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ABSTRACT

Causal machine learning (Causal ML) aims to answer “what if” questions using
machine learning algorithms, making it a promising tool for high-stakes decision-
making. Yet, empirical evaluation practices in Causal ML remain limited. Existing
benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets,
leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce
CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on
a set of explicit design choices about the class of causal models, queries, and data
considered, the CausalProfiler randomly samples sets of data, assumptions, and
ground truths constituting the synthetic causal benchmarks. In this way, Causal ML
methods can be rigorously and transparently evaluated under a variety of conditions.
This work offers the first random generator of synthetic causal benchmarks with
coverage guarantees and transparent assumptions operating on the three levels of
causal reasoning: observation, intervention, and counterfactual. We demonstrate
its utility by evaluating several state-of-the-art methods under diverse conditions
and assumptions, both in and out of the identification regime, illustrating the types
of analyses and insights the CausalProfiler enables.

1 INTRODUCTION

Causal machine learning (Causal ML) seeks to estimate the effects of interventions and counterfactuals
using machine learning techniques (Kaddour et al., [2022), enabling principled decision making—for
example in medicine and policy. Despite the theoretical maturity and growing relevance of Causal
ML, current research practices lack rigourous evaluations of how proposed methods would perform
under realistic and diverse conditions, limiting their practical utility (Curth et al.l 2024} Feuerriegel
et al.| [2024; |Poinsot et al., 2025} [Berrevoets et al., [2024).

In Causal ML, evaluation is particularly challenging due to the unobservability of counterfactual
outcomes (Holland, [1986). Researchers can rely only on scarce real-world data sources such
as randomized controlled trials, considered the gold standard, which are expensive, are ethically
constrained, and often encompass a low amount of data (Greenland & Brumback! 2002; Tennant;
et al.l 2021). As a result, existing benchmarks often rely on a few semi-synthetic datasets (e.g.,
Syntren (den Bulcke et al.,|2006), ACIC2016 (Dorie et al.,|2019)) or model-driven synthetic datasets
generated from fitted causal mechanisms (Neal et al.,|2020; Parikh et al., [2022; |Athey et al., [2024;
de Vassimon Manela et al.,[2024). However, these datasets encode assumptions that are rarely made
explicit and whose validity is difficult to generalize beyond the original study context (Poinsot et al.,
2025). In parallel, many researchers define handcrafted synthetic datasets, useful for theory but
fragile for empirical evaluation: a few manually chosen models can overstate performance by aligning
with method-specific assumptions (Gentzel et al., [2019). Moreover, lessons from predictive machine
learning show that narrow, static benchmarks can give a false sense of reliability (Geirhos et al.|[2020;
Herrmann et al.| |2024; [Freiesleben & Grotel 2023} [Longjohn et al.||2024), underscoring the need for
structured diversity: systematic variation of tasks under explicit, controllable assumptions.

In this work, we take a concrete step toward addressing these fundamental concerns about the field.
Specifically, we introduce a synthetic benchmark generator, the CausalProfiler, that enables robust
empirical evaluations grounded in transparently defined synthetic causal datasets. Central to our
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approach is the notion of a Space of Interest (Sol) (Definition [5.1)), defining the domain from which
causal datasets are sampled. Given an Sol, CausalProfiler samples Structural Causal Models (SCMs),
data, and queries, and estimates the ground truth value of the queries to enable the evaluation of
Causal ML methods. The assumptions are explicit; and dataset characteristics can be systematically
varied through the Sol. Hence, CausalProfiler enables transparent, controlled, repeatable, and diverse
sampling of synthetic causal datasets.

CausalProfiler shifts the focus of empirical evaluation from performance on individual datasets to
trends and patterns across a well-characterized Sol, reframing the evaluation question from “what
dataset to use” to specifying a Sol that defines the scope of evaluation. This enables researchers to
evaluate performance across a well-defined set of conditions—on graph density, or causal mechanisms
complexity, for instance— and to understand under which conditions a method succeeds or fails,
helping practitioners identify methods that remain reliable when their causal assumptions are violated.
Compared to conventional evaluations in the current literature, an evaluation with CausalProfiler
yields more robust and reliable performance estimates; it uncovers failure modes, generalization
limits, and assumption sensitivities that remain hidden in conventional evaluations.

Although synthetic evaluation cannot replace real data, it provides the only reliable access to ground-
truth causal queries, since counterfactuals are unobservable and many assumptions are unfalsifi-
able (Holland\ [1986; |Poinsot et al.,2025). CausalProfiler brings about a much needed complement to
real-world studies by enabling transparent, diverse, and controlled synthetic experiments.

We make two primary contributions. First, we present CausalProﬁlelﬂ (Section , the first open-
source benchmark generator that enables principled sampling of synthetic causal datasets, with
coverage guarantees, that promote transparency and reproducibility for Causal ML evaluation over
the three levels of causal reasoning. Secondly, we demonstrate through experiments (Section [6)
how evaluation with CausalProfiler yields richer and more robust insights than the current standard
practice.

2 RELATED WORK

Evaluating Causal ML methods. Causal ML currently lacks a rigorous, systematic paradigm for
empirical evaluation, whether synthetic or semi-synthetic. Semi-synthetic datasets, such as synthetic
outcome datasets (Dorie et al.,[2019;|Shimoni et al., 2018 Hill, 2011) and model-based semi-synthetic
datasets (Neal et al., [2020; Parikh et al., 2022} |Athey et al.,|2024} lde Vassimon Manela et al., [2024),
combine real covariates and simulated outcomes under assumed structural models. On the other hand,
fully synthetic datasets are generated entirely from researcher-defined SCMs, allowing for greater
control and access to ground truth. Yet both synthetic and semi-synthetic approaches share critical
limitations. First, synthetic evaluations often lack realism, relying on overly simplistic mechanisms
such as additive noise or linear functions, and frequently omitting robustness analyses (Gentzel et al.|
2019; |Curth et al.| 2024} [Poinsot et al., 2024} [2025). Such evaluations rarely reflect the complexity of
real-world causal processes and are insufficient to test the limits of modern causal inference methods.
Secondly, synthetic and semi-synthetic datasets are shaped by researcher-defined design choices,
including the causal graph structure, the form of the outcome function, and the noise distribution.
These decisions, often made implicitly, can unintentionally introduce hidden biases that favor certain
methods (Curth et al| 2021; |Cheng et al., 2022; [Feuerriegel et al.,2024)). Such assumptions are rarely
documented or systematically varied, hindering reproducibility and fair method comparison (Poinsot;
et al.| 2024; 2025)). Additionally, these benchmarks are typically small in scale and narrow in scope,
often covering only a limited range of causal settings. As a result, empirical evaluations raise concerns
about overfitting and generalization (Gentzel et al., 2019} Berrevoets et al.,2024)). For instance, it
has been shown that even small changes to the data-generating process can lead to dramatic shifts in
performance rankings (Curth et al.|[2021)). Moreover, methods are often evaluated only under the very
conditions that guarantee their identifiability, offering little insight into robustness under assumption
violations, as is common in real-world settings (Petersen, 2024} |Hutchinson et al.| 2022)). In short,
without broader and more transparent evaluation across diverse causal settings, the field risks drawing
conclusions that do not generalize. For Causal ML to have wide impact in practice, there is a need to
move beyond fixed benchmarks toward frameworks that support transparent, controlled, and diverse
experimentation across well-defined spaces of causal assumptions.

'The code is provided in the supplementary material and will be publicly available after the review process.
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Recent benchmarking efforts. Recent works have sought to address some of these problems,
introducing tools to generate synthetic SCMs for causal discovery (Kalainathan et al.| 2020; |Gupta
et al.| 2023; Rudolph et al.| [2023) or support query estimation from hand-specified models (Sharma
& Kicimanl 2020 [Textor et al., [2017; |Abril-Pla et al., 2023)). However, none of these frameworks
support all components required for robust evaluation of causal machine learning methods. First, the
causal discovery benchmarks do not compute ground truth for intervention or counterfactual queries.
Further, query estimation frameworks often require manual SCM specification and do not support
random sampling, diversity control, or analysis of the distribution of tasks. Even when SCMs are
sampled (Rudolph et al., [2023}; [Xia et al., [2023), key properties (e.g., positivity) are neither reported
nor constrained. Moreover, the absence of randomness in the graph structures limits generalization.
In contrast, CausalProfiler integrates SCM sampling, query ground-truth computation, and coverage
guarantees into a unified framework. To the best of our knowledge, this is the first benchmark
generator that enables systematic exploration of how Causal ML methods behave across spaces of
SCMs and queries defined by user-specified constraints.

3 BACKGROUND & NOTATION

We use capital letters for random variables (e.g., X), lowercase for realizations (e.g., x), and boldface
for vectors (e.g., x). For a more complete background, please refer to Appendix [B]and [Pearl (2009).

The Pearl Causal Hierarchy (PCH) (Pearl & Mackenzie, 2018)) classifies causal reasoning into
three levels: £1 (associational), £, (interventional), and L3 (counterfactual). Associative questions
use only observed data, whereas interventional and counterfactual questions require assumptions
about the data-generating process. Importantly, lower levels are insufficient to answer higher-layer
questions in almost all causal models (Bareinboim et al., [2022)).

The class of Structural Causal Models (SCMs) (Pearl, 2009) provide a representation allowing
reasoning on the three levels of the PCH. An SCM is a tuple M := {V, U, F, P(U)}, where V is
a set of endogenous variables, U is a set of exogenous variables, JF is a set of structural equations
V; = fi(PA(V;), Uy,), also called causal mechanisms, and P(U) defines a distribution over the
exogenous variables U. SCMs induce a distribution Py(V) over the endogenous variables V,
called the entailed distribution. We consider two types of endogenous variables: the observed
variables, denoted Vo, and the unobserved variables, denoted Vg, where V = Vo U Vg and
Vo N Vg = (). We represent causal relationships using the causal graph G of a SCM. This is an
acyclic directed mixed graph over the endogenous variables. Directed edges X — Y encode causal
dependencies via causal mechanisms where X € PA(Y) is called a parent of Y, while bidirected
edges X < Y indicate latent confounding due to shared exogenous causes. With SCMs one can
represent intervention and counterfactual questions. On the one hand, an intervention replaces
one or more structural equations to model external manipulations. A common example is a hard
intervention, do(T = t), which fixes a variable’s value, disconnecting it from its causes. This
defines a new SCM and alters the induced distribution. On the other hand, counterfactual questions
reason about what would have happened under a different intervention, given an observed outcome
called a factual realization. They are evaluated by conditioning on observed variables (abduction),
modifying the SCM with the intervention (action), and predicting outcomes under the new distribution
(prediction)—a process known as the three-step procedure (Pearl, 2009).

More generally, a causal query refers to a probabilistic statement about the effect of hypothetical
manipulations of the data-generating process. This includes intervention queries, such as Average
Treatment Effect (ATE), and counterfactual queries, such as Counterfactual Total Effect (Ctf-TE). A
query is identifiable if its value can be uniquely determined from data, given a set of assumptions
(e.g., a causal sufficiency) (Pearl, 2009). In other words, identifiability refers to whether causal
queries can be empirically estimated, and under what assumptions.

4 PROBLEM FORMULATION

Causal inference aims to answer causal queries using data drawn from an unknown SCM. Let
M* = (V,U,F, P(U)) denote the unknown ground truth SCM. A causal query Q) (e.g., ATE)
defined over M* has ground truth value Q* = Q(M™*). As M* is unknown, causal estimators rely
on causal assumptions H (e.g., causal sufficiency) and available data D drawn from M™* to produce
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an estimate Q) of the target quantity Q*. Definition [4.1|below formalizes the elements of a causal
dataset.

Definition 4.1 (Causal Dataset). A causal dataset is a tuple D = {Q,Q*, D,G*, H*}
constructed from a known SCM M* = (V, U, F, P(U)) where:

* () is a causal query defined over V;

o Q* = Q(M*) is the exact value of the query Q);

e D = {Dy ~ Puy(V | do(Vy) = vi)} _, is a collection of samples under I

interventional (or observational) settings;
e G* is the causal graph associated with M™*;
o H* is the set of assumptions satisfied by M*.

In this work, we wish to develop a generator of causal datasets following the Definition such
that given an error metric £ (Q Q*), Causal ML methods can be evaluated under the identification-
consistent regime, where the assumed causal graph and assumptions coincide with the ground truth
(G*, H*), and under controlled assumption violations. This setup enables systematic comparison of
Causal ML methods not only under ideal conditions, where identification is guaranteed, but also in
more realistic settings that test robustness to misspecification.

Remark on causal discovery. Causal datasets, as defined above, can also be used for evaluating
causal discovery algorithms. Each dataset already includes the ground-truth causal graph G*, allowing
direct assessment of discovery methods. Thus, the query () can be left empty.

5 SAMPLING CAUSAL DATASETS WITH THE CAUSALPROFILER

To generate causal datasets, CausalProfiler relies on a parametric specification of the sampling domain,
called the Space of Interest (Sol). Given an Sol, CausalProfiler samples an SCM (Section[5.2) and
generates a corresponding causal dataset (Section[5.3). Appendices [C]to[F contain the pseudocode
for the sampling algorithms. Appendix[[|presents a visual overview of the sampling strategy.

5.1 DEFINING A SPACE OF INTEREST

The central abstraction of our framework is the Space of Interest (Sol) (Definition[5.T)), which provides
a standardized way to specify synthetic causal datasets (Definition[4.T). Table[3|in Appendix [C]lists
all configurable Sol parameters

Definition 5.1 (Space of Interest). A Space of Interest (Sol) is a tuple S = {M, Q, D},
where M is a class of SCMs, QQ a class of causal queries, and D a class of data.

5.2 SAMPLING STRUCTURAL CAUSAL MODELS

Causal Graphs. CausalProfiler first samples a directed acyclic graph over a set of endogenous
variables, defining the SCM’s causal structure. If specified in the Sol, CausalProfiler samples a
subset of endogenous variables, V g, to be treated as unobserved and excluded from the observed
dataset. To expose only the visible causal structure to the user, we apply Verma’s latent projection
algorithm (Verma, [1993)) to the full causal graph, which produces an acyclic directed mixed graph.

Mechanisms. Given the causal graph, CausalProfiler assigns each endogenous variable a mechanism
based on its parents and an exogenous noise distribution set by the Sol. It supports two types of
mechanisms. First, discrete mechanisms, also called regional discrete mechanisms (see Appendix
for a formal definition) which support binary and categorical treatments, are defined tabularly
by associating each element of a partition of the exogenous noise with distinct parents-to-child

>While the current implementation of CausalProfiler supports only £ training data and Average Treatment
Effect (ATE), Conditional Average Treatment Effect (CATE), and Counterfactual Total Effect (Ctf-TE) queries,
the Sol abstraction can, in principle, be defined over any class of queries, datasets, and SCMs.
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mappings. This enables controllable stochasticity and complexity, including highly non-linear
and non-invertible behavior. The Sol also specifies how such mechanisms are sampled (e.g., with
rejection-based sampling, see Appendix [E.2). Secondly, continuous mechanisms are defined using
parametric function families—such as neural networks or linear functions—with randomly initialized
parameters.

5.3 SAMPLING CAUSAL DATASETS

Data D. Given an SCM M* sampled from the Sol, we generate an observational dataset D by
sampling i.i.d. data points from the entailed distribution of M* over observed variables. This involves
forward-sampling from the structural equations in topological order, using the noise distributions
specified for each variable and marginalizing out any latent variables.

Query (). We first sample endogenous observable variables to serve as treatment, outcome, covari-
ates, and factuals, depending on the query class of the Sol. By default, realizations are drawn from a
large, separately sampled observational dataset, rather than from the theoretical variable domains.
This ensures that queries are well-defined and correspond to realizable variable configurations under
the SCM. To support different research goals, Sols can be configured to relax this behavior (e.g., to
include NaN queries) to stress-test robustness. For causal discovery, query sampling can be disabled
to generate datasets more efficiently given that they already include their ground-truth graph G*.

Query ground truth Q*. Each query is estimated by drawing samples from the (manipulated)
ground truth SCM: interventional queries via do-operations (action and prediction), and counterfactual
queries via the three-step procedure (Pearl, 2009).

Ground truth causal graph G*. As presented in Section[5.2] G* is built as the latent projection of
the ground-truth SCM’s causal graph over the observed variables.

Ground truth causal assumptions H*. To characterize the properties of the ground-truth SCM
from the user’s perspective, we provide an analysis module that computes summary metrics related to
common causal assumptions (e.g., measuring linearity via Pearson correlation). A full list of available
metrics is provided in Appendix [G|

Coverage guarantee. Proposition[5.1](proof in Appendix [J) shows that, with sufficiently expressive
discrete mechanisms, CausalProfiler’s sampling strategy can theoretically generate any causal dataset
within a given Sol, guaranteeing L3-expressivity. In addition, Appendix [H| provides an analysis
exploring the empirical distribution of the sampled datasets.

Proposition 5.1 (Coverage). For a Space of Interest S = {M, Q, D}, whose class of Structural
Causal Models is a class of Regional Discrete SCMs! with the maximum number of noise
regions, denoted Mrp_scu r=R,,,..» a0y causal dataset D = {Q, Q*, D, G*, H*} has a strictly
positive probability to be generated.

VS = {M,@,D} s.t. M g MRD*SCM,T‘=R P(D|S) >0

max ?

LA formal definition can be found in Appendix

Benchmark Design. Taken together, these design choices reflect four key properties that are consid-
ered essential for rigorous synthetic evaluation in Causal ML (Poinsot et al., 2025): transparency, by
making all assumptions explicit via the parametrization of the Sol, which serves as a declarative spec-
ification of the evaluation domain; repeatability, through randomized but seed-controlled sampling
procedures, ensuring that SCMs and queries can be exactly reproduced across runs; bias awareness,
supported by the coverage guarantee and the empirical distribution analysis module; and control
over experiments, by exposing a wide range of configurable parameters in the Sol that allow users
to tailor the causal dataset generation to their assumptions and research goals.
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Figure 1: Two-dimensional t-SNE plots of CausalProfiler’s SCMs (green) and established benchmarks
(red), characterized by metrics from the analysis module.

6 EXPERIMENTS

6.1 VERIFICATION OF BENCHMARK CORRECTNESS

To validate the soundness of our benchmark generator, we perform consistency checks across the three
levels of the PCH. Using the SCM sampler and query estimator of the CausalProfiler, we test whether
sampled SCMs satisfy the Markov condition, do-calculus rules, and the structural counterfactual
axioms (Pearl, [2009). We use discrete SCMs to allow exhaustive enumeration of conditioning sets for
statistical tests. To ensure robustness, we iterate over a Sol parameter grid spanning the number of
variables, edge density, cardinalities, and noise regions. See Appendix [K|for full details and results.

L1: Markov Property Verification. We test whether d-separations in the causal graph imply
conditional independencies in the entailed observational distribution of the sampled SCMs. For
each SCM, we enumerate d-separated triplets (A, B,C) and test A | B | C with Pearson’s 2
test (Pearson, [1900), filtering low-sample strata (Koehler & Larntzl [1980) and correcting for multiple
tests (Benjamini & Hochberg), [1995)). The Markov property holds in about 95% of the tested cases,
with most violations due to finite-sample variability.

L2: Do-Calculus Verification. We test whether the three rules of do-calculus hold empirically. For
each rule, we identify variable tuples satisfying its graphical preconditions. We then use the query
estimator to generate two interventional datasets corresponding to the rule’s left- and right-hand sides.
We compare the resulting distributions with Pearson’s x? test, filtering low-sample strata (Koehler &
Larntz, [1980) and correcting for multiple tests (Benjamini & Hochberg, [1995). About 5.5% of tests
fail, mostly due to finite-sample noise.

L3: Structural Counterfactual Axiom Verification. We test whether the axioms of composition,
effectiveness, and reversibility hold for sampled SCMs. Since the axioms involve deterministic
functional relationships, we count only exact matches of the query estimator. All axioms hold exactly
across our samples, confirming the estimator’s consistency with structural counterfactual semantics.

6.2 COMPARISON TO EXISTING BENCHMARKS

Comparison. To illustrate CausalProfiler’s contribution to SCM diversity for evaluating Causal
ML methods, we compare its SCMs (sampled over a Sol grid spanning number of variables, edge
density, cardinalities, noise regions, and dataset size) with two existing benchmarks: the synthetic
SCMs from the Causal Normalizing Flows (CausalNF) work (Javaloy et al.,2023) and the CANCER
and EARTHQUAKE models from bnlearn (Scutaril [2019). For interpretable visualization, we apply
two-dimensional t-SNE (Maaten & Hinton, 2008)) to the computable metrics of the analysis module
(Appendix [G), with a perplexity set to 30, see Figure[T]

Findings. CausalProfiler’s SCMs are more diverse than those of CausalNF and bnlearn. The
eleven CausalNF SCMs are so homogeneous relative to CausalProfiler’s diversity that dimensionality
reduction projects them onto a confined space, appearing as a single point. Moreover, some generated
SCMs are similar to those of CausalNF and bnlearn, showing that CausalProfiler can reproduce
existing benchmarks. Further details and results are presented in Appendices[H.3|and [H.4]
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6.3 METHOD EVALUATION USING CAUSALPROFILER

We demonstrate the utility of our framework by evaluating several recent causal inference methods
across diverse Sols. Our goal is not to exhaustively benchmark each method but to showcase the kinds
of structured empirical investigations CausalProfiler enables — especially on exploring robustness
and violations of causal assumptions. Accordingly, we keep most Sol parameters fixed and vary only
one (or a small subset) at a time, so observed differences can be attributed to the parameter under
study rather than confounded by simultaneous changes.

For each Sol, we evaluate every method using five random seeds, sampling 100 SCMs per seed. Each
SCM yields one training set and five queries with ground-truth values, and results are aggregated
across SCMs and seeds (see Algorithm[I2]in Appendix [[). Experiments were run on a single Intel
Core 19-14900K machine (24 cores, 32 threads, 96GB RAM), fully parallelized on CPU. Although
some methods (e.g., DCM) could benefit from GPU acceleration, none was used here.

Performance is assessed by mean squared error between predicted and true query values, with mean
error, standard deviation, runtime, and failure rate (due to numerical issues or exceptions) for each
method and Sol. We compare Causal Normalizing Flows (CausalNF) (Javaloy et al.,|2023)), Neural
Causal Models (NCM) (Xia et al., [2023)), Variational Causal Graph Autoencoder (VACA) (Sanchez{
Martin et al.| [2022), and Diffusion-based Causal Models (DCM) (Chao et al.,[2023).

Additional experiments, extended results, and Sol configurations are provided in Appendix

6.4 EXPERIMENT 1: GENERAL EVALUATION ACROSS DIVERSE SCMS

To showcase CausalProfiler’s flexibility, we evaluate ATE estimates of VACA, CausalNF, DCM,
and NCM on continuous-variable SCMs across four Sols: Linear-Medium, linear SCMs (15-20
nodes, 1000 samples); NN-Medium, neural SCMs with a 2-layer ReLLU network (8 hidden units,
15-20 nodes, 1000 samples); NN-Large, larger neural SCMs (20-25 nodes, 1000 samples); and
NN-Large-LowData, identical to NN-Large but with 50 samples. See Table I] for results.

Table 1: Performance summary of CausalNF, DCM, NCM, and VACA on the general experiments.

Space Method Mean Error  Std Error Max Error  Runtime (s)  Fail Rate (%)
CausalNF 0.4625 0.8985 9.6079 13790.4 0.00
Linear-Medium DCM 0.1530 1.5289 33.9766 16541.2 0.00
NCM 0.4618 0.9001 9.6134 7384.7 0.00
VACA 0.4209 0.6195 2.3807 2734.5 53.40
CausalNF 0.0160 0.0107 0.1209 10732.7 0.00
NN-medium DCM 0.0276 0.0114 0.0746 15894.4 0.00
NCM 0.0111 0.0121 0.1484 7322.8 0.00
VACA 0.0090 0.0077 0.0479 5759.6 5.00
CausalNF 0.0159 0.0105 0.1535 15114.8 0.00
NN-Laree DCM 0.0267 0.0100 0.0739 19166.2 0.00
& NCM 0.0101 0.0103 0.1161 9450.6 0.00
VACA 0.0090 0.0094 0.0535 5690.8 11.60
CausalNF 0.0359 0.0146 0.1712 22138.2 0.00
NNLL LowDat DCM 0.0777 0.0445 0.3701 2412.1 0.00
Sratgetowhatla - NeM 0.0097 0.0107 0.1263 404.7 0.00
VACA 0.0103 0.0134 0.1043 5217.4 0.00

Findings (Linear-Medium vs. NN-Medium). In the Linear-Medium setting, DCM achieves
the lowest average error (0.1530), indicating excellent performance, but its error standard deviation
is notably high (1.5289), driven by a few extreme outliers (max error 33.98). This suggests DCM
is effective for most queries but can produce large errors in rare cases—potentially problematic in
safety-critical applications matching this Sol. VACA performs competitively with lower max error
and faster runtime, but suffers a high failure rate (53.4%) due to NaNs. In the NN-Medium setting,
where the causal mechanisms are small neural networks, DCM’s advantage disappears. VACA
emerges as the best performer, with the lowest error mean (0.0090) and standard deviation (0.0077),
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while reducing its failure rate to 5%. Interestingly, DCM becomes the weakest performer in this
setting, showing that method rankings are highly sensitive to the underlying functional form of the
mechanisms. This underscores the need for practitioners to evaluate methods within the So/ most
relevant to their application. Lastly, NN SCMs surprisingly yield lower errors than linear ones. A
plausible explanation is an inductive-bias match with the evaluated neural methods and the tendency
of small randomly initialized NNs to produce relatively smooth, low-frequency functions that are
easier to estimate from finite data (Rahaman et al.l[2019).

Findings (NN-Large vs. NN-Large-LowData). In this comparison, we investigate the effect
of reducing data availability. Comparing NN-Large (1000 samples) to NN-Large-LowData (50
samples), DCM is strongly affected: its error nearly triples (from 0.0267 to 0.0777) and its IQR
expands noticeably. CausalNF also shows greater sensitivity to low-data regimes. In contrast, both
VACA and NCM maintain stable performance, with nearly unchanged mean and standard deviation.
Notably, VACA achieves a 0% failure rate, with unexpectedly strong robustness under limited data.

Insights. While not intended as a comprehensive benchmark, these experiments illustrate the types
of insights enabled by our framework. Across the selected Sols, DCM performs well on average but
can produce large outlier errors or become less stable in low-data settings. Conversely, VACA shows
promising generalization even with limited data, though it occasionally fails on certain SCMs. These
findings are specific to the explored Sols and should not be taken as general conclusions. Rather, they
show how our framework enables structured, Sol-specific evaluations, helping practitioners assess
which methods may be more suitable for their own modeling context.

6.5 EXPERIMENT 2: COUNTERFACTUAL ESTIMATION ON DISCRETE SCMSs

This experiment evaluates counterfactual estimation on discrete-variable SCMs as a robustness
check, testing CausalNF and DCM—originally designed for continuous settings—motivated by
prior work showing that CausalNF can approximate discrete distributions (Javaloy et al., [2023;
de Vassimon Manela et al.| 2024). We consider three discrete Sols: Disc-C2-Reject, with 10-
15 nodes, binary variables, and rejection-based mechanism sampling; Disc-C4-Unbias, with the
same graph size but 4-category variables and unbiased random mechanism sampling; and Disc-L-
C2-Unbias, with larger graphs (20-30 nodes), binary variables, and unbiased random mechanism
sampling (Table 2)).

Table 2: Performance summary of CausalNF and DCM on the discrete experiments.

Space Method Mean Error ~ Std Error  Max Error  Runtime  Fail Rate
Dise.Ca-Retect CausalNF 0.0415  0.1116 0.6240  2128s  08.08 %
se-Le-kejec DCM 0.0424  0.1123 0.6240 44062s 0428 %
Dise.CUnbias  CausalNF 0.0431 0.1270 07071  190.7s  40.68 %
: : DCM 0.0411 0.1199 0.7071 3839.4s  22.60 %

. . CausalNF NaN NaN NaN 0.0s 100.00 %
Disc-L-C2-Unbias 1~y 00183 00814 05000 81927s 1132 %

Findings. On Disc-C2-Reject, both CausalNF and DCM perform well and comparably, with low
error means (~0.04) and low failure rates (8% for CausalNF, 4% for DCM). This suggests that both
methods can produce reliable estimates even outside their original assumptions when the functional
mechanisms are simple and binary. However, when moving to Disc-C4-Unbias, where variables
have 4 categories and mechanisms are sampled with unbiased random sampling, the failure rates
increase significantly, especially for CausalNF, which fails on over 40% of SCMs (typically with
NaN errors). This highlights the sensitivity of some methods to mechanism sampling or variable
cardinality, even when mean errors remain similar. To further probe robustness, we scale the graph
size in Disc-L-C2-Unbias while reverting to binary variables. CausalNF fails on all runs, returning
NaNs. DCM has an 11% failure rate, indicating greater resilience in this setting.

Insights. These results underscore the utility of our framework in systematically stress-testing
methods beyond their nominal design assumptions. While CausalNF is not built for discrete data,
prior work suggested it could work in practice. Our framework can help clarify when and how it fails:
certain function classes and discrete configurations are more likely to cause divergence or failure.
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DCM appears more robust across these tests, though not immune. Importantly, this evaluation is not
meant as a definitive comparison, but as a demonstration of how failure cases can be surfaced and
studied in a principled way using the CausalProfiler.

7 LIMITATIONS AND FUTURE WORK

We note that any open-source framework such as CausalProfiler is never a completely finished project,
but rather continuously evolving to meet community needs, with new features added as the field
advances through contributions to the repository.

Diversify Spaces of Interest. Several directions remain open for extending the supported Sols in
CausalProfiler, such as support for scaled and mixed-variable SCMs, sampling interventional training
data, and more realistic data-generating scenarios, including selection bias or measurement noise.
Another direction is to extend beyond tabular data to time-series, images, and text.

Causal Datasets Distribution. While the coverage proposition (Proposition [5.1)) guarantees that
any causal dataset has a positive probability of being sampled within a given Sol with sufficiently
expressive discrete mechanisms, it does not characterize the distribution of generated datasets. As
presented in Appendix |H] certain classes of SCMs remain unlikely to be sampled unless explicitly
specified in the Sol (e.g., linear SCMs). Hence, when aggregating results, users should bear in
mind that causal datasets are not distributed uniformly to avoid misleading interpretations. We
strongly recommend users to use the analysis module, presented in Appendix [G] to identify the
underrepresented attributes, as these vary from one Sol specification to another.

Reducing distributional bias is an important future research direction. Achieving a perfectly balanced
distribution over all metrics is inherently impossible. For instance, uniform sampling over discrete
mechanism functions biases toward non-bijective ones, since bijections are not dense in the function
space. Future work may enable finer control over dataset distributions and underrepresented attributes,
depending on the guarantees one wishes to enforce. One promising avenue is stratified sampling,
which would provide weighted coverage of selected attributes. Currently, controllable Sol parameters
(e.g., number of nodes) are sampled uniformly, but emergent attributes follow skewed distributions
induced by generation. For controllable Sol parameters, stratification could be achieved constructively
via weighted sampling over groups of Sols. For emergent properties, approximate stratification
may require rejection sampling or, more efficiently, new sampling algorithms that enforce global
constraints during generation.

Bridging the simulation-to-real gap. While synthetic evaluation is indispensable (Poinsot et al.|
2025), it is insufficient to fully assess method capabilities, as results may not transfer to real-world
settings. In CausalProfiler, alignment with real domains currently relies on manually specified Sols,
guided by domain expertise or empirical features. A key direction for future work is to develop
methods that automatically map real data to Sols, enabling principled semi-synthetic evaluation
pipelines where Sols are shaped by empirical evidence rather than fixed assumptions. However,
mapping from observational data to Sols is a fundamentally underconstrained problem, and any such
inference must be handled with care, given the challenges around identifiability and inductive bias.

8 CONCLUSION

This work introduces CausalProfiler, a synthetic causal dataset generator for evaluating Causal
ML methods across the three levels of the Pearl Causal Hierarchy. At its core is the notion of a
Space of Interest, which replaces the ad hoc choice of fixed evaluation datasets with a principled
specification of the entire evaluation scope, i.e., classes of causal models, queries and data. This shift
enables transparent, repeatable, and assumption-aware assessments under diverse causal conditions.
After demonstrating that the causal datasets generated by CausalProfiler are correct and can be
similar to existing benchmarks while also being considerably more diverse, we show that the
performance of state-of-the-art Causal ML methods varies substantially across different Spaces
of Interest, underscoring the importance of rigorous, distribution-level evaluation. CausalProfiler is
not intended to replace real-data studies or targeted evaluations, but to complement them. By enabling
systematic exploration, it helps uncover failure modes, expose robustness to violated assumptions, and
highlight unexpected strengths that may motivate new research directions. In this way, CausalProfiler
marks a first step toward a more complete evaluation ecosystem for Causal ML.
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REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. The paper specifies
fully the steps required to reproduce our experiments, with pseudocode for all algorithms provided
in the appendices. All experimental configurations are also documented in the appendices. An
anonymized zip archive containing the full code and reproduction instructions is included in the
supplementary materials. The codebase reflects the exact setup used in the reported experiments.
Upon acceptance, we will publicly release the codebase on GitHub. We note that no external datasets
are required to reproduce the experiments. We also specify the hardware used and report runtime
metrics, making computational requirements transparent.

ETHICS STATEMENT

This work introduces CausalProfiler, a synthetic benchmark generator for evaluating Causal ML
methods. As a methodological tool rather than an application-facing system, it does not directly
raise societal impact concerns to the best of our knowledge. Furthermore, to prevent naive use of
CausalProfiler, this work transparently outlines its guarantees and limitations. We also remind readers
of the simulation-to-real gap inherent to any synthetic system. To mitigate the risk of inadvertent
misuse of CausalProfiler, it is emphasized that evaluation results should not be aggregated and
interpreted naively without exploring the distribution of the generated causal datasets.

Finally, we do not release pretrained models or real-world datasets. We provide code that generates
fully synthetic data, thereby avoiding issues related to privacy, fairness, and security. The paper
involves no human subjects, crowdsourcing, or sensitive data.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs, specifically ChatGPT, as a writing assistant. The model was used only to help with
language-related aspects of the paper, including:

* Rephrasing existing content without changing its meaning
* Improving clarity and flow

* Identifying issues such as unclear points, unintended tones, or awkward phrasing.

All scientific contributions originate from the authors, who take full responsibility for the paper.

B ADDITIONAL DEFINITIONS & NOTATIONS

~ )

Definition B.1 (Semi-Markovian and Markovian SCMs). An SCM is said to be semi-
Markovian (Pearl, 2009) if its set of structural equations is acyclic, meaning there exists
an ordering of the equations such that for any two functions f;, f; € F, if f; < f;, then
V; ¢ PA(V;). This condition ensures that the causal dependencies among endogenous
variables form a Directed Acyclic Graph.

An SCM is Markovian (Pearl, [2009) if the exogenous variables influencing different en-
dogenous variables are mutually independent. Formally, for all distinct V;, V; € V, we have
Uy, UL Uy,. This implies the absence of latent confounding, allowing the model to be fully
described by a DAG with independent noise terms.

Definition B.2 (Causal Graph of a Semi-Markovian SCM). The causal graph of a Semi-
Markovian (Bareinboim et al., [2022) SCM is an acyclic directed mixed graph with:

* Directed edge V; — V; if V; € PA(V)

* Bi-directed edge V; <> V; if Uy, U Uy,

B.1 INTERVENTIONAL QUANTITIES (£5)
Average Treatment Effect (ATE):
ATEr_y = E[Y|do(T = 1)] — E[Y|do(T = 0)]

Conditional Average Treatment Effect (CATE):
CATEr_ v (x) =E[Y|do(T =1),X =x] —E[Y|do(T = 0),X = x|
B.2 COUNTERFACTUAL QUANTITIES (L3)

A counterfactual query such as P(Yg,(r—¢)|VF = vF) is computed by abduction (conditioning on
factual data), action (intervening), and prediction (computing the outcome) (Pearl, 2009).

Counterfactual Total Effect (Ctf-TE):
Cti-TEr v (y,t,¢,VF) = P(Yao(r=t)|VF = VF) — P(Yao(1=c)[VF = VF)

C SPACE OF INTEREST

Each Space of Interest is defined by a set of parameters that control the SCM space, the causal
queries of interest (Query space), and the dataset used for estimation (Data space). Table [3|provides
an overview of all configurable parameters in a Space of Interest instance, along with their default
values. Some parameters are only relevant under specific conditions—for instance, kernel parameters
are used only with continuous variables (e.g., when evaluating conditional expectations), function
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sampling strategies apply exclusively to discrete mechanisms, noise regions apply only for discrete
SCMs, and noise mode is ignored for tabular mechanisms (noise is already embedded in the table).
Note that one can use symbolic expressions involving N (the number of nodes) and V (the cardinality
of a variable) to define parameters that depend on sampled values. For example, the expected number
of edges canbe setas 0.5 « N, or the number of noise regions in a discrete SCM can be set to V.

Table 3: Parameters defining a Space of Interest instance and their default values. The double lines in

the table conceptually separate the SCM space, Query space, and Data space.

Category Parameter Default Value
Number of endogenous variables [5, 15]
Variable dimensionality [1,1]
Expected number of edges (required) —

SCM structure Proportion of hidden variables 0.0
Markovian boolean flag True
Semi-Markovian boolean flag False
Predefined causal graph —
Mechanism family (e.g., Linear, NN, Tabular) Linear
Mechanism arguments (used to define custom NN/tabular —
mechanisms)

Mechanisms  Endogenous variable cardinality (for discrete variables only) 2
Variable type Continuous
Discrete function sampling (for discrete variables only) Sample Rejection
Noise mode Additive
Noise distribution Uniform

Noise Noise distribution arguments [-1, 1]
Number of noise regions (for discrete variables only) N
Number of queries per sample 1

Query Query type ATE
Specific query (overrides random query sampling) —
Whether to allow queries that evaluate to NaN False
Whether to disable query sampling (e.g., for causal discovery)  False
Kernel type Gaussian

Kernel Kernel bandwidth 0.1
Custom kernel function —

Data Number of samples in the set of observed data 1000

D CAUSAL GRAPH SAMPLING

We first generate a random Directed Acyclic Graph (DAG) that specifies causal relations between
variables. This structure is then extended by designating a subset of variables as hidden/unobserved,
enabling the creation of both Markovian and semi-Markovian SCMs depending on the Sol spec. We
separate these two steps in separate algorithms for clarity (Algorithm 2] uses Algorithm [T)).

First, Algorithm[I] samples a DAG over a unique type of variables, not yet distinguishing between
observable and unobservable variables. To do so, the list of nodes is defined as a list of integers
imposed to be the topological order of the DAG (line 1). Then, for each node (line 4), its number of
parents is sampled from a Binomial law of parameters i — 1 and p.q4. With ¢ the rank of the node in
the topological order (line 5). The actual parents are sampled from the set of nodes having a smaller
topological rank (line 6) which guarantees that the generated graph is a DAG.

Second, from the generated DAG, Algorithm [2] simply creates the two sets of observables and
unobservable variables by sampling py,.|V| unobservable node among the total set of nodes (line 3).
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Algorithm 1 Generate a Random DAG with Expected Degree
Inputs: number of nodes IV, expected degree d
1. V«{1,...,N}
2: E+{}
3t Peage — 24
: fori € [1, N] do
5 Npaiy ~ B(i — 1, peage)
6:  PA(i) < Nps(;) nodes sampled without replacement from V'
7
8

N

E+~EU{j—1i|jePA()}
: end for

Output: G = {V, E}

Algorithm 2 Generate a DAG with Observed and Hidden Variables
Inputs: number of nodes IV, expected degree d, proportion of hidden variables py,
1: G = (V,E) < DAG_sampling(N, d) (see Algorithm
2: Nn ~ B(N,pp)
3: Vi < N}, nodes sampled without replacement from V'
4: V, V\Vh
Output: G = {V =V, V,,, E}

Because some variables in the DAG are unobserved, we expose only the observed structure to the user
in the form of an acyclic directed mixed graph. To obtain this, we apply Verma’s latent projection
algorithm to the causal graph of each sampled regional discrete SCM (see Algorithm [3). If a method
requires the true SCM, including the hidden confounders, that can be accessed as well.

Algorithm 3 Projection Algorithm (Verma,|1993)

Input: an acyclic directed mixed graph G = {Vo, Vi, E}, with Vo the set of observed variables, Vg the set
of hidden variables and E the mixed edges
I: E « {}
2: for A,B € Vo do
if there is a directed path A — ... — B in G with all intermediate nodes belonging to Vg then
E' + E U{A— B}
end if
if there is a collider-free path A <— ... — B in G with all intermediate nodes belonging to Vi then
E + E U{A+ B}
end if
9: end for
10: G’ + {Vo,E'}
Output: G’ the latent projection of G over Vo

A O

E SAMPLING DISCRETE SCMS

E.1 REGIONAL DISCRETE SCMS

Regarding discrete SCMs, we sample discrete Markovian SCMs which we refer to as Regional
discrete SCMs as presented in definition [E.T|below.
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Definition E.1. Regional discrete SCM

A regional discrete SCM is a markovian SCM M = {V, U, F, P(U)} where:

* V = {1, ..., V4} the set of finite discrete endogenous variables is divided into two
sets V,, and V, respectively representing the set of observed and hidden variables
suchthat V=V ,UV,and V, NV, =0

* U={Uy,...,Uy;} the set of mutually independent continuous exogenous variables
is such that Vi € [1,d], Uy, = U;

» F the structural equations are regional discrete mechanisms as defined in Defini-
tion

The class of regional discrete SCMs is denoted Myp-_scy.

Definition E.2. Regional discrete mechanism

Given Iy = {I{,},¢cp1,p a partition of R parts of Qp,, and my = {mj, : Qpv) =
Qv }rep, g a set of R distinct mappings from py (v to Qy, the regional discrete mecha-
nism of an endogenous variables V' is a function fy : Qpy(vy, Quy, + Qv such that:

fv(pa(V), uy) = m,.(PA(V) — V) when uy € I3,

I3, and m,. are called the r*" noise region and mapping of the regional discrete mechanism

fv.

Remark on {;;, and R: In the definition of a regional discrete mechanism (Definition , no
constraints are imposed on Qy,, . However, if Qg is discrete, then |Qy,, | > R is required to form a
partition of R elements of 2, . Consequently, in order to be able to constitute such a partition for
any finite R, we decided to consider continuous exogenous variables in the definition of a regional
discrete SCM (Definition [E.T)). In addition, since the m7, mappings are considered distinct and there

are exactly |Qy/[|?)! different mappings from V to PA(V), R < |Qy|!?m)l is required.

Even if regional discrete SCMs are Markovian, the fact that they contains two types of endogenous
variables (i.e., observed and unobserved by the user) enables the representation of complex situations
where not all variables are observable. This induces the presence of potential hidden confounders
from the user’s perspective. As a result, the causal sufficiency assumption is no longer always
respected. In our parametric definition of a Sol, this phenomenon is controlled by the parameter
specifying the proportion of unobserved variables among the endogenous variables. Thus, if this
parameter is set to 0, the Sol’s class of SCMs is included in the class of causally sufficient discrete
SCMs.

The complexity of discrete mechanisms can be controlled by the number of noise regions R. Indeed,
as the number of noise regions increases, so does the complexity of the causal mechanism, in the
sense that it becomes a mixture of a larger number of mappings. The distribution of a variable given
its parents is, hence, more stochastic. As a result, the user-defined class of regional discrete SCMs
can be very broad. This provides an additional degree of complexity to make our synthetic causal
datasets less trivial.

The class of regional discrete SCMs got inspired by the class of Regional Canonical Models by (Xia
et al.|[2023) and the class of canonical SCMs by (Zhang et al., 2022)). We decided to define our own
class rather than using one of these two classes for two reasons. First, canonical SCMs are very
expensive to sample particularly because of the presence of confounded components. Second, even
if Regional Canonical Models are designed to be less expensive because their expressivity can be
regulated via the number of noise regions to consider, they lose some interesting properties such
as the non overlapping of the noise regions which is crucial to favor a strong dependence between
the user choice of the number of noise regions and the complexity of the generated mechanisms.
Moreover, Regional Canonical Models still rely on confounded components which is the major source
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of complexity at the sampling stage. Hence, we defined the class of Regional discrete SCMs to not
have to deal with confounded components at the sampling stage (instead we rely on a projection
algorithm after sampling, see Appendix [D)) and to regulate mechanisms expressivity through the use
of non-overlapping noise regions.

E.2 DISCRETE MECHANISM SAMPLING STRATEGIES

We use regional discrete mechanisms (Definition[E.2), which define tabular mappings from parent
variables to a target variable, conditioned on regions of the exogenous noise space. By default, each
region induces a distinct mapping, enabling both stochasticity and high functional expressivity.

To generate these mechanisms, we support three sampling strategies described below. All methods
define a partition of the exogenous noise domain 2y into R regions, and assign a parent-to-child
mapping to each region. Let C' be the cardinality of the variables, and {p,(y) the space of parent
configurations for variable V.

Controlling complexity. The number of possible mappings from parent configurations to output
values grows as |Qy/|!»(")|. To keep simulations tractable, users can control the number of noise
regions R. When R is small, sampling provides diverse but lightweight mechanisms. When R
approaches the total number of mappings, full enumeration becomes feasible but computationally
expensive.

We now describe the three supported sampling strategies.

EXHAUSTIVE PARTITION

This strategy enumerates all possible mappings from parent configurations to output values and
assigns each one to a distinct noise region (R = |Qy/|/?»()), ensuring complete coverage of the
function space. This method guarantees maximal functional diversity across regions and can serve as
a stress test for generalization under highly non-linear mechanisms. This is the only strategy where
the number of noise regions is not decided by the user but rather set to the maximum. The exhaustive
partition sampling strategy is the one to use if one wants the coverage guarantee (Proposition [5.1)) to

apply.

SAMPLE REJECTION

This strategy samples parent-to-output mappings uniformly at random, rejecting duplicates to ensure
that each region corresponds to a distinct function. As mappings are sampled with replacement,
rejection may require several attempts when R approaches the number of possible mappings.

We provide below, in Algorithm 4] a pseudocode version of this strategy. The algorithm proceeds as
follows. For each endogenous variable V' (line 2) a regional discrete mechanism is created. To do so,
the domain of V' is first initialized with a list of integers corresponding of the cardinality specified
in the Sol (line 3). Then, if the number of noise regions R specified in the Sol is larger than the
maximum number of noise regions, the maximum number of noise regions is used to generate the
regional discrete mechanism (lines 4-5). The partition of the noise regions is built as consecutive
intervals of random size resulting from the ordering of R — 1 sampled realizations of the uniform
exogenous distribution (lines 6 to 9 and 13). Finally, for each noise region r (line 12), mappings mJ,
are sampled till one mapping not already used for other noise regions is sampled (lines 15 to 18).
This is why this algorithm is denoted as the “sample rejection” approach. One can note that there are
two sources of randomness in this algorithm: the size of the noise regions and the sampled mappings
whenever the number of noise regions is not maximal.
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Algorithm 4 Generating regional discrete mechanisms with sample rejection
Inputs: set of endogenous variables V of cardinality C, causal graph G, 2y domain of exogenous variables,
number of noise regions R
1: F+{}
2: for V € Vdo
3: Qv<—{1,...,C}
4: QPAg(V) < {1,...,0}‘1%9(‘/)'
5. R < min(R, |Qy]|?mm
6: lmin < inf(QU)
7‘
8
9

lmax SUP(QU)
L= {lz ~ u[lmin, lmax] | 1€ [1, R— 1]} @] {lminy lmax}
: Sort L in ascending order
10: fv < {}
11:  my « {}
12:  forr € [1,R] do

13: It « [L,, Lyy1[ with L, the r** element of L
14: my + {}

15: while m7, = {} or my, € my do

16: my < |Qpa(v)| elements sampled with replacement from Qv
17: end while

18: my < my Umy,

19 fy e fruimisI)

20:  end for

21:  F <« FUfy

22: end for

Output: F

UNBIASED RANDOM ASSIGNMENT

In this strategy, each noise region is assigned a mapping sampled independently and without en-
forcing uniqueness. As a result, multiple regions may correspond to the same function from parent
configurations to outputs.

For example, suppose a variable has one binary parent taking values in {0, 1}, and the output variable
takes values in {0, 1,2}. One randomly sampled mapping might assign output 0 to parent value 0,
and output 2 to parent value 1. Since mappings are sampled independently for each region, this same
function (0 — 0,1 — 2) may appear in multiple regions by chance.

This approach reflects scenarios where mechanisms are drawn independently from a distribution over
functions, without enforcing any requirements on uniqueness or coverage. As a result, the effective
variability in the entire system may be lower compared to other strategies, but the sampling is a lot
more computationally efficient.

F QUERY SAMPLING AND ESTIMATION

In this work, we consider the following types of queries: Average Treatment Effect (ATE), Conditional
Average Treatment Effect (CATE) and Counterfactual Total Effect (Ctf-TE). Their definitions can be
found in Appendix [B] All the queries can be defined for sets of covariates and factuals belonging to
the set of endogenous variables. In other words, we do not implement multi-interventions, but we
consider conditioning and observing factuals on several variables. Finally, the values taken by these
variables (e.g., treatment and control values for ATE) must belong to their definition domain. The
only parameter that controls the queries class is the type of queries chosen by the user (i.e., ATE,
CATE and Ctf-TE). Thus, the class of considered queries can be defined as follows:

OATE = {ATETHy(t, C) | T, Y CVandt,ce QT}
Qcate = {CATE,yx(t,¢,x) | T,Y CV, XCV\{T,Y}andt,c € Qr, x € Ox}
Qcirte = {CH-TEr,y (y,t,c,vp) | T,Y, Vp C Vand t,c € Qr, y € Qy, vp € Qv }
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Formally speaking, we have not integrated the causal graph as a causal query but rather as a hypothesis
or prior knowledge. Indeed, except for causal discovery tasks, the causal graph is most often assumed
to be known (or at least some information derived from the graph, such as the constitution of a valid
adjustment set, or a valid causal ordering). Nevertheless, one can use our random causal dataset
generator to evaluate causal discovery or causal representation learning methods. To do so, one just
needs to retrieve the causal graph from the causal dataset directly instead of using a query.

Finally, a user can also implement a specific query and use it to generate synthetic causal datasets. To
do this, the user has to use the Query class in our code base.

F.1 QUERY SAMPLING

As the values taken by varaibles in the queries have to belong to their definition domain, we draw
realizations from a large, separately sampled observational dataset. Indeed, given the randomness of
the causal mechanisms, we cannot know in advance the domain over which the SCMs are defined.
Even when variable cardinalities are fixed, the sampled mechanisms may be non-surjective, making
certain values impossible to observe. For this reason, we approximate the domain of definition
through data sampling, ensuring that queries are computed only for realizable variable configurations.
Moreover, since the dataset given to the user is smaller to the one we use for query sampling and
estimation, it is possible that queries use values outside of the observational dataset or that they are
non-identifiable. Explicitly enabling queries to be outside the observed dataset can be useful for
studying generalization—especially in settings where the support is known, such as linear SCMs.
However, we let for future work the devlopement of a user-configurable option in Sols, for instance,
allowing users to define a custom domain for the query variables.

The following algorithms detail the procedures for sampling ATE, CATE, and Ctf-TE queries. In
these algorithms, given a dataset D, a variable X and a realization = of X, we use the notation D, x
(resp. D) x—,) to represent the dataset D restricted to the variable X (resp. restricted to the samples
whose X realization equals x). In addition, B(n, p) denotes the Binomial law of parameters n and p.

Algorithm 5 Generating sets of observed data

Inputs: causal graph G, causal mechanisms JF, distribution of the exogenous variables P(U), dataset size N

I: D+ {}

2: Do+ {}

3: {u17...,uN} ~ P(U)

4: for V € V following a causal order given by G do

5: {pa(V)l,...,pa(V)N} — D‘pA(V)

6: {uvl,...,uVN} <_D\UV

7. Avr,...,on} < fv({pa(V),...,pa(V)n}, {uvi, ..., uvy })
8: D+ DU{vi,...,un}

9: if V € V, then

10: D, + D, U{v1,...,on}

11:  endif

12: end for

Output: D,

Algorithm 6 Generating ATE queries

Inputs: set of observable endogenous variables V,, training set D

1: T < one variable randomly sampled from V,
2: Y < one variable randomly sampled from V,
3: t < one realization of 7" randomly sampled from D)z
4: ¢ < one realization of 7" randomly sampled from D,p

Output: Qarre = {T,Y,t,c}
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Algorithm 7 Generating CATE queries

Inputs: set of observable endogenous variables V,, training set D

1:
1 Y < one variable randomly sampled from V,

T < one variable randomly sampled from V,

: dx < an integer randomly sampled from [1, ..., |V,| — 2]

X < dx variables randomly sampled from VO\{T7 Y}

: t + one realization of 7" randomly sampled from D)r
: ¢+ one realization of 7" randomly sampled from D|p
: X < one realization of X randomly sampled from D x

Output Qcare ={T,Y,X,t,c,x}

Algorithm 8 Generating Ctf-TE queries

Inputs: set of observable endogenous variables V,, training set D

1:
: Y < one variable randomly sampled from V,

T < one variable randomly sampled from V,

¢ dvj < an integer randomly samples from [1, ..., |V,|]

VF < dv variables randomly sampled from V,

: t < one realization of T randomly sampled from D,r
: ¢ < one realization of 7" randomly sampled from D|p

v < one realization of V  randomly sampled from D‘V »

Olltpllt Qcrr—te ={T,Y,Vp,t,c,vr}

F.2 SCM-BASED QUERY ESTIMATION

Each query is evaluated by modifying the SCM, sampling the exogenous variables, and computing
expectations over the outcomes. In practice, we simulate interventions and counterfactuals by directly
manipulating structural equations and conditioning on sampled variables.
supports efficient batch estimation using the same random seeds for reproducibility.

Queries that yield NaN estimates can optionally be rejected and resampled, depending on the Sofl
settings. NaN estimates appear if the corresponding sampled query is undefined (e.g., conditioning
on a zero-probability event). However, to evaluate the ability of some models to identify if the query
is undefined instead of trying to answer it, NaN estimates can be interesting to keep. This is why we
decided to let users choose this option through a parameter of the Sol.

The following algorithms detail the procedures for estimating ATE, CATE, and Ctf-TE queries.
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Algorithm 9 Estimating ATE queries

Inputs: ATE query to estimate Q@ = {7,Y, ¢, c}, causal graph G, causal mechanisms F, distribution of the
exogenous variables P(U), number of samples to draw for estimation N

I: {u1,...,un} ~ P(U)

2: Dy < {uy,...,un}

3: for V € V following a causal order given by G do
4: if V =T then

5: {U1,...,UN}<—{t,...,t}

6: else

7. {pa(V)1,...,pa(V)n} < Dijmav)

8: {UV1,~~~7UVN}<_Dt|UV

9: {vi,...,on} < fv({pa(V)1,...,pa(V)n}, {uv,,...,uvy })
10:  endif

11: D + D U{v1,...,un}

12: end for

13: D¢ < {ui,...,un}
14: for V € 'V following a causal order given by G do
15:  if V =T then

16: {vi,...,on} = {c,... ¢}

17: else

18: {pa(V)1,...,pa(V)n} < Deipacvy

19: {uvy,...,uvy } < Dy,

20: {vi,...,on} + fr({pa(V)1,...,pa(V)n}, {uvy, ..., uvy })
21: end if

22: D4 D.U{vi,...,on}

23: end for

24: Q* + avg(Dyjy) — avg(Dejy)
Output: Q*
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Algorithm 10 Estimating CATE queries

Inputs: CATE query to estimate Q = {7, Y, X, ¢, ¢, x}, causal graph G, causal mechanisms F, distribution of
the exogenous variables P(U), number of samples to draw for estimation N

I: {u1,...,un} ~ P(U)

2: Dy < {uy,...,un}

3: for V € V following a causal order given by G do
4: if V =T then

5: {U1,...,UN}<—{t,...,t}

6: else

7. {pa(V)1,...,pa(V)n} < Dijmav)

8: {UV1,~~~7UVN}<_Dt|UV

9: {vi,...,on} < fv({pa(V)1,...,pa(V)n}, {uv,,...,uvy })
10:  endif

11: D + D U{v1,...,un}

12: end for

13: Dc<—{u1,...7uN}
14: for V € V following a causal order given by G do
15:  if V =T then

16: {vi,...,on} < {c,...,c}

17: else

18: {pa(V)1,...,pa(V)n} < Deipacvy

19: {uvy, ..., uvy } < Depuy,

20: {vi,...,on} < fv({pa(V)1,....,pa(V)n},{uv,,...,uvy })
21: end if

22: D.«+~ D.U{v1,...,on}

23: end for

24: Dt < Dt|X:x

25: De  Dejx—x

26: Q* «+ avg(Dyjy) — avg(Dejy)
Output: Q*
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Algorithm 11 Estimating Ctf-TE queries

Inputs: Ctf-TE query to estimate @ = {7, Y, V,t, ¢, vr }, causal graph G, causal mechanisms J, distribution
of the exogenous variables P(U), number of samples to draw for estimation N

I: {u1,...,un} ~ P(U)

2: DUvF —{uy,...,un}

3: for V € V following a causal order given by G do

4 {pa(V)i,...,pa(V)n} + Du,, IPACV)

5: {uvl RPN ,UVN} «— DUvF Uy

6: {Uh ceey UN} — fV({pa(V)17 cee ,pa(V)N}, {UVU ce ,UVN})
7: DUvF (—DUVF U{’Ul,...,’vz\]}

8: end for

9

: DUvF — DUvF Vpevp
10: M <+ \DU‘,F\

11: {ul,...,uM} +~— Dy
12: Dy {ul,. . .711]\/1}
13: for V' € V following a causal order given by G do
14:  if V =T then

VF |U

15: {vi,...,on} < {¢t,...,t}

16: else

17: {pa(V)1,...,pa(V)~n} < Dijpa(v)

18: {uvy,...,uvy} < Diju,

19: {vi,...,on} < frv({pa(V)1,....,pa(V)n},{uvi,...,uvy })
20: end if

21: Dt<—DtU{’Ul,...7UN}

22: end for

23: D; + {u1,...,um}
24: for V' € 'V following a causal order given by G do
25:  if V =T then

26: {v1,...,on} < {c,...,c}

27:  else

28: {pa(V)1,...,pa(V)n} < Dejpav)

29: {’u,v17 ceey uVN} — DC|UV

30: {’1)17 - ,UN} — fv({pa(V)l, - ,pa(V)N}, {uvl,. .. ,uVN})
31:  endif

32: DC<—DCU{U1,...7UN}

33: end for

34: Q* < avg(Dy)y) — avg(Depy)
Output: Q*
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G ANALYSIS MODULE’S METRICS

In order to analyze the characteristics of the sampled SCMs we implemented the following metrics.
Let us imagine we sampled an SCM M = {V, U, F, P(U)} with V = (V,, V) and whose
causal graph is denoted G. The projection of G over the observable variables V, is denoted Gv/, .

Analysis of the causal graph G:
* Average in-degree: din = 57 Yy ev [PA(V)]
* Variance of in-degree: var(d;,) = Wll Svev(PAV)| = din)?

* Average number of ancestors: |An(V)| = ﬁ > vev |[An(V)| where An(V') denotes the
set of ancestors of V'

* Variance of number of ancestors: var(|An(V)|) = |Tl\ Svev(An(V)| = [An(V)])?

* Average number of descendants: |De(V)| = ﬁ Y vev |De(V)| where De(V') denotes
the set of descendants of V'

* Variance of number of descendants: var(|De(V)|) = ﬁ S vev(De(V)| = |De(V)])?

» Average length of causal paths: L = ﬁ >
paths in G

pepg [Pl Where pg denotes the set of directed

* Variance length of causal paths: var(L) = ﬁ Y peps (1Pl = L)

* Maximum length of causal paths: Ly,ax = maxyep, [P

Analysis of the projected causal graph Gv,:

* Average number of sibling |Si(V)| = \\}ol > vev, [9i(V)| where Si(V) denotes the
set of siblings of V'

* Variance of number of siblings: var(|Si(V)|) = ﬁ Svev, ([Si(V)] = [Si(V)])?

* Number of maximal confounded components (C—compsﬂ |C| where C denotes the set of
maximal c-comps in Gy,

* Average size of maximal c-comps: |C| = ﬁ YceclC|

* Variance of the size of maximal c-comps: var(|C|) = ﬁ > ceclC| - ICP?

Analysis of the observational distribution Pp(V,):

* Minimum probability of the joint distribution: pv, min = miny,eqy, Pm (Vo =v,)

* Proportion of events with a null probability: py = ﬁ >
1_ denotes the indicator function

voEQy, 1p (Vo=v,)=0 Where

* Minimum probability of the marginal distributions:

in = min min Py (V =v
Pmin = 120, seo m( )

* Average minimum probability of the marginal distributions:

1 1
Dmin = = —— min Py (V =v
b V| VZ Q] Join P )

€V,

3Two variables are considered siblings if they are linked by a bi-directed edge.
*We use (Tian & Pearl,[2002) definition of (maximal) confounded components.
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* Variance of the minimum probability of the marginal distributions:

1 . _
ar(pmin) = m Z (mll’l PM(V = 'U) - pmin)2
%

* Distance (L) of the joint distributions to the uniform one:

1
d(Pp;th) = Y |PM(Vo:VO)_m
VOGQVO Vo

* Average distance (L) of the marginal distributions to the uniform one:

1
Vi X Puv =) - g

VEV,veQy

d(Pav;U) =

* Variance of the distance (L) of the marginal distributions to the uniform one:

2
> (Z PV =) = il - d(PM;m)

VeV, \veQy

var(d(Pp;U)) =

|V |
* Entropy of the joint distribution: H(Pps(V))

All the above-mentioned probabilities are computed from a set of 1M samples drawn from the SCM

M.

Let us note that p,,;, enables the user to check if the strong positivity assumption holds. If
pv,.min > 0, then strong positivity is respected. In addition, if strong positivity does not hold,
Pv,,min and po indicate the extent to which the assumption is not met — the higher the metrics, the
less the hypothesis is respected. On the other hand, p,,;, indicates whether the weak positivity

assumption holds. If p,,;, > 0, then weak positivity is respected. Finally, d(Pp;U), d(Pa;U) and
var(d(Pa;U)) enables the user to assess to which extent the observational distribution is imbalanced.

Analysis of the causal mechanisms F:

» Average Pearson’s correlation between the parent-child pairﬂ
V,V;
V;EPA(V)UUy
* Variance of Pearson’s correlation between the parent-child pairs:
V.,Vi)—p
var(pp) |V| Z |PA UUV| Z (pp(V,V;) — pp)
V;EPA(V)UUv
* Average Spearman’s correlation between the parent-child pairs®
V,V;
ps = |V| Z - PAV) U Yo ps(VV))
V;€PA(V)UUy
* Variance of Spearman’s correlation between the parent-child pairs:
V.Vi)—p
var(pg) |V\ Z \PA UUV| Z (ps(V,Vj) = ps)
V; €PA(V)UUv
» Average conditional entropy of a variable given its parents:
H= IV\ > H(VIPA(V))

Vev
3pp and pg respectively denote the Pearson’s and Spearman’s correlation
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* Variance of conditional entropy of a variable given its parents:

var(H) = ﬁ > (H(V|PA(V)) — H)?
vev

In order to be able to use person correlations, spearman correlations, and conditional entropy as
indicators of degrees of linearity, monotonicity, and stochasticity of causal mechanisms, we do not
derive these quantities from samples drawn from the entailed distribution. Instead, for each variable,
we create a dataset resulting from the application of its causal mechanism to the cartesian product
of the values taken by its endogenous and exogenous parentﬂ In other words, we analyze the
mechanisms’ images of their input space. This allows us to analyze each mechanism independently
of the others.

Thus, pp and var(pp) can be interpreted as the average degree of linearity of causal mechanisms and
their variance. Furthermore, pg and var(pgs) can be interpreted as the average degree of monotonicity
of causal mechanisms and their variance. Finally, H and var(H) can be interpreted as the average
level of stochasticity of causal mechanisms and its variance.

H ANALYSIS OF THE EMPIRICAL DISTRIBUTION OF THE GENERATED SCMS

As we do not provide the user with an expression of the distribution of the sampled regional discrete
SCMs, we need to investigate if some SCMs classes are over/underrepresented. This analysis is
important to identify the potential biases CausalProfiler might create in order to take them into
account when evaluating Causal ML methods. Indeed, as our goal is to provide a tool for rigorous
empirical evaluation of causal methods, we need to be transparent on the limitations of our generator
so that researchers and practitioners can interpret the results of their methods with full knowledge of
the potential biases coming from CausalProfiler.

H.1 EXPERIMENT

To visualize the distribution of the SCMs generated, we analyze the distribution of the metrics of the
analysis module characterizing the SCMs. For each SCM sampled, all the implemented metrics (see
Appendix[G) are computed.

The studied SCMs are sampled from the Sols defined by the cartesian product of the following
parameters:

* Number of endogenous variables: {3,4,5}

» Expected edge probability: {0.2,0.4,0.6,0.8}

* Proportion of unobserved endogenous variables: {0,0.1,0.2,0.3}

* Number of noise regions: {2, 5, 10,20, 50}

+ Cardinality of endogenous variables: {2,3,4,7}

* Distribution of exogenous variables: set to /[0, 1]
For each Sol 10 SCMs are sampled, making a total of 9600 SCMs studied. Let us mention that we
sample more SCMs than for verification (Section [6.1]for two reasons. First, it enables us to have a
better approximation of the SCMs distribution. Second, the computation of all the assumptions and

characteristics metrics is, in fact, less computationally expensive than computing all the independence
tests that were required for verification.

®For continuous SCMs, we first discretize the variables’ domains of definition and then build the cartesian
product.
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H.2 RESULTS

The first conclusion, based on Figures 2] to[6] is that the generated SCMs do indeed belong to the
specified Sols and that their characteristics are consistent with the latter.
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Figure 2: Average degree of the causal graphs for the generated SCMs depending on the expected
edge probability. Observation: The average degree corresponds on average to the degree of the
generated causal graphs.
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Figure 3: Variance of the causal graphs’ degree of the generated SCMs depending on the number of

variables and the expected edge probability. Observation: The variance of the degree increases with
the size of the graph and its density.
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Figure 4: Average causal paths length of the causal graphs of the generated SCMs depending on
the number of variables and the expected edge probability. Observation: The length of causal paths
increases with the size of the causal graph and its density.
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Figure 5: Average number and size of maximally confounded components in the projected causal

graphs of the generated SCMs depending on the number of unobserved variables. Observation: The
number and size of confounded components increase with the proportion of unobserved variables.
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Figure 6: Average conditional entropy of a variable given its parents in the generated SCMs depending
on