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ABSTRACT

Causal machine learning (Causal ML) aims to answer “what if” questions using
machine learning algorithms, making it a promising tool for high-stakes decision-
making. Yet, empirical evaluation practices in Causal ML remain limited. Existing
benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets,
leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce
CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on
a set of explicit design choices about the class of causal models, queries, and data
considered, the CausalProfiler randomly samples sets of data, assumptions, and
ground truths constituting the synthetic causal benchmarks. In this way, Causal ML
methods can be rigorously and transparently evaluated under a variety of conditions.
This work offers the first random generator of synthetic causal benchmarks with
coverage guarantees and transparent assumptions operating on the three levels of
causal reasoning: observation, intervention, and counterfactual. We demonstrate
its utility by evaluating several state-of-the-art methods under diverse conditions
and assumptions, both in and out of the identification regime, illustrating the types
of analyses and insights the CausalProfiler enables.

1 INTRODUCTION

Causal machine learning (Causal ML) seeks to estimate the effects of interventions and counterfactuals
using machine learning techniques (Kaddour et al., 2022), enabling principled decision making—for
example in medicine and policy. Despite the theoretical maturity and growing relevance of Causal
ML, current research practices lack rigourous evaluations of how proposed methods would perform
under realistic and diverse conditions, limiting their practical utility (Curth et al., 2024; Feuerriegel
et al., 2024; Poinsot et al., 2025; Berrevoets et al., 2024).

In Causal ML, evaluation is particularly challenging due to the unobservability of counterfactual
outcomes (Holland, 1986). Researchers can rely only on scarce real-world data sources such
as randomized controlled trials, considered the gold standard, which are expensive, are ethically
constrained, and often encompass a low amount of data (Greenland & Brumback, 2002; Tennant
et al., 2021). As a result, existing benchmarks often rely on a few semi-synthetic datasets (e.g.,
Syntren (den Bulcke et al., 2006), ACIC2016 (Dorie et al., 2019)) or model-driven synthetic datasets
generated from fitted causal mechanisms (Neal et al., 2020; Parikh et al., 2022; Athey et al., 2024;
de Vassimon Manela et al., 2024). However, these datasets encode assumptions that are rarely made
explicit and whose validity is difficult to generalize beyond the original study context (Poinsot et al.,
2025). In parallel, many researchers define handcrafted synthetic datasets, useful for theory but
fragile for empirical evaluation: a few manually chosen models can overstate performance by aligning
with method-specific assumptions (Gentzel et al., 2019). Moreover, lessons from predictive machine
learning show that narrow, static benchmarks can give a false sense of reliability (Geirhos et al., 2020;
Herrmann et al., 2024; Freiesleben & Grote, 2023; Longjohn et al., 2024), underscoring the need for
structured diversity: systematic variation of tasks under explicit, controllable assumptions.

In this work, we take a concrete step toward addressing these fundamental concerns about the field.
Specifically, we introduce a synthetic benchmark generator, the CausalProfiler, that enables robust
empirical evaluations grounded in transparently defined synthetic causal datasets. Central to our
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approach is the notion of a Space of Interest (SoI) (Definition 5.1), defining the domain from which
causal datasets are sampled. Given an SoI, CausalProfiler samples Structural Causal Models (SCMs),
data, and queries, and estimates the ground truth value of the queries to enable the evaluation of
Causal ML methods. The assumptions are explicit; and dataset characteristics can be systematically
varied through the SoI. Hence, CausalProfiler enables transparent, controlled, repeatable, and diverse
sampling of synthetic causal datasets.

CausalProfiler shifts the focus of empirical evaluation from performance on individual datasets to
trends and patterns across a well-characterized SoI, reframing the evaluation question from “what
dataset to use” to specifying a SoI that defines the scope of evaluation. This enables researchers to
evaluate performance across a well-defined set of conditions—on graph density, or causal mechanisms
complexity, for instance— and to understand under which conditions a method succeeds or fails,
helping practitioners identify methods that remain reliable when their causal assumptions are violated.
Compared to conventional evaluations in the current literature, an evaluation with CausalProfiler
yields more robust and reliable performance estimates; it uncovers failure modes, generalization
limits, and assumption sensitivities that remain hidden in conventional evaluations.

Although synthetic evaluation cannot replace real data, it provides the only reliable access to ground-
truth causal queries, since counterfactuals are unobservable and many assumptions are unfalsifi-
able (Holland, 1986; Poinsot et al., 2025). CausalProfiler brings about a much needed complement to
real-world studies by enabling transparent, diverse, and controlled synthetic experiments.

We make two primary contributions. First, we present CausalProfiler1 (Section 5), the first open-
source benchmark generator that enables principled sampling of synthetic causal datasets, with
coverage guarantees, that promote transparency and reproducibility for Causal ML evaluation over
the three levels of causal reasoning. Secondly, we demonstrate through experiments (Section 6)
how evaluation with CausalProfiler yields richer and more robust insights than the current standard
practice.

2 RELATED WORK

Evaluating Causal ML methods. Causal ML currently lacks a rigorous, systematic paradigm for
empirical evaluation, whether synthetic or semi-synthetic. Semi-synthetic datasets, such as synthetic
outcome datasets (Dorie et al., 2019; Shimoni et al., 2018; Hill, 2011) and model-based semi-synthetic
datasets (Neal et al., 2020; Parikh et al., 2022; Athey et al., 2024; de Vassimon Manela et al., 2024),
combine real covariates and simulated outcomes under assumed structural models. On the other hand,
fully synthetic datasets are generated entirely from researcher-defined SCMs, allowing for greater
control and access to ground truth. Yet both synthetic and semi-synthetic approaches share critical
limitations. First, synthetic evaluations often lack realism, relying on overly simplistic mechanisms
such as additive noise or linear functions, and frequently omitting robustness analyses (Gentzel et al.,
2019; Curth et al., 2024; Poinsot et al., 2024; 2025). Such evaluations rarely reflect the complexity of
real-world causal processes and are insufficient to test the limits of modern causal inference methods.
Secondly, synthetic and semi-synthetic datasets are shaped by researcher-defined design choices,
including the causal graph structure, the form of the outcome function, and the noise distribution.
These decisions, often made implicitly, can unintentionally introduce hidden biases that favor certain
methods (Curth et al., 2021; Cheng et al., 2022; Feuerriegel et al., 2024). Such assumptions are rarely
documented or systematically varied, hindering reproducibility and fair method comparison (Poinsot
et al., 2024; 2025). Additionally, these benchmarks are typically small in scale and narrow in scope,
often covering only a limited range of causal settings. As a result, empirical evaluations raise concerns
about overfitting and generalization (Gentzel et al., 2019; Berrevoets et al., 2024). For instance, it
has been shown that even small changes to the data-generating process can lead to dramatic shifts in
performance rankings (Curth et al., 2021). Moreover, methods are often evaluated only under the very
conditions that guarantee their identifiability, offering little insight into robustness under assumption
violations, as is common in real-world settings (Petersen, 2024; Hutchinson et al., 2022). In short,
without broader and more transparent evaluation across diverse causal settings, the field risks drawing
conclusions that do not generalize. For Causal ML to have wide impact in practice, there is a need to
move beyond fixed benchmarks toward frameworks that support transparent, controlled, and diverse
experimentation across well-defined spaces of causal assumptions.

1The code is provided in the supplementary material and will be publicly available after the review process.
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Recent benchmarking efforts. Recent works have sought to address some of these problems,
introducing tools to generate synthetic SCMs for causal discovery (Kalainathan et al., 2020; Gupta
et al., 2023; Rudolph et al., 2023) or support query estimation from hand-specified models (Sharma
& Kiciman, 2020; Textor et al., 2017; Abril-Pla et al., 2023). However, none of these frameworks
support all components required for robust evaluation of causal machine learning methods. First, the
causal discovery benchmarks do not compute ground truth for intervention or counterfactual queries.
Further, query estimation frameworks often require manual SCM specification and do not support
random sampling, diversity control, or analysis of the distribution of tasks. Even when SCMs are
sampled (Rudolph et al., 2023; Xia et al., 2023), key properties (e.g., positivity) are neither reported
nor constrained. Moreover, the absence of randomness in the graph structures limits generalization.
In contrast, CausalProfiler integrates SCM sampling, query ground-truth computation, and coverage
guarantees into a unified framework. To the best of our knowledge, this is the first benchmark
generator that enables systematic exploration of how Causal ML methods behave across spaces of
SCMs and queries defined by user-specified constraints.

3 BACKGROUND & NOTATION

We use capital letters for random variables (e.g., X), lowercase for realizations (e.g., x), and boldface
for vectors (e.g., x). For a more complete background, please refer to Appendix B and Pearl (2009).

The Pearl Causal Hierarchy (PCH) (Pearl & Mackenzie, 2018) classifies causal reasoning into
three levels: L1 (associational), L2 (interventional), and L3 (counterfactual). Associative questions
use only observed data, whereas interventional and counterfactual questions require assumptions
about the data-generating process. Importantly, lower levels are insufficient to answer higher-layer
questions in almost all causal models (Bareinboim et al., 2022).

The class of Structural Causal Models (SCMs) (Pearl, 2009) provide a representation allowing
reasoning on the three levels of the PCH. An SCM is a tupleM := {V,U,F , P (U)}, where V is
a set of endogenous variables, U is a set of exogenous variables, F is a set of structural equations
Vi = fi(PA(Vi),UVi

), also called causal mechanisms, and P (U) defines a distribution over the
exogenous variables U. SCMs induce a distribution PM(V) over the endogenous variables V,
called the entailed distribution. We consider two types of endogenous variables: the observed
variables, denoted VO, and the unobserved variables, denoted VH , where V = VO ∪ VH and
VO ∩VH = ∅. We represent causal relationships using the causal graph G of a SCM. This is an
acyclic directed mixed graph over the endogenous variables. Directed edges X → Y encode causal
dependencies via causal mechanisms where X ∈ PA(Y ) is called a parent of Y , while bidirected
edges X ↔ Y indicate latent confounding due to shared exogenous causes. With SCMs one can
represent intervention and counterfactual questions. On the one hand, an intervention replaces
one or more structural equations to model external manipulations. A common example is a hard
intervention, do(T = t), which fixes a variable’s value, disconnecting it from its causes. This
defines a new SCM and alters the induced distribution. On the other hand, counterfactual questions
reason about what would have happened under a different intervention, given an observed outcome
called a factual realization. They are evaluated by conditioning on observed variables (abduction),
modifying the SCM with the intervention (action), and predicting outcomes under the new distribution
(prediction)—a process known as the three-step procedure (Pearl, 2009).

More generally, a causal query refers to a probabilistic statement about the effect of hypothetical
manipulations of the data-generating process. This includes intervention queries, such as Average
Treatment Effect (ATE), and counterfactual queries, such as Counterfactual Total Effect (Ctf-TE). A
query is identifiable if its value can be uniquely determined from data, given a set of assumptions
(e.g., a causal sufficiency) (Pearl, 2009). In other words, identifiability refers to whether causal
queries can be empirically estimated, and under what assumptions.

4 PROBLEM FORMULATION

Causal inference aims to answer causal queries using data drawn from an unknown SCM. Let
M⋆ = (V,U,F , P (U)) denote the unknown ground truth SCM. A causal query Q (e.g., ATE)
defined overM⋆ has ground truth value Q⋆ = Q(M⋆). AsM⋆ is unknown, causal estimators rely
on causal assumptions H (e.g., causal sufficiency) and available data D drawn fromM⋆ to produce
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an estimate Q̂ of the target quantity Q⋆. Definition 4.1 below formalizes the elements of a causal
dataset.

Definition 4.1 (Causal Dataset). A causal dataset is a tuple D = {Q,Q⋆, D,G⋆,H⋆}
constructed from a known SCMM⋆ = (V,U,F , P (U)) where:

• Q is a causal query defined over V;
• Q⋆ = Q(M⋆) is the exact value of the query Q;
• D = {Dk ∼ PM⋆(V | do(Vk) = vk)}Ik=1 is a collection of samples under I

interventional (or observational) settings;
• G⋆ is the causal graph associated withM⋆;
• H⋆ is the set of assumptions satisfied byM⋆.

In this work, we wish to develop a generator of causal datasets following the Definition 4.1 such
that given an error metric E(Q̂,Q⋆), Causal ML methods can be evaluated under the identification-
consistent regime, where the assumed causal graph and assumptions coincide with the ground truth
(G⋆,H⋆), and under controlled assumption violations. This setup enables systematic comparison of
Causal ML methods not only under ideal conditions, where identification is guaranteed, but also in
more realistic settings that test robustness to misspecification.

Remark on causal discovery. Causal datasets, as defined above, can also be used for evaluating
causal discovery algorithms. Each dataset already includes the ground-truth causal graph G⋆, allowing
direct assessment of discovery methods. Thus, the query Q can be left empty.

5 SAMPLING CAUSAL DATASETS WITH THE CAUSALPROFILER

To generate causal datasets, CausalProfiler relies on a parametric specification of the sampling domain,
called the Space of Interest (SoI). Given an SoI, CausalProfiler samples an SCM (Section 5.2) and
generates a corresponding causal dataset (Section 5.3). Appendices C to F contain the pseudocode
for the sampling algorithms. Appendix I presents a visual overview of the sampling strategy.

5.1 DEFINING A SPACE OF INTEREST

The central abstraction of our framework is the Space of Interest (SoI) (Definition 5.1), which provides
a standardized way to specify synthetic causal datasets (Definition 4.1). Table 3 in Appendix C lists
all configurable SoI parameters.2

Definition 5.1 (Space of Interest). A Space of Interest (SoI) is a tuple S = {M,Q,D},
where M is a class of SCMs, Q a class of causal queries, and D a class of data.

5.2 SAMPLING STRUCTURAL CAUSAL MODELS

Causal Graphs. CausalProfiler first samples a directed acyclic graph over a set of endogenous
variables, defining the SCM’s causal structure. If specified in the SoI, CausalProfiler samples a
subset of endogenous variables, VH , to be treated as unobserved and excluded from the observed
dataset. To expose only the visible causal structure to the user, we apply Verma’s latent projection
algorithm (Verma, 1993) to the full causal graph, which produces an acyclic directed mixed graph.

Mechanisms. Given the causal graph, CausalProfiler assigns each endogenous variable a mechanism
based on its parents and an exogenous noise distribution set by the SoI. It supports two types of
mechanisms. First, discrete mechanisms, also called regional discrete mechanisms (see Appendix
E.1 for a formal definition) which support binary and categorical treatments, are defined tabularly
by associating each element of a partition of the exogenous noise with distinct parents-to-child

2While the current implementation of CausalProfiler supports only L1 training data and Average Treatment
Effect (ATE), Conditional Average Treatment Effect (CATE), and Counterfactual Total Effect (Ctf-TE) queries,
the SoI abstraction can, in principle, be defined over any class of queries, datasets, and SCMs.
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mappings. This enables controllable stochasticity and complexity, including highly non-linear
and non-invertible behavior. The SoI also specifies how such mechanisms are sampled (e.g., with
rejection-based sampling, see Appendix E.2). Secondly, continuous mechanisms are defined using
parametric function families—such as neural networks or linear functions—with randomly initialized
parameters.

5.3 SAMPLING CAUSAL DATASETS

Data D. Given an SCMM⋆ sampled from the SoI, we generate an observational dataset D by
sampling i.i.d. data points from the entailed distribution ofM⋆ over observed variables. This involves
forward-sampling from the structural equations in topological order, using the noise distributions
specified for each variable and marginalizing out any latent variables.

Query Q. We first sample endogenous observable variables to serve as treatment, outcome, covari-
ates, and factuals, depending on the query class of the SoI. By default, realizations are drawn from a
large, separately sampled observational dataset, rather than from the theoretical variable domains.
This ensures that queries are well-defined and correspond to realizable variable configurations under
the SCM. To support different research goals, SoIs can be configured to relax this behavior (e.g., to
include NaN queries) to stress-test robustness. For causal discovery, query sampling can be disabled
to generate datasets more efficiently given that they already include their ground-truth graph G⋆.

Query ground truth Q⋆. Each query is estimated by drawing samples from the (manipulated)
ground truth SCM: interventional queries via do-operations (action and prediction), and counterfactual
queries via the three-step procedure (Pearl, 2009).

Ground truth causal graph G⋆. As presented in Section 5.2, G⋆ is built as the latent projection of
the ground-truth SCM’s causal graph over the observed variables.

Ground truth causal assumptions H⋆. To characterize the properties of the ground-truth SCM
from the user’s perspective, we provide an analysis module that computes summary metrics related to
common causal assumptions (e.g., measuring linearity via Pearson correlation). A full list of available
metrics is provided in Appendix G.

Coverage guarantee. Proposition 5.1 (proof in Appendix J) shows that, with sufficiently expressive
discrete mechanisms, CausalProfiler’s sampling strategy can theoretically generate any causal dataset
within a given SoI, guaranteeing L3-expressivity. In addition, Appendix H provides an analysis
exploring the empirical distribution of the sampled datasets.

Proposition 5.1 (Coverage). For a Space of Interest S = {M,Q,D}, whose class of Structural
Causal Models is a class of Regional Discrete SCMs1 with the maximum number of noise
regions, denoted MRD-SCM,r=Rmax

, any causal dataset D = {Q,Q⋆, D,G⋆,H⋆} has a strictly
positive probability to be generated.

∀S = {M,Q,D} s.t. M ⊆MRD-SCM,r=Rmax
, P (D|S) > 0

1A formal definition can be found in Appendix E.1.

Benchmark Design. Taken together, these design choices reflect four key properties that are consid-
ered essential for rigorous synthetic evaluation in Causal ML (Poinsot et al., 2025): transparency, by
making all assumptions explicit via the parametrization of the SoI, which serves as a declarative spec-
ification of the evaluation domain; repeatability, through randomized but seed-controlled sampling
procedures, ensuring that SCMs and queries can be exactly reproduced across runs; bias awareness,
supported by the coverage guarantee and the empirical distribution analysis module; and control
over experiments, by exposing a wide range of configurable parameters in the SoI that allow users
to tailor the causal dataset generation to their assumptions and research goals.
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(a) vs. CausalNF SCMs (b) vs. CANCER and EARTHQUAKE

Figure 1: Two-dimensional t-SNE plots of CausalProfiler’s SCMs (green) and established benchmarks
(red), characterized by metrics from the analysis module.

6 EXPERIMENTS

6.1 VERIFICATION OF BENCHMARK CORRECTNESS

To validate the soundness of our benchmark generator, we perform consistency checks across the three
levels of the PCH. Using the SCM sampler and query estimator of the CausalProfiler, we test whether
sampled SCMs satisfy the Markov condition, do-calculus rules, and the structural counterfactual
axioms (Pearl, 2009). We use discrete SCMs to allow exhaustive enumeration of conditioning sets for
statistical tests. To ensure robustness, we iterate over a SoI parameter grid spanning the number of
variables, edge density, cardinalities, and noise regions. See Appendix K for full details and results.

L1: Markov Property Verification. We test whether d-separations in the causal graph imply
conditional independencies in the entailed observational distribution of the sampled SCMs. For
each SCM, we enumerate d-separated triplets (A,B,C) and test A ⊥ B | C with Pearson’s χ2

test (Pearson, 1900), filtering low-sample strata (Koehler & Larntz, 1980) and correcting for multiple
tests (Benjamini & Hochberg, 1995). The Markov property holds in about 95% of the tested cases,
with most violations due to finite-sample variability.

L2: Do-Calculus Verification. We test whether the three rules of do-calculus hold empirically. For
each rule, we identify variable tuples satisfying its graphical preconditions. We then use the query
estimator to generate two interventional datasets corresponding to the rule’s left- and right-hand sides.
We compare the resulting distributions with Pearson’s χ2 test, filtering low-sample strata (Koehler &
Larntz, 1980) and correcting for multiple tests (Benjamini & Hochberg, 1995). About 5.5% of tests
fail, mostly due to finite-sample noise.

L3: Structural Counterfactual Axiom Verification. We test whether the axioms of composition,
effectiveness, and reversibility hold for sampled SCMs. Since the axioms involve deterministic
functional relationships, we count only exact matches of the query estimator. All axioms hold exactly
across our samples, confirming the estimator’s consistency with structural counterfactual semantics.

6.2 COMPARISON TO EXISTING BENCHMARKS

Comparison. To illustrate CausalProfiler’s contribution to SCM diversity for evaluating Causal
ML methods, we compare its SCMs (sampled over a SoI grid spanning number of variables, edge
density, cardinalities, noise regions, and dataset size) with two existing benchmarks: the synthetic
SCMs from the Causal Normalizing Flows (CausalNF) work (Javaloy et al., 2023) and the CANCER
and EARTHQUAKE models from bnlearn (Scutari, 2019). For interpretable visualization, we apply
two-dimensional t-SNE (Maaten & Hinton, 2008) to the computable metrics of the analysis module
(Appendix G), with a perplexity set to 30, see Figure 1.

Findings. CausalProfiler’s SCMs are more diverse than those of CausalNF and bnlearn. The
eleven CausalNF SCMs are so homogeneous relative to CausalProfiler’s diversity that dimensionality
reduction projects them onto a confined space, appearing as a single point. Moreover, some generated
SCMs are similar to those of CausalNF and bnlearn, showing that CausalProfiler can reproduce
existing benchmarks. Further details and results are presented in Appendices H.3 and H.4.
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6.3 METHOD EVALUATION USING CAUSALPROFILER

We demonstrate the utility of our framework by evaluating several recent causal inference methods
across diverse SoIs. Our goal is not to exhaustively benchmark each method but to showcase the kinds
of structured empirical investigations CausalProfiler enables — especially on exploring robustness
and violations of causal assumptions. Accordingly, we keep most SoI parameters fixed and vary only
one (or a small subset) at a time, so observed differences can be attributed to the parameter under
study rather than confounded by simultaneous changes.

For each SoI, we evaluate every method using five random seeds, sampling 100 SCMs per seed. Each
SCM yields one training set and five queries with ground-truth values, and results are aggregated
across SCMs and seeds (see Algorithm 12 in Appendix L). Experiments were run on a single Intel
Core i9-14900K machine (24 cores, 32 threads, 96GB RAM), fully parallelized on CPU. Although
some methods (e.g., DCM) could benefit from GPU acceleration, none was used here.

Performance is assessed by mean squared error between predicted and true query values, with mean
error, standard deviation, runtime, and failure rate (due to numerical issues or exceptions) for each
method and SoI. We compare Causal Normalizing Flows (CausalNF) (Javaloy et al., 2023), Neural
Causal Models (NCM) (Xia et al., 2023), Variational Causal Graph Autoencoder (VACA) (Sánchez-
Martin et al., 2022), and Diffusion-based Causal Models (DCM) (Chao et al., 2023).

Additional experiments, extended results, and SoI configurations are provided in Appendix L.

6.4 EXPERIMENT 1: GENERAL EVALUATION ACROSS DIVERSE SCMS

To showcase CausalProfiler’s flexibility, we evaluate ATE estimates of VACA, CausalNF, DCM,
and NCM on continuous-variable SCMs across four SoIs: Linear-Medium, linear SCMs (15-20
nodes, 1000 samples); NN-Medium, neural SCMs with a 2-layer ReLU network (8 hidden units,
15-20 nodes, 1000 samples); NN-Large, larger neural SCMs (20-25 nodes, 1000 samples); and
NN-Large-LowData, identical to NN-Large but with 50 samples. See Table 1 for results.

Table 1: Performance summary of CausalNF, DCM, NCM, and VACA on the general experiments.

Space Method Mean Error Std Error Max Error Runtime (s) Fail Rate (%)

CausalNF 0.4625 0.8985 9.6079 13790.4 0.00
DCM 0.1530 1.5289 33.9766 16541.2 0.00
NCM 0.4618 0.9001 9.6134 7384.7 0.00Linear-Medium

VACA 0.4209 0.6195 2.3807 2734.5 53.40

CausalNF 0.0160 0.0107 0.1209 10732.7 0.00
DCM 0.0276 0.0114 0.0746 15894.4 0.00
NCM 0.0111 0.0121 0.1484 7322.8 0.00NN-medium

VACA 0.0090 0.0077 0.0479 5759.6 5.00

CausalNF 0.0159 0.0105 0.1535 15114.8 0.00
DCM 0.0267 0.0100 0.0739 19166.2 0.00
NCM 0.0101 0.0103 0.1161 9450.6 0.00NN-Large

VACA 0.0090 0.0094 0.0535 5690.8 11.60

CausalNF 0.0359 0.0146 0.1712 22138.2 0.00
DCM 0.0777 0.0445 0.3701 2412.1 0.00
NCM 0.0097 0.0107 0.1263 404.7 0.00NN-Large-LowData

VACA 0.0103 0.0134 0.1043 5217.4 0.00

Findings (Linear-Medium vs. NN-Medium). In the Linear-Medium setting, DCM achieves
the lowest average error (0.1530), indicating excellent performance, but its error standard deviation
is notably high (1.5289), driven by a few extreme outliers (max error 33.98). This suggests DCM
is effective for most queries but can produce large errors in rare cases—potentially problematic in
safety-critical applications matching this SoI. VACA performs competitively with lower max error
and faster runtime, but suffers a high failure rate (53.4%) due to NaNs. In the NN-Medium setting,
where the causal mechanisms are small neural networks, DCM’s advantage disappears. VACA
emerges as the best performer, with the lowest error mean (0.0090) and standard deviation (0.0077),
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while reducing its failure rate to 5%. Interestingly, DCM becomes the weakest performer in this
setting, showing that method rankings are highly sensitive to the underlying functional form of the
mechanisms. This underscores the need for practitioners to evaluate methods within the SoI most
relevant to their application. Lastly, NN SCMs surprisingly yield lower errors than linear ones. A
plausible explanation is an inductive-bias match with the evaluated neural methods and the tendency
of small randomly initialized NNs to produce relatively smooth, low-frequency functions that are
easier to estimate from finite data (Rahaman et al., 2019).

Findings (NN-Large vs. NN-Large-LowData). In this comparison, we investigate the effect
of reducing data availability. Comparing NN-Large (1000 samples) to NN-Large-LowData (50
samples), DCM is strongly affected: its error nearly triples (from 0.0267 to 0.0777) and its IQR
expands noticeably. CausalNF also shows greater sensitivity to low-data regimes. In contrast, both
VACA and NCM maintain stable performance, with nearly unchanged mean and standard deviation.
Notably, VACA achieves a 0% failure rate, with unexpectedly strong robustness under limited data.

Insights. While not intended as a comprehensive benchmark, these experiments illustrate the types
of insights enabled by our framework. Across the selected SoIs, DCM performs well on average but
can produce large outlier errors or become less stable in low-data settings. Conversely, VACA shows
promising generalization even with limited data, though it occasionally fails on certain SCMs. These
findings are specific to the explored SoIs and should not be taken as general conclusions. Rather, they
show how our framework enables structured, SoI-specific evaluations, helping practitioners assess
which methods may be more suitable for their own modeling context.

6.5 EXPERIMENT 2: COUNTERFACTUAL ESTIMATION ON DISCRETE SCMS

This experiment evaluates counterfactual estimation on discrete-variable SCMs as a robustness
check, testing CausalNF and DCM—originally designed for continuous settings—motivated by
prior work showing that CausalNF can approximate discrete distributions (Javaloy et al., 2023;
de Vassimon Manela et al., 2024). We consider three discrete SoIs: Disc-C2-Reject, with 10-
15 nodes, binary variables, and rejection-based mechanism sampling; Disc-C4-Unbias, with the
same graph size but 4-category variables and unbiased random mechanism sampling; and Disc-L-
C2-Unbias, with larger graphs (20-30 nodes), binary variables, and unbiased random mechanism
sampling (Table 2).

Table 2: Performance summary of CausalNF and DCM on the discrete experiments.

Space Method Mean Error Std Error Max Error Runtime Fail Rate

CausalNF 0.0415 0.1116 0.6240 212.8 s 08.08 %Disc-C2-Reject DCM 0.0424 0.1123 0.6240 4406.2 s 04.28 %

CausalNF 0.0431 0.1270 0.7071 190.7 s 40.68 %Disc-C4-Unbias DCM 0.0411 0.1199 0.7071 3839.4 s 22.60 %

CausalNF NaN NaN NaN 0.0 s 100.00 %Disc-L-C2-Unbias DCM 0.0183 0.0814 0.5000 8192.7 s 11.32 %

Findings. On Disc-C2-Reject, both CausalNF and DCM perform well and comparably, with low
error means (∼0.04) and low failure rates (8% for CausalNF, 4% for DCM). This suggests that both
methods can produce reliable estimates even outside their original assumptions when the functional
mechanisms are simple and binary. However, when moving to Disc-C4-Unbias, where variables
have 4 categories and mechanisms are sampled with unbiased random sampling, the failure rates
increase significantly, especially for CausalNF, which fails on over 40% of SCMs (typically with
NaN errors). This highlights the sensitivity of some methods to mechanism sampling or variable
cardinality, even when mean errors remain similar. To further probe robustness, we scale the graph
size in Disc-L-C2-Unbias while reverting to binary variables. CausalNF fails on all runs, returning
NaNs. DCM has an 11% failure rate, indicating greater resilience in this setting.

Insights. These results underscore the utility of our framework in systematically stress-testing
methods beyond their nominal design assumptions. While CausalNF is not built for discrete data,
prior work suggested it could work in practice. Our framework can help clarify when and how it fails:
certain function classes and discrete configurations are more likely to cause divergence or failure.
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DCM appears more robust across these tests, though not immune. Importantly, this evaluation is not
meant as a definitive comparison, but as a demonstration of how failure cases can be surfaced and
studied in a principled way using the CausalProfiler.

7 LIMITATIONS AND FUTURE WORK

We note that any open-source framework such as CausalProfiler is never a completely finished project,
but rather continuously evolving to meet community needs, with new features added as the field
advances through contributions to the repository.

Diversify Spaces of Interest. Several directions remain open for extending the supported SoIs in
CausalProfiler, such as support for scaled and mixed-variable SCMs, sampling interventional training
data, and more realistic data-generating scenarios, including selection bias or measurement noise.
Another direction is to extend beyond tabular data to time-series, images, and text.

Causal Datasets Distribution. While the coverage proposition (Proposition 5.1) guarantees that
any causal dataset has a positive probability of being sampled within a given SoI with sufficiently
expressive discrete mechanisms, it does not characterize the distribution of generated datasets. As
presented in Appendix H, certain classes of SCMs remain unlikely to be sampled unless explicitly
specified in the SoI (e.g., linear SCMs). Hence, when aggregating results, users should bear in
mind that causal datasets are not distributed uniformly to avoid misleading interpretations. We
strongly recommend users to use the analysis module, presented in Appendix G, to identify the
underrepresented attributes, as these vary from one SoI specification to another.
Reducing distributional bias is an important future research direction. Achieving a perfectly balanced
distribution over all metrics is inherently impossible. For instance, uniform sampling over discrete
mechanism functions biases toward non-bijective ones, since bijections are not dense in the function
space. Future work may enable finer control over dataset distributions and underrepresented attributes,
depending on the guarantees one wishes to enforce. One promising avenue is stratified sampling,
which would provide weighted coverage of selected attributes. Currently, controllable SoI parameters
(e.g., number of nodes) are sampled uniformly, but emergent attributes follow skewed distributions
induced by generation. For controllable SoI parameters, stratification could be achieved constructively
via weighted sampling over groups of SoIs. For emergent properties, approximate stratification
may require rejection sampling or, more efficiently, new sampling algorithms that enforce global
constraints during generation.

Bridging the simulation-to-real gap. While synthetic evaluation is indispensable (Poinsot et al.,
2025), it is insufficient to fully assess method capabilities, as results may not transfer to real-world
settings. In CausalProfiler, alignment with real domains currently relies on manually specified SoIs,
guided by domain expertise or empirical features. A key direction for future work is to develop
methods that automatically map real data to SoIs, enabling principled semi-synthetic evaluation
pipelines where SoIs are shaped by empirical evidence rather than fixed assumptions. However,
mapping from observational data to SoIs is a fundamentally underconstrained problem, and any such
inference must be handled with care, given the challenges around identifiability and inductive bias.

8 CONCLUSION

This work introduces CausalProfiler, a synthetic causal dataset generator for evaluating Causal
ML methods across the three levels of the Pearl Causal Hierarchy. At its core is the notion of a
Space of Interest, which replaces the ad hoc choice of fixed evaluation datasets with a principled
specification of the entire evaluation scope, i.e., classes of causal models, queries and data. This shift
enables transparent, repeatable, and assumption-aware assessments under diverse causal conditions.
After demonstrating that the causal datasets generated by CausalProfiler are correct and can be
similar to existing benchmarks while also being considerably more diverse, we show that the
performance of state-of-the-art Causal ML methods varies substantially across different Spaces
of Interest, underscoring the importance of rigorous, distribution-level evaluation. CausalProfiler is
not intended to replace real-data studies or targeted evaluations, but to complement them. By enabling
systematic exploration, it helps uncover failure modes, expose robustness to violated assumptions, and
highlight unexpected strengths that may motivate new research directions. In this way, CausalProfiler
marks a first step toward a more complete evaluation ecosystem for Causal ML.

9
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REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. The paper specifies
fully the steps required to reproduce our experiments, with pseudocode for all algorithms provided
in the appendices. All experimental configurations are also documented in the appendices. An
anonymized zip archive containing the full code and reproduction instructions is included in the
supplementary materials. The codebase reflects the exact setup used in the reported experiments.
Upon acceptance, we will publicly release the codebase on GitHub. We note that no external datasets
are required to reproduce the experiments. We also specify the hardware used and report runtime
metrics, making computational requirements transparent.

ETHICS STATEMENT

This work introduces CausalProfiler, a synthetic benchmark generator for evaluating Causal ML
methods. As a methodological tool rather than an application-facing system, it does not directly
raise societal impact concerns to the best of our knowledge. Furthermore, to prevent naive use of
CausalProfiler, this work transparently outlines its guarantees and limitations. We also remind readers
of the simulation-to-real gap inherent to any synthetic system. To mitigate the risk of inadvertent
misuse of CausalProfiler, it is emphasized that evaluation results should not be aggregated and
interpreted naively without exploring the distribution of the generated causal datasets.

Finally, we do not release pretrained models or real-world datasets. We provide code that generates
fully synthetic data, thereby avoiding issues related to privacy, fairness, and security. The paper
involves no human subjects, crowdsourcing, or sensitive data.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs, specifically ChatGPT, as a writing assistant. The model was used only to help with
language-related aspects of the paper, including:

• Rephrasing existing content without changing its meaning

• Improving clarity and flow

• Identifying issues such as unclear points, unintended tones, or awkward phrasing.

All scientific contributions originate from the authors, who take full responsibility for the paper.

B ADDITIONAL DEFINITIONS & NOTATIONS

Definition B.1 (Semi-Markovian and Markovian SCMs). An SCM is said to be semi-
Markovian (Pearl, 2009) if its set of structural equations is acyclic, meaning there exists
an ordering of the equations such that for any two functions fi, fj ∈ F , if fi < fj , then
Vj /∈ PA(Vi). This condition ensures that the causal dependencies among endogenous
variables form a Directed Acyclic Graph.
An SCM is Markovian (Pearl, 2009) if the exogenous variables influencing different en-
dogenous variables are mutually independent. Formally, for all distinct Vi, Vj ∈ V, we have
UVi

⊥⊥ UVj
. This implies the absence of latent confounding, allowing the model to be fully

described by a DAG with independent noise terms.

Definition B.2 (Causal Graph of a Semi-Markovian SCM). The causal graph of a Semi-
Markovian (Bareinboim et al., 2022) SCM is an acyclic directed mixed graph with:

• Directed edge Vi → Vj if Vi ∈ PA(Vj)

• Bi-directed edge Vi ↔ Vj if UVi ⊥̸⊥ UVj

B.1 INTERVENTIONAL QUANTITIES (L2)

Average Treatment Effect (ATE):

ATET→Y = E[Y |do(T = 1)]− E[Y |do(T = 0)]

Conditional Average Treatment Effect (CATE):

CATET→Y (x) = E[Y |do(T = 1),X = x]− E[Y |do(T = 0),X = x]

B.2 COUNTERFACTUAL QUANTITIES (L3)

A counterfactual query such as P (Ydo(T=t)|VF = vF ) is computed by abduction (conditioning on
factual data), action (intervening), and prediction (computing the outcome) (Pearl, 2009).

Counterfactual Total Effect (Ctf-TE):

Ctf-TET→Y (y, t, c,vF ) = P (ydo(T=t)|VF = vF )− P (ydo(T=c)|VF = vF )

C SPACE OF INTEREST

Each Space of Interest is defined by a set of parameters that control the SCM space, the causal
queries of interest (Query space), and the dataset used for estimation (Data space). Table 3 provides
an overview of all configurable parameters in a Space of Interest instance, along with their default
values. Some parameters are only relevant under specific conditions—for instance, kernel parameters
are used only with continuous variables (e.g., when evaluating conditional expectations), function
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sampling strategies apply exclusively to discrete mechanisms, noise regions apply only for discrete
SCMs, and noise mode is ignored for tabular mechanisms (noise is already embedded in the table).
Note that one can use symbolic expressions involving N (the number of nodes) and V (the cardinality
of a variable) to define parameters that depend on sampled values. For example, the expected number
of edges can be set as 0.5 * N, or the number of noise regions in a discrete SCM can be set to V.

Table 3: Parameters defining a Space of Interest instance and their default values. The double lines in
the table conceptually separate the SCM space, Query space, and Data space.

Category Parameter Default Value

SCM structure

Number of endogenous variables [5, 15]
Variable dimensionality [1, 1]
Expected number of edges (required) —
Proportion of hidden variables 0.0
Markovian boolean flag True
Semi-Markovian boolean flag False
Predefined causal graph —

Mechanisms

Mechanism family (e.g., Linear, NN, Tabular) Linear
Mechanism arguments (used to define custom NN/tabular
mechanisms)

—

Endogenous variable cardinality (for discrete variables only) 2
Variable type Continuous
Discrete function sampling (for discrete variables only) Sample Rejection
Noise mode Additive

Noise
Noise distribution Uniform
Noise distribution arguments [-1, 1]
Number of noise regions (for discrete variables only) N

Query
Number of queries per sample 1
Query type ATE
Specific query (overrides random query sampling) —
Whether to allow queries that evaluate to NaN False
Whether to disable query sampling (e.g., for causal discovery) False

Kernel
Kernel type Gaussian
Kernel bandwidth 0.1
Custom kernel function —

Data Number of samples in the set of observed data 1000

D CAUSAL GRAPH SAMPLING

We first generate a random Directed Acyclic Graph (DAG) that specifies causal relations between
variables. This structure is then extended by designating a subset of variables as hidden/unobserved,
enabling the creation of both Markovian and semi-Markovian SCMs depending on the SoI spec. We
separate these two steps in separate algorithms for clarity (Algorithm 2 uses Algorithm 1).

First, Algorithm 1 samples a DAG over a unique type of variables, not yet distinguishing between
observable and unobservable variables. To do so, the list of nodes is defined as a list of integers
imposed to be the topological order of the DAG (line 1). Then, for each node (line 4), its number of
parents is sampled from a Binomial law of parameters i− 1 and pedge with i the rank of the node in
the topological order (line 5). The actual parents are sampled from the set of nodes having a smaller
topological rank (line 6) which guarantees that the generated graph is a DAG.

Second, from the generated DAG, Algorithm 2 simply creates the two sets of observables and
unobservable variables by sampling ph.|V| unobservable node among the total set of nodes (line 3).
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Algorithm 1 Generate a Random DAG with Expected Degree
Inputs: number of nodes N , expected degree d

1: V ←− {1, . . . , N}
2: E ←− {}
3: pedge ←− 2d

N−1

4: for i ∈ [1, N ] do
5: NPA(i) ∼ B(i− 1, pedge)

6: PA(i)←− NPA(i) nodes sampled without replacement from V

7: E ←− E ∪ {j −→ i | j ∈ PA(i)}
8: end for

Output: G = {V,E}

Algorithm 2 Generate a DAG with Observed and Hidden Variables
Inputs: number of nodes N , expected degree d, proportion of hidden variables ph
1: G = (V,E)←− DAG_sampling(N, d) (see Algorithm 1)
2: Nh ∼ B(N, ph)

3: Vh ←− Nh nodes sampled without replacement from V

4: Vo ←− V \Vh

Output: G = {V = VoVh, E}

Because some variables in the DAG are unobserved, we expose only the observed structure to the user
in the form of an acyclic directed mixed graph. To obtain this, we apply Verma’s latent projection
algorithm to the causal graph of each sampled regional discrete SCM (see Algorithm 3). If a method
requires the true SCM, including the hidden confounders, that can be accessed as well.

Algorithm 3 Projection Algorithm (Verma, 1993)
Input: an acyclic directed mixed graph G = {VO,VH,E}, with VO the set of observed variables, VH the set
of hidden variables and E the mixed edges

1: E′ ←− {}
2: for A,B ∈ VO do
3: if there is a directed path A→ . . .→ B in G with all intermediate nodes belonging to VH then
4: E′ ←− E′ ∪ {A→ B}
5: end if
6: if there is a collider-free path A← . . .→ B in G with all intermediate nodes belonging to VH then
7: E′ ←− E′ ∪ {A↔ B}
8: end if
9: end for

10: G′ ←− {VO, E′}
Output: G′ the latent projection of G over VO

E SAMPLING DISCRETE SCMS

E.1 REGIONAL DISCRETE SCMS

Regarding discrete SCMs, we sample discrete Markovian SCMs which we refer to as Regional
discrete SCMs as presented in definition E.1 below.
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Definition E.1. Regional discrete SCM

A regional discrete SCM is a markovian SCMM := {V,U,F , P (U)} where:
• V = {V1, ..., Vd} the set of finite discrete endogenous variables is divided into two

sets Vo and Vh respectively representing the set of observed and hidden variables
such that V = Vo ∪Vh and Vo ∩Vh = ∅

• U = {U1, ..., Ud} the set of mutually independent continuous exogenous variables
is such that ∀i ∈ [1, d], UVi

= Ui

• F the structural equations are regional discrete mechanisms as defined in Defini-
tion E.2

The class of regional discrete SCMs is denoted MRD-SCM.

Definition E.2. Regional discrete mechanism

Given IV = {IrV }r∈[1,R] a partition of R parts of ΩUV
and mV = {mr

V : ΩPA(V ) 7→
ΩV }r∈[1,R] a set of R distinct mappings from ΩPA(V ) to ΩV , the regional discrete mecha-
nism of an endogenous variables V is a function fV : ΩPA(V ),ΩUV

7→ ΩV such that:

fV (pa(V ), uV ) = mr(PA(V ) 7→ V ) when uV ∈ IrV

IrV and mr are called the rth noise region and mapping of the regional discrete mechanism
fV .

Remark on ΩUV
and R: In the definition of a regional discrete mechanism (Definition E.2), no

constraints are imposed on ΩUV
. However, if ΩUV

is discrete, then |ΩUV
| ≥ R is required to form a

partition of R elements of ΩUV
. Consequently, in order to be able to constitute such a partition for

any finite R, we decided to consider continuous exogenous variables in the definition of a regional
discrete SCM (Definition E.1). In addition, since the mr

V mappings are considered distinct and there
are exactly |ΩV ||ΩPA(V )| different mappings from V to PA(V ), R ≤ |ΩV ||ΩPA(V )| is required.

Even if regional discrete SCMs are Markovian, the fact that they contains two types of endogenous
variables (i.e., observed and unobserved by the user) enables the representation of complex situations
where not all variables are observable. This induces the presence of potential hidden confounders
from the user’s perspective. As a result, the causal sufficiency assumption is no longer always
respected. In our parametric definition of a SoI, this phenomenon is controlled by the parameter
specifying the proportion of unobserved variables among the endogenous variables. Thus, if this
parameter is set to 0, the SoI’s class of SCMs is included in the class of causally sufficient discrete
SCMs.

The complexity of discrete mechanisms can be controlled by the number of noise regions R. Indeed,
as the number of noise regions increases, so does the complexity of the causal mechanism, in the
sense that it becomes a mixture of a larger number of mappings. The distribution of a variable given
its parents is, hence, more stochastic. As a result, the user-defined class of regional discrete SCMs
can be very broad. This provides an additional degree of complexity to make our synthetic causal
datasets less trivial.

The class of regional discrete SCMs got inspired by the class of Regional Canonical Models by (Xia
et al., 2023) and the class of canonical SCMs by (Zhang et al., 2022). We decided to define our own
class rather than using one of these two classes for two reasons. First, canonical SCMs are very
expensive to sample particularly because of the presence of confounded components. Second, even
if Regional Canonical Models are designed to be less expensive because their expressivity can be
regulated via the number of noise regions to consider, they lose some interesting properties such
as the non overlapping of the noise regions which is crucial to favor a strong dependence between
the user choice of the number of noise regions and the complexity of the generated mechanisms.
Moreover, Regional Canonical Models still rely on confounded components which is the major source
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of complexity at the sampling stage. Hence, we defined the class of Regional discrete SCMs to not
have to deal with confounded components at the sampling stage (instead we rely on a projection
algorithm after sampling, see Appendix D) and to regulate mechanisms expressivity through the use
of non-overlapping noise regions.

E.2 DISCRETE MECHANISM SAMPLING STRATEGIES

We use regional discrete mechanisms (Definition E.2), which define tabular mappings from parent
variables to a target variable, conditioned on regions of the exogenous noise space. By default, each
region induces a distinct mapping, enabling both stochasticity and high functional expressivity.

To generate these mechanisms, we support three sampling strategies described below. All methods
define a partition of the exogenous noise domain ΩU into R regions, and assign a parent-to-child
mapping to each region. Let C be the cardinality of the variables, and ΩPa(V ) the space of parent
configurations for variable V .

Controlling complexity. The number of possible mappings from parent configurations to output
values grows as |ΩV ||ΩPa(V )|. To keep simulations tractable, users can control the number of noise
regions R. When R is small, sampling provides diverse but lightweight mechanisms. When R
approaches the total number of mappings, full enumeration becomes feasible but computationally
expensive.

We now describe the three supported sampling strategies.

EXHAUSTIVE PARTITION

This strategy enumerates all possible mappings from parent configurations to output values and
assigns each one to a distinct noise region (R = |ΩV ||ΩPa(V )|), ensuring complete coverage of the
function space. This method guarantees maximal functional diversity across regions and can serve as
a stress test for generalization under highly non-linear mechanisms. This is the only strategy where
the number of noise regions is not decided by the user but rather set to the maximum. The exhaustive
partition sampling strategy is the one to use if one wants the coverage guarantee (Proposition 5.1) to
apply.

SAMPLE REJECTION

This strategy samples parent-to-output mappings uniformly at random, rejecting duplicates to ensure
that each region corresponds to a distinct function. As mappings are sampled with replacement,
rejection may require several attempts when R approaches the number of possible mappings.

We provide below, in Algorithm 4, a pseudocode version of this strategy. The algorithm proceeds as
follows. For each endogenous variable V (line 2) a regional discrete mechanism is created. To do so,
the domain of V is first initialized with a list of integers corresponding of the cardinality specified
in the SoI (line 3). Then, if the number of noise regions R specified in the SoI is larger than the
maximum number of noise regions, the maximum number of noise regions is used to generate the
regional discrete mechanism (lines 4-5). The partition of the noise regions is built as consecutive
intervals of random size resulting from the ordering of R − 1 sampled realizations of the uniform
exogenous distribution (lines 6 to 9 and 13). Finally, for each noise region r (line 12), mappings mr

V
are sampled till one mapping not already used for other noise regions is sampled (lines 15 to 18).
This is why this algorithm is denoted as the “sample rejection” approach. One can note that there are
two sources of randomness in this algorithm: the size of the noise regions and the sampled mappings
whenever the number of noise regions is not maximal.
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Algorithm 4 Generating regional discrete mechanisms with sample rejection
Inputs: set of endogenous variables V of cardinality C, causal graph G, ΩU domain of exogenous variables,
number of noise regions R
1: F ←− {}
2: for V ∈ V do
3: ΩV ←− {1, . . . , C}
4: ΩPAG(V ) ←− {1, . . . , C}|PAG(V )|

5: R←− min(R, |ΩV ||ΩPA(V )|)
6: lmin ←− inf(ΩU )
7: lmax ←− sup(ΩU )
8: L = {li ∼ U [lmin, lmax] | i ∈ [1, R− 1]} ∪ {lmin, lmax}
9: Sort L in ascending order

10: fV ←− {}
11: mV ←− {}
12: for r ∈ [1, R] do
13: IrV ←− [Lr,Lr+1[ with Lr the rth element of L
14: mr

V ←− {}
15: while mr

V = {} or mr
V ∈ mV do

16: mr
V ←− |ΩPA(V )| elements sampled with replacement from ΩV

17: end while
18: mV ←− mV ∪mr

V

19: fV ←− fV ∪ {mr
V ; IrV }

20: end for
21: F ←− F ∪ fV
22: end for
Output: F

UNBIASED RANDOM ASSIGNMENT

In this strategy, each noise region is assigned a mapping sampled independently and without en-
forcing uniqueness. As a result, multiple regions may correspond to the same function from parent
configurations to outputs.

For example, suppose a variable has one binary parent taking values in {0, 1}, and the output variable
takes values in {0, 1, 2}. One randomly sampled mapping might assign output 0 to parent value 0,
and output 2 to parent value 1. Since mappings are sampled independently for each region, this same
function (0→ 0, 1→ 2) may appear in multiple regions by chance.

This approach reflects scenarios where mechanisms are drawn independently from a distribution over
functions, without enforcing any requirements on uniqueness or coverage. As a result, the effective
variability in the entire system may be lower compared to other strategies, but the sampling is a lot
more computationally efficient.

F QUERY SAMPLING AND ESTIMATION

In this work, we consider the following types of queries: Average Treatment Effect (ATE), Conditional
Average Treatment Effect (CATE) and Counterfactual Total Effect (Ctf-TE). Their definitions can be
found in Appendix B. All the queries can be defined for sets of covariates and factuals belonging to
the set of endogenous variables. In other words, we do not implement multi-interventions, but we
consider conditioning and observing factuals on several variables. Finally, the values taken by these
variables (e.g., treatment and control values for ATE) must belong to their definition domain. The
only parameter that controls the queries class is the type of queries chosen by the user (i.e., ATE,
CATE and Ctf-TE). Thus, the class of considered queries can be defined as follows:

QATE = {ATET→Y (t, c) | T, Y ⊆ V and t, c ∈ ΩT }

QCATE = {CATET→Y |X(t, c,x) | T, Y ⊆ V, X ⊆ V\{T, Y } and t, c ∈ ΩT , x ∈ ΩX}
QCtf-TE = {Ctf-TET→Y (y, t, c,vF ) | T, Y,VF ⊆ V and t, c ∈ ΩT , y ∈ ΩY , vF ∈ ΩVF

}
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Formally speaking, we have not integrated the causal graph as a causal query but rather as a hypothesis
or prior knowledge. Indeed, except for causal discovery tasks, the causal graph is most often assumed
to be known (or at least some information derived from the graph, such as the constitution of a valid
adjustment set, or a valid causal ordering). Nevertheless, one can use our random causal dataset
generator to evaluate causal discovery or causal representation learning methods. To do so, one just
needs to retrieve the causal graph from the causal dataset directly instead of using a query.

Finally, a user can also implement a specific query and use it to generate synthetic causal datasets. To
do this, the user has to use the Query class in our code base.

F.1 QUERY SAMPLING

As the values taken by varaibles in the queries have to belong to their definition domain, we draw
realizations from a large, separately sampled observational dataset. Indeed, given the randomness of
the causal mechanisms, we cannot know in advance the domain over which the SCMs are defined.
Even when variable cardinalities are fixed, the sampled mechanisms may be non-surjective, making
certain values impossible to observe. For this reason, we approximate the domain of definition
through data sampling, ensuring that queries are computed only for realizable variable configurations.
Moreover, since the dataset given to the user is smaller to the one we use for query sampling and
estimation, it is possible that queries use values outside of the observational dataset or that they are
non-identifiable. Explicitly enabling queries to be outside the observed dataset can be useful for
studying generalization—especially in settings where the support is known, such as linear SCMs.
However, we let for future work the devlopement of a user-configurable option in SoIs, for instance,
allowing users to define a custom domain for the query variables.

The following algorithms detail the procedures for sampling ATE, CATE, and Ctf-TE queries. In
these algorithms, given a dataset D, a variable X and a realization x of X , we use the notation D|X
(resp. D|X=x) to represent the dataset D restricted to the variable X (resp. restricted to the samples
whose X realization equals x). In addition, B(n, p) denotes the Binomial law of parameters n and p.

Algorithm 5 Generating sets of observed data
Inputs: causal graph G, causal mechanisms F , distribution of the exogenous variables P (U), dataset size N

1: D ←− {}
2: Do ←− {}
3: {u1, . . . ,uN} ∼ P (U)

4: for V ∈ V following a causal order given by G do
5: {pa(V )1, . . . ,pa(V )N} ←− D|PA(V )

6: {uV1 , . . . , uVN } ←− D|UV

7: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
8: D ←− D ∪ {v1, . . . , vN}
9: if V ∈ Vo then

10: Do ←− Do ∪ {v1, . . . , vN}
11: end if
12: end for
Output: Do

Algorithm 6 Generating ATE queries
Inputs: set of observable endogenous variables Vo, training set D

1: T ←− one variable randomly sampled from Vo

2: Y ←− one variable randomly sampled from Vo

3: t←− one realization of T randomly sampled from D|T

4: c←− one realization of T randomly sampled from D|T

Output: QATE = {T, Y, t, c}
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Algorithm 7 Generating CATE queries
Inputs: set of observable endogenous variables Vo, training set D

1: T ←− one variable randomly sampled from Vo

2: Y ←− one variable randomly sampled from Vo

3: dX ←− an integer randomly sampled from [1, . . . , |Vo| − 2]

4: X←− dX variables randomly sampled from Vo\{T, Y }
5: t←− one realization of T randomly sampled from D|T

6: c←− one realization of T randomly sampled from D|T

7: x←− one realization of X randomly sampled from D|X

Output: QCATE = {T, Y,X, t, c,x}

Algorithm 8 Generating Ctf-TE queries
Inputs: set of observable endogenous variables Vo, training set D

1: T ←− one variable randomly sampled from Vo

2: Y ←− one variable randomly sampled from Vo

3: dVF ←− an integer randomly samples from [1, . . . , |Vo|]
4: VF ←− dVF variables randomly sampled from Vo

5: t←− one realization of T randomly sampled from D|T

6: c←− one realization of T randomly sampled from D|T

7: vF ←− one realization of VF randomly sampled from D|VF

Output: QCTF−TE = {T, Y,VF , t, c,vF }

F.2 SCM-BASED QUERY ESTIMATION

Each query is evaluated by modifying the SCM, sampling the exogenous variables, and computing
expectations over the outcomes. In practice, we simulate interventions and counterfactuals by directly
manipulating structural equations and conditioning on sampled variables. Our implementation
supports efficient batch estimation using the same random seeds for reproducibility.

Queries that yield NaN estimates can optionally be rejected and resampled, depending on the SoI
settings. NaN estimates appear if the corresponding sampled query is undefined (e.g., conditioning
on a zero-probability event). However, to evaluate the ability of some models to identify if the query
is undefined instead of trying to answer it, NaN estimates can be interesting to keep. This is why we
decided to let users choose this option through a parameter of the SoI.

The following algorithms detail the procedures for estimating ATE, CATE, and Ctf-TE queries.
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Algorithm 9 Estimating ATE queries
Inputs: ATE query to estimate Q = {T, Y, t, c}, causal graph G, causal mechanisms F , distribution of the
exogenous variables P (U), number of samples to draw for estimation N

1: {u1, . . . ,uN} ∼ P (U)

2: Dt ←− {u1, . . . ,uN}
3: for V ∈ V following a causal order given by G do
4: if V = T then
5: {v1, . . . , vN} ←− {t, . . . , t}
6: else
7: {pa(V )1, . . . ,pa(V )N} ←− Dt|PA(V )

8: {uV1 , . . . , uVN } ←− Dt|UV

9: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
10: end if
11: Dt ←− Dt ∪ {v1, . . . , vN}
12: end for
13: Dc ←− {u1, . . . ,uN}
14: for V ∈ V following a causal order given by G do
15: if V = T then
16: {v1, . . . , vN} ←− {c, . . . , c}
17: else
18: {pa(V )1, . . . ,pa(V )N} ←− Dc|PA(V )

19: {uV1 , . . . , uVN } ←− Dc|UV

20: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
21: end if
22: Dc ←− Dc ∪ {v1, . . . , vN}
23: end for
24: Q⋆ ←− avg(Dt|Y )− avg(Dc|Y )

Output: Q⋆

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 10 Estimating CATE queries
Inputs: CATE query to estimate Q = {T, Y,X, t, c,x}, causal graph G, causal mechanisms F , distribution of
the exogenous variables P (U), number of samples to draw for estimation N

1: {u1, . . . ,uN} ∼ P (U)

2: Dt ←− {u1, . . . ,uN}
3: for V ∈ V following a causal order given by G do
4: if V = T then
5: {v1, . . . , vN} ←− {t, . . . , t}
6: else
7: {pa(V )1, . . . ,pa(V )N} ←− Dt|PA(V )

8: {uV1 , . . . , uVN } ←− Dt|UV

9: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
10: end if
11: Dt ←− Dt ∪ {v1, . . . , vN}
12: end for
13: Dc ←− {u1, . . . ,uN}
14: for V ∈ V following a causal order given by G do
15: if V = T then
16: {v1, . . . , vN} ←− {c, . . . , c}
17: else
18: {pa(V )1, . . . ,pa(V )N} ←− Dc|PA(V )

19: {uV1 , . . . , uVN } ←− Dc|UV

20: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
21: end if
22: Dc ←− Dc ∪ {v1, . . . , vN}
23: end for
24: Dt ←− Dt|X=x

25: Dc ←− Dc|X=x

26: Q⋆ ←− avg(Dt|Y )− avg(Dc|Y )

Output: Q⋆
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Algorithm 11 Estimating Ctf-TE queries
Inputs: Ctf-TE query to estimate Q = {T, Y,VF , t, c,vF }, causal graph G, causal mechanisms F , distribution
of the exogenous variables P (U), number of samples to draw for estimation N

1: {u1, . . . ,uN} ∼ P (U)

2: DUvF
←− {u1, . . . ,uN}

3: for V ∈ V following a causal order given by G do
4: {pa(V )1, . . . ,pa(V )N} ←− DUvF |PA(V )

5: {uV1 , . . . , uVN } ←− DUvF |UV

6: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
7: DUvF

←− DUvF
∪ {v1, . . . , vN}

8: end for
9: DUvF

←− DUvF |VF=vF

10: M ←− |DUvF
|

11: {u1, . . . ,uM} ←− DUvF |U

12: Dt ←− {u1, . . . ,uM}
13: for V ∈ V following a causal order given by G do
14: if V = T then
15: {v1, . . . , vN} ←− {t, . . . , t}
16: else
17: {pa(V )1, . . . ,pa(V )N} ←− Dt|PA(V )

18: {uV1 , . . . , uVN } ←− Dt|UV

19: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
20: end if
21: Dt ←− Dt ∪ {v1, . . . , vN}
22: end for
23: Dc ←− {u1, . . . ,uM}
24: for V ∈ V following a causal order given by G do
25: if V = T then
26: {v1, . . . , vN} ←− {c, . . . , c}
27: else
28: {pa(V )1, . . . ,pa(V )N} ←− Dc|PA(V )

29: {uV1 , . . . , uVN } ←− Dc|UV

30: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
31: end if
32: Dc ←− Dc ∪ {v1, . . . , vN}
33: end for
34: Q⋆ ←− avg(Dt|Y )− avg(Dc|Y )

Output: Q⋆
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G ANALYSIS MODULE’S METRICS

In order to analyze the characteristics of the sampled SCMs we implemented the following metrics.
Let us imagine we sampled an SCM M := {V,U,F , P (U)} with V = (Vo,Vh) and whose
causal graph is denoted G. The projection of G over the observable variables Vo is denoted GVo

.

Analysis of the causal graph G:

• Average in-degree: d̄in = 1
|V|
∑

V ∈V |PA(V )|

• Variance of in-degree: var(din) = 1
|V|
∑

V ∈V(|PA(V )| − d̄in)
2

• Average number of ancestors: |An(V )| = 1
|V|
∑

V ∈V |An(V )| where An(V ) denotes the
set of ancestors of V

• Variance of number of ancestors: var(|An(V )|) = 1
|V|
∑

V ∈V(|An(V )| − |An(V )|)2

• Average number of descendants: |De(V )| = 1
|V|
∑

V ∈V |De(V )| where De(V ) denotes
the set of descendants of V

• Variance of number of descendants: var(|De(V )|) = 1
|V|
∑

V ∈V(|De(V )| − |De(V )|)2

• Average length of causal paths: L = 1
|pG |

∑
p∈pG

|p| where pG denotes the set of directed
paths in G

• Variance length of causal paths: var(L) = 1
|pG |

∑
p∈pG

(|p| − L)2

• Maximum length of causal paths: Lmax = maxp∈pG |p|

Analysis of the projected causal graph GVo :

• Average number of siblings3: |Si(V )| = 1
|Vo|

∑
V ∈Vo

|Si(V )| where Si(V ) denotes the
set of siblings of V

• Variance of number of siblings: var(|Si(V )|) = 1
|Vo|

∑
V ∈Vo

(|Si(V )| − |Si(V )|)2

• Number of maximal confounded components (c-comps)4: |C| where C denotes the set of
maximal c-comps in GVo

• Average size of maximal c-comps: |C| = 1
|C|
∑

C∈C |C|

• Variance of the size of maximal c-comps: var(|C|) = 1
|C|
∑

C∈C(|C| − |C|)2

Analysis of the observational distribution PM(Vo):

• Minimum probability of the joint distribution: pVo,min = minvo∈ΩVo
PM(Vo = vo)

• Proportion of events with a null probability: p0 = 1
|ΩVo |

∑
vo∈ΩVo

1PM(Vo=vo)=0 where
1− denotes the indicator function

• Minimum probability of the marginal distributions:

pmin = min
V ∈Vo

min
v∈ΩV

PM(V = v)

• Average minimum probability of the marginal distributions:

p̄min =
1

|Vo|
∑

V ∈Vo

1

|ΩV |
min
v∈ΩV

PM(V = v)

3Two variables are considered siblings if they are linked by a bi-directed edge.
4We use (Tian & Pearl, 2002) definition of (maximal) confounded components.
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• Variance of the minimum probability of the marginal distributions:

var(pmin) =
1

|Vo|
∑

V ∈Vo

( min
v∈ΩV

PM(V = v)− p̄min)
2

• Distance (L1) of the joint distributions to the uniform one:

d(PM;U) =
∑

vo∈ΩVo

|PM(Vo = vo)−
1

|ΩVo
|
|

• Average distance (L1) of the marginal distributions to the uniform one:

d(PM;U) = 1

|Vo|
∑

V ∈Vo

∑
v∈ΩV

|PM(V = v)− 1

|ΩV |
|

• Variance of the distance (L1) of the marginal distributions to the uniform one:

var(d(PM;U)) = 1

|Vo|
∑

V ∈Vo

( ∑
v∈ΩV

|PM(V = v)− 1

|ΩV |
| − d(PM;U)

)2

• Entropy of the joint distribution: H(PM(V))

All the above-mentioned probabilities are computed from a set of 1M samples drawn from the SCM
M.

Let us note that pmin enables the user to check if the strong positivity assumption holds. If
pVo,min > 0, then strong positivity is respected. In addition, if strong positivity does not hold,
pVo,min and p0 indicate the extent to which the assumption is not met – the higher the metrics, the
less the hypothesis is respected. On the other hand, pmin indicates whether the weak positivity
assumption holds. If pmin > 0, then weak positivity is respected. Finally, d(PM;U), d(PM;U) and
var(d(PM;U)) enables the user to assess to which extent the observational distribution is imbalanced.

Analysis of the causal mechanisms F :

• Average Pearson’s correlation between the parent-child pairs5:

ρ̄P =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

ρP (V, Vj)

• Variance of Pearson’s correlation between the parent-child pairs:

var(ρP ) =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

(ρP (V, Vj)− ρ̄P )

• Average Spearman’s correlation between the parent-child pairs3

ρ̄S =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

ρS(V, Vj)

• Variance of Spearman’s correlation between the parent-child pairs:

var(ρS) =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

(ρS(V, Vj)− ρ̄S)

• Average conditional entropy of a variable given its parents:

H =
1

|V|
∑
V ∈V

H(V |PA(V ))

5ρP and ρS respectively denote the Pearson’s and Spearman’s correlation
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• Variance of conditional entropy of a variable given its parents:

var(H) =
1

|V|
∑
V ∈V

(H(V |PA(V ))− H)2

In order to be able to use person correlations, spearman correlations, and conditional entropy as
indicators of degrees of linearity, monotonicity, and stochasticity of causal mechanisms, we do not
derive these quantities from samples drawn from the entailed distribution. Instead, for each variable,
we create a dataset resulting from the application of its causal mechanism to the cartesian product
of the values taken by its endogenous and exogenous parents6. In other words, we analyze the
mechanisms’ images of their input space. This allows us to analyze each mechanism independently
of the others.

Thus, ρ̄P and var(ρP ) can be interpreted as the average degree of linearity of causal mechanisms and
their variance. Furthermore, ρ̄S and var(ρS) can be interpreted as the average degree of monotonicity
of causal mechanisms and their variance. Finally, H and var(H) can be interpreted as the average
level of stochasticity of causal mechanisms and its variance.

H ANALYSIS OF THE EMPIRICAL DISTRIBUTION OF THE GENERATED SCMS

As we do not provide the user with an expression of the distribution of the sampled regional discrete
SCMs, we need to investigate if some SCMs classes are over/underrepresented. This analysis is
important to identify the potential biases CausalProfiler might create in order to take them into
account when evaluating Causal ML methods. Indeed, as our goal is to provide a tool for rigorous
empirical evaluation of causal methods, we need to be transparent on the limitations of our generator
so that researchers and practitioners can interpret the results of their methods with full knowledge of
the potential biases coming from CausalProfiler.

H.1 EXPERIMENT

To visualize the distribution of the SCMs generated, we analyze the distribution of the metrics of the
analysis module characterizing the SCMs. For each SCM sampled, all the implemented metrics (see
Appendix G) are computed.

The studied SCMs are sampled from the SoIs defined by the cartesian product of the following
parameters:

• Number of endogenous variables: {3, 4, 5}
• Expected edge probability: {0.2, 0.4, 0.6, 0.8}
• Proportion of unobserved endogenous variables: {0, 0.1, 0.2, 0.3}
• Number of noise regions: {2, 5, 10, 20, 50}
• Cardinality of endogenous variables: {2, 3, 4, 7}
• Distribution of exogenous variables: set to U [0, 1]

For each SoI 10 SCMs are sampled, making a total of 9600 SCMs studied. Let us mention that we
sample more SCMs than for verification (Section 6.1 for two reasons. First, it enables us to have a
better approximation of the SCMs distribution. Second, the computation of all the assumptions and
characteristics metrics is, in fact, less computationally expensive than computing all the independence
tests that were required for verification.

6For continuous SCMs, we first discretize the variables’ domains of definition and then build the cartesian
product.
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H.2 RESULTS

The first conclusion, based on Figures 2 to 6, is that the generated SCMs do indeed belong to the
specified SoIs and that their characteristics are consistent with the latter.

Figure 2: Average degree of the causal graphs for the generated SCMs depending on the expected
edge probability. Observation: The average degree corresponds on average to the degree of the
generated causal graphs.

Figure 3: Variance of the causal graphs’ degree of the generated SCMs depending on the number of
variables and the expected edge probability. Observation: The variance of the degree increases with
the size of the graph and its density.
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Figure 4: Average causal paths length of the causal graphs of the generated SCMs depending on
the number of variables and the expected edge probability. Observation: The length of causal paths
increases with the size of the causal graph and its density.

Figure 5: Average number and size of maximally confounded components in the projected causal
graphs of the generated SCMs depending on the number of unobserved variables. Observation: The
number and size of confounded components increase with the proportion of unobserved variables.
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Figure 6: Average conditional entropy of a variable given its parents in the generated SCMs depending
on the variables’ cardinality and the number of noise regions. Observation: The stochasticity of
causal mechanisms increases with the cardinality of endogenous and exogenous variables.

Table 4: Percentage of SCMs with confounded components depending on their proportion of
unobserved endogenous variables.

Number of maximally
confounded components

Unobserved endo. variables (%) 0 1 >1

0 100 0 0
10 100 0 0
20 90.9 9.1 0
30 83.3 16.7 0

Table 5: Percentage of SCMs with confounded components of different sizes depending on their
proportion of unobserved endogenous variables. The size 1 of confounded components is not
referenced, as if a confounded component is not empty, it is at least composed of two variables.

Avg. size of maximally
confounded components

Unobserved endo. variables (%) 0 2 3 4 >4

0 100 0 0 0 0
10 100 0 0 0 0
20 90.9 5.7 2.3 1.0 0
30 83.3 10.8 4.9 1.0 0
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In addition, a number of findings about the distribution of the sampled SCMs can also be drawn. First,
the number and size of confounded components often equals zero (see also Tables 4 and 5). As highly
confounded SCMs are rare, we recommend that users sample SCMs with a large enough number of
variables and edge probability, if they want to consider graphs containing hidden confounders. For
instance, we recommend at least 10 variables with a 50% edge probability to have a large proportion
of graphs with at least one confounded component when setting the proportion of hidden endogenous
variables to 30%.

Figure 7: Stacked histograms of the stochasticity level (measured through the entropy of the L1

joint distribution) of the sampled SCMs depending on the number of noise regions, the number of
variables, and their cardinality. Mean, standard deviation, and skewness of the distributions can be
found in Tables 6 to 8.

Second, analyzing the stochasticity level (measured through the entropy of the L1 joint distribution,
see Appendix G) of the generated SCMs, one can see that the latter can be controlled in part by the
parameters of the SoI. Indeed, increasing the number of endogenous variables and their cardinality
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tends to increase the level of stochasticity, see Figure 7 and Tables 6 and 7. This behavior is
expected as the discrete mechanisms are randomly sampled with an almost null probability of being
deterministic (i.e., the probability of sampling a noise region with an empty support is almost null).

Table 6: Mean, standard deviation, and skewness of the distribution of stochasticity level (measured
through the entropy of the L1 joint distribution) over the sampled SCMs depending on their number
of endogenous variables. The distribution is displayed in Figure 7.

Entropy of the joint distribution

Number of endogenous variables Mean Std Skewness

3 2.09 0.77 0.19
4 2.54 1.03 0.28
5 2.88 1.21 0.46

Table 7: Mean, standard deviation, and skewness of the distribution of stochasticity level (measured
through the entropy of the L1 joint distribution) over the sampled SCMs depending on the cardinality
of their endogenous variables. The distribution is displayed in Figure 7.

Entropy of the joint distribution

Cardinality Mean Std Skewness

2 2.06 0.67 0.50
3 2.34 0.84 0.36
4 2.57 1.02 0.19
7 3.03 1.35 0.05

Table 8: Mean, standard deviation, and skewness of the distribution of stochasticity level (measured
through the entropy of the L1 joint distribution) over the sampled SCMs depending on their number
of noise regions. The distribution is displayed in Figure 7.

Entropy of the joint distribution

Number of noise regions Mean Std Skewness

2 1.35 0.56 0.08
5 3.12 0.87 0.37

10 3.15 1.10 0.74
20 2.65 0.86 0.88
50 2.24 0.65 0.84

In addition, increasing the number of noise regions and the number of variables tends to increase the
asymmetry of the distribution, see Figure 7 and Tables 6 and 8. This illustrates the fact that the number
of degrees of freedom is increasing, and that it is therefore possible to generate increasingly stochastic
mechanisms, although their probability of being sampled remains low. On the contrary, increasing
the cardinality of the endogenous variables seems to reduce the asymmetry of the distribution, which
may seem surprising. In reality, the distribution flattens out at higher stochasticity levels, making it
more symmetrical. Indeed, both the mean and the standard deviation increase.

This analysis also reveals a surprising result: The number of noise regions does not seem to increase
the level of stochasticity, cf. Figure 7 and Table 8. Theoretically, the more noise regions, the higher
the number of mappings defining a causal mechanism. By complementing this mixture, we could
expect to obtain a higher level of stochasticity. Further analysis is therefore required here to clarify
the effect of the noise region parameter on stochasticity.
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Figure 8: Stacked histograms of the average Pearson’s and Spearman’s correlation between the parent-
child pairs of the generated SCMs. Mean, standard deviation, and skewness of the distributions can
be found in Tables 9 and 10.

Table 9: Mean, standard deviation, and skewness of the distribution of the average Pearson’s
correlation between the parent-child pairs of the generated SCMs depending on their number of noise
regions. The distribution is displayed in Figure 8.

Pearson’s correlation

Number of noise regions Mean Std Skewness

2 -0.15 0.30 0.54
5 -0.38 0.22 0.60
10 -0.36 0.13 -0.73
20 -0.34 0.11 -0.68
50 -0.30 0.10 -0.80

Table 10: Mean, standard deviation, and skewness of the distribution of the average Spearman’s
correlation between the parent-child pairs of the generated SCMs depending on the cardinality of
their endogenous variables. The distribution is displayed in Figure 8.

Pearson’s correlation

Cardinality Mean Std Skewness

2 -0.32 0.25 1.10
3 -0.36 0.20 0.97
4 -0.35 0.19 1.09
7 -0.27 0.22 0.57
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Third, the analysis of the levels of linearity and monotonicity (measured using Pearson and Spearman
correlations) reveals that the sampled causal mechanisms are mostly neither linear nor monotonic,
see Figure 8. Even if this result is to be expected, as the regional discrete mechanisms are discrete
mappings without any notion of ordering, the fact that all the distributions are constituted of one peak
on the negative side instead of two peaks, symmetric with respect to 0 is surprising. Hence, more
investigation remains to be done to understand if our sampling algorithm tends to favor the generation
of monotonically decreasing mechanisms.

One can also notice from Tables 9 and 10 that neither the cardinality of the endogenous variables nor
the number of noise regions seems to affect the mean of the distributions, which is close to 0.35. In
particular, the cardinality seems to have no effect on the distribution, while increasing the number of
noise regions seems to increase the asymmetry of the distribution towards more linear mechanisms
and decrease the standard deviation. Hence, we warn the users that choosing a high number of noise
regions, hoping to be very diverse when generating mechanisms, might create the opposite effect over
some metrics, as the distributions of Spearman’s and Pearson’s correlations seem to narrow down in
this analysis.

Table 11: Percentage of SCMs respecting the strong positivity assumption depending on the number
of endogenous variables.

Avg. min. proba. of
the joint distribution

Number of variables 0 >0

3 88.6 11.4
4 95.6 4.4
5 97.0 3.0

Table 12: Percentage of SCMs respecting the strong positivity assumption depending on the cardinality
of the endogenous variables.

Avg. min. proba. of
the joint distribution

Cardinality 0 >0

2 95.7 4.3
3 97.5 2.5
4 95.5 4.5
7 89.8 10.2

Finally, Tables 11 and 12 illustrate that the assumption of strong positivity is rarely respected
for all kinds of SCMs, whereas weak positivity is respected for all the sampled SCMs. More
precisely, strong positivity hold on average in 6% of the generated datasets. This figure should
be interpreted as a conservative lower bound. Indeed, our check uses finite samples, while strong
positivity is defined in the infinite-sample regime: we reported a violation whenever any realization
had an empirical frequency of 0 in 10,000 samples. In addition, there does not seem to be a
correlation between the cardinality of the endogenous variables and the validation of the positivity
assumption. It seems to mainly depend on the number of variables, which makes sense as the number
of possible observations increases exponentially with the number of variables. Failure to respect the
strong positivity assumption is a direct consequence of working with finite data, where infinitesimal
probabilities are rounded to zero.

We therefore recommend that in order to evaluate Causal ML methods taking the strong positivity
assumption, users use our analysis module to classify the sampled SCMs into two groups, depending
on their compliance with the strong positivity assumption or not, and analyze them separately. This
isolates the performance analysis within the theoretical validity framework of the method, and the
analysis of its robustness to the violation of this assumption.
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As a result, the generated SCMs belong mainly to the non-identifiable domain of Causal ML
methods, as positivity is poorly respected. Users must, therefore, be careful in their interpretations
when evaluating methods, as identifiable SCMs are much less represented than non-identifiable
ones. We recommend starting the evaluation on small SoIs close to the identifiable domain, before
progressively increasing the complexity of the causal datasets generated.

Let us highlight that this study was only carried out on regional discrete SCMs. We reserve for future
work its extension to continuous SCMs.

H.3 COMPARISION TO CAUSALNF SYNTHETIC SCMS USED FOR EVALUATION

To illustrate the contribution in SCMs diversity that CausalProfiler can give to practitioners wishing to
evaluate Causal ML methods, we compare the SCMs sampled in the previous Section with those used
in the CausalNF work (Javaloy et al., 2023) for evaluation. We decided to first focus on the CausalNF
synthetic SCMs because they have been reused by other papers (Sick & Dürr, 2025; Zhou et al., 2025)
to evaluate new methods as if they were classical synthetic benchmarks for counterfactual evaluation.

(a) All metrics (b) Distribution metrics

(c) Mechanism metrics (d) Graph metrics

Figure 9: Two-dimensional t-SNE plots representing our sampled SCMs (green) and the synthetic
SCMs used for evaluation of CausalNF (red). The latter, less numerous, have been plotted in the
foreground to highlight their distribution in relation to our SCMs. The SCMs are described using
characterization metrics from the analysis module. (a) t-SNE plot using all metrics (b) t-SNE plot
using distribution metrics only (c) t-SNE plot using mechanism metrics only (d) t-SNE plot using
graph metrics only.
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(a) All metrics zoomed ×9 (b) Distribution metrics zoomed ×17

Figure 10: t-SNE plots of Figures 9a and 9b zommed on CausalNF synthetic SCMs.

For this comparison, we reimplemented the synthetic SCMs of CausalNF using CausalProfiler, and
applied all the metrics of the analysis module (cf. Appendix G). In this way, the CausalNF SCMs
were processed in the same way as our SCMs. We then used these metrics to compare the two groups
of SCMs. For the sake of having a fair comparison, not penalizing the fact that some assumptions
were taken by the authors, we removed some metrics from the analysis: the hidden confounders and
positivity metrics. Indeed, all CausalNF SCMs satisfy the causal sufficiency and strong positivity
hypotheses, whereas, as presented in Appendix H.2, our SCMs do not by design. Finally, in order to
obtain an easily interpretable visual result, we applied a two-dimensional t-SNE projection (Maaten &
Hinton, 2008) to all these metrics and subgroups of metrics (Figure 9). Each t-SNE has been applied
here with a perplexity of 30.

It can be seen that our SCMs are more diverse than those of CausalNF. Regarding graph metrics,
it seems that CausalNF already has good diversity. The fact that we have greater support could
mainly stem from the fact that we sampled a large number of SCMs. On the other hand, regarding
distributions and mechanisms metrics, the increase in diversity is clear: The CausalNF SCMs are so
similar compared to the total diversity that the dimension reduction projected them onto a confined
space, cf. Figure 10.

As a result, we can conclude that CausalProfiler can enable practitioners to evaluate Causal ML
methods on a more diverse set of SCMs and naturally derive more conclusions.

H.4 COMPARISION TO BNLEARN SEMI-SYTHETIC GRAPHICAL CAUSAL MODELS

This section also illustrates the contribution CausalProfiler makes to SCMs’ diversity by comparing
them with other causal models used in the literature: CANCER and EARTHQUAKE from bnlearn
(Scutari, 2019). Unlike the synthetic and continuous SCMs from CausalNF, CANCER and EARTH-
QUAKE are discrete causal graph models. The following analysis, therefore, enriches the conclusions
of the previous section.

CANCER and EARTHQUAKE were compared to the SCMs sampled by CausalProfiler in the
same way as in the previous section: a two-dimensional t-SNE projection is applied to the
metrics from the analysis module. The only difference here is that the mechanisms metrics
cannot be computed on CANCER and EARTHQUAKE, as they are not proper SCMs, but
graphical causal models. For the sake of having a fair comparison, we also excluded the hidden
confounders metrics (as both bnlearn graphs are DAGs) but kept the positivity metrics for this analysis.
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(a) All metrics (b) Distribution metrics

(c) Graph metrics

Figure 11: Two-dimensional t-SNE plots representing our sampled SCMs (green) and the semi-
synthetic graphical causal models CANCER and EARTHQUAKE from bnlearn (red). The SCMs are
described using characterization metrics from the analysis module. (a) t-SNE plot using all metrics
(b) t-SNE plot using distribution metrics only (c) t-SNE plot using graph metrics only. Mechanism
metrics cannot be used as bnlearn models do not model mechanisms but rather distributions.

The results, presented in Figure 11, show that the two bnlearn datasets are not confined to a small
region of the two-dimensional space. Instead, they fall within the bottom left region of the t-SNE
plot, overlapping with some of our generated SCMs. Hence, the conclusion of this analysis is similar
to the previous one: CausalProfiler can generate SCMs producing similar causal datasets to existing
ones while also generating more diverse sets of SCMs.
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I VISUAL OVERVIEW OF CAUSALPROFILER’S SAMPLING STRATEGY

𝓖 = ((𝑉𝑜, 𝑉ℎ), 𝐸) 𝓖∗ = (𝑉𝑜, 𝐸
∗)

𝓜∗ = {𝑼, 𝑽, 𝓕, 𝑃 𝑼 }

𝑄 = (𝑇, 𝑋, 𝑌, 𝑉𝐹)
𝑄∗ = 𝑄 𝑀∗

𝐷 ∈ ℝ𝑁×|𝑉𝑜|

{𝐴1, 𝐴2, 𝐴3, … }

𝑄

𝓖∗

𝐷

𝑯∗

𝑄∗

෠𝑄

𝓓 = {𝑄,𝑄∗, 𝐷, 𝓖∗, 𝑯∗}

Figure 12: CausalProfiler structure. The left-hand side of the figure represents the code structure
of the causal dataset generator. The right-hand side represents the user code. It illustrates how
CausalProfiler can be used to evaluate a Causal ML method.

J PROOF OF PROPOSITION 5.1 (COVERAGE)

This section presents the proof of Proposition 5.1 stating that: For a Space of Interest S = {M,Q,D},
whose class of SCMs is a class of Regional Discrete SCMs with the maximum number of noise regions,
any causal dataset D = {Q,Q⋆, D,G⋆,H⋆} has a strictly positive probability to be generated.

Firstly, let us note that:

• Stating that any query Q can have any ground truth value Q⋆ given S is equivalent to
saying that the class of considered SCMs, i.e., the class of Regional Discrete SCMs with the
maximum number of noise regions, is L3-expressive with regards to the class of Markovian
discrete SCMs (i.e., any L3-distribution of the class of Markovian discrete SCMs can be
expressed with a Regional Discrete SCM).

• As the set of hypotheses H⋆ can contain at most L3 conditions, if the class of considered
SCMs is L3-expressive, then any set of hypotheses H⋆ can be represented.

• If the class of considered SCMs is L3-expressive, then it is also L1-expressive, hence, D
can be sampled from any distribution

As a result, our proof consists of showing that P (Q,G⋆|S) > 0 and that the class of Regional Discrete
SCMs with the maximum number of noise regions, denoted MRD-SCM,r=Rmax

, is L3-expressive with
regards to the class of Markovian discrete SCMs given an SoI S and a causal graph G.

Let us consider a SoI S = {M,Q,D} with M ⊆MRD-SCM,r=Rmax
.

Proving P (G⋆|S) > 0:
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G⋆ is built through Algorithm 2 as the latent projection of a DAG G = {(VH ,VO), E} over VO

where G is sampled using Algorithm 1. As a result, following the steps of Algorithms 1 and 2:

P (G⋆|S) = P ({(VH ,VO), E}|S)
= P (E|V)P (VH ,VO|S) Edges are sampled independently of the

observability of the variables
= P (E|V)P (VH ,VO| |V|)P (|V|) |V| and ph are the only parameters influ-

encing the observability of the variables

= P (E|V)P (VH ,VO| |V|)
1

Nmax −Nmin
|V| ∼ U [Nmin, Nmax]

= P (E|V)
|VH |!
|V|!

1

Nmax −Nmin
VH ⊆ V sampled without replacement

=
|VH |!

|V|!(Nmax −Nmin)
P (E|V)

As E = {Vk −→ Vi |Vk ∈ PA(Vi), ∀Vi ∈ V} and the edges are sampled along the causal order [1, N ]
with probability pedge:

P (G⋆|S) = |VH |!
|V|!(Nmax −Nmin)

N∏
i=1

P ({Vk −→ Vi |Vk ∈ PA(Vi)})

=
|VH |!

|V|!(Nmax −Nmin)

N∏
i=1

pedge
|PA(Vi)|(1− pedge)

i−1−|PA(Vi)|

Let us note that pedge = 0 =⇒ |PA(Vi)| = 0 and pedge = 1 =⇒ |PA(Vi)| = i − 1. As a result,
P (G⋆|S) > 0.

Proving that MRD-SCM,r=Rmax is L3-expressive with regards to the class of Markovian discrete
SCMs: Regional discrete SCMs are, by construction, Markovian Canonical SCMs (Zhang et al.,
2022). Furthermore, if the number of noise regions is chosen to be large enough (typically set
to its maximum value), any Markovian Canonical SCM can be represented using a Regional
Discrete SCM7. Thus, applying Zhang et al. (2022) Theorem 2.4, we can assert that: for an arbitrary
Markovian discrete SCM, there exists a Regional Discrete SCM such that they both have the
same causal graph and the same L3-distribution. Consequently, the class of Regional Discrete
SCMs is L3-expressive with respect to the class of Markovian discrete SCMs given the causal
graph G. Moreover, P (G) > 0 for all G because

∏N
i=1 pedge

|PA(Vi)|(1− pedge)
i−1−|PA(Vi)| > 0 (cf.

previous paragraph). Thus, more generally, the class of Regional Discrete SCMs sampled by our
CausalProfiler is L3-expressive with respect to the class of Markovian SCMs.

Proving P (Q|G⋆,S) > 0: Q is sampled given Q, D and G⋆. Even though we currently only
implement queries sampling for the classesQATE,QCATE andQCtf-TE (cf. Appendix F and Algorithms
6, 7 and 8), we can generalize our proof to any other query class (e.g., CDE, NDE). We simply
assume that these classes translate the set of constraints on the variables under consideration (e.g.,
conditioning variables have to be distinct from treatment variables or any other graphical constraints
that can be checked with G⋆) and express the probabilistic causal formula to be estimated. Once
such a query class Q is defined, our method randomly samples variables from VO in accordance
with Q constraints and by sampling realizations from D. We showed in the previous paragraph that
MRD-SCM,r=Rmax

is L3-expressive implying that it is L1-expressive too. So, any realization can be
present in D. As a result, for a given query class Q, any Q can be generated. Hence, P (Q|G⋆,S) > 0.

7The distinction between VO and VH is of no importance for L3-expressiveness.VO and VH are only used
to determine what will be visible to the user as benchmark.
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Proving Proposition 5.1 by combining previous results: We proved that MRD-SCM,r=Rmax

is L3-expressive, hence any training set D, ground truth query Q⋆ and set of hypotheses
H⋆ can be generated given an SoI S, a causal graph G and a causal query Q. In addition,
P (Q,G⋆|S) = P (Q|G⋆,S)P (G⋆|S) and we also prove that P (Q|G⋆,S) > 0 and P (G⋆|S) > 0.
Hence, P (Q,G⋆|S) > 0. As a result, any causal dataset D has a strictly positive probability to be
generated.

Remark on continuous SCMs. The universal approximation theorem (Hornik, 1991) states that
NNs (with non-polynomial activation functions) are dense in the space of continuous functions,
meaning that any continuous function can be approximated by a sequence of NNs converging to this
function. However, this does not guarantee that they strictly cover the space of continuous functions.
In particular, whenever the number of layers and neurons is finite, one can always build a continuous
function too complex to be represented with this finite number of parameters. Hence, Proposition 5.1
cannot be extended to any class of continuous SCMs. However, it could potentially be adapted not to
ask for strict coverage but rather density. We leave this question for future work.

K VERIFICATION RESULTS

We design and run verification experiments targeting each level of the PCH.

All following experiments are done on discrete SCMs to reduce approximations. Indeed, distributions
over continuous variables can only be approximated (e.g., using kernel methods) while discrete ones
can be computed exactly. In addition, the experiments rely on conditional independence testing,
which has been proven to be particularly difficult to use with continuous variables. Indeed, (Shah &
Peters, 2020) proved that no conditional independence test with a continuous conditioning variable
can have both a valid significance level and power.

K.1 L1 VERIFICATION

Consistency with L1 level of the PCH is tested through the verification that the Markov property
holds on randomly sampled regional discrete SCMs. Below is a description of the experimental
design choices made and the associated results.

K.1.1 EXPERIMENT

For a given SCM M := {V,U,F , P (U)}, we check that the Markov property is satisfied by
assessing whether there is a statistically significant amount of d-separations not leading to conditional
independence in the entailed distribution.
To do so, we first enumerate the list of sets of variables (A,B,C) in V corresponding to d-separations
inM’s causal graph GM, ie A ⊥⊥GM B|C. Second, for each d-separated set (A,B,C), we test
whether A ⊥⊥PM B|C by sampling 50k data points from the entailed distribution PM.

In practice, enumerating all the d-separations can be very costly. Moreover, as the set of variables
C increases, it becomes increasingly complicated to robustly test the conditional independence
A ⊥⊥PM B|C. Indeed, as the cardinality of C increases, so does the number of combinations of
values for which to test independence between variables A and B. Running the statistical test becomes
costly, and the data volume required for robust independence test results increases exponentially. This
is why we limit ourselves to listing the d-separated sets (A,B,C) such that A ∈ V, B ∈ V\A, and
C ∈ V ∪V2 ∪V3 by enumerating all the possible (A,B,C) tuples, and testing whether they are
d-separated in GM.

As the sampled SCMs are regional discrete, the conditional independence A ⊥⊥PM B|C can be
tested with Pearson’s χ2 independence tests (Pearson, 1900). More precisely, A and B are considered
independent conditionally to C if for all values c of C, the H0 hypothesis "A and B are independent"
is not rejected. Since Pearson’s χ2 test is based on the assumption that the number of samples is
large, we decide to skip tests where the Koehler criterion (Koehler & Larntz, 1980) is not met. Based
on empirical analyses, this criterion indicates whether the χ2 test is reliable depending on the number
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of samples considered. In addition, as we conduct tests for each observed value c, we need to control
for the expected proportion of false positives (represented by the Type I error of the test). To do so,
we apply the Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).

For each SoI, defined by the Cartesian product of the following parameters, we sample 5 SCMs:

• Number of endogenous variables: {4, 5, 6}
• Expected edge probability: {0.1, 0.4}
• Proportion of unobserved endogenous variables: set to 0 because the Markov property

only hold for Markovian SCMs
• Number of noise regions: {5, 10}
• Cardinality of endogenous variables: {2, 3, 10}
• Distribution of exogenous variables: set to U [0, 1]
• Number of data points: 50000

K.1.2 RESULTS

Table 13: Conditional independence tests based on χ2 independence tests to assess compliance of
sampled SCMs with the Markov property. Results are expressed as a percentage of the total of each
test type for each conditioning set size. The number of tests is also shown in brackets.

Conditioning
set size

A ⊥⊥PM B|C tests χ2 independence tests

Total Pass Fail Skip Total Pass Fail Skip

|C| = 1
100

(2 391)
91.76
(2 194)

4.94
(118)

3.3
(79)

100
(9 130)

85.4
(7 797)

1.43
(131)

13.17
(1 202)

|C| = 2
100

(2 986)
91.16
(2 722)

5.63
(168)

3.22
(96)

100
(53 040)

45.2
(23 976)

0.33
(177)

54.46
(28 887)

|C| = 3
100

(1 693)
91.08
(1 542)

5.67
(96)

3.25
(55)

100
(145 320)

18.49
(26 874)

0.07
(106)

81.43
(118 340)

TOTAL
100

(7 070)
91.34
(6 458)

5.40
(382)

3.25
(230)

100
(207 490)

28.26
(58 647)

0.2
(414)

71.54
(148 429)

The experimental results are summarized in Table 13, where it can be seen that 5.4% of the condi-
tional independence tests failed. Despite the use of the Koehler criterion and Benjamini-Hochberg
correction, some tests can still be rejected due to the random nature of finite data sampling, which
can produce slight artificial correlations in the data. Moreover, on closer inspection, the majority of
the failed tests (at least 350 out of 382)8 are unsuccessful because of a single failed χ2 independence
test. This reinforces our previous argument about the random nature of finite data sampling.

One can also notice that the number of skipped χ2 independence tests increases with the size of the
conditioning set. Such behavior is to be expected, since the number of realizations of the conditioning
set increases exponentially with its cardinality, while the number of observations sampled to perform
the independence tests remains constant. As a result, there are fewer and fewer observations available
to perform each χ2 test. In contrast, the number of fully skipped conditional independence tests
remains constant. This means that the χ2 skipped tests are relatively homogeneously distributed
across all the conditional independence tests.

Someone might argue that the number of sampled observations should simply be automatically
computed to verify the Koehler criterion. However, in general, such a calculation is complicated,
if not impossible, to automate, as causal mechanisms are randomly sampled. As a result, all kinds
of observational distributions can be induced with potentially very low probability realizations, for
which the Koehler criterion could never be validated because the number of data to be sampled would
be too large.

8Indeed, there is a total of 414 χ2 tests that failed corresponding to 382 failed conditional independence
tests. It mean that, at most 32(=414-382) conditional independence tests can have more than one failed χ2

independence test.
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To conclude, these results are sufficient to conclude that the Markov property is empirically verified
by the sampled SCMs.

K.2 L2 VERIFICATION

Consistency with L2 level of the PCH is tested through the verification that the Do-calculus rules
hold on randomly sampled regional discrete SCMs. Below is a description of the experimental design
choices made (Appendix K.2.1) and the associated results (Appendix K.2.2).

K.2.1 EXPERIMENT

Definition K.1. Do-Calculus rules (Pearl, 2009)
Given an SCM M := {V,U,F , P (U)} whose causal graph G is a DAG, and disjoint
subsets X,Y,Z, and W of V, the rules of the Do-Calculus are defined as follows:

1. Insertion/deletion of observation: if Y and Z are d-separated by X ∪W in GX,
then P (Y|do(X = x),W,Z) = P (Y|do(X = x),W)

2. Action/observation exchange: if Y and Z are d-separated by X∪W in GX,Z, then
P (Y|do(X = x), do(Z = z),W) = P (Y|do(X = x),Z,W)

3. Insertion/deletion of action: if Y and Z are d-separated by X ∪W in G
X,Z(W)

,
then P (Y|do(X = x), do(Z = z),W) = P (Y|do(X = x),W)

where GX (resp. GX) represents the graph G where the incoming edges in (resp. outgoing
edges from) X have been removed and Z(W) is the subset of nodes in Z that are not ancestors
of any node in W in GX

For a given SCM, we check each rule by first enumerating the sets of d-separated variables of interest.
Second, for each d-separated set, we test whether the distributions are statistically significantly similar
by sampling 50k data points from the intervened SCMs and testing whether they are drawn from the
same distribution.

For the same computational cost reasons as for L1 verification, we consider only univariate sets of
variables X,Y, Z, and W . In addition, the studied SCMs are sampled from the same SoIs as defined
in the L1-verification experiment (Appendix K.1.1). Finally, to assess whether two conditional
distributions are identical, we used Pearson’s χ2 goodness of fit tests (Pearson, 1900). As done in
Section K.1, we also use the Koehler criterion (Koehler & Larntz, 1980) and the Benjamini-Hochberg
correction (Benjamini & Hochberg, 1995).

For each SoI, defined by the Cartesian product of the following parameters, we sample 2 SCMs:

• Number of endogenous variables: {4, 5, 6}

• Expected edge probability: {0.1, 0.4}

• Proportion of unobserved endogenous variables: set to 0 because the Markov property
only hold for Markovian SCMs

• Number of noise regions: {5, 100}

• Cardinality of endogenous variables: {2, 5}

• Distribution of exogenous variables: set to U [0, 1]

• Number of data points: 50000

Compared to the previous experiment (Appendix K.1.1), we reduce the number of sampled SCMs
because comparing distributions two by two is more computationally expensive than conditional
independence tests.
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Table 14: Conditional independence tests based on χ2 goodness of fit tests to assess compliance of
sampled SCMs with the Do-Calculus rules. Results are expressed as a percentage of the total of each
test type for each conditioning set size. The number of tests is also shown in brackets.

Cond. goodness of fit χ2 goodness of fit

Do-Calculus Rule Total Pass Fail Skip Total Pass Fail Skip

Rule 1
Insertion/deletion

of observation

100
(3 378)

96.15
(3 248)

3.85
(130)

0
(0)

100
(171 092)

88.84
(152 004)

0.1
(172)

11.06
(18 916)

Rule 2
Action/observation

exchange

100
(5 065)

94.04
(4 763)

5.96
(302)

0
(0)

100
(259 509)

83.84
(217 578)

0.09
(241)

16.06
(41 690)

Rule 3
Insertion/deletion

of action

100
(5 169)

93.75
(4 846)

6.25
(323)

0
(0)

100
(282 184)

89.21
(251 731)

0.06
(157)

10.74
(30 296)

TOTAL 100
(13 612)

94.45
(12 857)

5.55
(755)

0
(0)

100
(712 785)

87.17
(621 313)

0.08
(570)

12.75
(90 902)

K.2.2 RESULTS

The experimental results are summarized in Table 14 where it can be seen that they are very similar
to the L1 verification ones: roughly 6% of the conditional goodness of fit tests were not validated,
some tests are rejected due to the random nature of finite data sampling but the majority them (at
least 570 out of 755) are unsuccessful because of a single failed χ2 goodness of fit test.

One can also notice that the percentage of skipped χ2 goodness of fit tests is similar for rules 1 and 3
but increases by roughly 50% for rule 2. Such behavior is to be expected as rule 2 is the only rule to
have conditioning sets of size 3 on both sides of the equality. However, the number of skipped tests
remains low, with a maximum of 16%.

As a result, we estimate that these results are sufficient to conclude that the Do-calculus rules are
respected by the sampled SCMs.

K.3 L3 VERIFICATION

Consistency with L3 level of the PCH is tested through the verification that the axiomatic characteri-
zation of structural counterfactuals holds on randomly sampled regional discrete SCMs. Below is
a description of the experimental design choices made (Appendix K.3.1) and the associated results
(Appendix K.3.2).

Definition K.2. Axiomatic characterization of structural counterfactuals (Pearl, 2009)
Given an SCMM := {V,U,F , P (U)} whose causal graph G is a DAG, the axioms of
structural counterfactuals are defined as follows:

1. Composition: For any sets of endogenous variables X,Y, and W in V and any real-
ization u of U, if Wdo(X=x)(u) = w then Ydo(X=x),do(W=w)(u) = Ydo(X=x)(u)

2. Effectiveness: For any disjoint sets of endogenous variables X, and W in V and
any realization u of U, Xdo(X=x),do(W=w)(u) = x

3. Reversibility: For any two distinct variables Y and W and any sets of other
variables X in V and any realization u of U, if Ydo(X=x),do(W=w)(u) = y and
Wdo(X=x),do(Y=y)(u) = w then Ydo(X=x)(u) = y

Note that we do not write P (Wdo(X=x)|U) but rather Wdo(X=x)(u) as it is a deterministic expres-
sion. Indeed, if U is fixed, there is no stochastically anymore, so we no longer need to reason in
distributions but rather in functional forms.

K.3.1 EXPERIMENT

For a given SCM, using Definition K.1 notations, we check that:
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1. The Composition axiom is satisfied by assessing whether Wdo(X=x)(u) = w implies
Ydo(X=x),do(W=w)(u) = Ydo(X=x)(u) for any sets of endogenous variables X,Y, and W
in V and any realization u of U

2. The Effectiveness axiom is satisfied by assessing whether Xdo(X=x),do(W=w)(u) = x for
any sets of endogenous variables X, and W in V and any realization u of U

3. The Reversibility axiom is satisfied by assessing whether Ydo(X=x),do(W=w)(u) = y and
Wdo(X=x),do(Y=y)(u) = w implies Ydo(X=x)(u) = y for any two (distinct) variables Y and
W and any sets of variables X in V and any realization u of U

For each SoI, defined by the Cartesian product of the following parameters, we sample 5 SCMs:

• Number of endogenous variables: {3, 5, 10}
• Expected edge probability: {0.1, 0.5, 0.7}
• Proportion of unobserved endogenous variables: set to 0 because the Markov property

only hold for Markovian SCMs

• Number of noise regions: {3, 5, 10}
• Cardinality of endogenous variables: {2, 5, 7}
• Distribution of exogenous variables: set to U [0, 1]
• Number of data points: 50000

For each SCM, instead of enumerating all the possible four sets of variables X,Y and W, we sample
a partition of three elements of a randomly sampled subset of V of a size randomly picked in [3, |V|].
This sampling strategy enables us to make sure the three sets are disjoint and of randomly varying
size. In addition, for each four sets, we sample 50k realizations of U.

Let us note that the axioms now correspond to exact realizations and not equal probabilities. As a
result, we expect no failure as no approximation is made in this experiment.

K.3.2 RESULTS

As expected, all the tested equalities are verified in our experiments. We can, therefore, consider that
the SCMs created by our generator allows the estimation of any structural counterfactual queries.

L EXTENDED EXPERIMENTAL RESULTS

This appendix complements Section 6 with extended setup details and results. We first provide further
details for Experiments 1 and 2, inlcuding the Algorithm 12 describing our evaluation protocol. We
then include an additional experiment on ATE estimation under hidden confounding, and then an
evaluation of runtime scalability on larger graphs.

L.1 EXPERIMENT 1: ADDITIONAL INFORMATION

Table 15 details the SoI used in our experiments, Table 16 reports extended performance metrics
complementing Table 1, and Figure 13 shows box plots of ATE estimation errors.

Parameters not explicitly listed for a given SoI are set to their default values as per the benchmark
configuration. Neural Networks for our experiments have two 8-neuron layers and use ReLU
activation. Unless otherwise specified, we use 1000 samples per SCM in our experiments. This
value was chosen as a stable default for these SoIs after testing several dataset sizes. More precisely,
after testing the stability of the methods we evaluate (i.e., CausalNF, DCM, NCM, VACA) over the
following dataset sizes, 50, 100, 200, 1000, and 2000, we found that 1000 samples was the smallest
dataset size not drastically degrading the performance of the methods. This is why we decided to
take this value as default for our experiments. We only vary it explicitly when studying the effect of
limited data (e.g., in NN-Large-LowData).
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Algorithm 12 Evaluation process for causal machine learning methods

1: Input: List of Spaces of Interest SoIs, list of seeds seeds number of examples per SCM
num_examples

2: Initialize: method← CausalMLMethod()
3: for each SoI in SoIs do
4: for each seed in seeds do
5: setGlobalSeed(seed)
6: for each examples in num_examples do
7: Generate samples, queries, and targets from the profiler
8: Get estimates using the method on the generated samples and queries
9: Calculate (and store) error by comparing estimates with targets

10: end for
11: Compute performance statistics for seed
12: end for
13: Compute performance statistics for SoI
14: end for
15: Output: Final summary with evaluation results

Table 15: Specification of each SoI used in the general experiments. N denotes the sampled number
of nodes.

Name Linear-Medium

# Nodes 15-20
Mechanism Linear
Expected Edges 2×N
Variable Type Continuous
Samples 1000
Query Type ATE
Seeds [10, 11, 12, 13, 14]

Name NN-Medium

# Nodes 15-20
Mechanism NN
Expected Edges 2×N
Variable Type Continuous
Samples 1000
Query Type ATE
Seeds [10, 11, 12, 13, 14]

Name NN-Large

# Nodes 20-25
Mechanism NN
Expected Edges 2×N
Variable Type Continuous
Samples 1000
Query Type ATE
Seeds [10, 11, 12, 13, 14]

Name NN-Large-LowData

# Nodes 20-25
Mechanism NN
Expected Edges 2×N
Variable Type Continuous
Samples 50
Query Type ATE
Seeds [10, 11, 12, 13, 14]
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Figure 13: Box plots showing ATE estimation errors across different SoIs

Table 16: Additional performance metrics of CausalNF, DCM, NCM, and VACA on the general
experiments.

Space Method Min Error Total Fail Runtime Mean Runtime Std

CausalNF 0.0024 0 27.58 s 18.33 s
DCM 0.0086 0 33.08 s 9.71 s
NCM 0.0024 0 14.77 s 1.42 sLinear-Medium

VACA 0.0038 1335 11.69 s 4.54 s

CausalNF 0.0019 0 21.47 s 19.52 s
DCM 0.0073 0 31.79 s 10.62 s
NCM 0.0014 0 14.65 s 1.43 sNN-Medium

VACA 0.0024 125 12.13 s 4.41 s

CausalNF 0.0038 0 30.23 s 25.33 s
DCM 0.0060 0 38.33 s 14.02 s
NCM 0.0018 0 18.90 s 1.38 sNN-Large

VACA 0.0023 290 12.88 s 4.31 s

CausalNF 0.0086 0 44.28 s 17.10 s
DCM 0.0121 0 4.82 s 1.34 s
NCM 0.0013 0 0.81 s 0.11 sNN-Large-LowData

VACA 0.0010 0 10.43 s 4.59 s
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L.2 EXPERIMENT 2: ADDITIONAL INFORMATION

We provide more details about the SoI used in our experiments in Table 17 and present extended
performance metrics in Table 18, complementing those already shown in Table 2. Parameters not
explicitly listed for a given SoI are set to their default values as per the benchmark configuration.

Table 17: Specification of the Spaces of Interest used for evaluating discrete SCMs with Ctf-TE
queries. N denotes the sampled number of nodes.

Name Disc-C2-Reject

# Nodes 10–15
# Categories 2
Mechanism Tabular
Sampling Strategy Rejection
Edges N
Samples 500
Query Type Ctf-TE
Seeds [1, 2, 3, 4, 5]

Name Disc-C4-Unbias

# Nodes 10–15
# Categories 4
Mechanism Tabular
Sampling Strategy Random
Edges N
Samples 500
Query Type Ctf-TE
Seeds [1, 2, 3, 4, 5]

Name Disc-L-C2-Unbias

# Nodes 20–30
# Categories 2
Mechanism Tabular
Sampling Strategy Random
Edges N
Samples 500
Query Type Ctf-TE
Seeds [1, 2, 3, 4, 5]

Table 18: Additional performance metrics of CausalNF and DCM on the discrete experiments.

Space Method Min Error Total Fail Runtime Mean Runtime Std

CausalNF 0.0000 202 0.46 s 0.04 sDisc-C2-Reject DCM 0.0000 107 8.81 s 3.55 s

CausalNF 0.0000 1017 0.42 s 0.03 sDisc-C4-Unbias DCM 0.0000 565 7.68 s 3.43 s

CausalNF NaN 2500 0 s 0 sDisc-L-C2-Unbias DCM 0.0000 283 16.39 s 6.42 s

L.3 EXPERIMENT 3: ATE ESTIMATION UNDER HIDDEN CONFOUNDING

In this experiment, we demonstrate how our framework can be used to evaluate methods in the
presence of latent confounders — a common challenge in real-world causal inference. A key
goal here is not only to confirm theoretical limitations but to investigate how quickly and severely
performance degrades when assumptions are violated. While theory can tell us whether identification
holds, it is often agnostic to the degree of failure. See Table 20 for a summary of results, Table 21 for
a few additional performance metrics, and Figure 14 for a boxplot of ATE estimation errors over the
different SoI.

We focus on two linear SCM settings:

• Linear-No-Hidden: Linear SCMs with 10-15 nodes and full observability (no hidden
confounders), using 1000 data points per SCM.

• Linear-60-Hidden: Same setup as above, but with 60% of the variables unobserved
(hidden).
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We provide more details about the SoI used in our experiments in Table 19. Parameters not explicitly
listed for a given SoI are set to their default values as per the benchmark configuration.

Table 19: Specification of the SoIs used to evaluate performance under hidden confounding. N
denotes the sampled number of nodes.

Name Linear-No-Hidden

# Nodes 10-15
Mechanism Linear
Expected Edges 2×N
Variable Type Continuous
Prop. Hidden Nodes 0%
Samples 1000
Query Type ATE
Seeds [42, 43, 44, 45, 46]

Name Linear-60-Hidden

# Nodes 10-15
Mechanism Linear
Expected Edges 2×N
Variable Type Continuous
Prop. Hidden Nodes 60%
Samples 1000
Query Type ATE
Seeds [42, 43, 44, 45, 46]

Setup. We evaluate three methods: CausalNF (Javaloy et al., 2023), DCM (Chao et al., 2023), and
DeCaFlow (Almodóvar et al., 2025). The first two methods assume causal sufficiency, and therefore
cannot, in theory, handle hidden confounding. DeCaFlow, in contrast, is explicitly designed for this
setting but requires access to the full causal graph (including hidden variables) and does not run when
all variables are observed. Thus, we include it only in the hidden confounding SoI.

Results (Linear-No-Hidden). As expected, both CausalNF and DCM perform well when all
variables are observed. DCM achieves lower mean error (0.0845) and standard deviation (0.1515),
with a maximum error of 2.89. The upper whisker of DCM’s box plot lies below the median of
CausalNF, indicating consistent superior performance. These results serve as a reference point for
comparison when introducing hidden variables.

Results (Linear-60-Hidden). With 60% of variables hidden, method performance degrades signif-
icantly. DeCaFlow performs reliably, with an error mean of 0.3405 and low variance. In contrast,
CausalNF—despite a box plot that visually appears well-behaved—has a massive error mean of
2.67× 1012 and a maximum error exceeding 1015. This is due to a small subset of SCMs producing
extremely large errors (14 with error > 1000), illustrating that, when assumptions are violated, error
can become arbitrarily large. While DCM does not show such instability on this particular sample, its
theoretical limitations under hidden confounding still hold — the expectation is that if we evaluate
over enough SCMs we will eventually also get arbitrarily large errors due to the violation of the
causal sufficiency assumption.

Figure 14: Box plots of ATE estimation errors in the presence and absence of hidden confounding.
Each box shows the interquartile range and median, with whiskers extending to 1.5× IQR. CausalNF
and DCM are shown for both SoIs; DeCaFlow is shown only for the hidden setting.
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Table 20: Performance summary of CausalNF, DCM, and DeCaFlow on the hidden confounder
experiments.

Space Method Mean Error Std Error Max Error Runtime (s)

CausalNF 0.5538 0.9866 14.2495 8570.0
Linear-No-Hidden DCM 0.0845 0.1515 2.8954 12144.6

CausalNF 2.667e+12 5.497e+13 1.225e+15 293.2
DCM 0.5584 1.2122 17.2049 4187.6Linear-60-Hidden

DeCaFlow 0.3405 0.6799 5.9435 2264.0

Table 21: Additional performance metrics of CausalNF, DCM, and DeCaFlow on the hidden con-
founder experiments.

Space Method Min Error Total Fail Runtime Mean Runtime Std

CausalNF 0.0036 0 17.14 s 10.61 sLinear-No-Hidden DCM 0.0068 0 24.29 s 7.64 s

CausalNF 0.0029 0 0.59 s 0.02 s
DCM 0.0000 0 8.38 s 3.45 sLinear-60-Hidden

DeCaFlow 0.0108 0 4.53 s 1.27 s

L.4 RUNTIME SCALABILITY ON LARGER GRAPHS

We additionally evaluate the scalability of CausalProfiler with respect to the number of variables.
Batch processing and vectorized operations enable efficient dataset generation even for graphs with
hundreds of variables. Table 22 reports the average generation time (over 5 runs) for producing
10,000 samples and 50 queries (each estimated using 10,000 additional datapoints), using the same
CPU hardware described in Section 6.3.

Table 22: Average runtime (seconds) of CausalProfiler for generating datasets across increasing
numbers of variables. Each value is the mean over 5 runs with standard deviation in parentheses.

Num Variables Mean Time (s) Std Dev (s)
10 0.19 0.01
50 0.89 0.03
100 1.81 0.03
500 9.61 0.11
1000 19.24 0.21

For completeness, Table 23 reports the runtime of each evaluated method in Experiment 1 (Section
6.4) on the NN-Large SoI as the number of nodes increases (with the expected number of edges fixed
to N , the number of nodes). While some methods scale better than others, dataset generation with
the CausalProfiler remains efficient.

Table 23: Runtime scaling of causal inference methods (in seconds). Each entry reports mean and
standard deviation across runs.

Node Range CausalNF DCM NCM VACA
30–40 (1, 0.6) (24, 8.4) (12, 1.2) (11, 4.6)
50–70 (2, 0.4) (43, 12.8) (22, 2.6) (12, 4.8)
70–90 (3, 0.3) (53, 18.0) (29, 2.4) (12, 4.7)
90–110 (4, 0.4) (60, 23.0) (36, 2.5) ( 9, 2.5)

The apparent reduction in average VACA runtime is explained by its increasing failure rate. All other
methods exhibit a 0% failure rate.

49


	Introduction
	Related Work
	Background  Notation
	Problem Formulation
	Sampling Causal Datasets with the CausalProfiler
	Defining a Space of Interest
	Sampling Structural Causal Models
	Sampling Causal Datasets

	Experiments
	Verification of Benchmark Correctness
	Comparison to existing benchmarks
	Method Evaluation using CausalProfiler
	Experiment 1: General Evaluation across Diverse SCMs
	Experiment 2: Counterfactual Estimation on Discrete SCMs

	Limitations and Future Work
	Conclusion
	Use of Large Language Models (LLMs)
	Additional definitions  Notations
	Interventional Quantities (L2)
	Counterfactual Quantities (L3)

	Space of Interest
	Causal Graph Sampling
	Sampling Discrete SCMs
	Regional Discrete SCMs
	Discrete Mechanism Sampling strategies

	Query Sampling and Estimation
	Query Sampling
	SCM-Based Query Estimation

	Analysis module's metrics
	Analysis of the empirical distribution of the generated SCMs
	Experiment
	Results
	Comparision to CausalNF synthetic SCMs used for evaluation
	Comparision to bnlearn semi-sythetic graphical causal models

	Visual overview of CausalProfiler's sampling strategy
	Proof of Proposition 5.1 (Coverage)
	Verification Results
	L1 verification
	Experiment
	Results

	L2 verification
	Experiment
	Results

	L3 verification
	Experiment
	Results


	Extended Experimental Results
	Experiment 1: Additional Information
	Experiment 2: Additional Information
	Experiment 3: ATE Estimation under Hidden Confounding
	Runtime Scalability on Larger Graphs


