
Published as a conference paper at ICLR 2025

DYNAMIC MIXTURE OF EXPERTS: AN AUTO-TUNING
APPROACH FOR EFFICIENT TRANSFORMER MODELS

Yongxin Guo1,∗ Zhenglin Cheng4,5,6,∗ Xiaoying Tang1,2,3,† Zhaopeng Tu8 Tao Lin5,7,†
1School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
2Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, China
3Guangdong Provincial Key Laboratory of Future Networks of Intelligence, Shenzhen, China
4Zhejiang University 5School of Engineering, Westlake University 6SII
7Research Center for Industries of the Future, Westlake University 8Tencent AI Lab

ABSTRACT

The Sparse Mixture of Experts (SMoE) has been widely employed to enhance the
efficiency of training and inference for Transformer-based foundational models,
yielding promising results. However, the performance of SMoE heavily depends on
the choice of hyper-parameters, such as the number of experts and the number of
experts to be activated (referred to as top-k), resulting in significant computational
overhead due to the extensive model training by searching over various hyper-
parameter configurations. As a remedy, we introduce the Dynamic Mixture of
Experts (DYNMOE) technique. DYNMOE incorporates (1) a novel gating method
that enables each token to automatically determine the number of experts to activate.
(2) An adaptive process automatically adjusts the number of experts during training.
Extensive numerical results across Vision, Language, and Vision-Language tasks
demonstrate the effectiveness of our approach to achieve competitive performance
compared to GMoE for vision and language tasks, and MoE-LLaVA for
vision-language tasks, while maintaining efficiency by activating fewer parameters.
Our code is available at https://github.com/LINs-lab/DynMoE.

1 INTRODUCTION

The scalable nature of Transformer models (Kaplan et al., 2020) has gained remarkable successes
across a spectrum of applications, ranging from language (Achiam et al., 2023; Touvron et al.,
2023a;b) and vision Kirillov et al. (2023); Peebles & Xie (2023) to cross-modality domains (Liu et al.,
2024; Li et al., 2022b; 2023b). To further enhance performance while maintaining high efficiency,
Sparse Mixture of Experts (SMoE) has emerged as a promising technique that significantly reduces
computation costs during both training and inference stages (Fedus et al., 2022; Lepikhin et al., 2020;
Zhang et al., 2022), and has been shown to achieve comparable or superior performance compared to
traditional dense models (Li et al., 2022a; Jiang et al., 2024; Dai et al., 2024).

Despite its success, SMoE has an unavoidable drawback: the performance of SMoE heavily relies on
the choice of hyper-parameters, such as the number of activated experts per token, referred as top-k,
and the number of experts (Clark et al., 2022; Fan et al., 2024; Yang et al., 2021), denoted as K. As
illustrated in Figure 1(a), the performance discrepancy of MoE models under various configurations
can be approximately 1%-3%. Notably, identifying the optimal hyper-parameter without a sufficient
number of ablation studies is challenging. As the size of the models continues to grow, this limitation
could result in a significant waste of computational resources, and in turn, could hinder the efficiency
of training MoE-based models in practice.

To tackle the above problems, the objective of this paper is to explore a novel training technique for
MoE models, with the aim of addressing the following core question:

Is it possible to develop a MoE training strategy that can automatically determine the number of
experts and the number of activated experts per token during the training process?

∗Equal contributions.
†Tao Lin and Xiaoying Tang are corresponding authors.

1

https://github.com/LINs-lab/DynMoE

Published as a conference paper at ICLR 2025

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

63.5

64.0

64.5

65.0

65.5

A
cc

u
ra

cy
(%

)

MoE (Avg.): 64.30

DynMoE: 65.17

COLA

MoE w/ various (K, k)

DynMoE (Ours)

(a) Performance Fluctuation Illustration

2 4 6 8 10 12 14

Activated Parameters (Billions)

50

55

60

65

70

75

80

V
Q

A
v
2

T
es

t-
d

ev
A

cc
u

ra
cy

DynMoE-1.6B×4

MoE-LLaVA-1.8B×4

InternVL-C-14BQwen-VL-C-7B LLaVA-1.5-7B

BLIP-2-ViT-g-FlanT5-XL

LLaVA-Phi-2.7B

BLIP-2-12B

Shikra-13B

LLaVA-1.5-13B

BLIP-2-ViT-L-OPT

BLIP-2-ViT-g-OPT

IDEFICS-9B
KOSMOS-1-1.6B

(b) Performance-Efficiency Illustration

Figure 1: Illustration of performance and efficiency of DYNMOE. In Figure 1(a), we carried out experiments
on GLUE benchmark (Wang et al., 2018), employing BERT-large (Devlin et al., 2019) as backbone. In Figure1(b),
we follow the MoE-LLaVA (Lin et al., 2024) settings, the x-axis represents the number of activated parameters,
while the y-axis shows the performance on the Visual Question Answering (VQA) task.

Hence, we introduce the Dynamic Mixture of Experts (DYNMOE) method, which addresses the
aforementioned question through the introduction of two innovative components: (1) a top-any gating
method that enables each token to autonomously determine the number of experts to activate, thereby
allowing different tokens to activate varying numbers of experts; (2) an adaptive training process that
dynamically adjusts the number of experts, increasing it when the current quantity is inadequate and
removing redundant experts as necessary. Additionally, we introduce a new auxiliary loss function
specifically designed to encourage sparsity when employing the top-any gating approach. This loss
encourages different experts to be diverse, rather than mandating that all experts be activated with the
same frequency. We summarize the contributions of this paper as follows:

• Introducing DYNMOE, a novel method frees the burden of pivotal hyper-parameter selection
for MoE training, which is capable of autonomously determining the number of experts and the
number of experts to be activated per token.

• Conducting extensive empirical experiments across Vision, Language, and Vision-Language tasks.
The results illustrate that DYNMOE achieves comparable or superior performance and efficiency
compared to the well-tuned MoE settings (Figure 1(b)).

2 RELATED WORKS

The Sparse Mixture of Experts (SMoE) approach (Eigen et al., 2013; Shazeer et al., 2017; Lepikhin
et al., 2020) has been proven to effectively enhance the training and inference efficiency of founda-
tional models. Contemporary studies primarily modify the MLP layer of transformer models into
multiple expert models and employ a gating network to determine which expert to select. They only
choose a subset of experts for each token during both training and inference (Lepikhin et al., 2020;
Fedus et al., 2022). Recently, the SMoE structure has shown success in various research areas. For in-
stance, GMoE (Li et al., 2023a) has demonstrated that SMoE can enhance generalization performance
in vision tasks. Large Language Models (LLMs) have also employed MoE to simultaneously reduce
training and inference costs while improving model performance (Fedus et al., 2022; Jiang et al.,
2024; Dai et al., 2024; Ren et al., 2023; Lin et al., 2024). However, most of these models employ
standard SMoE structures and apply the SMoE to various tasks. Our paper focuses on improving the
MoE training process, which can be easily integrated with these methods.

Recently, some attempts have been made to improve the architecture of MoE models. For example,
researchers have investigated the benefits of sample-wise (Ramachandran & Le, 2018; Gross et al.,
2017) and token-wise (Shazeer et al., 2017; Riquelme et al., 2021; Fedus et al., 2022) routing. Some
studies introduce load balancing loss to ensure that the experts are activated an equal number of
times (Lepikhin et al., 2020; Fedus et al., 2022). Expert choice routing (Zhou et al., 2022) addresses
load balance by allowing experts to choose tokens; however, this approach also suffers from dropped
tokens. SoftMoE (Puigcerver et al., 2023) uses a slot mechanism to simultaneously resolve the
issues of load balance and dropped tokens. Nevertheless, these approaches also require pre-defined

2

Published as a conference paper at ICLR 2025

hyperparameters, such as the number of experts or the number of experts to be activated. Some
studies enable tokens to activate a varying number of experts (Huang et al., 2024; Yang et al., 2024;
Huang et al., 2024; Yang et al., 2024). However, these approaches either rely on modifying the
routing mechanism from top-k to top-p (which introduces the additional hyperparameter p), or use
dense training during the initial stages, neither of which provide an optimal implementation. In this
paper, we tackle this problem by presenting DYNMOE, an algorithm that automatically determines
the number of activated experts for each token and dynamically adds or removes experts during the
training process. Furthermore, we introduce a new auxiliary loss function that ensures sparsity when
utilizing the DYNMOE algorithm.

3 METHOD

Gating
Network Score 1 Score 2 Score n

Expert 1 Expert 2 Expert n

Gating
Network

Top-Any
Gating

Input Tokens

Output Tokens

. . .

. . .

. . .

Figure 2: Illustration of the top-any gating
method. The input tokens pass through the
gating weights Wg,e corresponding to each
expert e, obtaining the gating scores. The scores
surpass gates Ge will activate the subsequent
expert. Finally, the expert outputs are combined
to produce the output tokens.

In this section, we introduce the Dynamic Mixture of
Experts (DYNMOE), an algorithm capable of auto-
matically determining the number of experts and the
number of experts to be activated for both training
and inference stages. This is achieved through the
incorporation of two crucial components:

(1) The top-any gating method (Figure 2), which
models the gating mechanism as a multi-label
classification problem, allowing tokens to decide
the number of experts to be activated on their
own. This enables different tokens to activate
varying numbers of experts, including the option
to activate no experts.

(2) A carefully designed adaptive process that adds
new experts when tokens choose to not activate
any existing experts, and removes any surplus ex-
perts that have not been activated by any tokens.

The overall process is summarized in Algorithm 1.

3.1 TOP-ANY GATING

In this section, we present the superior gating method to eliminate the need for tuning the top-k value.
We further improve the test-time inference procedure and introduce an additional auxiliary loss to
prevent token dropping and boost efficiency.

Traditional top-k gating and the limitations. The traditional top-k gating method takes the token
embedding x as input and employs an additional gating network g to predict the gating scores. These
gating scores are then used to determine which experts will be activated for the input tokens. Typically,
given token x ∈ Rd as input, the gating process is defined as the follows (Rajbhandari et al., 2022;
Hwang et al., 2023):

g(x) ∈ RK := softmax(WT
g x) , (1)

where Wg ∈ Rd×K is the parameter of the gating network, and K is the number of experts. Then
the output of the MoE layer is defined by

y =
1∑

e∈Top-k(g(x)) g(x)e

∑
e∈Top-k(g(x))

g(x)eEe(x) , (2)

where Ee(x) ∈ Rd is the output of e-th expert given input x, and g(x)e is the e-th entry of g(x).

Despite the considerable success of the top-k gating method in enhancing training and inference
efficiency, two limitations persist:

1. The value of k must be fine-tuned to optimize model performance. As demonstrated in Figure 1(a),
the performance of MoE models can vary significantly with different top-k values. This observation
has also been noted in recent studies (Clark et al., 2022; Fan et al., 2024; Yang et al., 2021).
Consequently, substantial computational resources are needed to identify the optimal value of k.

3

Published as a conference paper at ICLR 2025

2. The top-k gating approach assumes that each token must activate the same number of experts,
which may not always hold in practice. For instance, when considering different tasks, there
could exist tokens shared by all tasks and those specific to certain tasks, i.e. different tokens could
activate different numbers of experts.

Addressing the limitations of top-k gating by tuning-free top-any gating. To address the
aforementioned limitations, we propose the top-any gating method, which does not require a pre-
defined value of k and allows different tokens to activate varying numbers of experts during both
training and inference stages.

The design of the top-any gating method draws inspiration from the multi-label classification problem.
We consider each expert as an individual class and calculate the classification (gating) score for each
class (expert) independently. Subsequently, all classes (experts) with scores exceeding the threshold
are deemed positive (activated). In detail, given the expert representation matrix Wg ∈ Rd×K , where
the k-th row of Wg acts as the representation of expert k, and an input token x ∈ Rd, the key steps
of top-any gating can be formulated by the following equation:

s(x) =
⟨x,Wg⟩
∥x∥ ∥Wg∥

, (3)

g(x) = sign (σ (s(x))− σ(G)) , (4)

where Wg ∈ Rd×K and G ∈ RK . To illustrate, we first compute the cosine similarities between
the token and the expert representation matrix Wg and obtain the similarity score s(x) ∈ RK .
Then the sigmoid function σ is applied to the similarity score s(x) to obtain the scores between 0
and 1. Finally, experts with similarity scores greater than the trainable per-expert threshold G are
considered to activate experts for the token x. It is important to note that the sign function does
not support back-propagation, and thus we customize the back-propagation process of this part by
directly copying the gradient of g(x) to σ (s(x))− σ(G) to effectively bypass the sign function.

Given the gating score g(x) ∈ RK , the number of activated experts is then defined by

k := sum (g(x)) , (5)

where k represents the number of experts to be activated for token x. The model output of the MoE
layer with the top-any gating method can be derived as follows

y =
1

k

∑
g(x)e>0

Ee(x) . (6)

Remark 3.1 (Discussion on not to consider the magnitude of scores when averaging the expert
outputs.). In our top-any gating approach, the scores of different experts are calculated independently.
As a result, the scores of different experts may have different scales and ranges. For instance, there
may be cases where the scores of Expert 1 are within the range of (0.1, 0.2), but the scores of Expert
2 are within the range of (0.8, 0.9). To avoid this mismatch, we have decided not to consider the
magnitude of scores in Equation (6). Ablation studies can be found in Table 23.

Improving the top-any gating during test-time to prevent token dropping. To facilitate the
design of the adaptive expert number process, we did not impose a minimum value on k. Consequently,
some tokens may not activate any experts. To address this issue, during model performance evaluation,
we modify the top-any gating to enable top-1 gating for tokens that do not choose to activate any
experts. In detail, for the input token x with sum(g(x)) = 0, the modified gating score g̃(x) is
obtained by

g̃(x)k =

{
0 k ̸= argmaxk σ(s(x)) ,
σ(s(x)) k = argmaxk σ(s(x)) .

(7)

Guarding efficiency for top-any gating by auxiliary loss. The primary goal of using MoE models
is to improve the training and inference efficiency. However, in the absence of a cap on the maximum
number of activated experts, tokens might activate all experts, which is counterproductive to our
primary goal.

4

Published as a conference paper at ICLR 2025

Using an auxiliary loss as a regularization over experts may alleviate our issue. However, existing
auxiliary loss methods (Lepikhin et al., 2020; Fedus et al., 2022; Wu et al., 2024) are primarily
designed to ensure load balancing across experts and thus cannot align with our objectives. While
activating all experts can indeed achieve load balancing, it contradicts our aim of improving efficiency
by limiting the number of activated experts. Therefore, we need a solution that not only ensures
load balancing but also restricts the number of activated experts 1.

As a remedy, we propose a new auxiliary loss, namely sparse and simple gating loss, as shown in (8).
The diversity loss and simplicity loss in (8) work together to improve the efficiency of the model by
addressing different aspects of the expert representations. On one hand, the diversity loss encourages
independence among the Wg representations of various experts. It serves two purposes: First, it
prevents a high degree of similarity between experts, thereby enhancing the model’s representational
capacity; Second, it guides tokens to avoid simultaneous activation of all experts, thereby promoting
sparse gating for improved efficiency. On the other hand, the simplicity loss normalizes Wg to avoid
excessively large values within the matrix, which helps maintain numerical stability and prevents
overfitting due to extreme parameter values. The detailed loss function is defined as follows:

L =
∥∥WT

g Wg − IK
∥∥
2︸ ︷︷ ︸

diversity loss

+
1

K

K∑
e=1

∥wg,e∥2︸ ︷︷ ︸
simplicity loss

, (8)

where IK is the identity matrix with dimension K, and wg,e ∈ Rd is the e-th element of Wg,
indicating the representation of the e-th expert.

3.2 ADAPTIVE TRAINING PROCESS

In this section, we elaborate on the adaptive training process, which is designed to automatically
determine the number of experts. As illustrated in Figure 3, the adaptive process consists of three parts,
namely (1) Routing Recording: recording the routing results during training; (2) Adding Experts:
adding new experts when tokens choose not to activate any existing experts; and (3) Removing
Experts: removing experts that have not been chosen by any tokens. To promising efficiency and
avoiding burden communication, we only check if experts required to be added or removed every
100-300 iterations.

Routing Recording. To facilitate the removal and addition of experts, it is essential to track the
routing status. Specifically, we record two key pieces of information for each MoE layer: (1) For each
expert e, we record the time at which expert e is activated, denoted as RE ∈ RK (as shown in Line 9
of Algorithm 1). (2) For input data that does not activate any expert, we compute the sum of their
embeddings x as RS ∈ Rd (as outlined in Line 10 of Algorithm 1). Note that this approach simplifies
the expert addition process: by using the token embeddings to initialize the expert representation
Wg , we can achieve a high similarity score between these tokens and the new experts, ensuring that
the new expert will be activated by these tokens when added.

As demonstrated in Algorithm 1, we utilize flags and flagf to determine when to start and stop
routing recording. Users can control these two flags as needed.

Adding Experts when there exist tokens that choose not to activate any experts. We add new
experts when the recorded RS ̸= 0, as some tokens do not activate any experts and RS is the
sum of these tokens. Therefore, given K activated experts and new expert K + 1, we initialize
Wg,K+1 = RS

∥RS∥ and GK+1 = 0. Moreover, due to the device constrain, the maximum number of
experts should be constrained. We set the maximum number of experts to 16 for vision and language
tasks, and 4 for vision-language tasks in practice. Discussions on additional strategies for initializing
new experts can be found in Appendix 8.4.

Removing Experts when there exist experts not activated by any token. We remove experts
when there is an expert e such that Re

E = 0 (as shown in Line 13 in Algorithm 1), which indicates
that there is no token choose to activate the expert e.

1We also conducted experiments incorporating other auxiliary losses with DYNMOE, as shown in Table 15.

5

Published as a conference paper at ICLR 2025

The

quick

fox

jumps

brown

Expert 1

Expert 2

Expert 4

No matching
expert!

Expert 2

Expert 1

Expert 4

load new
expert

Before Addi�on A�er Addi�on

Expert 2

Expert 1

Expert 3

A�er RemovalBefore Removal

Expert 3
unload
expert

Expert 1

Expert 2

Expert 3

over

the

dog

.

lazy

Expert 3 Expert 4

Expert 4

Several
Itera�ons

Ac�vated
Experts

Inac�vated
Experts

No matching
tokens!

pick new
expert

❌
❌

Stepm Stepn

Figure 3: Elaboration on the adaptive training process. We visualize the adaptive training process of
DYNMOE, including record routing, experts adding, and experts removing. The green strip connecting the token
and the expert indicates records of a token routing to an expert. The red arrow at the bottom part of the figure
shows where and when expert addition and removal happens.

4 EXPERIMENTS

In this section, we carry out experiments to address the following questions:
• Q1: Can DYNMOE achieve competitive performance among different MoE settings? See 4.2.
• Q2: Can DYNMOE handle tasks with varying modalities and scales? See 4.3.
• Q3: Will the model trained by DYNMOE maintain sparsity to ensure efficiency? See 4.4.
• Q4: Can DYNMOE offer insights that could guide the design of MoE models? See 4.5.

Additional numerical results, including (1) detailed results on vision and language tasks, (2) ablation
studies on auxiliary losses, (3) comparison to top-p gating baselines, (4) pretraining and fine-tuning
results on more vision tasks, (5) training efficiency evaluation, (6) overhead of introducing top-any
gating, and (7) ablation studies on the weights for averaging expert outputs, can be found in the
Appendix 8.

4.1 EXPERIMENT SETUP

To answer the above four questions, we conduct experiments on Vision, Language, and Vision-
Language tasks. The details are shown in the following.
• Vision Task. For the vision tasks, we follow the same settings as in GMoE (Li et al., 2023a).

We employ the pre-trained ViT-S/16 Dosovitskiy et al. (2020) model and evaluate it on the
DomainBed (Gulrajani & Lopez-Paz, 2020) benchmark. Our experiments encompass four Do-
main Generalization datasets: PACS (Li et al., 2017), VLCS (Albuquerque et al., 2019), Office-
Home (Venkateswara et al., 2017), and DomainNet (Peng et al., 2019). All results are reported
using the train-validation selection criterion.

• Language Task. The language tasks adhere to the same settings as those in MoEfication (Zhang
et al., 2022) and EMoE (Qiu et al., 2023). The MoE models are built upon the BERT-large (Devlin
et al., 2019) architecture using the MoEfication method and are fine-tuned on GLUE (Wang
et al., 2018) tasks, which include COLA (Warstadt et al., 2019), QNLI (Wang et al., 2018),
RTE (Bentivogli et al., 2009), MNLI (Xu et al., 2020), and MRPC (Dolan & Brockett, 2005). For
each MoE setting, we tune the learning rates in {2e-5, 3e-5, 5e-5} and report the best results.

• Vision-Language Task. The vision-language tasks follows the setting in MoE-LLaVA (Lin et al.,
2024), where we use StableLM-2-1.6B (Bellagente et al., 2024), Qwen-1.8B (Bai et al., 2023) and
Phi-2-2.7B (Hughes) as backbone language models, and use clip-vit-large-patch14-336 (Radford
et al., 2021) as the vision encoder. The models are evaluated on image understanding benchmarks
including VQA-v2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), VisWiz (Gurari et al.,
2018), ScienceQA-IMG (Lu et al., 2022), TextVQA (Singh et al., 2019), POPE (Li et al., 2023c),
MME (Yin et al., 2023), MMBench (Liu et al., 2023), LLaVA-Bench (in-the-Wild) (Liu et al.,
2024), and MM-Vet (Yu et al., 2023). Furthermore, we keep routing records in our model during
testing time. For each benchmark, we collect the number of experts’ activations per MoE layer and
total processed tokens during testing. The hyper-parameter settings are the same to MoE-LLaVA
for fair comparision.

6

Published as a conference paper at ICLR 2025

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)
63.0

63.5

64.0

64.5

65.0

65.5

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 64.30

DynMoE: 65.17

COLA

MoE w/ various (K, k)

DynMoE (K=9, avg k=6.5)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

89.0

89.5

90.0

90.5

91.0

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 89.94

DynMoE: 90.64

MRPC

MoE w/ various (K, k)

DynMoE (K=9, avg k=6.7)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

90

92

94

96

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 92.49

DynMoE: 92.59

QNLI

MoE w/ various (K, k)

DynMoE (K=9, avg k=7.2)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

84

86

88

90

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 86.61
DynMoE: 86.37

MNLI

MoE w/ various (K, k)

DynMoE (K=9, avg k=8.0)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

72

73

74

75

76

T
op

-1
A

cc
u

ra
cy

T
im

es

MoE (Avg.): 74.07

DynMoE: 73.41

RTE

MoE w/ various (K, k)

DynMoE (K=9, avg k=6.9)

M
oE

(K
=
8,

k=
1)

M
oE

(K
=
8,

k=
2)

M
oE

(K
=
8,

k=
4)

M
oE

(K
=
8,

k=
8)

M
oE

(K
=
16

, k=
1)

M
oE

(K
=
16

, k=
2)

M
oE

(K
=
16

, k=
4)

M
oE

(K
=
16

, k=
8)

D
yn

M
oE

(O
ur

s)

0

1

2

3

T
op

-2
A

cc
u

ra
cy

T
im

es

DynMoE: 3.00

Top-2 Accuracy Times

MoE w/ various (K, k)

DynMoE (Ours)

Figure 4: Performance of DYNMOE on language tasks. We conduct experiments on the GLUE benchmark.
The x-axis represents MoE settings with varying K and top-k values. The y-axis denotes the model’s
performance. Dashed lines indicate the average performance across different settings, as well as the performance
of DYNMOE. For all the MoE settings, we tune the learning rates in {2e-5, 3e-5, 5e-5} and report the best
results. We also report the times when each MoE setting attains the top-2 best results across all configurations.

4.2 A1: DYNMOE ACHIEVES COMPETITIVE PERFORMANCE AMONG VARIOUS MOE
SETTINGS

In this section, we carry out experiments on the GLUE benchmark (Wang et al., 2018), varying the
number of experts (K) and the value of top-k. The results of these experiments can be observed
in Figure 4. More detailed results of each MoE setting can be found in Tables 6-10 of Appendix.

The performance of DYNMOE surpasses the average performance among various MoE settings.
As seen in Figure 4, we can observe that
1. The DYNMOE outperforms the average performance for various K and top-k values in most tasks.

DYNMOE also achieves the highest number of top-1/2 best performances among all MoE settings,
demonstrating its competitive performance.

2. The performance fluctuates considerably with different K and top-k values, such as up to 3.0%
on the RTE task and 1.3% on the COLA task. DYNMOE overcomes this issue by not requiring
pre-defined K and top-k values.

3. The performance gain of specific K and top-k choice is not consistent among tasks. For instance,
the K = 16, k = 4 setting performs well on QNLI but poorly on MRPC. In contrast, the DYNMOE
always achieve competitive performance among tasks.

4.3 A2: DYNMOE CAN HANDLE VISION, LANGUAGE, AND VISION-LANGUAGE TASKS

In addition to Language tasks, we also conduct experiments on Vision and Vision-Language tasks to
verify the performance of DYNMOE on different modalities and task scales. The results can be found
in Tables 1, and 2.

The effectiveness of DYNMOE remains consistent in both Vision and Vision-Language tasks.
Compared to the standard MoE, we can observe the following: A. DYNMOE outperforms standard
MoE with well-tuned learning rate, number of experts, and top-k (Qiu et al., 2023) in Vision
tasks. The performance difference between DYNMOE and another well-tuned MoE setting in (Li
et al., 2023a), falls within the range of random fluctuation. B. When using StableLM-1.6B and

7

Published as a conference paper at ICLR 2025

Table 1: Performance of DYNMOE on vision tasks: Our study investigates the performance of DYNMOE on
vision tasks using the DomainBed benchmark, with ViT-small serving as the backbone model. The effectiveness
of GMoE is elucidated based on meticulously tuned results as presented in the previous works Li et al. (2023a)
and Qiu et al. (2023). In our implementation of DYNMOE, we configure the maximum number of experts to 8,
with an initial setting of 6 experts. The number of experts is dynamically adjusted in each iteration for DYNMOE.
We also report the performance of DYNMOE using Gshard loss (Lepikhin et al., 2020) as the auxiliary loss.

Algorithms PACS VLCS OfficeHome DomainNet Average

GMoE (in Li et al. (2023a)) 88.1 80.2 74.2 48.7 72.8
GMoE (carefully tuned (Qiu et al., 2023)) 87.7 79.6 73.1 - -

GMoE (with DYNMOE, Gshard Loss) 88.4 79.4 73.6 47.4 72.2
GMoE (with DYNMOE, Diverse and Simple Gating Loss) 87.6 80.3 73.5 48.2 72.4

Table 2: Performance of DYNMOE on vision-language tasks: Our study investigates the performance of
DYNMOE-LLaVA on image understanding benchmarks. Evaluation Benchmarks include VQA-v2; GQA;
VisWiz; SQAI (ScienceQA-IMG); VQAT (TextVQA); POPE; MME; MMB (MMBench); LLaVAW (LLaVA-
Bench (in-the-Wild)); MM-Vet. For a fair comparison, we set the maximum number of experts to 4 for
DYNMOE-LLaVA (the same as the number of experts in MoE-LLaVA) and set the initial number of experts to 2.
NA indicates the number of activated parameters.

Algorithms NA VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB LLaVAW MM-Vet

Dense
LLaVA-1.5 (Vicuna-13B) 13B 80.0 63.3 53.6 71.6 61.3 85.9 1531.3 67.7 70.7 35.4

LLaVA-1.5 (Vicuna-7B) 7B 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 64.3 63.4 30.5
LLaVA-Phi (Phi-2-2.7B) 2.7B 71.4 - 35.9 68.4 48.6 85.0 1335.1 59.8 - 28.9

Sparse (StableLM-1.6B)
MoE-LLaVA

(K = 4, k = 2) 2.06B 76.7 60.3 36.2 62.6 50.1 85.7 1318.2 60.2 86.8 26.9

DYNMOE-LLaVA
(avg k = 1.25) 1.75B 77.4 61.4 40.6 63.4 48.9 85.7 1300.9 63.2 86.4 28.1

Sparse (Qwen-1.8B)
MoE-LLaVA

(K = 4, k = 2) 2.24B 76.2 61.5 32.6 63.1 48.0 87.0 1291.6 59.7 88.7 25.3

DYNMOE-LLaVA
(avg k = 1.86) 2.19B 76.4 60.9 32.4 63.2 47.5 85.8 1302.4 61.3 89.2 24.2

Sparse (Phi-2-2.7B)
MoE-LLaVA

(K = 4, k = 2) 3.62B 77.6 61.4 43.9 68.5 51.4 86.3 1423.0 65.2 94.1 34.3

DYNMOE-LLaVA
(avg k = 1.68) 3.35B 77.9 61.6 45.1 68.0 51.8 86.0 1429.6 66.6 95.6 33.6

Phi-2-2.7B as the backbone, the performance of DYNMOE-LLaVA surpasses that of MoE-LLaVA.
C. With Qwen-1.8B as the backbone, the performance of DYNMOE-LLaVA remains comparable
to MoE-LLaVA. In this setting, the average top-k of DYNMOE-LLaVA (avg k = 1.86) is also close
to the MoE-LLaVA setting (k = 2). D. In the BERT experiments (Figure 4), DYNMOE generally
activate more experts for each token compared to larger scale MoE-LLaVA experiments (Table 2).
This observation aligns with the BERT experiments results obtained when using a fixed k value,
i.e., k=4 generally performs better among the set {1,2,4,8}.

4.4 A3: DYNMOE MAINTAINS EFFICIENCY BY ACTIVATING LESS PARAMETERS

In this section, we aim to demonstrate that although we did not enforce sparsity on the DYNMOE
models, the trained DYNMOE models are still sparse, promising improved inference efficiency.

DYNMOE-LLaVA activates fewer parameters compared to MoE-LLaVA. In Table 2, we
display the number of activated parameters in the "NA" column. When using StabeLM-1.6B as the
backbone, DYNMOE-LLaVA activates approximately 15.0% fewer parameters than MoE-LLaVA.
For Qwen-1.8B, DYNMOE-LLaVA activates about 2.2% fewer parameters than MoE-LLaVA. For
Phi-2-2.7B, DYNMOE-LLaVA activates about 7.5% fewer parameters than MoE-LLaVA. In these
three cases, the reduction in activated parameters does not compromise the model’s performance.

Ablation studies on the value of top-k during test. In Table 3, we examine the performance of
DYNMOE-LLaVA when using different top-k values during the testing phase. The results indicate
that (1) The original DYNMOE-LLaVA outperforms other settings in most cases while activating the

8

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.09

1.00

VQAv2

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.06

1.00

POPE

DynMoE avg. top-k: 1.24

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.08

1.00

LLaVA-Bench

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.12

1.00

VisWiz

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.21

1.00

MMBench

DynMoE avg. top-k: 1.26

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.06

1.00

GraphQA

DynMoE avg. top-k: 1.24

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.13

1.00

TextVQA

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.14

1.00

MME

DynMoE avg. top-k: 1.26

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.05

1.00

MM-Vet

DynMoE avg. top-k: 1.24

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.07

1.00

ScienceQA

DynMoE avg. top-k: 1.25

MoE-LLaVA top-k: 2

Figure 5: Average top-k activated experts of DYNMOE on vision-language benchmarks. We record average
top-k activated experts for each MoE layer when using StableLM-1.6B as the language model backbone.

Table 3: Ablation studies on the value of top-k during test. We train the models using DYNMOE and set
different values of top-k during the test. Training and evaluation settings are identical to that of Table 2.

Algorithms NA VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB LLaVAW MM-Vet

StableLM-1.6B
DYNMOE-LLaVA 1.75B 77.4 61.4 40.6 63.4 48.9 85.7 1300.9 63.2 86.4 28.1
DYNMOE-LLaVA (k = 2) 2.06B 76.9 61.0 39.1 62.1 49.2 85.7 1320.4 62.4 73.6 28.2
DYNMOE-LLaVA (k = 3) 2.47B 76.8 60.7 37.0 62.6 48.9 85.5 1306.9 62.5 74.0 26.8
DYNMOE-LLaVA (k = 4) 2.89B 76.8 60.5 34.8 61.9 49.0 85.8 1321.9 61.9 75.8 27.8

Qwen-1.8B
DYNMOE-LLaVA 2.19B 76.2 61.5 32.6 63.1 48.0 87.0 1291.6 59.7 88.7 25.3
DYNMOE-LLaVA (k = 2) 2.24B 76.2 60.8 33.8 62.2 47.7 87.5 1281.3 60.4 91.3 23.0
DYNMOE-LLaVA (k = 3) 2.65B 76.2 60.5 32.2 62.9 48.1 88.4 1263.7 60.7 87.8 23.4
DYNMOE-LLaVA (k = 4) 3.05B 75.7 60.0 31.6 62.8 48.3 88.1 1263.4 61.0 86.7 23.7

Phi-2-2.7B
DYNMOE-LLaVA 3.35B 77.9 61.6 45.1 68.0 51.8 86.0 1429.6 66.6 95.6 33.6
DYNMOE-LLaVA (k = 2) 3.62B 77.8 61.5 41.6 67.6 51.8 85.5 1433.5 66.8 95.1 32.7
DYNMOE-LLaVA (k = 3) 4.46B 77.7 61.8 42.0 68.0 52.3 86.3 1438.1 66.8 94.3 30.8
DYNMOE-LLaVA (k = 4) 5.30B 77.5 61.4 41.7 68.0 52.4 87.0 1431.5 66.5 95.8 32.8

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VQAv2)

(a) Activation frequency (Qwen)

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VQAv2)

(b) Activation frequency (StableLM)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (VQAv2)

(c) Activation frequency (Phi-2)

Figure 6: Statistics of expert activation frequency in different layers. We report the frequency of expert
activations in various layers for the VQA task. Larger circles indicate experts that are activated more frequently.
Table 4: Efficiency evaluation of DYNMOE comparing to MoE-LLaVA. We conduct experiments on single
A100 GPU (80 GB) paired with 16 CPUs using identical environment and identical inference configurations.
We report the performance of MoE-LLaVA using DeepSpeed’s top-2 gating implementation. The symbols ↓ and
↑ indicate that lower and higher values, respectively, denote better performance. The results in this table are
averaged over 5 trials, with the first sample excluded to avoid measuring unnecessary memory allocations. Other
metrics are reported in Table 24.

Model Memory ↓ Throughput ↑ First Token Latency ↓ Wall-clock Time ↓ Routing Time ↓ Gating Time ↓ Expert Passing Time ↓
(GB) (token / second) (ms) (second / sample) (ms / sample × layer) (ms / sample × layer) (ms / sample × layer)

Dense-LLaVA (StableLM-1.6B) 3.68 32 72 4.7 - - -
MoE-LLaVA (StableLM-1.6B×4) 5.98 27 137 6.2 0.04 1.23 1.30
DYNMOE (StableLM-1.6B×4) 5.98 30 124 5.7 0.52 0.81 1.17

fewest number of parameters. (2) Compared to the StableLM-1.6B backbone, DYNMOE-LLaVA
trained with the Qwen-1.8B backbone sometimes favors activating two experts. This observation
aligns with the fact that DYNMOE-LLaVA also chooses to activate about 2 experts (see Table 2).

Inference efficiency of DYNMOE. To further evaluate the inference efficiency of DynMoE, we
have compared its FLOPs, MACs, speed, and memory usage to those of MoE-LLaVA. The results in
Table 4 show that: (1) DYNMOE chieves higher throughput, lower latency, and reduced wall-clock

9

Published as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
TFLOPs

0

20

40

60

A
cc

u
ra

cy

COLA

Standard MoE

DynMoE

0 1000 2000 3000 4000 5000
TFLOPs

0

20

40

60

80

A
cc

u
ra

cy

MRPC

Standard MoE

DynMoE

Figure 7: Convergence curve w.r.t. training FLOPs. We present the convergence curve with respect to training
FLOPs for DYNMOE and the best-performance MoE setting on the GLUE benchmark.

time compared to MoE-LLaVA, indicating improved efficiency. (2) The top-any gating introduces
additional cost in the router, but the gating and expert passing steps are more efficient than in MoE-
LLaVA. (3) In the current implementation, all experts, loaded or unloaded, occupy GPU memory,
resulting in the same memory usage as MoE-LLaVA. Offloading unloaded experts from GPU memory
could improve efficiency.

Training efficiency of DYNMOE. We present training FLOPs for both Language (Figure 7) and
Vision-Language (Table 24) experiments. The results show that DYNMOE achieves comparable
or lower FLOPs than standard MoE, ensuring both efficiency and performance without extensive
parameter tuning.

4.5 A4: DYNMOE PROVIDE INSIGHTS ON MOE ARCHITECTURE DESIGN

MoE structure is required for bottom layer rather than top layer. In Figures 5 and 6, we present
the average top-k of DYNMOE-LLaVA and the frequency of expert activation across various layers.
Our observations indicate that: (1) In the top layer (the layer closest to the LM prediction head),
tokens tend to select the same expert, while in the bottom layer, tokens activate all experts uniformly.
This suggests that there is no need to convert the top layer to MoE layer, whereas the bottom layer
should be transformed into MoE layer. (2) Different LLM backbones may exhibit distinct expert
activation frequency patterns. For the StableLM backbone, most MoE layers activate only one expert,
whereas for the Phi-2 backbone, experts are more likely to be activated uniformly.

Shared experts exist in each MoE layer. Figures 18- 22 display the threshold G values for each
MoE layer. We notice that typically, one expert per layer has a significantly lower threshold, making
it more easier to be activated. This observation is consistent with Deepseek-MoE’s (Dai et al., 2024)
design of incorporating shared experts for all tokens in each MoE layer.

5 CONCLUSION AND FUTURE WORKS

In this paper, we introduce DYNMOE, a method that automatically determines both the number of
experts and the number of experts to activate. Our results show that DYNMOE delivers comparable
or even superior performance across various MoE model configurations, while maintaining efficiency.
This demonstrates DYNMOE’s potential to save researchers time and computational resources in
hyperparameter tuning. Additionally, our visualizations reveal interesting insights, such as the
reduced number of experts needed for the top layers, which could inspire future advancements in
MoE model design. For future work, as discussed in Han et al. (2021), MoE can be considered a
dynamic model because different tokens may activate different experts, thereby enabling adaptive
computation and enhancing the model’s ability to adapt to input data. While DYNMOE addresses
dynamic challenges through adaptive top-k selection and an adaptive number of experts, exploring
integration with other dynamic techniques, such as layer skipping (Zhao et al., 2024), would also
be valuable. Moreover, the current adaptive process and top-any gating method are not sufficiently
efficient. Developing more optimized implementations, such as designing CUDA kernels, would be
valuable in the future.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is supported in part by the National Science and Technology Major Project (No.
2022ZD0115101), Research Center for Industries of the Future (RCIF) at Westlake University,
Westlake Education Foundation, and Westlake University Center for High-performance Computing.
This work is also supported in part by the funding from Shenzhen Institute of Artificial Intelligence
and Robotics for Society, in part by the Shenzhen Key Lab of Crowd Intelligence Empowered Low-
Carbon Energy Network (Grant No. ZDSYS20220606100601002), in part by Shenzhen Stability
Science Program 2023, and in part by the Guangdong Provincial Key Laboratory of Future Networks
of Intelligence (Grant No. 2022B1212010001).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H Falk, and Ioannis Mitliagkas.
Generalizing to unseen domains via distribution matching. arXiv preprint arXiv:1911.00804, 2019.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. 2023.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth
Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, Meng Lee, Emad
Mostaque, Michael Pieler, Nikhil Pinnaparju, Paulo Rocha, Harry Saini, Hannah Teufel, Niccolo
Zanichelli, and Carlos Riquelme. Stable lm 2 1.6b technical report. 2024.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
routed language models. In International conference on machine learning, pp. 4057–4086. PMLR,
2022.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

11

Published as a conference paper at ICLR 2025

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

Dongyang Fan, Bettina Messmer, and Martin Jaggi. Towards an empirical understanding of moe
design choices. arXiv preprint arXiv:2402.13089, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale
weakly supervised vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6865–6873, 2017.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):
7436–7456, 2021.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. Harder tasks need more experts: Dynamic routing in moe
models. arXiv preprint arXiv:2403.07652, 2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Alyssa Hughes. Phi-2: The surprising power of small language mod-
els. URL https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts at scale. Proceedings of
Machine Learning and Systems, 5, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2020.

12

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/

Published as a conference paper at ICLR 2025

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
Liu. Sparse mixture-of-experts are domain generalizable learners. In The Eleventh International
Conference on Learning Representations, 2022a.

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
Liu. Sparse mixture-of-experts are domain generalizable learners. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?
id=RecZ9nB9Q4.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022b.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023b.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023c.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, and
Li Yuan. Moe-llava: Mixture of experts for large vision-language models. arXiv preprint
arXiv:2401.15947, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406–1415, 2019.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures of
experts. arXiv preprint arXiv:2308.00951, 2023.

Zihan Qiu, Zeyu Huang, and Jie Fu. Emergent mixture-of-experts: Can dense pre-trained transformers
benefit from emergent modular structures? arXiv preprint arXiv:2310.10908, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

13

https://openreview.net/forum?id=RecZ9nB9Q4
https://openreview.net/forum?id=RecZ9nB9Q4

Published as a conference paper at ICLR 2025

Prajit Ramachandran and Quoc V Le. Diversity and depth in per-example routing models. In
International Conference on Learning Representations, 2018.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei Li,
Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al. Pangu-{\Sigma}: Towards trillion
parameter language model with sparse heterogeneous computing. arXiv preprint arXiv:2303.10845,
2023.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317–8326, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5018–5027, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Xun Wu, Shaohan Huang, Wenhui Wang, and Furu Wei. Multi-head mixture-of-experts. arXiv
preprint arXiv:2404.15045, 2024.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian
Yu, Cong Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun Zeng,
Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou,
Shaoweihua Liu, Zhe Zhao, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Kyle
Richardson, and Zhenzhong Lan. CLUE: A Chinese language understanding evaluation benchmark.
In Proceedings of the 28th International Conference on Computational Linguistics, pp. 4762–
4772, Barcelona, Spain (Online), December 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.419. URL https://aclanthology.org/
2020.coling-main.419.

An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang,
Jiamang Wang, Yong Li, et al. M6-t: Exploring sparse expert models and beyond. arXiv preprint
arXiv:2105.15082, 2021.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng Wang, Cuiyun Gao, and Zenglin Xu. Xmoe:
Sparse models with fine-grained and adaptive expert selection. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 11664–11674, 2024.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

14

https://aclanthology.org/2020.coling-main.419
https://aclanthology.org/2020.coling-main.419

Published as a conference paper at ICLR 2025

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication:
Transformer feed-forward layers are mixtures of experts. In Findings of the Association for
Computational Linguistics: ACL 2022, pp. 877–890, 2022.

Wangbo Zhao, Jiasheng Tang, Yizeng Han, Yibing Song, Kai Wang, Gao Huang, Fan Wang, and
Yang You. Dynamic tuning towards parameter and inference efficiency for vit adaptation. arXiv
preprint arXiv:2403.11808, 2024.

Haizhong Zheng, Xiaoyan Bai, Xueshen Liu, Zhuoqing Morley Mao, Beidi Chen, Fan Lai, and Atul
Prakash. Learn to be efficient: Build structured sparsity in large language models. Advances in
Neural Information Processing Systems, 37:101969–101991, 2025.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

15

Published as a conference paper at ICLR 2025

CONTENTS OF APPENDIX

6 Experiment Settings 16

7 Detailed Algorithm Framework 17

8 Additional Experiments 17
8.1 Detailed Results on Language and Vision Tasks 17
8.2 Combine DYNMOE with Load Balance and Efficiency Losses 17
8.3 Comparision to Top-p Gating Baseline . 19
8.4 Numberical Results on More Vision Tasks . 19
8.5 Efficiency Evaluation . 20
8.6 Ablation Studies on Aggregation Weights . 20

9 Additional Visualization Results 20
9.1 Activation Frequency . 20
9.2 Average Top-k . 22
9.3 Layer-wise Expert Similarity Matrix . 22
9.4 Visualization of G . 26

6 EXPERIMENT SETTINGS

We conduct experiments on Vision, Language, and Vision-Language tasks. The detailed experiment
settings are shown in the following.
• Vision Task. For the vision tasks, we follow the same settings as in GMoE (Li et al., 2023a).

We employ the pre-trained ViT-S/16 Dosovitskiy et al. (2020) model and evaluate it on the
DomainBed (Gulrajani & Lopez-Paz, 2020) benchmark. Our experiments encompass four Do-
main Generalization datasets: PACS (Li et al., 2017), VLCS (Albuquerque et al., 2019), Office-
Home (Venkateswara et al., 2017), and DomainNet (Peng et al., 2019). All results are reported
using the train-validation selection criterion. We conduct all experiments on a single RTX 3090
GPU, and the reported results are averaged over three random seeds. For DYNMOE, we set the
maximum number of experts to 8 and the initial number of experts to 6. The adaptive process is
executed for each iteration.

• Language Task. The language tasks adhere to the same settings as those in MoEfication (Zhang
et al., 2022) and EMoE (Qiu et al., 2023). The MoE models are built upon the BERT-large (Devlin
et al., 2019) architecture using the MoEfication method and are fine-tuned on GLUE (Wang
et al., 2018) tasks, which include COLA (Warstadt et al., 2019), QNLI (Wang et al., 2018),
RTE (Bentivogli et al., 2009), MNLI (Xu et al., 2020), and MRPC (Dolan & Brockett, 2005).
We conduct all experiments on a single RTX 3090 GPU, and the reported results are averaged
over three random seeds. For DYNMOE, we set the maximum number of experts to 8 and the
initial number of experts to 6. For each epoch, we begin recording routing at 1/3 of the epoch and
complete recording routing and execute the adaptive process at 2/3 of the epoch.

• Vision-Language Task. The vision-language tasks follows the setting in MoE-LLaVA (Lin et al.,
2024), where we use StableLM-2-1.6B (Bellagente et al., 2024), Qwen-1.8B (Bai et al., 2023) and
Phi-2 (Hughes) as backbone language models, and use clip-vit-large-patch14-336 (Radford et al.,
2021) as the vision encoder. We conduct model training on 8 A100 (80G) GPUs, completing
within 2 days, detailed hyper-parameters setting are shown in Table 5. The models are evaluated
on image understanding benchmarks including VQA-v2 (Goyal et al., 2017), GQA (Hudson &
Manning, 2019), VisWiz (Gurari et al., 2018), ScienceQA-IMG (Lu et al., 2022), TextVQA (Singh
et al., 2019), POPE (Li et al., 2023c), MME (Yin et al., 2023), MMBench (Liu et al., 2023),
LLaVA-Bench (in-the-Wild) (Liu et al., 2024), and MM-Vet (Yu et al., 2023). Furthermore, we
keep routing records in our model during testing time. For each benchmark, we collect the number
of experts’ activations per MoE layer and total processed tokens during testing.

16

Published as a conference paper at ICLR 2025

Table 5: Detailed training hyper-parameters and configuration.

Config Models

StableLM Qwen Phi-2

Maximum experts 4

Deepspeed Zero2 Zero2 Zero2_offload
Data LLaVA-Finetuning
Image resolution 336 × 336
Image encoder CLIP-Large/336
Feature select layer -2
Image projector Linear layers with GeLU
Epoch 1
Learning rate 2e-5
Learning rate schedule Cosine
Weight decay 0.0
Batch size per GPU 8 8 4
GPU 4 × A100 (80G) 8 × A100 (80G) 8 × A100 (80G)
Precision Bf16

Algorithm 1 Pseudo code of DYNMOE on each iteration and MoE layer.
Require: Input data x, initial gating network parameters Wg , G, and τ , experts E1, · · · , EK , start record

routing flag flags, finish record routing flag flagf .
Ensure: MoE layer output y, auxiliary loss value.
1: if flags then
2: Set routing flag flagrout = 1.
3: Initialize routing records by Rrout = 0K .
4: Initialize non-activate sample records Rsam = 0d.
5: Get the gating outputs g(x) and k by Eq (4) and (5).
6: Get MoE layer output y by Eq (6).
7: Calculate auxiliary loss by Eq (8).
8: if flagrout = 1 then
9: RE = RE + sum(g(x), dim = 0).

10: RS = RS +
∑N

i=1 1ki=0xi

11: if flagf then
12: flagrout = 0.
13: if Exists e that Re

E = 0 then
14: Remove experts e.
15: if RS,e ̸= 0 then
16: Add new expert K + 1 with expert representation Wg,K+1 = RS/ ∥RS∥.

7 DETAILED ALGORITHM FRAMEWORK

8 ADDITIONAL EXPERIMENTS

8.1 DETAILED RESULTS ON LANGUAGE AND VISION TASKS

In this section, we present the detailed results of our experiments on the GLUE benchmark (Wang
et al., 2018) in Table 11 and on the DomainNet dataset in Table 12. These results demonstrate that
incorporating the specially designed diversity and simplicity loss significantly enhances the model’s
performance.
Moreover, we present the detailed results using different learning rates on the GLUE benchmark in
Tables 6- 10.

8.2 COMBINE DYNMOE WITH LOAD BALANCE AND EFFICIENCY LOSSES

In Tables 13, 14, 15, and 16, we report the following metrics:
• Performance (Table 13): The performance of different settings.

17

Published as a conference paper at ICLR 2025

Table 6: Detailed performance of DYNMOE and various MoE settings on COLA dataset

COLA K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 64.10 64.51 64.94 43.00 63.63 64.71 64.12 64.37 65.17
lr = 3e-5 63.86 62.10 64.73 64.03 61.76 22.04 63.42 63.13 62.80
lr = 5e-5 41.83 39.68 62.63 0.00 (fail) 37.26 38.30 20.24 25.79 40.68

Table 7: Detailed performance of DYNMOE and various MoE settings on MRPC dataset

MPRC K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 89.74 89.63 89.74 89.36 88.07 89.02 89.74 89.56 89.57
lr = 3e-5 90.14 90.19 89.50 88.67 89.81 90.18 89.38 90.35 90.64
lr = 5e-5 88.70 84.62 88.72 84.48 88.30 89.08 87.40 79.95 90.09

Table 8: Detailed performance of DYNMOE and various MoE settings on QNLI dataset

QNLI K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 92.48 84.94 92.52 92.46 92.39 92.51 92.65 92.49 92.39
lr = 3e-5 92.45 92.39 92.01 78.39 78.22 92.53 92.50 92.31 92.59
lr = 5e-5 50.54 64.46 78.13 64.43 50.54 50.54 64.27 64.43 75.50

Table 9: Detailed performance of DYNMOE and various MoE settings on MNLI dataset

MNLI K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 86.56 86.70 86.57 86.61 86.63 86.73 86.55 86.51 86.37
lr = 3e-5 86.46 52.40 69.40 69.35 69.57 68.47 86.59 69.47 52.34
lr = 5e-5 51.44 35.45 35.45 35.45 35.45 34.54 35.45 34.24 51.68

Table 10: Detailed performance of DYNMOE and various MoE settings on RTE dataset

RTE K = 8, k = 1 K = 8, k = 2 K = 8, k = 4 K = 8, k = 8 K = 16, k = 1 K = 16, k = 2 K = 16, k = 4 K = 16, k = 8 DynMoE
lr = 2e-5 73.04 70.52 74.13 74.37 74.01 66.19 75.33 72.56 72.80
lr = 3e-5 72.44 74.85 75.09 73.53 73.16 72.32 75.21 73.53 73.41
lr = 5e-5 58.48 54.39 62.45 65.10 63.78 63.06 58.84 63.66 65.22

Table 11: Performance of DYNMOE on language tasks: Our study investigates the performance of DYNMOE
on language tasks using the GLUE (Wang et al., 2018) benchmark, with BERT-large serving as the backbone
model. The baselines including traditional MoE methods with different number of experts K and top-k. In
our implementation of DYNMOE, we configure the maximum number of experts to 16, with an initial setting
of 8 experts. The number of experts is dynamically adjusted in each epoch for DYNMOE. The − represents
experiment failure, final results could not be obtained using Gshard loss.

Algorithms COLA MRPC QNLI MNLI RTE Average

MoE (K = 8, k = 1) 64.10±0.94 90.14±0.60 92.48±0.21 86.56±0.06 73.04±2.13 81.26
MoE (K = 8, k = 2) 64.51±0.81 90.19±0.17 92.39±0.08 86.70±0.23 74.85±1.96 81.73
MoE (K = 8, k = 4) 64.94±0.62 89.74±0.99 92.52±0.12 86.57±0.28 75.09±1.84 81.77
MoE (K = 8, k = 8) 64.03±0.54 89.36±0.09 92.46±0.09 86.61±0.26 74.37±0.78 81.37
MoE (K = 16, k = 1) 63.63±0.20 89.81±0.30 92.39±0.21 86.63±0.17 74.01±0.29 81.29
MoE (K = 16, k = 2) 64.71±1.21 90.18±1.33 92.53±0.07 86.73±0.43 72.32±3.54 81.29
MoE (K = 16, k = 4) 64.12±1.42 89.74±0.40 92.65±0.09 86.59±0.16 75.33±0.95 81.69
MoE (K = 16, k = 8) 64.37±1.14 90.35±0.68 92.49±0.11 86.51±0.20 73.53±2.21 81.45

DYNMOE, Gshard Loss 64.88±0.86 89.85±0.22 92.42±0.07 - 73.41±0.68 -
DYNMOE 65.17±0.26 90.64±0.26 92.59±0.08 86.37±0.13 73.41±1.96 81.64

Table 12: Detailed results on DomainNet dataset: We report the detailed test results on each domain of the
DomainNet dataset.

Algorithms clip info paint quick real sketch Average

GMoE (with DYNMOE, Gshard Loss) 66.8 23.8 54.1 15.9 68.7 54.9 47.4
GMoE (with DYNMOE, Diverse and Simple Gating Loss) 68.0 24.4 55.4 16.6 69.5 55.1 48.2

• Load Balance (Table 14): The frequency with which each expert is activated, calculated as (expert
activation time / total token count).

• Efficiency (Table 15 and 16): The top-k values per layer and the top-k activation frequency,
calculated as (number of tokens that activate k experts / total tokens).

We can find that

18

Published as a conference paper at ICLR 2025

Table 13: Performance of DYNMOE with load balance and efficiency losses. We conduct experiments using
the MoE-LLaVA setup, incorporating (1) a load-balancing loss and (2) an efficiency loss to enforce sparsity, as
proposed by Zheng et al. (2025).

Performance (StableLM) VQAv2 GQA VizWiz SQA TextVQA POPE MME MMBench
DYNMOE 77.4 61.4 40.6 63.4 48.9 85.7 1300.9 63.2
DYNMOE + load balance 77.1 61.6 37.0 61.4 50.3 85.3 1313.5 61.7
DYNMOE + load balance + efficiency 77.1 61.8 39.4 62.9 49.7 85.4 1321.2 61.9

Table 14: Activation frequency per expert of DYNMOE with load balance and efficiency losses. We conduct
experiments using the MoE-LLaVA setup, incorporating (1) a load-balancing loss and (2) an efficiency loss to
enforce sparsity, as proposed by Zheng et al. (2025). We report the activation frequency of each expert at layer 0
on the VQAv2 dataset.

Activation Frequency per Expert (VQAv2, layer 0) Expert 1 Expert 2 Expert 3 Expert 4
MoE (top-2) 0.36 1.29 0.16 0.19
DYNMOE 0.29 0.97 0.48 0.35
DYNMOE + load balance 0.81 0.50 0.90 0.68
DYNMOE + load balance + efficiency 0.45 0.52 0.42 0.63

Table 15: Sparsity of DYNMOE with load balance and efficiency losses. We conduct experiments using the
MoE-LLaVA setup, incorporating (1) a load-balancing loss and (2) an efficiency loss to enforce sparsity, as
proposed by Zheng et al. (2025). We report the average top-k value of each expert at each layer on the VQAv2
dataset.

Top-k per Layer (VQAv2) Layer 0 Layer 2 Layer 4 Layer 6 Layer 8 Layer 10 Layer 12 Layer 14 Layer 16 Layer 18 Layer 20 Layer 22
DYNMOE 2.09 1.07 1.57 1.06 2.04 1.03 1.03 1.00 1.03 1.02 1.02 1.00
DYNMOE + load balance 2.88 1.25 1.59 1.27 1.26 1.13 1.77 1.70 1.12 1.33 1.30 1.00
DYNMOE + load balance + efficiency 2.02 1.25 1.81 1.57 1.65 1.20 1.47 2.30 1.07 1.37 1.82 1.00

Table 16: Top-k frequency of DYNMOE with load balance and efficiency losses. We conduct experiments
using the MoE-LLaVA setup, incorporating (1) a load-balancing loss and (2) an efficiency loss to enforce sparsity,
as proposed by Zheng et al. (2025). We report the frequency of activating top-k experts for each configuration.

Top-k Frequency (VQAv2) Top-1 Top-2 Top-3 Top-4
DYNMOE 0.79 0.16 0.04 0.01
DYNMOE + load balance 0.65 0.26 0.06 0.03
DYNMOE + load balance + efficiency 0.58 0.32 0.09 0.01

• Although it does not explicitly enforce load balancing, the original DynMoE achieves load
balancing comparable to that of the standard top-2 MoE (Table 14).

• Adding the load balance loss slightly decreases the performance of DynMoE (Table 13) while
increasing the number of activated experts (Table 15). However, it improves load balancing
(Table 14).

• Adding an additional efficiency loss on top of the load balance loss improves performance
(Table 13) and helps overcome some extreme cases, such as the reduction of the top-k values in
the bottom layer from 2.88 to 2.02 (Table 15), and reduce the number of tokens that activate all 4
experts (Table 16). Moreover, the efficiency loss further enhances load balancing (Table 14).

8.3 COMPARISION TO TOP-P GATING BASELINE

In Table 17, we compare DYNMOE with the method proposed by Huang et al. (2024), which replaces
the traditional top-k gating with top-p gating. We set p = 0.4 as suggested in the original paper. Our
results show that DynMoE achieves better performance without requiring the additional parameter.

8.4 NUMBERICAL RESULTS ON MORE VISION TASKS

In Tables 18, 19, and 20, we show the performance of DYNMOE on more vision tasks, and also
investigate the impact of strategies on initialize the new experts, including

• Average: Averaging the parameters of existing experts to initialize the new expert.

19

Published as a conference paper at ICLR 2025

Table 17: Comparision to top-p gating method. We conduct experiments using the MoE-LLaVA setup, and
compare DYNMOE to top-p gating method (Huang et al., 2024).

StableLM VQAv2 GQA VizWiz SQA TextVQA POPE MME MMBench

DYNMOE 77.4 61.4 40.6 63.4 48.9 85.7 1300.9 63.2
top p (p=0.4) 77.1 61.7 36.0 62.8 48.6 85.2 1332.9 62.3

Table 18: Fintuneing results on Tiny-ImageNet dataset. We fine-tune the pretrained ViT-S (Dosovitskiy et al.,
2020) model on the TinyImageNet (Le & Yang, 2015) dataset and report the accuracy every two epochs.

TinyImageNet (Finetune, ViT-S, 2 MoE layers) E1 E3 E5 E7 E9 E11 E13 E15 E17 E19 E20
MoE (K = 8, k = 1) 78.32 82.79 84.03 84.83 85.20 85.61 85.82 86.27 86.44 86.61 86.65
MoE (K = 8, k = 2) 78.53 82.95 84.05 84.74 84.99 85.00 85.95 86.45 86.63 86.58 86.72
MoE (K = 8, k = 4) 79.25 83.38 83.73 84.72 85.00 85.50 85.93 86.27 86.00 86.64 86.56
MoE (K = 8, k = 8) 79.20 83.30 84.02 84.10 84.86 85.62 86.08 86.12 86.44 86.73 86.58
DynMoE (Original, avg topk=6.5) 79.10 83.09 84.20 84.84 85.18 85.56 85.91 86.09 86.37 86.40 86.70
DynMoE (Average, avg topk=6.0) 79.19 83.48 84.21 84.84 85.32 85.76 86.25 86.41 86.49 86.70 86.75
DynMoE (W-Average, avg topk=6.0) 78.96 83.18 84.15 84.92 85.34 85.93 86.10 86.30 86.60 86.70 86.80
DynMoE (Most activated, avg topk=6.5) 79.09 83.57 84.21 84.62 85.40 85.87 86.45 86.40 86.63 86.66 86.70

• W-Average: Using weighted averaging of the parameters of existing experts, where the
weights correspond to the number of experts to be activated.

• Most activated: Initializing the new expert using the parameters of the most frequently
activated expert.

Results show that (1) DynMoE converges faster than standard MoE settings; (2) W-Average achieves
the best performance in most cases; and (3) incorporating load balance loss and efficiency loss
accelerates training while improving performance.

8.5 EFFICIENCY EVALUATION

In Table 21, we compare the training efficiency of DYNMOE with standard top-1 and top-2 gating
MoE models. The results show that DYNMOE trains faster than top-2 gating but slower than top-1
gating.
In Table 22, we show the overhead introduced by the top-any gating method. The results indicate that
the primary source of overhead comes from the routing process, which likely explains why DynMoE
(with forced top-1) is noticeably slower than MoE (also with forced top-1).

8.6 ABLATION STUDIES ON AGGREGATION WEIGHTS

In Remark 3.1, we discussed why we did not consider the magnitude of scores when averaging the
expert outputs. In Table 23, we show that using different expert scores significantly reduce the model
performance.

9 ADDITIONAL VISUALIZATION RESULTS

9.1 ACTIVATION FREQUENCY

We present the activation frequency of experts across various MoE layers and evaluation tasks using
different backbones: StableLM-1.6B (Figures 9 and 10), Qwen-1.8B (Figures 11 and 12), and Phi-2-
2.7B (Figures 13 and 14). The results suggest that compared to the StableLM-1.6B backbone, experts
are more uniformly activated for models utilizing Qwen-1.8B and Phi-2-2.7B as backbone LLMs.

Table 19: Pretrain results in CIFAR-10 dataset. We pretrain the ViT-S (Dosovitskiy et al., 2020) model on the
CIFAR-10 dataset and report the accuracy every 100 epochs.

CIFAR10 (ViT-S, 2 MoE Layer, Acc per 100 Epoch) 200 300 400 500
MoE (K = 8, k = 1) 72.66 77.51 80.10 81.08
MoE (K = 8, k = 2) 73.79 78.50 80.85 81.91
MoE (K = 8, k = 4) 72.77 77.84 80.30 81.14
MoE (K = 8, k = 8) 70.68 75.32 78.28 79.11
DynMoE (Original, avg topk=7) 74.84 79.24 81.77 82.50
DynMoE (Average, avg topk=7) 74.70 80.32 82.51 83.57
DynMoE (W-Average, avg topk=6.5) 74.16 78.77 81.30 82.01
DynMoE (Most activated, avg topk=6.5) 71.71 77.56 80.08 80.58

20

Published as a conference paper at ICLR 2025

Table 20: Pretrain results on ImageNet dataset. We train ViT-S from scratch for 200 epochs on ImageNet
dataset (Deng et al., 2009) with a batch size of 512 across 8 A100 GPUs. In the ViT-S architecture, the layers [0,
3, 6, 9] are replaced with MoE layers, and the maximum number of experts per layer is 4. The learning rate is
set to 1e-4, and we use the Adam optimizer with parameters [0.9, 0.99] and cosine learning schedule, while the
weight decay is set to 5e-5. During evaluation, we set the batch size to 128 and use 1 A100 GPU. DynMoE-A
indicates DynMoE with a simple and diverse gating loss, and DynMoE-B indicates DynMoE with simple and
diverse gating loss + load balance loss + efficiency loss.

Train Time Train Wall-Clock Time Evaluation Time Inference Time on Routing Inference Time on Gating Inference Time on Expert Passing Acc@1
(s/batch) (days) (s/batch) (ms / batch and MoE layer) (ms / batch and MoE layer) (ms / batch and MoE layer) (%)

DeepSpeed-MoE (top-1) 0.39 2.3 0.53 0.06 14.54 94.32 64.7
DeepSpeed-MoE (top-2) 0.63 3.7 1.05 0.06 50.78 186.47 67.3
DynMoE-A (k=1.63) 0.51 2.8 0.99 0.53 36.45 186.18 66.5
DynMoE-B (k=1.25) 0.41 2.5 0.82 0.46 31.04 148.11 68.5

Table 21: Training efficiency comparision.

Time MoE-LLaVA ViT-S, ImageNet ViT-S, ImageNet
(s/batch) (Train, 4 A100, batch size=32) (Train, 8 A100, batch size=512) (Test, 4 A100, batch size=256)
Top-1 MoE 1.31 0.39 0.18
Top-2 MoE 1.60 0.63 0.32
DynMoE 1.48 0.51 0.27

Table 22: Overhead of top-any gating. We report the time taken for key steps in top-any routing, including
routing, gating, and expert passing.

Time (per sample and MoE layer) Routing (ms) Gating (ms) Expert Passing (ms)
MoE-LLaVA (enforced top-1) 0.04 0.60 1.08
DynMoE (enforced top-1) 0.45 0.75 1.10

Table 23: Ablation studies on aggregation weights. We conduct experiments using the MoE-LLaVA setup,
and the "weighted scores" indicates averaging the expert outputs based on the gating outputs.

StableLM VQAv2 GQA VizWiz SQA TextVQA POPE MME MMBench
ours 77.4 61.4 40.6 63.4 48.9 85.7 1300.9 63.2
weighted scores 73.9 57.4 32.1 61.3 46.9 84.2 1176.8 52.1

21

Published as a conference paper at ICLR 2025

2 4 6 8 10 12 14

Activated Parameters (Billions)

50

55

60

65

70

75

80

V
Q

A
v
2

T
es

t-
d

ev
A

cc
u

ra
cy

DynMoE-1.6B×4

MoE-LLaVA-1.8B×4

InternVL-C-14BQwen-VL-C-7B LLaVA-1.5-7B

BLIP-2-ViT-g-FlanT5-XL

LLaVA-Phi-2.7B

BLIP-2-12B

Shikra-13B

LLaVA-1.5-13B

BLIP-2-ViT-L-OPT

BLIP-2-ViT-g-OPT

IDEFICS-9B
KOSMOS-1-1.6B

Figure 8: Comparing the performance efficiency of models. The x-axis represents the number of activated
parameters, while the y-axis shows the performance on the Visual Question Answering (VQA) task.

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (GraphQA)

(a) GraphQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (LLaVA-Bench)

(b) LLaVA-Bench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MM-Vet)

(c) MM-Vet

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MMBench)

(d) MMBench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MME)

(e) MME

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (POPE)

(f) POPE

Figure 9: Activation frequency of experts on various MoE layers and evaluation tasks using StableLM as
backbone.

9.2 AVERAGE TOP-k
In Figures 15 and 16 , we illustrate the average top-k of DYNMOE models using Qwen and Phi-2 as
backbone LLMs.

9.3 LAYER-WISE EXPERT SIMILARITY MATRIX

In Figures 17, 19, and 21, we illustrate the similarities between various expert representations,
specifically, different rows of Wg across multiple MoE layers. These comparisons utilize StableLM-

22

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (ScienceQA)

(a) ScienceQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (TextVQA)

(b) TextVQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4
E

xp
er

t
ID

Experts Activations by Layer (VisWiz)

(c) VisWiz

Figure 10: Activation frequency of experts on various MoE layers and evaluation tasks using StableLM as
backbone.

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (GraphQA)

(a) GraphQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (LLaVA-Bench)

(b) LLaVA-Bench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MM-Vet)

(c) MM-Vet

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MMBench)

(d) MMBench

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MME)

(e) MME

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (POPE)

(f) POPE

Figure 11: Activation frequency of experts on various MoE layers and evaluation tasks using Qwen as
backbone.

23

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (ScienceQA)

(a) ScienceQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (TextVQA)

(b) TextVQA

0 2 4 6 8 10 12 14 16 18 20 22
Layer

1

2

3

4
E

xp
er

t
ID

Experts Activations by Layer (VisWiz)

(c) VisWiz

Figure 12: Activation frequency of experts on various MoE layers and evaluation tasks using Qwen as
backbone.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (GraphQA)

(a) GraphQA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (LLaVA-Bench)

(b) LLaVA-Bench

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MM-Vet)

(c) MM-Vet

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MMBench)

(d) MMBench

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (MME)

(e) MME

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (POPE)

(f) POPE

Figure 13: Activation frequency of experts on various MoE layers and evaluation tasks using Phi-2 as
backbone.

24

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (ScienceQA)

(a) ScienceQA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4

E
xp

er
t

ID

Experts Activations by Layer (TextVQA)

(b) TextVQA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

1

2

3

4
E

xp
er

t
ID

Experts Activations by Layer (VisWiz)

(c) VisWiz

Figure 14: Activation frequency of experts on various MoE layers and evaluation tasks using Phi-2 as
backbone.

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.50

1.01

VQAv2

DynMoE avg. top-k: 1.85

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.51

1.01

POPE

DynMoE avg. top-k: 1.85

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.49

1.02

LLaVA-Bench

DynMoE avg. top-k: 1.86

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.70

1.02

VisWiz

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.52

1.02

MMBench

DynMoE avg. top-k: 1.86

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.52

1.02

GraphQA

DynMoE avg. top-k: 1.85

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.53

1.02

TextVQA

DynMoE avg. top-k: 1.86

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.55

1.02

MME

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.50

1.02

MM-Vet

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

0 2 4 6 8 10 12 14 16 18 20 22
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.53

1.03

ScienceQA

DynMoE avg. top-k: 1.87

MoE-LLaVA top-k: 2

Figure 15: Average top-k activated experts of DYNMOE on vision-language benchmarks, using Qwen as
language backbone.

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.53

1.01

VQAv2

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.52

1.01

POPE

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.54

1.01

LLaVA-Bench

DynMoE avg. top-k: 1.66

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.57

1.01

VisWiz

DynMoE avg. top-k: 1.67

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.64

1.01

MMBench

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.51

1.01

GraphQA

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.63

1.01

TextVQA

DynMoE avg. top-k: 1.68

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.63

1.01

MME

DynMoE avg. top-k: 1.67

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k 2.60

1.01

MM-Vet

DynMoE avg. top-k: 1.67

MoE-LLaVA top-k: 2

0 2 4 6 8 1012141618202224262830
Layer ID

0

1

2

3

4

L
ay

er
to

p
-k

2.73

1.01

ScienceQA

DynMoE avg. top-k: 1.69

MoE-LLaVA top-k: 2

Figure 16: Average top-k activated experts of DYNMOE on vision-language benchmarks, using Phi-2 as
language backbone.

25

Published as a conference paper at ICLR 2025

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.000 -0.004 -0.004

0.000 1.000 -0.001 0.005

-0.004 -0.001 1.000 -0.002

-0.004 0.005 -0.002 1.000

Layer 0

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.030 -0.027 0.036

0.030 1.000 -0.043 0.035

-0.027 -0.043 1.000 -0.041

0.036 0.035 -0.041 1.000

Layer 2

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.001 0.000 0.004

0.001 1.000 -0.014 -0.016

0.000 -0.014 1.000 0.025

0.004 -0.016 0.025 1.000

Layer 4

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.011 -0.009 -0.022

-0.011 1.000 0.011 0.026

-0.009 0.011 1.000 0.010

-0.022 0.026 0.010 1.000

Layer 6

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.006 -0.006 0.005

0.006 1.000 -0.013 -0.008

-0.006 -0.013 1.000 -0.002

0.005 -0.008 -0.002 1.000

Layer 8

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.014 -0.027 0.012

0.014 1.000 -0.012 0.019

-0.027 -0.012 1.000 -0.017

0.012 0.019 -0.017 1.000

Layer 10

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.025 -0.028 0.018

0.025 1.000 -0.031 0.011

-0.028 -0.031 1.000 -0.015

0.018 0.011 -0.015 1.000

Layer 12

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.015 0.016 -0.013

0.015 1.000 0.005 -0.001

0.016 0.005 1.000 -0.008

-0.013 -0.001 -0.008 1.000

Layer 14

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.048 -0.021 -0.021

-0.048 1.000 0.018 0.021

-0.021 0.018 1.000 0.027

-0.021 0.021 0.027 1.000

Layer 16

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.021 -0.029 -0.035

-0.021 1.000 0.028 0.033

-0.029 0.028 1.000 0.035

-0.035 0.033 0.035 1.000

Layer 18

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.024 -0.026 -0.023

-0.024 1.000 0.029 0.033

-0.026 0.029 1.000 0.032

-0.023 0.033 0.032 1.000

Layer 20

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.044 -0.057 -0.050

-0.044 1.000 0.044 0.050

-0.057 0.044 1.000 0.049

-0.050 0.050 0.049 1.000

Layer 22

Figure 17: Layer-wise expert similarity matrix (StableLM). We record the experts’ cosine similarity per layer
during test time. It turns out the cosine similarity between experts is close to 0.

Expert 1

Expert 2

Expert 3

Expert 4

-0.001

-0.020

0.000

0.010

Layer 0

0.024

0.024

-0.050

0.027

Layer 2

-0.003

-0.018

0.015

0.024

Layer 4

-0.027

0.014

0.011

0.018

Layer 6

0.003

-0.003

-0.002

0.003

Layer 8

0.015

0.018

-0.032

0.021

Layer 10

0.022

0.016

-0.034

0.016

Layer 12

0.018

0.015

0.018

-0.027

Layer 14

-0.033

0.015

0.015

0.023

Layer 16

-0.050

0.028

0.027

0.024

Layer 18

-0.058

0.028

0.027

0.033

Layer 20

-0.042

0.023

0.022

0.022

Layer 22

Figure 18: Layer-wise expert activation threshold (StableLM). Darker-colored experts are more likely to be
activated compared to lighter-colored experts.

1.6B, Qwen-1.8B, and Phi-2-2.7B as the backbone LLMs. The findings demonstrate that these expert
representations are nearly orthogonal, suggesting that different experts capture diverse features, which
could potentially enhance the model’s capacity.

9.4 VISUALIZATION OF G

In Figures 18, 20, and 22, we present the values of the learned threshold G, employing StableLM-
1.6B, Qwen-1.8B, and Phi-2-2.7B as the backbone LLMs. The results reveal that for each MoE layer,
there is one expert that is more readily activated. This observation is consistent with the design of
Deepseek-MoE (Dai et al., 2024).

26

Published as a conference paper at ICLR 2025

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.001 0.004 -0.001

0.001 1.000 -0.004 -0.002

0.004 -0.004 1.000 0.001

-0.001 -0.002 0.001 1.000

Layer 0

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.023 0.012 -0.021

0.023 1.000 0.017 -0.021

0.012 0.017 1.000 -0.020

-0.021 -0.021 -0.020 1.000

Layer 2

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 0.006 0.007

0.002 1.000 -0.011 -0.009

0.006 -0.011 1.000 0.009

0.007 -0.009 0.009 1.000

Layer 4

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.026 -0.008 -0.012

0.026 1.000 -0.020 -0.028

-0.008 -0.020 1.000 0.018

-0.012 -0.028 0.018 1.000

Layer 6

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 -0.016 -0.047

0.002 1.000 0.007 0.003

-0.016 0.007 1.000 0.010

-0.047 0.003 0.010 1.000

Layer 8

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 0.001 -0.012

0.003 1.000 -0.000 -0.011

0.001 -0.000 1.000 -0.009

-0.012 -0.011 -0.009 1.000

Layer 10

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.018 -0.014 -0.015

-0.018 1.000 0.004 0.008

-0.014 0.004 1.000 0.009

-0.015 0.008 0.009 1.000

Layer 12

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.010 0.008 0.012

-0.010 1.000 -0.011 -0.005

0.008 -0.011 1.000 0.010

0.012 -0.005 0.010 1.000

Layer 14

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.011 0.016 0.013

-0.011 1.000 -0.018 -0.019

0.016 -0.018 1.000 0.016

0.013 -0.019 0.016 1.000

Layer 16

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.003 -0.006 0.001

-0.003 1.000 0.000 0.014

-0.006 0.000 1.000 0.002

0.001 0.014 0.002 1.000

Layer 18

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.011 -0.010 -0.008

-0.011 1.000 0.003 0.007

-0.010 0.003 1.000 0.015

-0.008 0.007 0.015 1.000

Layer 20

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.017 -0.028 -0.026

-0.017 1.000 0.019 0.020

-0.028 0.019 1.000 0.025

-0.026 0.020 0.025 1.000

Layer 22

Figure 19: Layer-wise expert similarity matrix (Qwen). We record the experts’ cosine similarity per layer
during test time. It turns out the cosine similarity between experts is close to 0.

Expert 1

Expert 2

Expert 3

Expert 4

0.001

0.001

0.001

-0.001

Layer 0

0.004

0.010

0.011

-0.017

Layer 2

0.003

-0.017

0.008

0.010

Layer 4

-0.004

-0.012

0.006

0.008

Layer 6

-0.015

0.006

0.008

0.007

Layer 8

-0.004

0.001

0.003

-0.000

Layer 10

-0.013

0.003

0.005

0.007

Layer 12

0.008

-0.016

0.005

0.010

Layer 14

0.012

-0.024

0.010

0.016

Layer 16

-0.009

0.005

-0.003

0.008

Layer 18

-0.009

-0.004

0.008

0.014

Layer 20

-0.023

0.013

0.012

0.011

Layer 22

Figure 20: Layer-wise expert activation threshold (Qwen). Darker-colored experts are more likely to be
activated compared to lighter-colored experts.

27

Published as a conference paper at ICLR 2025

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 -0.005 -0.001

0.003 1.000 0.004 -0.005

-0.005 0.004 1.000 -0.001

-0.001 -0.005 -0.001 1.000

Layer 0

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.004 0.005 0.003

-0.004 1.000 -0.002 0.002

0.005 -0.002 1.000 0.001

0.003 0.002 0.001 1.000

Layer 2

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 0.002 0.004

-0.002 1.000 0.001 -0.005

0.002 0.001 1.000 -0.003

0.004 -0.005 -0.003 1.000

Layer 4

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 -0.001 0.004

-0.002 1.000 -0.002 -0.001

-0.001 -0.002 1.000 -0.002

0.004 -0.001 -0.002 1.000

Layer 6

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 0.002 -0.001

0.002 1.000 0.000 -0.002

0.002 0.000 1.000 -0.000

-0.001 -0.002 -0.000 1.000

Layer 8

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 -0.004 0.002

0.003 1.000 -0.002 0.002

-0.004 -0.002 1.000 -0.002

0.002 0.002 -0.002 1.000

Layer 10

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.000 0.001 -0.002

-0.000 1.000 0.002 0.001

0.001 0.002 1.000 0.000

-0.002 0.001 0.000 1.000

Layer 12

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 -0.002 -0.001

-0.002 1.000 0.001 0.002

-0.002 0.001 1.000 0.002

-0.001 0.002 0.002 1.000

Layer 14

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.004 0.002 0.001

-0.004 1.000 -0.005 -0.001

0.002 -0.005 1.000 -0.001

0.001 -0.001 -0.001 1.000

Layer 16

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.003 0.001 0.000

-0.003 1.000 -0.002 -0.003

0.001 -0.002 1.000 0.003

0.000 -0.003 0.003 1.000

Layer 18

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.002 0.001 0.002

-0.002 1.000 -0.004 0.002

0.001 -0.004 1.000 -0.001

0.002 0.002 -0.001 1.000

Layer 20

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 -0.000 0.001 -0.002

-0.000 1.000 -0.002 -0.001

0.001 -0.002 1.000 0.001

-0.002 -0.001 0.001 1.000

Layer 22

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.003 -0.003 -0.003

0.003 1.000 0.003 0.002

-0.003 0.003 1.000 0.001

-0.003 0.002 0.001 1.000

Layer 24

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 -0.000 -0.001

0.002 1.000 -0.001 0.002

-0.000 -0.001 1.000 0.002

-0.001 0.002 0.002 1.000

Layer 26

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.006 -0.005 -0.003

0.006 1.000 -0.002 0.001

-0.005 -0.002 1.000 -0.001

-0.003 0.001 -0.001 1.000

Layer 28

Exp
er

t 1

Exp
er

t 2

Exp
er

t 3

Exp
er

t 4

Expert 1

Expert 2

Expert 3

Expert 4

1.000 0.002 -0.003 0.001

0.002 1.000 -0.002 -0.003

-0.003 -0.002 1.000 0.001

0.001 -0.003 0.001 1.000

Layer 30

Figure 21: Layer-wise expert similarity matrix (Phi-2). We record the experts’ cosine similarity per layer
during test time. It turns out the cosine similarity between experts is close to 0.

Expert 1

Expert 2

Expert 3

Expert 4

-0.017

0.005

0.005

0.008

Layer 0

0.014

-0.037

0.015

0.022

Layer 2

-0.002

0.007

-0.000

-0.007

Layer 4

-0.024

0.021

-0.000

0.022

Layer 6

-0.008

0.010

-0.000

-0.002

Layer 8

0.014

0.015

-0.040

0.025

Layer 10

-0.026

0.007

0.017

0.006

Layer 12

0.014

0.008

-0.033

0.017

Layer 14

0.024

-0.048

0.016

0.028

Layer 16

0.014

-0.052

0.025

0.036

Layer 18

0.012

-0.000

-0.021

0.028

Layer 20

0.013

-0.028

0.023

0.002

Layer 22

-0.022

0.010

-0.001

0.020

Layer 24

-0.031

0.006

0.013

0.025

Layer 26

0.003

0.009

-0.029

0.026

Layer 28

0.020

-0.042

0.023

0.025

Layer 30

Figure 22: Layer-wise expert activation threshold (Phi-2). Darker-colored experts are more likely to be
activated compared to lighter-colored experts.

28

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16 18 20 22
Layers

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
qu

en
cy

Distribution of Number of Activated Experts Per Layer (StableLM)

1 times

2 times

3 times

4 times

0 2 4 6 8 10 12 14 16 18 20 22
Layers

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
qu

en
cy

Distribution of Number of Activated Experts Per Layer (Qwen)

1 times

2 times

3 times

4 times

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layers

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
qu

en
cy

Distribution of Number of Activated Experts Per Layer (Phi-2)

1 times

2 times

3 times

4 times

Figure 23: Distribution of number of activated experts in each layer. We report the results of StableLM,
Qwen, and Phi-2 models, respectively.

0 3 6 9 12 15 18
Epoch

82

83

84

85

86

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

TinyImageNet

DynMoE (Original)

DynMoE (Average)

DynMoE (W-Average)

DynMoE (Most Activated)

MoE (K=8, k=1)

MoE (K=8, k=2)

MoE (K=8, k=4)

MoE (K=8, k=8)

25 50 75 100 125 150 175 200
Epoch

50

55

60

65

70

V
al

id
at

io
n

A
cc

u
ra

cy
(%

)

CIFAR-10

DynMoE (Original)

DynMoE (Average)

DynMoE (W-Average)

DynMoE (Most Activated)

MoE (K=8, k=1)

MoE (K=8, k=2)

MoE (K=8, k=4)

MoE (K=8, k=8)

Figure 24: Convergence curve on CIFAR10 and TinyImageNet datyasets.

29

Published as a conference paper at ICLR 2025

Table 24: Efficiency evaluation of DYNMOE comparing to MoE-LLaVA. We conduct experiments on
single A100 GPU (80 GB) paired with 16 CPUs using identical environment and identical training/inference
configurations. We report the performance of MoE-LLaVA using DeepSpeed’s top-2 gating implementation.
The symbols ↓ and ↑ indicate that lower and higher values, respectively, denote better performance.

Model Training FLOPs ↓ Inference FLOPs ↓ Inference MACs ↓ Memory Usage ↓
(TFLOPs/step) (GFLOPs/token) (GMACs/token) (GB)

MoE-LLaVA (StableLM) 18.23 27.62 13.34 5.98
DynMoE-LLaVA (StableLM) 17.97 25.25 12.13 5.98
MoE-LLaVA (Qwen) 34.27 23.36 11.30 6.37
DynMoE-LLaVA (Qwen, Ours) 34.61 22.17 10.73 6.37
MoE-LLaVA (Phi-2) 63.43 46.87 22.73 10.46
DynMoE-LLaVA (Phi-2) 63.36 44.92 21.72 10.46

30

	Experiment Settings
	Detailed Algorithm Framework
	Additional Experiments
	Detailed Results on Language and Vision Tasks
	Combine DynMoE with Load Balance and Efficiency Losses
	Comparision to Top-p Gating Baseline
	Numberical Results on More Vision Tasks
	Efficiency Evaluation
	Ablation Studies on Aggregation Weights

	Additional Visualization Results
	Activation Frequency
	Average Top-k
	Layer-wise Expert Similarity Matrix
	Visualization of G

