficient
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Figure 33. Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 34. Norm-based measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 35. Spectral measures of the Trajectory for ResNet50 trained on ImageNet
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G.4. ResNet50: Momentum Analysis, LR 0.1, WD 0.0001

Figure 36. Trajectory Maps of ResNet50 models across different amounts of momentum

Figure 37. Relative Trajectory Maps, with respect to initialization, of ResNet50 models across different amounts of momentum
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Figure 38. Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 39. Norm-based measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 40. Spectral measures of the Trajectory for ResNet50 trained on ImageNet
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G.5. VGG: Momentum Analysis, LR 0.1, WD 0.0001

Figure 41. Trajectory Maps of VGG16 models across different amounts of momentum

Figure 42. Relative Trajectory Maps, with respect to initialization, of VGG16 models across different amounts of momentum
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Figure 43. Angular measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 44. Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−4

10−2

100

102

104

106

E
ig

en
va

lu
es

:
K

Momentum

0.9

0.5

0

(a) Eigenvalues: K

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−4

10−2

100

102

104

106

E
ig

en
va

lu
es

:
K

0

Momentum

0.9

0.5

0

(b) Eigenvalues: K0

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−8

10−6

10−4

10−2

100

102

E
ig

en
va

lu
es

:
C

Momentum

0.9

0.5

0

(c) Eigenvalues: C

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−7

10−5

10−3

10−1

101

E
ig

en
va

lu
es

:
C

0

Momentum

0.9

0.5

0

(d) Eigenvalues: C0

Figure 45. Spectral measures of the Trajectory for VGG16 models trained on CIFAR10.
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G.6. VGG: Momentum Analysis, LR 0.1, WD 0

Figure 46. Trajectory Maps of VGG16 models across different amounts of momentum

Figure 47. Relative Trajectory Maps, with respect to initialization, of VGG16 models across different amounts of momentum

35



Hallmarks of Optimization Trajectories in Neural Networks and LLMs

0 20 40 60 80 100 120 140 160

Epochs (t)

84

85

86

87

88

89

90

91

92

6
(θ
t+

1
−
θ t
,θ
t)

Momentum

0.9

0.5

0

(a) =pθt`1 ´ θt, θtq

0 20 40 60 80 100 120 140 160

Epochs (t)

65

70

75

80

85

90

6
(θ
t+

1
−
θ t
,θ
T
−
θ 0

)

Momentum

0.9

0.5

0

(b) =pθt`1 ´ θt, θT ´ θ0q

0 20 40 60 80 100 120 140 160

Epochs (t)

60

70

80

90

100

6
(θ
t+
k
−
θ t
,θ
t
−
θ t
−
k
)

fo
r
k

=
1

(i
n
◦ )

Momentum

0.9

0.5

0

(c) =pθt`k ´ θt, θt ´ θt´kq, for k “ 1

0 20 40 60 80 100 120 140 160

Epochs (t)

0

10

20

30

40

50

60

70

80

6
(θ
t
−
θ 0
,θ
T
−
θ 0

)

Momentum

0.9

0.5

0

(d) =pθt ´ θ0, θT ´ θ0q

0 20 40 60 80 100 120 140 160

Epochs (t)

65

70

75

80

85

90

6
(θ
t+

1
−
θ t
,θ
T
−
θ 0

)

Momentum

0.9

0.5

0

(e) =pθt`1 ´ θt, θT ´ θ0q

0 20 40 60 80 100 120 140 160

Epochs (t)

10

20

30

40

50

60

70

80

A
p

ex
A

n
gl

e
at

In
it

ia
li
za

ti
on
6

(θ
t
−
θ 0
,θ

1
−
θ 0

)

Momentum

0.9

0.5

0

(f) Apex Angle at Initialization =pθt ´ θ0, θ1 ´

θ0q

0 20 40 60 80 100 120 140 160

Epochs (t)

10

20

30

40

50

60

A
p

ex
A

n
gl

e
at

O
ri

gi
n
6

(θ
t,
θ 0

)

Momentum

0.9

0.5

0

(g) Apex Angle at Origin =pθt, θ0q

Figure 48. Angular measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 49. Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 50. Spectral measures of the Trajectory for VGG16 models trained on CIFAR10.
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G.7. VGG: Momentum Analysis, LR 0.01, WD 0.0001

Figure 51. Trajectory Maps of VGG16 models across different amounts of momentum

Figure 52. Relative Trajectory Maps, with respect to initialization, of VGG16 models across different amounts of momentum
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Figure 53. Angular measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 54. Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 55. Spectral measures of the Trajectory for VGG16 models trained on CIFAR10.
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G.8. VGG: Momentum Analysis, LR 0.01, WD 0

Figure 56. Trajectory Maps of VGG16 models across different amounts of momentum

Figure 57. Relative Trajectory Maps, with respect to initialization, of VGG16 models across different amounts of momentum
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Figure 58. Angular measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 59. Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 60. Spectral measures of the Trajectory for VGG16 models trained on CIFAR10.

43



Hallmarks of Optimization Trajectories in Neural Networks and LLMs

G.9. VGG16 Batch Size Analysis

Figure 61. Trajectory Maps of VGG16 models across different batch sizes. The learning rates have been scaled in proportion to the batch
size, and the training schedule was adjusted to ensure an equal number of steps (and not simply epochs) for all the runs. We also adjusted
the learning rate schedule to drop learning rates at a corresponding number of steps across the experiments. The respective MDS values
are ω “ 0.753, 0.723, 0.660, 0.619 and the test accuracies are 91.63%, 91.82%, 92.44%, 92.39%.

Figure 62. Relative Trajectory Maps, with respect to initialization, of VGG16 models across different batch sizes
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G.10. Trajectory Maps in the presence of label noise

We observe that with increasing label noise, the network is required to undergo more directional exploration to find a solution
that can interpolate the training set. The MDS scores decrease monotonically with increasing label noise.
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Figure 63. Angular measures of the Trajectory for VGG16 models trained on CIFAR10.
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Figure 64. Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−3

10−1

101

103

105

E
ig

en
va

lu
es

:
K

Batch Size

128

256

512

1024

(a) Eigenvalues: K

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−3

10−1

101

103

105

E
ig

en
va

lu
es

:
K

0

Batch Size

128

256

512

1024

(b) Eigenvalues: K0

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−6

10−4

10−2

100

102

E
ig

en
va

lu
es

:
C

Batch Size

128

256

512

1024

(c) Eigenvalues: C

0 20 40 60 80 100 120 140 160

Eigenvalue Index

10−7

10−5

10−3

10−1

101

E
ig

en
va

lu
es

:
C

0

Batch Size

128

256

512

1024

(d) Eigenvalues: C0

Figure 65. Spectral measures of the Trajectory for VGG16 models trained on CIFAR10.

(a) Label Noise 0.4 (b) Label Noise 0.7 (c) Label Noise 1.0

Figure 66. Trajectory maps when a CNN is trained on CIFAR10 with different amounts of label noise, i.e., what fraction of samples have
been assigned random labels.
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H. GPT-NeoX Trajectory Analysis

Figure 67. Trajectory Maps of Pythia GPT-NeoX models across two orders of model scales trained on Pile. The corresponding MDS
values are ω “ 0.650, 0.672, 0.678, 0.726, 0.759, 0.786, 0.818, 0.815.

Figure 68. Relative Trajectory Maps, with respect to initialization, of Pythia GPT-NeoX models across two orders of model scales.
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Figure 69. Norm-based measures of the Trajectory for GPT-NeoX trained on the Pile dataset

49



Hallmarks of Optimization Trajectories in Neural Networks and LLMs

0 5 10 15 20 25 30 35

Epochs (t)

65

70

75

80

85

90

95

100

6
(θ
t+

1
−
θ t
,θ
t)

Scale

70M

160M

410M

1.4B

2.8B

6.9B

12B

(a) =pθt`1 ´ θt, θtq
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(b) =pθt`1 ´ θt, θT ´ θ0q
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(c) =pθt`k ´ θt, θt ´ θt´kq, for k “ 1
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(e) =pθt`1 ´ θt, θT ´ θ0q
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(f) Apex Angle at Initialization =pθt ´ θ0, θ1 ´

θ0q
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(g) Apex Angle at Origin =pθt, θ0q

Figure 70. Angular measures of the Trajectory for GPT-NeoX trained on the Pile dataset
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(d) Eigenvalues: C0

Figure 71. Spectral measures of the Trajectory for GPT-NeoX trained on the Pile dataset

51



Hallmarks of Optimization Trajectories in Neural Networks and LLMs

I. Layerwise-Trajectory Maps

(a) query-key-value, bias

(b) query-key-value, weight

(c) dense, bias

(d) dense, weight

(e) dense-4h-to-h, bias

(f) dense-4h-to-h, weight

Figure 72. Layerwise Trajectory Maps, grouped by layer type, for the 14M GPT-NeoX model trained on the Pile dataset.
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(a) dense-h-to-4h, bias

(b) dense-h-to-4h, weight

(c) embed-in, weight (d) embed-out, weight (e) final-layer-norm, bias (f) final-layer-norm, weight

(g) input-layernorm, bias (h) input-layernorm, weight

(i) post-attention-layernorm, bias (j) post-attention-layernorm, weight

Figure 73. Layerwise Trajectory Maps, grouped by layer type, for the 14M GPT-NeoX model trained on the Pile dataset.
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(a) 14 M

(b) 160 M

(c) 1.4 B

(d) 12 B

Figure 74. Trajectory maps of Q,K,V layers become homogenized over increasing scale.
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J. Trajectory Maps for Grokking
In grokking (Power et al., 2022), we have that the performance on test samples significantly lags behind the training
performance. Below, we look at the trajectory maps in this setting, considering the experimental setup of https:
//github.com/teddykoker/grokking. We can observe in Figure 75 that:

(a) Upto about 1500 steps (b) Upto about 2000 steps

(c) Upto about 4000 epoch (d) Upto the end of training.

Figure 75. Trajectory maps during the course of learning. Grokking (Power et al., 2022), or sudden increase in test accuracy while training
accuracy is already at a ceiling, occurs where the trajectory map also shows a transition point.

• Upto about 1500 epochs: Everything is pitch blue. No directional exploration, test accuracy remains, more or less,
random.

• Upto about 2000 epochs: Some directional movement starts to happen, and some initial signs of improvement in test
performance.

• Upto about 4000 epoch: Transition point for directional exploration. Test performance visibly improves.

We think that without (appropriate) directional exploration, the training converges to a ‘lazy’/‘shortcut’/‘dead-end’ like
solutions. Moreover, we believe that being ‘lazy’ in the directional sense is highly intertwined with being ‘lazy’ in the sense
of feature learning (Chizat et al., 2020). Besides, the above experiments show that the resemblance with the lazy regime
is more than an analogy. Kumar et al. (2024) have shown that grokking can be seen as the transition from the lazy to the
non-lazy (rich) training regime. In particular, we find that the precise part of the training, where the test accuracy first shows
a marked growth is also the part where the directional exploration starts to happen.
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K. Putting Directional Redundancy to Test

Figure 76. Comparison of training only batch norm parameters with training entire last layer (readout) parameters.

The presented results, and that in the main section, have been averaged over 3 seeds. The standard deviation is never more
than 0.05 (for the batchnorm training, even less), and hence it is difficult to make it out in the plots and has been omitted.
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