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Abstract
Motivated by applications in digital health, this
work studies the novel problem of online uniform
sampling (OUS), where the goal is to distribute
a sampling budget uniformly across unknown de-
cision times. In the OUS problem, the algorithm
is given a budget b and a time horizon T , and an
adversary then chooses a value τ∗ ∈ [b, T ], which
is revealed to the algorithm online. At each deci-
sion time i ∈ [τ∗], the algorithm must determine
a sampling probability that maximizes the budget
spent throughout the horizon, respecting budget
constraint b, while achieving as uniform a distri-
bution as possible over τ∗. We present the first
randomized algorithm designed for this problem
and subsequently extend it to incorporate learning
augmentation. We provide worst-case approxima-
tion guarantees for both algorithms, and illustrate
the utility of the algorithms through both synthetic
experiments and a real-world case study involving
the HeartSteps mobile application. Our numeri-
cal results show strong empirical average perfor-
mance of our proposed randomized algorithms
against previously proposed heuristic solutions.

1. Introduction
The problem of online uniform sampling (OUS) is moti-
vated by applications in digital health, where administering
interventions at inappropriate times, such as when users
are not at risk,1 can significantly increase mental burden
and hinder engagement with digital interventions (Li et al.,
2020; Nahum-Shani et al., 2018; Wen et al., 2017; Mc-
Connell et al., 2017; Mann & Robinson, 2009). Existing
studies (Heckman et al., 2015; Klasnja et al., 2008; Dim-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1Risk times are when the patient is susceptible to a negative
event, such as smoking relapse.

itrijević et al., 1972) show excessive digital interventions
can heighten user fatigue, suggesting a threshold beyond
which intervention effectiveness declines. A strategy rooted
in the ecological momentary assessment (EMA) literature
and proven effective in mitigating user fatigue involves allo-
cating a fixed and limited budget for treatments delivered to
the patient and delivering them with a uniform distribution
across all risk times (e.g., Liao et al. 2018; Dennis et al.
2015; Rathbun et al. 2013; Scott et al. 2017a;b; Shiffman
et al. 2008; Stone et al. 2007). However, this strategy is chal-
lenging because the true number of risk times is unknown,
inspiring the OUS problem.

Contributions Our contributions in this paper are two-fold.
First, we formulate the common OUS problem in digital
health as an online optimization problem and provide ran-
domized algorithms that perform well in practice with com-
petitive ratio guarantees. The competitive ratio measures
the performance of an online algorithm against an offline
clairvoyant benchmark, assuming the unknown parameter is
revealed to the clairvoyant in advance. These guarantees are
inherently conservative: 1) no online algorithm can achieve
the same performance as the clairvoyant in practice (i.e., a
competitive ratio of 1 is unattainable in OUS), and 2) they
hold across all problem instances or sample paths (i.e., they
are worst-case guarantees). Consequently, online approxi-
mation algorithms may exhibit conservative behavior. To
address this, we numerically illustrate the practicality of
our algorithm, demonstrating that they outperform naive
benchmarks on average.

Second, we extend our algorithm to the practical setting
where a confidence interval containing the true risk time
is provided, potentially through a valid statistical inference
procedure. We conduct the competitive ratio analysis for
our proposed learning-augmented approximation algorithm,
demonstrating its consistency in the strong sense—optimal
performance is achieved when the confidence interval width
is zero—and robustness—the learning-augmented algorithm
performs no worse than the non-learning augmented coun-
terpart. Our findings indicate that, in almost all tested sce-
narios, the randomized learning-augmented algorithm out-
performs its non-learning augmented counterpart.

Outline In Section 2, we formalize the OUS problem. We in-
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troduce our randomized algorithm without learning augmen-
tation in Section 3. This algorithm is segmented into three
distinct cases based on the horizon length to budget ratio,
with a competitive ratio established for each. In Section 4,
we develop a learning-augmented algorithm that integrates
a prediction interval and provide theoretical justification for
its effectiveness. The efficacy of these algorithms is first
assessed through synthetic experiments, followed by their
application to real-world data in Section 5.

1.1. Related Work
Online Uniform Sampling Existing methodologies, pri-
marily sourced from the EMA literature, focus on delivering
interventions through the form of mobile self-report requests
over a fixed time horizon. These approaches are constrained
by budget and uniformity considerations to minimize user
burden and ensure accurate reflection of user conditions
across diverse contexts (Dennis et al., 2015; Rathbun et al.,
2013; Scott et al., 2017a;b). In this work, we permit inter-
vention only when users are at risk, leading to an unknown
horizon length. This introduces a significant challenge in
balancing the allocation of a limited budget with the need
to maintain uniformity in intervention delivery. To address
this issue, Liao et al. (2018) developed a heuristic algo-
rithm, but its performance depends heavily on the accuracy
of the predicted number of risk times. When the predic-
tion is inaccurate, the algorithm lacks theoretical guarantees,
highlighting the need for a more robust algorithm design.

Multi-option Ski-rental Problem Our work closely relates
to the multi-option ski-rental (MOSR) problem (Zhang et al.,
2011; Shin et al., 2023), where the number of snowy days is
unknown. Customers have multiple ski rental options, differ-
ing in cost and duration. The goal is to minimize costs while
ensuring ski availability on snowy days. Shin et al. (2023)
introduced a randomized algorithm for MOSR, with a tight
e-competitive ratio. A random variable B is introduced as a
proxy for the unknown true horizon T . B is initialized to
α, following a density function 1/α within [1, e). The algo-
rithm iteratively solves an optimization problem to identify
an optimal set of rental options within budget B, maximiz-
ing day coverage. Customers sequentially utilize the options
until depletion, at which point B is increased by a factor of
e, and the process is repeated.

Our work builds upon Shin et al. (2023), leveraging the
same randomized algorithmic idea. However, our problem
setting is significantly different from that of MOSR. In par-
ticular, instead of having discrete ski-rental options, at each
decision time, the algorithm needs to decide on the sam-
pling probability, which is continuous in nature. Further, in
our problem, the sum of the sampling probability cannot
exceed a predefined budget, while such constraints do not
exist in MOSR. Our problem additionally has a uniformity
consideration.

Learning-Augmented Online Algorithms Many online
algorithms incorporate black-box point predictions on the
unknown parameters to improve their worst-case guarantees
(Purohit et al., 2018; Bamas et al., 2020; Wei & Zhang,
2020; Jin & Ma, 2022). The confidence of these point es-
timates is often represented by a single parameter, with a
higher value indicating more accurate predictions. When
the confidence is low, most work do not guarantee that the
learning-augmented algorithm will perform no worse than
the non-learning counterpart (Bamas et al., 2020). In prac-
tice, prediction confidence intervals, rather than point esti-
mates, are often generated using valid statistical inference
methods. A wider confidence interval typically indicates
less informative predictions (Shafer & Vovk, 2008). Im et al.
(2021) consider the setting where the prediction provides a
range of values for key parameters in the online knapsack
problem. However, their deterministic solution cannot be
directly extended to our setting, as the number of risk times
in OUS is stochastic. We introduce the first integration of
confidence intervals into randomized algorithms for OUS.
This integration enables our proposed algorithms to surpass
the performance of their non-learning counterpart, even with
a wide confidence interval.

2. Problem Framework
In the context of digital interventions, we define the OUS
problem as presented by Liao et al. (2018). Let T denote
the total number of decision points within a decision period
(e.g., within a day). At any given time t ∈ [1, T ] in each
decision period, patients encounter binary risk levels2 (deter-
mined by data from wearable devices), indicating whether
the patient is likely to experience an adverse event, such
as relapse to smoking. The distribution of risk levels is
allowed to change arbitrarily across decision periods since
treatments may influence and reduce subsequent risk.

Let τ∗ be the unknown true number of risk times that a
patient experiences in a decision period. Note that τ∗ is
stochastic and is revealed only at the end of the horizon
T , corresponding to the last decision time in the decision
period. We define pi ∈ (0, 1) to be the treatment probability
at time i ∈ [τ∗]. We preclude the possibility that pi = 0
or pi = 1 to facilitate after-study inference (Boruvka et al.,
2018; Zhou et al., 2023; Kallus & Zhou, 2022).

The algorithm is provided with a soft budget of b, represent-
ing the total expected number of interventions allowed to be
delivered within each decision period. We assume τ∗ > b
as evidenced in practice (Liao et al., 2018). At each decision
time i, the algorithm decides the intervention probability pi.
The objectives of the OUS problem (Liao et al., 2018; Den-

2When multiple risk levels are present, the problem naturally
decomposes into independent subproblems for each risk level, see
more details in Appendix A.
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nis et al., 2015; Rathbun et al., 2013; Scott et al., 2017a;b;
Shiffman et al., 2008; Stone et al., 2007) are to 1) assign the
intervention probabilities {pi}i∈[τ∗] as uniform as possible
across risk times, and 2) maximize the sum of intervention
probabilities across risk times while adhering to the budget
constraint b.

Abstractly, in the OUS problem, the algorithm is given
a budget b and a time horizon T , and an adversary then
chooses a value τ∗ ∈ [b, T ], which is revealed to the algo-
rithm online. At each decision time i ∈ [τ∗], the algorithm
must determine a sampling probability that maximizes the
budget spent throughout the horizon, respecting the budget
constraint b, while achieving as uniform a distribution as
possible over τ∗.

Without additional information on τ∗, the two objectives
compete with each other. A naive solution to fulfill the first
objective is to set pi = b/T, i ∈ [τ∗], which, however, fails
to maximize the sum of intervention probabilities. Con-
versely, if we set pi to be a large constant value, there is a
risk of depleting the budget before the end of the horizon,
thus failing to achieve the uniformity objective. Therefore,
the optimality of the two objectives cannot be simultane-
ously achieved without additional information on τ∗. Liao
et al. (2018) provided a heuristic algorithm for OUS given a
point estimate of τ∗. The algorithm’s performance is signif-
icantly influenced by the accuracy of this forecast. In this
work, we introduce randomized algorithms for OUS with
robust worst-case guarantees, considering settings both with
and without learning augmentation.

2.1. OUS as An Online Optimization Problem

In this section, we formulate OUS as an online optimization
problem, where the objective function provides a uniform
way of comparing the performance of different approxima-
tion algorithms, and the constraint defines the set of feasible
solutions.

Specifically, we aim to find a sequence of treatment prob-
ability assignments {pi}i∈[τ∗] that achieves the following
two objectives:

1. Maximizes the sum of treatment probabilities across risk
times, subject to the “soft” budget b;

2. Penalizes changes in treatment probabilities within each
risk level.

Formally, the OUS problem can be expressed using the
following optimization problem:{

max

τ∗∑
i

pi −
1

τ∗
ln

(
maxi∈[τ∗] pi

mini∈[τ∗] pi

)
:

E

[
τ∗∑
i=1

pi

]
≤ b, pi ∈ (0, 1),∀i ∈ [τ∗].

}
(1)

where the expectation, E, in the budget constraint is taken
over the randomness in the algorithm. This budget constraint
is “soft” in the sense that if we have multiple decision peri-
ods (which is the case in digital health), we should satisfy
the budget constraint in expectation.
Remark 2.1. Notably, the purpose of formulating the op-
timization problem is not to solve it optimally, but rather
to provide a feasible solution without knowledge of the un-
known τ∗. Rather than setting uniformity as a constraint,
we incorporate it into the design of our approximation al-
gorithms. By including uniformity as a penalty term in the
objective function, represented by:

1

τ∗
ln

(
maxi∈[τ∗] pi

mini∈[τ∗] pi

)
, (2)

we can directly compare the overall performance of different
online approximation algorithms, including how well they
achieve uniformity, by comparing their objective function
values.

The choice of the penalty term (2) is inspired by the entropy
change concept from thermodynamics (Smith, 1950). This
choice is not unique but it has several nice properties: a)
it equals to 0 if and only if {pi}i∈[τ∗] are identical, b) it
increases with the maximum difference in {pi}i∈[τ∗], and
c) it tends towards infinity as the value of pi approaches
to zero, penalizing scenarios where the expected budget is
depleted before the horizon ends. We note that one can
replace the term 1/τ∗ in the penalty by a tuning parameter
σ, which controls the strength of the penalty, as discussed
in Remarks 3.3 and 4.3.3 Finally, we highlight that KL
divergence cannot be used here to impose uniformity (see
detailed discussion in Appendix B).

2.2. Offline Clairvoyant and Competitive Ratio

In the offline clairvoyant benchmark, the clairvoyant pos-
sesses knowledge of τ∗. When provided with this value,
the optimal solution to Problem (1) is to set pi = b/τ∗.
Consequently, the optimal value of the objective function
in Problem (1) is OPT(τ∗) = b. Importantly, in practice,
no online algorithm can attain OPT(τ∗) as the offline clair-
voyant benchmark serves as an upper bound on the best
achievable performance for any online algorithm without
knowledge of τ∗. Let SOL be the objective value of Prob-
lem (1) achieved by a randomized online algorithm, we say
that

Definition 2.2 (γ-competitive). An algorithm is γ-
competitive if E[SOL] ≥ γ · OPT(τ∗).

Remark 2.3. First, we emphasize that the expectation in

3Since the current design of our algorithms does not explicitly
account for the form of the penalty term, the penalty (2) could
also be replaced by any other suitable functions, with performance
re-evaluated under the modified objective function.
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Definition 2.2 is taken only over the randomness of the
algorithm. Second, we note that if the competitive ratio is
provided, it holds in expectation for every feasible τ∗ ∈
[b, T ]. This implies that the competitive ratio serves as a
worst-case guarantee: in any OUS instance, as long as the
budget b and the maximum horizon length T remain fixed
across decision periods, we can expect to meet the budget
and achieve the stated competitive ratio, regardless of the
specific realization of τ∗ in each decision period.

The key difficulty in solving Problem (1) in the online set-
ting arises due to the unknown nature of τ∗. In Section 3,
we introduce the first approximation algorithm for the OUS
problem.

2.3. With Learning Augmentation

In the learning-augmented setting, we are additionally pro-
vided with a prediction confidence interval [L,U ], generated
by a valid statistical procedure, that contains the unknown
true τ∗ with high probability. A wider confidence interval
reflects lower prediction quality. For simplicity, we assume
τ∗ lies within the interval, though our results generalize to
cases where it is contained with high probability.

To evaluate the performance of the learning-augmented algo-
rithm in the presence of a prediction confidence interval, we
extend the standard consistency-robustness analysis from
the prior literature (Lykouris & Vassilvtiskii, 2018; Purohit
et al., 2018; Bamas et al., 2020; Shin et al., 2023). Specifi-
cally, an algorithm is said to be λ-consistent if it achieves
E[SOL] ≥ λ · OPT(τ∗) when the prediction is perfect, i.e.,
when L = U , indicating a zero-length interval.4 This aligns
with the standard definition where the prediction is accurate
(Shin et al., 2023). Conversely, an algorithm is ρ-robust if it
satisfies E[SOL] ≥ ρ · OPT(τ∗) regardless of the width of
the prediction interval [L,U ], corresponding to the previous
definition where the prediction can be arbitrarily inaccurate.

In Section 4, we show that our proposed learning-augmented
algorithm is 1-consistent, achieving the optimal solution
when the interval width is zero. Moreover, the competitive
ratio of our learning-augmented algorithm closely matches
that of the non-learning augmented counterpart, even when
the prediction quality deteriorates. To the best of our knowl-
edge, this is the first work that provide a 1-consistency
guarantee on learning-augmented algorithms, after careful
engineering of the algorithms.

3. Randomized Algorithm
In this section, we introduce our randomized algorithm, Al-
gorithm 1, designed for the OUS problem without learning

4Similar to Definition 2.2, the expectation is taken over the
randomness in the algorithm.

augmentation. This algorithm is inspired by the randomized
algorithm proposed by Shin et al. (2023) for the MOSR
problem. Due to the significant differences in problem setup
outlined in Section 1.1, the design of our algorithm requires
1) imposing a discrete structure on the sampling probabil-
ities to account for uniformity considerations, making the
analysis of the algorithm more tractable, and 2) explicitly
addressing the finite horizon length and budget constraint,
ensuring that the randomized algorithm does not exceed the
budget in expectation.

Algorithm 1 Randomized Online Algorithm

1: Input: T , b
2: Initialize: j = 1, we sample α ∈ [b, be] from a distri-

bution with p.d.f. f(α) = 1/α, and initialize τ̃ = α
3: for i = 1, ..., τ∗ do
4: We calculate:

Int(τ̃) =

{
⌊τ̃⌋ w.p. ⌈τ̃⌉ − τ̃
⌈τ̃⌉ w.p. τ̃ − ⌊τ̃⌋

5: if T ≤ be then
6: Update τ̃ and set pi using Subroutine 1
7: else if be < T ≤ be2 then
8: Update τ̃ and set pi using Subroutine 2
9: else

10: Update τ̃ , b and set pi using Subroutine 3
11: end if
12: Output treatment probability pi
13: end for

The proposed algorithm, Algorithm 1, provides a feasi-
ble solution to Problem (1). At its core, our algorithm
assigns the sampling probabilities in a monotonically non-
increasing fashion over time. To accommodate varying
practical scenarios where the budget-to-horizon ratio differs
across applications, we designed specialized approxima-
tion algorithms for three possible scenarios: 1) T ≤ be
(Subroutine 1), 2) be < T ≤ be2 (Subroutine 2), and 3)
T > be2 (Subroutine 3).

We maintain a running “guess” of τ∗, denoted by τ̃ . We
initialize τ̃ to be α, where α ∼ [b, b · e] with density 1/α,
and e represents the Euler’s number. If the current number
of risk times i is within our running guess τ̃ , then we do
not change the current sampling assignment probability.
Otherwise, we update τ̃ as τ̃ = τ̃ e and update the sampling
probability according to Algorithm 1, depending on the
length of the horizon T relative to b. The random draw τ̃
controls not only the value of the sampling probability but
also the duration of each stage. Once the algorithm reaches
τ̃ , it transitions to the next stage, resulting in a stage-wise
constant probability sequence.

We first show the feasibility of our proposed solution, i.e.,

4
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Subroutine 1 (i, b, τ̃ , T , Int(τ̃))

1: if i > Int(τ̃) then
2: τ̃ = τ̃ e
3: end if
4: pi =

b
min(T,τ̃(e−1))

Subroutine 2 (i, b, τ̃ , Int(τ̃))

1: if i > Int(τ̃) then
2: j = j + 1, τ̃ = τ̃ e
3: end if
4: if j ≥ 3 then
5: pi =

b
τ̃e

6: else
7: pi =

b
τ̃(e−1)

8: end if

the sampling probabilities outputted from Algorithm 1 satis-
fies the budget constraint in Problem (1):

Lemma 3.1. Let pA1
i be the probability returned by Algo-

rithm 1 at risk time i ∈ [τ∗]. This solution always satisfies

the budget constraint in expectation, i.e., E
[∑τ∗

i=1 p
A1
i

]
≤

b, where the expectation is taken over the randomness of the
algorithm.

The proof of Lemma 3.1 is included in Appendix C.1. Next,
by leveraging the monotonically non-increasing nature of
the sampling probabilities, the objective in Problem (1) sim-
plifies to

max

τ∗∑
i=1

pi −
1

τ∗
ln

(
p1
pτ∗

)
. (3)

Using Equation (3), we compute the competitive ratio of
Algorithm 1:

Theorem 3.2. Algorithm 1 is X (T )-competitive, where X
is defined as follows:

X (T ) :=


1
e

(
ln(e− 1) + 1

e−1

)
if T ≤ be,

1
e if be < T ≤ be2,
1
e − 1

e2 if T > be2.

The above competitive ratio is conservative by design: It
was derived by taking the worst case over unknown τ∗ and
the horizon length T within each case. The proof of The-
orem 3.2 in Appendix C.2 outlines the competitive ratio
as a function of τ∗ and T . Additionally, in Section 5, we
investigate the impact of varying τ∗ while keeping the hori-
zon length fixed, providing a numerical illustration of how
the expected competitive ratio changes. We note that the
expected competitive ratio, averaged over the unknown τ∗,
is much better than our theoretical competitive ratio illus-
trated above. Based on our theoretical competitive ratio in

Subroutine 3 (i, b, τ̃ , Int(τ̃))

1: if i > Int(τ̃) then
2: j = j + 1, τ̃ = τ̃ e
3: if j ≥ 3 then
4: b = b(1− 1

e )
5: end if
6: end if
7: pi =

b
τ̃e

Theorem 3.2, we recommend choosing the horizon length
T relative to the budget b to be below be2, which aligns
with our empirical findings in Section 5 (see Remark 5.1 for
details).
Remark 3.3. As stated in Section 2.1, the term 1

τ∗ in the
penalty can be replaced by a tunable strength parameter σ.
In Section C.2, we show that for T ≤ be2, the above results
hold over a wide range of σ values, specifically σ ≤ b

2 .
However, when T > be2, σ should be on the order of 1

τ∗ ,
ensuring that the penalty term scales similarly to the budget
term in the objective.
Remark 3.4. Establishing an upper bound on the perfor-
mance of any randomized algorithm for the OUS problem
is challenging due to the non-smooth nature of the objective
function and the problem’s three different operating regimes.
In Appendix G, we derive a loose upper bound of 0.5 for
the OUS problem using Yao’s lemma (Yao, 1977) and leave
the derivation of a tighter bound for future work.

4. Learning-Augmented Algorithm
In this section, we propose a new approximation algorithm,
Algorithm 2, under the learning-augmented setting, where
we are provided with prediction confidence intervals [L,U ]
for the unknown τ∗. Algorithm 2 builds upon the non-
learning augmented counterpart, Algorithm 1, utilizing the
given confidence interval for optimization. Similar to Algo-
rithm 1, we initialize α ∼ [b, be] with density 1/α, and the
current “guess” of τ∗ is reflected by τ̃ + L.

In Algorithm 2, the three scenarios differ from those in Al-
gorithm 1. Here, the distinction is based on the relationship
between the upper bound of the interval, U , and the budget
b. The three scenarios are 1) U ≤ be (Subroutine 4), 2)
be < U ≤ be2, further divided into 2a) U − L ≤ b(e− 1)
(Subroutine 4), and 2b) U −L > b(e− 1) (Subroutine 2),
and 3) U > be2, further divided into 3a) U − L ≤ b(e+ 1)
(Subroutine 5), and 3b) U − L > b(e+ 1) (Subroutine 6).

Similarly, we first demonstrate that Algorithm 2 produces a
feasible solution to Problem (1), with the proof provided in
Appendix D.1 .

Lemma 4.1. Let pA2
i be the probability returned by Algo-

rithm 2 at risk time i ∈ [τ∗]. This solution always satisfies

5
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Algorithm 2 Randomized Online Algorithm With Predic-
tion Confidence Intervals

1: Input: T , b, [L,U ]
2: Initialize: j = 1, sample α ∈ [b, be] from a distribution

with p.d.f. f(α) = 1/α, and initialize τ̃ = α
3: for i = 1, ..., τ∗ do
4: We calculate:

Int(τ̃) =

{
⌊τ̃⌋ w.p. ⌈τ̃⌉ − τ̃
⌈τ̃⌉ w.p. τ̃ − ⌊τ̃⌋

5: if U ≤ be then
6: Update τ̃ and set pi using Subroutine 4
7: else if be < U ≤ be2 then
8: if U − L ≤ b(e− 1) then
9: Update τ̃ and set pi with Subroutine 4

10: else
11: Update τ̃ and set pi with Subroutine 2
12: end if
13: else
14: if U − L ≤ b(e+ 1) then
15: Update τ̃ and set pi with Subroutine 5
16: else
17: Update τ̃ , b and set pi with Subroutine 6
18: end if
19: end if
20: Output sampling probability pi
21: end for

the budget constraint in expectation, i.e., E
[∑τ∗

i=1 p
A2
i

]
≤

b, where the expectation is taken over the randomness of the
algorithm.

Next, we provide a theoretical guarantee on its performance:

Theorem 4.2. Algorithm 2 is 1-consistent and X (U)-robust,
where X (U) is defined as follows:

X (U) :=

 ln 2 + e−1
e ln e−1

e if U ≤ be,
1
e if be < U ≤ be2,
2− ln(e2 − e+ 1) if U > be2.

We first note that Algorithm 2 is 1-consistent, achieving
the performance of the offline clairvoyant when the predic-
tion is perfect. The proof of Theorem 4.2 in Appendix D.2
provides a detailed analysis of the competitive ratio, which
depends on the parameters τ∗, L, and U .5 Furthermore,
Section 5 explores the impact of varying the prediction con-
fidence interval width U − L while keeping τ∗ constant.
Our findings reveal that Algorithm 2 almost always outper-
forms Algorithm 1. Finally, we discuss the design choice

5In Theorem 4.3, we present the competitive ratios for scenarios
1), 2), and 3) separately, combining the results of the respective
subroutines.

Subroutine 4 (i, b, τ̃ , L, U , Int(τ̃))

1: if i > Int(τ̃) + L then
2: τ̃ = τ̃ e
3: end if
4: pi =

b
min(U,τ̃+L)

Subroutine 5 (i, b, τ̃ , L, U , Int(τ̃))

1: if i > Int(τ̃) + L then
2: τ̃ = τ̃ e
3: end if
4: pi =

b
min(U,τ̃e+L)

of T relative to b in the context of prediction intervals in
Remark 5.2.
Remark 4.3. Similarly, the term 1

τ∗ in the penalty can be
replaced by a tuning parameter σ. In Section D.2, we show
that for U ≤ be2, the above results hold for a wide range of
σ values, specifically σ ≤ b

e . However, when T > be2, σ
should be of the order 1

τ∗ to align the penalty term with the
budget term in the objective.

5. Experiments
In this section, we numerically assess the performance of
our proposed algorithms through numerical experiments
conducted on both synthetic and real-world datasets.

5.1. Synthetic Experiments

Benchmarks In the setting without learning augmentation,
we compare Algorithm 1 against a conservative benchmark
that delivers interventions with a constant probability b/T .
In the learning-augmented setting, where a confidence inter-
val [L,U ] is provided, we compare Algorithm 2 against two
benchmarks: (1) a benchmark that delivers interventions
with a constant probability b/U , and (2) Algorithm 1.Due
to the limited algorithmic work on OUS (Online Uniformity
Scheduling) and the absence of existing algorithms that
handle confidence intervals, we do not include additional
benchmarks in the synthetic data experiments. However,
in the real-world example, we also evaluate the SeqRTS
algorithm (Liao et al., 2018), which does not account for
the prediction uncertainty of τ∗. The metric used for the
evaluation is the average competitive ratio.

Without Learning Augmentation In this setting, we evalu-
ate the performance of Algorithm 1 across all three scenarios
outlined in Theorem 3.2. To do this, we fix the budget at
b = 3 and alter the horizon lengths T to align with each
scenario. For Scenarios 1 and 2, we set T to the maximum
allowable values with b = 3, specifically T = 8 and 22,
as illustrated in Figure 1 (left and middle). For Scenario

6
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Subroutine 6 (i, b, τ̃ , L, U , Int(τ̃))

1: if i > Int(τ̃) + L then
2: j = j + 1
3: if j = 2 then
4: b = b(1− τ̃+L−b

τ̃(e−1)+L )
5: else
6: b = b(1− 1

e )
7: end if
8: τ̃ = τ̃ e
9: end if

10: if j = 1 then
11: pi =

b
τ̃(e−1)+L

12: else
13: pi =

b
τ̃e

14: end if

3, where T can grow asymptotically to infinity, we choose
T = 100 for simplicity (Figure 1 right). To simulate risk
occurrences, we randomly choose an integer τ∗ from the
interval [b, T − 1] and then select τ∗ distinct time points
uniformly at random from the T available time steps as risk
times.

Figure 1 displays the average competitive ratio across a
range of τ∗ values. Figure 1a indicates that our random-
ized algorithm consistently outperforms the benchmark by
a constant competitive ratio for all values of τ∗ in Scenario
1. Similarly, Figure 1b shows that in Scenario 2, our ran-
domized algorithm increasingly outperforms the benchmark
as τ∗ deviates further from the horizon length T . In Fig-
ure 1c, as T increases, the average competitive ratio of our
algorithm remains constant and consistently outperforms
the benchmark.6 Therefore, we conclude that our algorithm
increasingly outperforms the benchmark as T grows to in-
finity.
Remark 5.1 (Design choice of b and T in the absence of
prediction confidence intervals). In real-world applica-
tions, the intervention budget for each risk level is often
fixed. However, a key design consideration is the choice
of T , i.e., the granularity of the decision period. As illus-
trated in Figure 1, while Scenario 3 achieves the greatest
performance improvement as T approaches infinity, our
randomized algorithm attains the highest competitive ratio
across all τ∗ in Scenarios 1 and 2. Thus, in the absence of
prediction intervals, we recommend selecting T such that
T ≤ be2.

With Learning Augmentation In this setting, we evalu-
ate the performance of Algorithms 1 and 2 across vary-
ing prediction interval widths. As in the non-learning-
augmented setting, we fix the budget at b = 3 and ex-

6This is because when b is fixed, the treatment assignment
probability is independent of T .

amine the performance of our learning-augmented algo-
rithm for T = 8, 22, and 100, covering the three scenar-
ios outlined inAlgorithm 2. To compare the performance
of our algorithm across various confidence widths, we fix
τ∗ = Int[0.5(T + b)] across all simulations.7 The confi-
dence intervals are randomly generated based on the given
width and must contain τ∗.

Figure 2 plots the average competitive ratio of each algo-
rithm across a range of interval widths. We observe that the
naive benchmark (where pi = b/U for all i ∈ [τ∗]) outper-
forms the Algorithm 1 (which does not have access to the
prediction interval) when the confidence interval is narrow.
This is not surprising as in this case τ∗ ≈ U . However,
as the prediction interval widens, our Algorithm 1 outper-
forms the naive benchmark. In addition, we observe that
our learning-augmented algorithm performs no worse than
both the naive benchmark and the randomized algorithm.
In particular, the advantage of Algorithm 2 is the largest in
Scenario 3.
Remark 5.2 (Design choice of b and T in presence of
prediction intervals). If we expect the value of τ∗ to be
small, we recommend setting T ≤ be2 to ensure that the
algorithm always operates in Scenario 2, where U ≤ be2. If
we expect a reasonably large value of τ∗, we recommend
setting a large value for T > be2 such that the algorithm
operates under Scenario 3, where U can exceed be2.

Additional experimental results for small τ∗ are provided in
Appendix E.1. We note that as τ∗ decreases, the advantage
of our algorithm in Scenario 2 increases. We also include
competitive ratio figures without the penalization term from
Problem (1) in Appendix E.2, measuring the fraction of the
budget spent by our algorithms.

5.2. Real-World Experiments on HeartSteps

Our research is motivated by the Heartsteps V1 mobile
health study, which aimed to increase physical activity
among 37 sedentary individuals over a six-week period,
with T = 144 decision points per day (Klasnja et al., 2019).
At each decision time t, a risk variable Rt is observed, which
is binary: Rt = 1 indicates a sedentary state, identified by
recording fewer than 150 steps in the prior 40 minutes, and
Rt = 0 signifies a non-sedentary state. The total number of
risk times, τ∗ =

∑T
t=1 Rt, is unknown. The primary objec-

tive here is to uniformly distribute approximately b = 1.5
interventions across sedentary times each day.

Benchmarks In addition to the naive benchmark b/U , we
compare the performance of Algorithms 1 and 2 with the
SeqRTS algorithm, as proposed by Liao et al. (2018). Under
SeqRTS, the budget may be exhausted before all available

7If we allow τ∗ to change across different simulations, then
the difference that we observe in competitive ratio might be due to
this change in τ∗.
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(a) Scenario 1: T = 8 (b) Scenario 2: T = 22 (c) Scenario 3: T = 100

Figure 1. Average competitive ratio under non-learning augmented setting with b = 3. The scenarios correspond to T ≤ be, be < T ≤ be2,
and T > be2, respectively.

(a) Scenario 1: T = 8 (b) Scenario 2: T = 22 (c) Scenario 3: T = 100

Figure 2. Average competitive ratio under learning augmented setting with b = 3. The scenarios correspond to U ≤ be, be < U ≤ be2,
and U > be2, respectively.

risk times are allocated. In such cases, a minimum probabil-
ity of 1× 10−6 is assigned to the remaining risk times when
evaluating the objective in Problem (1). A comprehensive
description of the SeqRTS method and additional implemen-
tation details are provided in Appendix F. Performance is
assessed using the competitive ratio and the average entropy
change across user days.

In Figure 3, Algorithm 2, which incorporates a prediction
interval, invariably outperforms the non-learning counter-
part, the SeqRTS approach, and the naive benchmark b/U .
Moreover, our proposed algorithms exhibit superior unifor-
mity in risk times sampling, evidenced by reduced entropy
change compared to both the non-learning algorithm and
SeqRTS, as further detailed in Figure 7 in Appendix F. To
better understand the behavior of SeqRTS, we set the mini-
mum probability to 0 in Figure 8 in Section F. This figure
illustrates that SeqRTS could deplete its budget even when
the prediction is fairly accurate, highlighting the robustness
of our algorithms under adversarial risk level arrivals.

Conclusion and Future Works This paper marks the
first attempt to study the online uniform allocation problem
within the framework of approximation algorithms. We in-

Figure 3. Average competitive ratio across user days under various
prediction interval widths on HeartSteps V1 dataset. The shaded
area indicates the ±1.96 standard error bounds across user days.

troduce two novel online algorithms—either incorporating
learning augmentation or not—backed by rigorous theoreti-
cal guarantees and empirical results. Future works include
adapting existing algorithms to scenarios where prediction
intervals improve over time.

8
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Extension to Multiple Risk Levels
In this section, we discuss the extension of the online uniform risk times sampling problem to multiple risk levels.

At each time t ∈ [1, T ], the patient is associated with an ordinal risk level from K possible levels. The higher the risk
level, the more likely the patient will experience a negative event, such as a relapse to smoking. As stated previously, the
distributions of risk levels are allowed to change arbitrarily across decision periods since we anticipate that the treatment
will reduce subsequent risk.

Let τ∗k be the unknown true number of decision times at risk level k ∈ [K] in a decision period, which is revealed at the
end of the horizon T . For each risk level k, we define pk,ik ∈ (0, 1) to be the treatment probability at time ik ∈ [τ∗k ]
. The algorithm is provided with a soft budget of bk for each risk level k, representing the total expected number of
interventions allowed to be delivered at risk level k within each decision period. As before, we assume τ∗k > bk for technical
convenience (Liao et al., 2018).

Then at each decision time ik, the algorithm decides the intervention probability pk,ik . For each risk level k, the objectives
of the online uniform allocation problem are to 1) assign the intervention probabilities {pk,ik}ik∈[τ∗

k ]
as uniform as possible

across risk times, and 2) maximize the sum of intervention probabilities across risk times while adhering to the budget
constraint bk.

For every risk level k ∈ [K], we define the following optimization problem:

max

τ∗
k∑
ik

pk,ik − 1

τ∗k
ln

(
maxik∈[τ∗

k ]
pk,ik

minik∈[τ∗
k ]
pk,ik

)

s.t. E

[ τ∗
k∑

ik=1

pk,ik

]
≤ bk

pk,ik ∈ (0, 1) ∀i ∈ [τ∗k ]. (4)

Notably, the proposed algorithms offer a feasible solution to the above optimization problem, allowing us to address each
risk level independently.

B. The Penalty Term for Uniformity
We have previously considered statistical distance measures for quantifying the uniformity objective. One important measure
is the Kullback-Leibler (KL) divergence. However, this measure is not well defined in our setting since the optimal solution
(which is a point mass on b/τ∗) and the solutions given by our proposed algorithms are not defined on the same sample
space.

Recall that for two discrete distributions P and Q defined on the same sample space X , the KL divergence is given by

DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
,

where P represents the data distribution, i.e., the optimal solution, and Q represents an approximation of P , i.e., the solution
given by an algorithm.

Let us consider a toy example where τ∗ = b(e− 1). In this case, the optimal solution should be pi =
b

b(e−1) = 1
e−1 for

each risk time i ∈ [τ∗]. The corresponding distribution is a point mass, meaning the sample space X consists of a single
element (p1 = 1

e−1 , · · · , pτ∗ = 1
e−1 ) with probability 1. The solutions given by our proposed algorithms are of the form

(p1, · · · , pτ∗), but the sample space X is Qτ∗
, where the support of Q is (0, 1).

Clearly, the optimal solution and the solutions given by the proposed algorithms are not defined on the same sample space.
Therefore, the KL divergence is not well-defined in this context.
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C. Proof for Algorithm 1
C.1. Proof of Lemma 3.1: Budget constraint

Proof. We prove that the budget constraint is satisfied in expectation under each subroutine in Algorithm 1.

Subroutine 1

Recall that τ∗ is the true number of risk times. Here, we suppose τ∗ = βej
∗

for some j∗ ∈ Z+ and β ∈ [b, be]. Since
T ≤ be, we have that j∗ = 0.

In this analysis, our focus is solely on the worst-case scenario, where both T and τ∗ are very close to be. Assuming η > b
(where η = T

e−1 ), if this is not the case, the algorithm uniformly sets pi = b
T throughout.

When α falls in the range of [b, η], Algorithm 1 starts with pi =
b

α(e−1) with a running length of α, then transitions to
pi =

b
T for the second phase with a running length of β − α. Otherwise, it consistently assigns pi = b

T with a running
length of β. Therefore, the expected budget consists of two parts: one for α ∈ [b, η], where the term inside represents the
used budget or the sum of treatment probabilities, and the other for α ∈ [η, be], where the term inside represents the sum of
treatment probabilities:

E[Budget] =
∫ be

η

b

T
β
1

α
dα+

∫ η

b

[ b

α(e− 1)
α+

b

T
(β − α)

] 1
α
dα

=
bβ

T
ln

be

η
+

b

e− 1
ln

η

b
+

bβ

T
ln

η

b
− b

T
(η − b)

=
bβ

T
+

b

e− 1
ln

η

b
− bη

T
+

b2

T

≤ b+
b

e− 1
ln

T

b(e− 1)
− b

e− 1
+

b2

T
increasing with β (β = T )

≤ b− b

e− 1
+

b

e− 1
− b

e− 1
ln(e− 1) +

b

e
increasing with T (T = be)

≤ b− b

e− 1
ln(e− 1) +

b

e

≈ b.

Subroutine 2

Reiterating our initial assumption, we set τ∗ = βej
∗
. The condition be < T ≤ be2 limits j∗ to either 0 or 1. However, our

analysis is particularly concerned with the worst-case scenario, hence we consider only the case where j∗ = 1.

When α falls in the range of [b, β], Algorithm 1 starts with pi = b
α(e−1) with a running length of α, transitions to

pi =
b

αe(e−1) with a running length of αe−α, and then continues with pi =
b
e3 with a running length of βe−αe. Otherwise,

Algorithm 1 starts with pi =
b

α(e−1) with a running length of α, transitions to pi =
b

αe(e−1) with a running length of βe−α.
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The expected budget is therefore

E [Budget] =

∫ be

β

[
b

α(e− 1)
α+

b

αe(e− 1)
(βe− α)

]
1

α
dα+

∫ β

b

[ b

α(e− 1)
α

+
b

αe(e− 1)
(αe− α) +

b

αe3
(βe− αe)

] 1
α
dα

=
b

e− 1
+

bβ

e− 1
(
1

β
− 1

be
)− b

e(e− 1)
ln

be

β
+

b

e
ln

β

b
+

bβ

e2
(
1

b
− 1

β
)− b

e2
ln

β

b

=
b

e− 1
+

b

e− 1
− β

e(e− 1)
+

β

e2
− b

e2
− b

e(e− 1)
+ (

b

e
+

b

e(e− 1)
− b

e2
) ln

β

b

=
b

e− 1
+

b

e
− b

e2
− β

e2(e− 1)
+ (

b

e− 1
− b

e2
) ln

β

b

≤ b

e− 1
+

b

e
− b

e2
− be

e2(e− 1)
+ (

b

e− 1
− b

e2
) ln

be

b
increasing with β (β = be)

=
2b

e
+

b

e− 1
− 2b

e2
≈ b

Subroutine 3

Under the assumption of τ∗ = βej
∗
, and given the condition T > be2, it is possible for j∗ to be 0 or to extend towards

infinity. Our focus, however, is confined to the worst-case scenarios, particularly those where j∗ ≥ 1.

When α falls in the range of [b, β]. Algorithm 1 stops with pi =
b(1−1/e)j

∗

αej∗+2 with a running length of βej
∗ −αej

∗
. Otherwise,

Algorithm 1 stops with pi =
b(1−1/e)j

∗−1

αej∗+1 with a running length of βej
∗ − αej

∗−1. Therefore, the expected budget is

E [Budget] =

∫ be

β

 b

αe
α+

j∗∑
i=2

b(1− 1/e)j−2

αej
(αej−1 − αej−2) +

b(1− 1/e)j
∗−1

αej∗+1
(βej

∗
− αej

∗−1)

 1

α
dα

+

∫ β

b

 b

αe
α+

j∗+1∑
j=2

b(1− 1/e)j−2

αej
(αej−1 − αej−2) +

b(1− 1/e)j
∗

αej∗+2
(βej

∗
− αej

∗
)

 1

α
dα

=

∫ be

β

[
b

e
+ b(1− 1

e
− (1− 1

e
)j

∗
) +

b(e− 1)j
∗−1

ej∗+1

βe− α

α

]
1

α
dα

+

∫ β

b

[
b

e
+ b(1− 1

e
− (1− 1

e
)j

∗+1) +
b(e− 1)j

∗

ej∗+2

β − α

α

]
1

α
dα

=
b

e
+ b(1− 1

e
)− b(1− 1

e
)j

∗
ln

be

β
− b(1− 1

e
)j

∗+1 ln
β

b

+
b(e− 1)j

∗−1

ej∗+1

[
e− β

b
+ ln

β

be

]
+

b(e− 1)j
∗

ej∗+2

[
β

b
− 1 + ln

b

β

]
≤ b− b(1− 1

e
)j

∗+1 ln
be

b
+

b(e− 1)j
∗

ej∗+2

[
be

b
− 1 + ln

b

be

]
increasing with β (β = be)

= b− b(1− 1

e
)j

∗+1 +
b(e− 1)j

∗
(e− 2)

ej∗+2
≤ b

By combining the above results, we establish Lemma 3.1.

C.2. Proof of Theorem 3.1: Competitive Ratio

Proof. In what follows we derive the competitive ratio under each subroutine.

Subroutine 1

13
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Recall that τ∗ represents the true number of available risk times at risk level k, we assume τ∗ = βej
∗
, where j∗ ∈ Z+ and

β ∈ [b, be]. It’s evident that when T ≤ be, j∗ = 0 follows naturally.

Define η = T/(e− 1). Let us first consider the case where η ≤ b, leading to T ≤ b(e− 1). Given that pi = b
min(T,τ̃(e−1)) ,

it follows that the algorithm consistently sets pi = b
T . Consequently, we have

E[SOL] =
b

T
β ≥ b

b(e− 1)
β ≥ b

e− 1
.

Next, let us consider the case where η > b. We focus on two cases: (1) β < η and (2) β ≥ η.

Suppose β < η. When α falls within [b, β], the algorithm initiates with pi =
b

α(e−1) with a running length of α, then adjusts
to pi =

b
T in the subsequent round with a running length of β − α; when α falls in the range of [β, η], the algorithm initiates

with pi =
b

α(e−1) with a running length of β and stops on this stage; otherwise, it consistently uses pi = b
T with a running

length of β. Therefore, the expected solution is

E[SOL] =

∫ be

η

b

T
β
1

α
dα+

∫ β

b

[ b

α(e− 1)
α+

b

T
(β − α)− σ ln

T

α(e− 1)

] 1
α
dα

+

∫ η

β

b

α(e− 1)
β
1

α
dα

=
bβ

T
ln

be

η
+

b

e− 1
ln

β

b
+

bβ

T
ln

β

b
− b

T
(β − b) +

σ

2
(ln(

T

β(e− 1)
)2 − ln(

T

b(e− 1)
)2)

+
bβ

e− 1
(
1

β
− 1

η
)

≥ b2

T
ln

be(e− 1)

T
+

b

e− 1
− b2

T
increasing with β (β = b)

≥ b

e
ln(e− 1) +

b

e(e− 1)
decreasing with T (T = be).

Suppose β ≥ η. It follows that the algorithm always proceeds to the second round. When α falls within [b, η], the algorithm
initiates with pi =

b
α(e−1) with a running length of α, then adjusts to pi =

b
T in the subsequent round with a running length

of β − α; otherwise, it consistently uses pi = b
T with a running length of β. Consequently, we have

E[SOL] =

∫ be

η

b

T
β
1

α
dα+

∫ η

b

[ b

α(e− 1)
α+

b

T
(β − α)− σ ln

T

α(e− 1)

] 1
α
dα

=
bβ

T
ln

be

η
+

b

e− 1
ln

η

b
+

bβ

T
ln

η

b
− b

T
(η − b) +

σ

2
(ln(

T

η(e− 1)
)2 − ln(

T

b(e− 1)
)2)

≥ b

e− 1
ln

be

η
+

2b

e− 1
ln

T

b(e− 1)
− b

e− 1
+

b2

T
− σ

2
ln(

T

b(e− 1)
)2

increasing with β (β = η = T/(e− 1))

≥ 2b

e− 1
− b

e− 1
ln(e− 1)− b

e(e− 1)
− σ

2
ln(

e

e− 1
)2 decreasing with T (T = be).

Subroutine 2

Recall that for be < T ≤ be2, j∗ is restricted to being either 0 or 1. Below we separately consider these two cases.

Suppose j∗ = 0. When α falls in the range of [b, β], Algorithm 1 begins with pi =
b

α(e−1) with a running length of α, then
transitions to pi =

b
αe(e−1) with a running length of β −α. Otherwise, Algorithm 1 begins with pi =

b
α(e−1) with a running

14
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length of β and stops. It follows that

E[SOL] =

∫ be

β

b

α(e− 1)
β
1

α
dα+

∫ β

b

[
b

α(e− 1)
α+

b

αe(e− 1)
(β − α)− σ ln(e)

]
1

α
dα

=
bβ

e− 1

(
1

β
− 1

be

)
+

b

e− 1
(lnβ − ln b) +

bβ

e(e− 1)

(
1

b
− 1

β

)
− b

e(e− 1)
(lnβ − ln b)− σ ln

β

b

=
b

e
+

b

e
ln

β

b
− σ ln

β

b

≥ b

e
increasing with β (β = b).

Suppose j∗ = 1. When α falls in the range of [b, β], Algorithm 1 begins with pi =
b

α(e−1) with a running length of α,
transitions to pi =

b
αe(e−1) with a running length of αe − α, and then continues with pi =

b
e3 with a running length of

βe − αe. Otherwise, Algorithm 1 begins with pi =
b

α(e−1) with a running length of α, then transitions to pi =
b

αe(e−1)

with a running length of βe− α. Therefore, the expected solution is

E[SOL] =

∫ be

β

[
b

α(e− 1)
α+

b

αe(e− 1)
(βe− α)− σ ln e

]
1

α
dα

+

∫ β

b

[
b

α(e− 1)
α+

b

αe(e− 1)
(αe− α) +

b

αe3
(βe− αe)− σ ln

e3

e− 1

]
1

α
dα

=
b

e− 1
ln

be

β
+

bβ

e− 1

(
1

β
− 1

be

)
− b

e(e− 1)
ln

be

β
− σ ln

be

β

+
b

e− 1
ln

β

b
+

b

e
ln

β

b
+

bβ

e2

(
1

b
− 1

β

)
− b

e2
ln

β

b
− σ ln

e3

e− 1
ln

β

b

=
b

e
ln

be

β
+

b

e− 1
− β

e(e− 1)
− σ ln

be

β

+
b

e− 1
ln

β

b
+

b

e
ln

β

b
+

β

e2
− b

e2
− b

e2
ln

β

b
− σ ln

e3

e− 1
ln

β

b

≥ b

e
+

b

e− 1
− b

e(e− 1)
− σ increasing with β (β = b)

=
2b

e
− σ.

Subroutine 3

In the scenarios where T > be2, we consider two cases: (1) j∗ ≥ 1 and (2) j∗ = 0.

Let us first consider the case where j∗ ≥ 1. If α ≥ β, the algorithm stops at the j∗ + 1th round by design of the algorithm
(αej

∗ ≥ βej
∗
); on the other hand, if α < β, the algorithm stops at the j∗ + 2th round (αej

∗+1 ≥ βej
∗
). The objective

function when α ≥ β is

SOL1 =

j∗∑
j=1

b
(
1− 1

e

)j−2

αej
(
αej−1 − αej−2

)
+

b
(
1− 1

e

)j∗−1

αej∗+1

(
βej

∗
− αej

∗−1
)
− σ ln

e2j
∗−1

(e− 1)j∗−1

=

j∗∑
j=1

b(e− 1)j−1

ej
+

b(e− 1)j
∗−1

ej∗+1

βe− α

α
− σ ln

e2j
∗−1

(e− 1)j∗−1

= b

(
1−

(
1− 1

e

)j∗
)

+
b(e− 1)j

∗−1

ej∗+1

βe− α

α
− σ ln

e2j
∗−1

(e− 1)j∗−1
.
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The objective function when α < β is

SOL2 =

j∗+1∑
j=1

b
(
1− 1

e

)j−2

αej
(
αej−1 − αej−2

)
+

b
(
1− 1

e

)j∗
αej∗+2

(
βej∗ − αej∗

)
− σ ln

e2j
∗+1

(e− 1)j∗

=

j∗+1∑
j=1

b(e− 1)j−1

ej
+

b(e− 1)j∗

ej∗+2

β − α

α
− σ ln

e2j
∗+1

(e− 1)j∗

= b

(
1−

(
1− 1

e

)j∗+1
)

+
b(e− 1)j

∗

ej∗+2

β − α

α
− σ ln

e2j
∗+1

(e− 1)j∗
.

The expected value of our solution is

E[SOL] =

∫ be

β

SOL1 f(α)dα+

∫ β

b

SOL2 f(α)dα. (5)

Notice that

∫ be

β

SOL1 f(α)dα = b

(
1−

(
1− 1

e

)j∗
)∫ be

β

1

α
dα+

b(e− 1)j
∗−1

ej∗+1

∫ be

β

βe− α

α

1

α
dα

−
[
σ ln

e2j
∗−1

(e− 1)j∗−1

] ∫ be

β

1

α
dα

= b

(
1−

(
1− 1

e

)j∗
)
ln

be

β
+

b(e− 1)j
∗−1

ej∗+1

(
e− β

b
− ln

be

β

)
−
[
σ ln

e2j
∗−1

(e− 1)j∗−1

]
ln

be

β
.

and

∫ β

b

SOL2 f(α)dα = b

(
1−

(
1− 1

e

)j∗+1
)∫ β

b

1

α
dα+

b(e− 1)j
∗

ej∗+2

∫ β

b

β − α

α

1

α
dα

−
[
σ ln

e2j
∗+1

(e− 1)j∗

] ∫ β

b

1

α
dα

= b

(
1−

(
1− 1

e

)j∗+1
)
ln

β

b
+

b(e− 1)j
∗

ej∗+2

(
β

b
− 1− ln

β

b

)
−
[
σ ln

e2j
∗+1

(e− 1)j∗

]
ln

β

b
.
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Hence,

E[SOL] = b

(
1−

(
1− 1

e

)j∗
)
ln

be

β
+ b

(
1−

(
1− 1

e

)j∗+1
)
ln

β

b

+
b(e− 1)j

∗−1

ej∗+1

(
e− β

b
− ln

be

β

)
+

b(e− 1)j
∗

ej∗+2

(
β

b
− 1− ln

β

b

)
−
[
σ ln

e2j
∗−1

(e− 1)j∗−1

]
ln

be

β
−
[
σ ln

e2j
∗+1

(e− 1)j∗

]
ln

β

b

= b− b

(
1− 1

e

)j∗ [
ln

be

β
+

(
1− 1

e

)
ln

β

b

]
+

b(e− 1)j
∗−1

ej∗+1

[
e− β

b
− ln

be

β
+

e− 1

e

(
β

b
− 1− ln

β

b

)]
−
[
σ ln

e2j
∗−1

(e− 1)j∗−1

]
ln

be

β
−
[
σ ln

e2j
∗+1

(e− 1)j∗

]
ln

β

b

≥ b− b

(
1− 1

e

)j∗

+ b

(
1− 1

e

)j∗
e− 2

e(e− 1)
− σ ln

e2j
∗−1

(e− 1)j∗−1
increasing with β (β = b).

Now consider the case where j∗ = 0. When α falls within [b, β], Algorithm 1 starts with pi =
b
αe with a running length of

α, then transitions to pi =
b

αe2 with a running length of β − α. Otherwise, Algorithm 1 keeps pi = b
αe for β time points. It

follows that

E[SOL] =

∫ be

β

b

αe
β
1

α
dα+

∫ β

b

[
b

αe
α+

b

αe2
(β − α)− σ ln e

]
1

α
dα

=
bβ

e
(
1

β
− 1

be
) +

b

e
ln

β

b
+

bβ

e2
(
1

b
− 1

β
)− b

e2
ln

β

b
− σ ln

β

b

=
b

e
− β

e2
+

β

e2
− b

e2
+ (

b

e
− b

e2
) ln

β

b
− σ ln

β

b

≥ b

(
1

e
− 1

e2

)
increasing with β (β = b).

Tuning parameter selection For Scenario 1) where T ≤ be, the competitive ratio is the

min

(
1

e

(
ln(e− 1) +

1

e− 1

)
,

2

e− 1
− 1

e− 1
ln(e− 1)− 1

e(e− 1)
− σ

b
(1− ln(e− 1)

)
.

For Scenario 2) where be < T ≤ be2, the competitive ratio is

min

(
1

e
,
2

e
− σ

b

)
.

For Scenario 3) where T > be2, the competitive ratio is

min

(
1

e
− 1

e2
, 1− (1− 1

e
)j

∗
+ (1− 1

e
)j

∗ e− 2

e(e− 1)
− σ

b
ln

e2j
∗−1

(e− 1)j∗−1

)
.

By restricting the value of σ under each scenario and combining the above results, we establish Theorem 3.2. Specifically,
when σ = 1

τ∗ , it can be verified that Theorem 3.2 holds.

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Online Uniform Sampling: Randomized Learning-Augmented Approximation Algorithms with Application to Digital Health

D. Proof for Algorithm 2
D.1. Proof of Lemma 4.1: Budget constraint

Proof. We prove that the budget constraint is satisfied in expectation under each subroutine in Algorithm 2.

Subroutine 4 Let us suppose that τ = L+ βej
∗

for some j∗ ∈ Z+ and β ∈ [b, be]. Note that this implicitly implies that
τ ≥ L+ b, as we only consider the worst case where τ∗ is large enough. Define δ = U −L. Under the condition U ≤ be or
δ ≤ b(e− 1), we have j∗ = 0.

When δ ≤ b, Algorithm 2 would consistently use pi =
b
U , and the budget constraint is satisfied obviously. Now suppose

δ > b. When α ∈ [b, β], Algorithm 2 begins by setting pi =
b

α+L with a running length of L+ α and then continues with
pi =

b
U for the second round with a running length of L+ β − L− α; when α ∈ [β, δ], Algorithm 2 uses pi = b

α+L with a
running length of L+ β and stops; otherwise, the algorithm sets pi = b

U all the time. Therefore, the expected budget is

E[Budget] =
∫ β

b

[
b

L+ α
(L+ α) +

b

U
(L+ β − L− α)

]
1

α
dα+

∫ δ

β

b

L+ α
(L+ β)

1

α
dα

+

∫ be

δ

b

U
(L+ β)

1

α
dα

= b ln
β

b
+

bβ

U
ln

β

b
− b

U
(β − b) +

b(L+ β)

L
(ln

δ

β
− ln

L+ δ

L+ β
) +

b(L+ β)

U
ln

be

δ

≤ b ln
U − L

b
+

b(U − L)

U
ln

U − L

b
− b

U
(U − L− b) +

bU

U
ln

be

δ
increasing with β (β = U − L)

≤ b ln(e− 1) +
b(b(e− 1))

L+ b(e− 1)
ln(e− 1)− b2

L+ b(e− 1)
(e− 2) + b ln

be

b(e− 1)

increasing with U (U = L+ b(e− 1))

≤ b ln(e− 1) + b
e− 1

e
ln(e− 1)− b

e
(e− 2)) + b ln

e

e− 1
decreasing with L (L = b)

≤ b+ b(
e− 1

e
ln(e− 1)− e− 2

e
)

≈ b

Subroutine 5

Similarly, we assume τ∗ = L+ βej
∗
. Under the condition that δ ≤ b(e+ 1), we have j∗ = 1 or j∗ = 0. As before, we

only consider the worst case j∗ = 1.

Let κ = δ
e . Note that, when α ∈ [b, κ), Algorithm 2 first sets pi = b

L+αe with a running length of L+ α, then transitions to
pk,i =

b
U with a running length of L+ βe− L− α. However, when α ∈ [κ, be], Algorithm 2 keeps setting pi =

b
U with a
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running length of L+ βe. Therefore, the expected budget is

E[Budget] =
∫ κ

b

[
b

L+ αe
(L+ α) +

b

U
(L+ βe− L− α)

]
1

α
dα+

∫ be

κ

b

U
(L+ βe)

1

α
dα

= b

(
ln

κ

b
+ (

1

e
− 1) ln

L+ κe

L+ be

)
+

b

U
βe ln

κ

b
− b

U
(κ− b) +

b(βe+ L)

U
ln

be

κ

≤ b

(
ln

κ

b
+ (

1

e
− 1) ln

L+ κe

L+ be

)
+

b

U
(U − L) ln

κ

b
− b

U
(κ− b) + b ln

be

κ

increasing with β (β = (U − L)/e)

≤ b+ b(
1

e
− 1) ln

L+ b(e+ 1)

L+ be
+

b2

L+ b(e+ 1)
(e+ 1) ln

e+ 1

e
− b2

L+ b(e+ 1)
(
e+ 1

e
− 1)

increasing with U (U = L+ b(e+ 1))

≤ b+ b(
1− e

e
ln

e+ 2

e+ 1
+

e+ 1

e+ 2
ln

e+ 1

e
− 1

e(e+ 2)
) decreasing with L (L = b)

≈ b

Subroutine 6

Under the assumption of τ∗ = L + βej
∗
, and given the condition U > be2, it is possible for j∗ to be 0 or to extend to

infinity. We only focus on the worst-case scenario, i.e., j∗ ≥ 1.

When α falls within [b, β], Algorithm 2 stops with pi = b
(
1− L+α−b

L+α(e−1)

)
(1−1/e)j

∗

αej∗+2 with a running length of L +

βej
∗ − L − αej

∗
. Otherwise, Algorithm 2 stops with pi = b

(
1− L+α−b

L+α(e−1)

)
(1−1/e)j

∗−1

αej∗+1 with a running length of

L+ βej
∗ − L− αej

∗−1). Therefore, the expected budget is
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E[Budget] =
∫ be

β

[
b

L+ α(e− 1)
(L+ α) + b

(
1− L+ α− b

L+ α(e− 1)

) j∗∑
j=2

(1− 1/e)j−2

αej
(αej−1 − αej−2)

+ b

(
1− L+ α− b

L+ α(e− 1)

)
(1− 1/e)j

∗−1

αej∗+1
(L+ βej

∗
− L− αej

∗−1)

]
1

α
dα

+

∫ β

b

[
b

L+ α(e− 1)
(L+ α) + b

(
1− L+ α− b

L+ α(e− 1)

) j∗+1∑
j=2

(1− 1/e)j−2

αej
(αej−1 − αej−2)

+ b

(
1− L+ α− b

L+ α(e− 1)

)
(1− 1/e)j

∗

αej∗+2
(L+ βej

∗
− L− αej

∗
)

]
1

α
dα

≤ b

(
ln

be

β
+ (

1

e− 1
− 1) ln

L+ be(e− 1)

L+ β(e− 1)

)
+ b(1− 1

e
− (1− 1

e
)j

∗
)
e− 2

e− 1
ln

L+ be(e− 1)

L+ β(e− 1)

+ b(1− 1

e
− (1− 1

e
)j

∗
)
b

L

(
ln

be

β
− L+ be(e− 1)

L+ β(e− 1)

)
+ bβej

∗ (e− 1)j
∗

e2j∗
1

L

(
ln

be

β
− ln

L+ be(e− 1)

L+ β(e− 1)

)
− b

(e− 1)j
∗−1

ej∗+1
ln

L+ be(e− 1)

L+ β(e− 1)

+ b

(
ln

β

b
+ (

1

e− 1
− 1) ln

L+ β(e− 1)

L+ b(e− 1)

)
+ b(1− 1

e
− (1− 1

e
)j

∗+1)
e− 2

e− 1
ln

L+ β(e− 1)

L+ b(e− 1)

+ b(1− 1

e
− (1− 1

e
)j

∗
)
b

L

(
ln

β

b
− L+ β(e− 1)

L+ b(e− 1)

)
+ bβej

∗ (e− 1)j
∗+1

e2j∗+2

1

L

(
ln

β

b
− ln

L+ β(e− 1)

L+ b(e− 1)

)
− b

(e− 1)j
∗

ej∗+2
ln

L+ β(e− 1)

L+ b(e− 1)

≤ b

(
1 + (

1

e− 1
− 1) ln

L+ be(e− 1)

L+ b(e− 1)

)
+ b(1− 1

e
− (1− 1

e
)j

∗+1)
e− 2

e− 1
ln

L+ be(e− 1)

L+ b(e− 1)

+ b(1− 1

e
− (1− 1

e
)j

∗
)
b

L

(
1− L+ be(e− 1)

L+ b(e− 1)

)
+ b2

(e− 1)j
∗+1

ej∗+1

1

L

(
1− ln

L+ be(e− 1)

L+ b(e− 1)

)
− b

(e− 1)j
∗

ej∗+2
ln

L+ be(e− 1)

L+ b(e− 1)

increasing with β (β = be)

≤ b

(
1 + (

1

e− 1
− 1) ln

L+ be(e− 1)

L+ b(e− 1)

)
+ b

e− 2

e
ln

L+ be(e− 1)

L+ b(e− 1)

+ b(1− 1

e
)
b

L

(
1− ln

L+ be(e− 1)

L+ b(e− 1)

)
≈ b

Combining the above results with the proof of Subroutine 2, presented in Appendix C.1, establishes Lemma 4.1.

D.2. Proof of Theorem 4.2: Consistency and Robustness

Proof. We begin with the proof of consistency and then proceed to the analysis of robustness.

Consistency Analysis It is straightforward to show that our algorithm is 1- consistent. When the width of the predictive
interval is zero, meaning that L = U = τ∗, we have

E[SOL] =
b

U
τ∗ = b.

Robustness Analysis Below we show the robustness of our algorithm under each subroutine.
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Subroutine 4

For cases where δ = U − L ≤ b, the algorithm proceeds with pk,i =
b
U . Hence, we have

E[SOL] =
b

U
β ≥ b

L+ b
L ≥ b

2
.

Next, we consider the case where b(e− 1) ≥ δ > b, further divided into τ∗ < L+ b and τ∗ ≥ L+ b.

Suppose τ∗ < L+ b. When α falls within [b, δ], Algorithm 2 assigns pi = b
L+α with a running length of τ∗. Otherwise,

Algorithm 2 sets pi = b
U with a running length of τ∗. Therefore, the expected solution is

E[SOL] =

∫ δ

b

[
b

L+ α
τ∗
]
1

α
dα+

∫ be

δ

b

U
τ∗

1

α
dα

=
bτ∗

L

(
ln

δ

b
− ln

L+ δ

L+ b

)
+

bτ∗

U
ln

be

δ

≥ b

(
ln

δ

b
− ln

L+ δ

L+ b

)
+

bL

U
ln

be

δ
increasing with τ∗ (τ∗ = L)

≥ b

(
ln(e− 1)− ln

L+ b(e− 1)

L+ b

)
+

bL

L+ b(e− 1)
ln

e

e− 1

decreasing with U (U = L+ b(e− 1))

≥ b
(
ln(e− 1)− ln

e

2

)
+ b

1

e
ln

e

e− 1
increasing with L (L = b)

= b

(
ln

2(e− 1)

e
+

1

e
ln

e

e− 1

)

For cases where τ∗ ≥ L+ b, let us suppose τ∗ = L+ βej
∗

where β ∈ [b, be]. Under the condition U ≤ be or δ ≤ b(e− 1),
we have j∗ = 0. Further, since L + β ≤ U , we have β ≤ U − L. When α falls within [b, β], Algorithm 2 starts with
pi =

b
L+α with a running length of L+α, then transitions to pi =

b
U with a running length of L+ β −L−α; when α falls

within [β, δ], Algorithm 2 assigns pi = b
L+α with a running length of L+ β; otherwise, Algorithm 2 assigns pi = b

U with a
running length of L+ β. It follows that

E[SOL] =

∫ β

b

[
b

L+ α
(L+ α) +

b

U
(L+ β − L− α)− σ ln

U

L+ α

]
1

α
dα

+

∫ δ

β

b

L+ α
(L+ β)

1

α
dα+

∫ be

δ

b

U
(L+ β)

1

α
dα

= b ln
β

b
+

bβ

U
ln

β

b
− b

U
(β − b)− σ ln

e

2
ln

β

b
+

b(L+ β)

L
(ln

δ

β
− ln

L+ δ

L+ β
) +

b(L+ β)

U
ln

be

δ

≥ b(L+ b)

L

(
ln

U − L

b
− ln

U

L+ b

)
+

b(L+ b)

U
ln

be

U − L
increasing with β (β = b)

≥ b(L+ b)

L

(
ln(e− 1)− ln

L+ b(e− 1)

L+ b

)
+

b(L+ b)

L+ b(e− 1)
ln

e

e− 1

decreasing with U (U = L+ b(e− 1))

≥ 2b ln
2(e− 1)

e
+ b

2

e
ln

e

e− 1
increasing with L (L = b)

= b(2 ln
2(e− 1)

e
+

2

e
ln

e

e− 1
)

Subroutine 5

For the situation where δ = U − L ≤ be, the algorithm’s procedure involves setting pi =
b
U for all time points. Hence, we
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have

E[SOL] =
b

U
τ∗ ≥ b

L+ be
L ≥ b

e+ 1
.

Next, we consider the case where b(e+ 1) ≥ δ > be, further divided into τ∗ < L+ b and τ∗ ≥ L+ b.

First, suppose τ∗ < L + b. When α falls in the range [b, κ], Algorithm 2 assigns pi = b
L+αe with a running length τ∗.

Otherwise, Algorithm 2 assigns pi = b
U with a running length τ∗. Therefore, the expected solution is

E[SOL] =

∫ κ

b

[
b

L+ αe
τ∗
]
1

α
dα+

∫ be

κ

b

U
τ∗

1

α
dα

=
bτ∗

L

(
ln

κ

b
− ln

L+ κe

L+ be

)
+

bτ∗

U
ln

be

κ

≥ b

(
ln

κ

b
− ln

L+ κe

L+ be

)
+

bL

U
ln

be

κ
increasing with τ∗ (τ∗ = L)

≥ b

(
ln

e+ 1

e
− ln

L+ b(e+ 1)

L+ be

)
+

bL

L+ b(e+ 1)
ln

e2

e+ 1

decreasing with U (U = L+ b(e+ 1))

≥ b

(
ln

e+ 1

e
− ln

e2

e2 − 1

)
+ b

e2 − e− 1

e2
ln

e2

e+ 1

increasing with L (L = b(e2 − e− 1))

= b

(
ln

e+ 1

e
− ln

e2

e2 − 1
+

e2 − e− 1

e2
ln

e2

e+ 1

)

For situations where τ∗ ≥ L+ b, suppose τ∗ = L+ βej
∗

where β ∈ [b, be]. Below we separately consider two cases: 1)
j∗ ≥ 1 or β ≥ κ, and 2) j∗ = 0 and β < κ.

Suppose case 1) where j∗ ≥ 1 or β ≥ κ. When α falls within [b, κ], Algorithm 2 first assigns pi = b
L+αe for a time length

of L + α, and then proceeds with pk,i =
b
U with a running length L + βej

∗ − L − α. Otherwise, Algorithm 2 assigns
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pi =
b
U with a running length of L+ βej

∗
. Therefore, the expected solution is

E[SOL] =

∫ κ

b

[
b

L+ αe
(L+ α) +

b

U
(βej

∗
+ L− L− α)− σ ln

U

L+ αe

]
1

α
dα

+

∫ be

κ

b

U
(βej

∗
+ L)

1

α
dα

≥ b

(
ln

κ

b
+ (

1

e
− 1) ln

L+ κe

L+ be

)
+

b

U
βej

∗
ln

κ

b
− b

U
(κ− b)− σ ln

e+ 2

e+ 1
ln

κ

b

+
b(βej

∗
+ L)

U
ln

be

κ

≥ b

(
ln

κ

b
+ (

1

e
− 1) ln

L+ κe

L+ be

)
+

b

U
κ ln

κ

b
− b

U
(κ− b)− σ ln

e+ 2

e+ 1
ln

κ

b

+
b(κ+ L)

U
ln

be

κ
increasing with β, j∗ (β = κ, j∗ = 0)

≥ b

(
ln

e+ 1

e
− e− 1

e
ln

L+ b(e+ 1)

L+ be

)
+

b2(e+ 1)

Le+ be(e+ 1)
ln

e+ 1

e
− b

L+ b(e+ 1)
(
b(e+ 1)

e
− b)

− σ ln
e+ 2

e+ 1
ln

e+ 1

e
+

b(L+ b(e+1)
e

L+ b(e+ 1)
ln

e2

e+ 1
decreasing with U (U = L+ b(e+ 1))

≥ b(ln
e+ 1

e
− e− 1

e
ln

e2

e2 − 1
) +

b(e+ 1)

e3
ln

e+ 1

e
− b

1

e2
1

e
− σ ln

e+ 2

e+ 1
ln

e+ 1

e

+ b
e2 − e− 1 + (e+1)

e

e2
ln

e2

e+ 1
increasing with L (L = b(e2 − e− 1))

= b

(
ln

e+ 1

e
− 1

e3
− e− 1

e
ln

e2

e2 − 1
+

e2 − e− 1

e2
ln

e2

e+ 1

)
+ b

1 + 1
e

e2

− σ ln
e+ 2

e+ 1
ln

e+ 1

e

= b

(
(1 +

1

e2
) ln(e+ 1)− 1− 1

e2
+

e− 1

e
ln(e− 1)

)
− σ ln

e+ 2

e+ 1
ln

e+ 1

e

Next, consider case 2) where j∗ = 0 and β < κ. When α falls within [b, β], Algorithm 2 starts with pi =
b

L+αe with a
running length of L+α, then transits to pi =

b
U with a running length of L+ β−L−α; when α ∈ [β, κ], Algorithm 2 sets

pi =
b

L+αe with a running length of L+ β; otherwise, Algorithm 2 sets pi = b
U with a running length of L+ β. Therefore,
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we have

E[SOL] =

∫ β

b

[
b

L+ αe
(L+ α) +

b

U
(β + L− L− α)− σ ln

U

L+ αe

]
1

α
dα

+

∫ κ

β

b

L+ αe
(L+ β)

1

α
dα+

∫ be

κ

b

U
(L+ β)

1

α
dα

= b

(
ln

β

b
+ (

1

e
− 1) ln

L+ βe

L+ be

)
+

b

U
β ln

β

b
− b

U
(β − b)− σ ln

e2

e2 − 1
ln

β

b

+
b(L+ β)

L

(
ln

κ

β
− ln

L+ κe

L+ βe

)
+

b(L+ β)

U
ln

be

κ

≥ b(L+ β)

L

(
ln

κ

β
− ln

L+ κe

L+ βe

)
+

b(L+ β)

U
ln

be

κ
increasing with β (β = b)

≥ b(L+ b)

L

(
ln

b(e+ 1)

be
− ln

L+ b(e+ 1)

L+ be

)
+

b(L+ b)

L+ b(e+ 1)
ln

e2

e+ 1

decreasing with U (U = L+ b(e+ 1))

≥ b
e2 − e

e2 − e− 1

(
ln

e+ 1

e
− ln

e2

e2 − 1

)
+

e2 − e

e2
ln

e2

e+ 1

increasing with L (L = b(e2 − e− 1))

≥ b

(
e2 − e

e2 − e− 1
ln

(e+ 1)2(e− 1)

e3
+

e− 1

e
ln

e2

e+ 1

)
.

Subroutine 6

In this scenario, our algorithm initiates with pk,i = b
L+α(e−1) , subsequently updating τ̃ and b after each iteration. We

analyze two cases: one where τ∗ < L+ b, and the other where τ∗ ≥ L+ b.

For the first situation where τ∗ < L+ b, Algorithm 2 consistently sets pi = b
L+α(e−1) . Therefore, we have

E[SOL] =

∫ be

b

b

L+ α(e− 1)
τ∗

1

α
dα

=
bτ∗

L

(
ln

be

b
− ln

L+ be(e− 1)

L+ b(e− 1)

)
≥ τ∗

(
1− ln

e2 − e+ 1

e

)
increasing with L (L = b)

≥ b
(
2− ln(e2 − e+ 1)

)
Next, we consider the case where τ∗ ≥ L+ b. Suppose that τ∗ = L+ βej

∗
where β ∈ [b, be].

When j∗ ≥ 1, the objective function when α ≥ β is

SOL1 =
b

L+ α(e− 1)
(L+ α) + b

(
1− L+ α− b

L+ α(e− 1)

) j∗∑
j=2

(1− 1/e)j−2

αej
(αej−1 − αej−2)

+ b

(
1− L+ α− b

L+ α(e− 1)

)
(1− 1/e)j

∗−1

αej∗
(L+ βej

∗
− L− αej

∗−1)

− σ ln
αe2j

∗+1

(α(e− 2) + b)(e− 1)j∗−1
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The objective function when α < β is

SOL2 =
b

L+ α(e− 1)
(L+ α) + b

(
1− L+ α− b

L+ α(e− 1)

) j∗+1∑
j=2

(1− 1/e)j−2

αej
(αej−1 − αej−2)

+ b

(
1− L+ α− b

L+ α(e− 1)

)
(1− 1/e)j

∗

αej∗+2
(L+ βej

∗
− L− αej

∗
)

− σ ln
αe2j

∗+2

(α(e− 2) + b)(e− 1)j∗
.
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The expected solution is

E[SOL] =

∫ be

β

SOL1
1

α
dα+

∫ β

b

SOL2
1

α
dα

≥ b

(
ln

be

β
+ (

1

e− 1
− 1) ln

L+ be(e− 1)

L+ β(e− 1)

)
+ b(1− 1

e
− (1− 1

e
)j

∗
)
e− 2

e− 1
ln

L+ be(e− 1)

L+ β(e− 1)

+ b2(1− 1

e
− (1− 1

e
)j

∗
)
1

L

(
ln

be

β
− ln

L+ be(e− 1)

L+ β(e− 1)

)
+ bβej

∗ (e− 1)j
∗−1

e2j∗
e− 2

L

(
ln

be

β
− ln

L+ be(e− 1)

L+ β(e− 1)

)
− b

(e− 1)j
∗−1

ej∗+1

e− 2

e− 1
ln

L+ be(e− 1)

L+ β(e− 1)

− σ ln
e2j

∗+1

(e− 1)j∗+1
ln

be

β

+ b

(
ln

β

b
+ (

1

e− 1
− 1) ln

L+ β(e− 1)

L+ b(e− 1)

)
+ b(1− 1

e
− (1− 1

e
)j

∗+1)
e− 2

e− 1
ln

L+ β(e− 1)

L+ b(e− 1)

+ b2(1− 1

e
− (1− 1

e
)j

∗+1)
1

L

(
ln

β

b
− ln

L+ β(e− 1)

L+ b(e− 1)

)
+ bβej

∗ (e− 1)j
∗

e2j∗+2

e− 2

L

(
ln

β

b
− ln

L+ β(e− 1)

L+ b(e− 1)

)
− b

(e− 1)j
∗

ej∗+2

e− 2

e− 1
ln

L+ β(e− 1)

L+ b(e− 1)

− σ ln
e2j

∗+3

(e− 1)j∗+2
ln

β

b

≥ b

(
1 + (

1

e− 1
− 1) ln

L+ be(e− 1)

L+ b(e− 1)

)
+ b(1− 1

e
− (1− 1

e
)j

∗
)
e− 2

e− 1
ln

L+ be(e− 1)

L+ b(e− 1)

+ b2(1− 1

e
− (1− 1

e
)j

∗
)
1

L

(
1− ln

L+ be(e− 1)

L+ b(e− 1)

)
+ b2ej

∗ (e− 1)j
∗−1

e2j∗
e− 2

L

(
1− ln

L+ be(e− 1)

L+ b(e− 1)

)
− b

(e− 1)j
∗−1

ej∗+1

e− 2

e− 1
ln

L+ be(e− 1)

L+ b(e− 1)

− σ ln
e2j

∗+1

(e− 1)j∗+1
increasing with β (β = b)

≥ b

(
1 + (

1

e− 1
− 1) ln

b(e2 − e+ 1)

b+ b(e− 1)

)
+ b(1− 1

e
− (1− 1

e
)j

∗
)
e− 2

e− 1
ln
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.

Next, consider the case where j∗ = 0. When α ∈ [b, β], Algorithm 2 starts with pi =
b

L+α(e−1) with a running length of
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L+ α, then transitions to pi = b
(
1− L+α−b

L+α(e−1)

)
1

αe2 with a running length of L+ β − L− α. Otherwise, Algorithm 2

consistently sets pi = b
L+α(e−1) . Therefore, we have

E[SOL] =

∫ β

b

[
b

L+ α(e− 1)
(L+ α) + b

(
1− L+ α− b

L+ α(e− 1)

)
1

αe2
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1
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β

b
+
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L

(
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β
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increasing with β (β = b)
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(
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increasing with L (L = b)
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.

Tuning parameter selection For Scenario 1) where U ≤ be, the competitive ratio is

ln
2(e− 1)

e
+

1

e
ln

e

e− 1
.

For Scenario 2) where be < U ≤ be2, the competitive ratio is

min

(
1

e
,
2

e
− σ

b

)
.

For Scenario 3) where U > be2, the competitive ratio is

min

(
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e2j
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)
.

By restricting the value of σ under each scenario and combining the above results, we establish Theorem 4.2. Specifically,
when σ = 1

τ∗ , it can be verified that Theorem 4.2 holds.

E. Additional Synthetic Experiments
E.1. Performance under Small τ∗

In this section, we examine the performances of the algorithms under the learning-augmented setting where τ∗ is small.
Specifically, we set the number of risk occurrences τ∗ = Int[0.2(T + b)] for scenarios with horizon lengths T = 22 and
T = 100, and τ∗ = Int[0.1(T + b)] for scenario T = 100. Figure 4 presents the average competitive ratio against a range of
prediction interval widths.
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(a) Scenario 1: T = 22, τ∗ = Int[0.2(T +
b)]

(b) Scenario 2: T = 100, τ∗ =
Int[0.2(T + b)]

(c) Scenario 3: T = 100, τ∗ =
Int[0.1(T + b)]

Figure 4. Average competitive ratio under learning-augmented setting with b = 3.

E.2. Budget Utilization by Each Algorithm

To assess the budget utilization by each algorithm, we eliminate the penalty term from the objective in Problem 1. Figures 5
and 6 display the average competitive ratios in scenarios without and with learning augmentation, respectively. We note that
in Figure 5 (middle), when τ∗ = 22, the competitive ratio slightly exceeds 1. This is attributed to our algorithm utilizing a
slightly higher budget in expectation. We provide detailed insights into this observation in Section 1 of the Supplementary
Material, where we demonstrate that the worst-case budget spent is about 1.047bk, slightly surpassing the allocated budget.

(a) Scenario 1: T = 8 (b) Scenario 2: T = 22 (c) Scenario 3: T = 100

Figure 5. Average competitive ratio under non-learning augmented setting with b = 3.

(a) Scenario 1: T = 8 (b) Scenario 2: T = 22 (c) Scenario 3: T = 100

Figure 6. Average competitive ratio under learning-augmented setting with b = 3.
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F. Additional Results on HeartSteps V1 Study
Our research is inspired by the Heartsteps V1 mobile health study, which aims to enhance physical activity among sedentary
individuals (Klasnja et al., 2019). The study involved 37 participants over a follow-up period of six weeks, gathering detailed
data on step counts on a minute-by-minute basis. To ensure the reliability of the step count data, our analysis was restricted
to the hours from 9 am to 9 pm, with a decision time frequency set at five-minute intervals (Liao et al., 2018). This led to the
accumulation of 1585 instances of 12-hour user-days, with T = 144 decision times per day.

At each decision time t,we define the risk variable Rt with a binary classification: Rt = 1 indicates a sedentary state,
identified by recording fewer than 150 steps in the prior 40 minutes, and Rt = 0 signifies a non-sedentary state. Additionally,
the availability for intervention, It, is contingent on recent messaging activity: if the user has received an anti-sedentary
message within the preceding hour, It is set to 0; otherwise, it is set to 1. We want to distribute b = 1.5 interventions over
available sedentary times each day.

We implement four algorithms: our randomized and learning-augmented algorithms (Algorithms 1 and 2, respectively), the
SeqRTS strategy proposed by Liao et al. (2018), and a benchmark method (b/U ). Rather than devising a tailored prediction
model, we generate prediction intervals by randomly selecting from a range of [2, 144], which contains τ∗, with intervals
of varying widths. This approach allows us to assess the performance of different algorithms under varying qualities of
forecast accuracy.

We adopt the SeqRTS method to include prediction intervals, ensuring a balanced comparison with our algorithms. At the
start of each user day, a number is randomly selected from the interval [L,U ] to estimate the number of available risk times.
Should the budget be exhausted before allocating for all available risk times, a minimum probability of 1× 10−6 is assigned
to the remaining times. For additional information on the SeqRTS method, readers are referred to Liao et al. (2018).

Figure 7 illustrates the average entropy change across user days. It is evident that SeqRTS exhibits the highest entropy
change, suggesting non-uniform distribution behavior. In contrast, our learning-augmented algorithm demonstrates superior
uniformity, outperforming the randomized algorithm. The benchmark method records an entropy of zero, attributed to its
conservative strategy of assigning a constant probability of b/U .

Figure 7. Average entropy change across user days under various prediction interval widths on HeartSteps V1 dataset. The shaded area
indicates the ±1.96 standard error bounds across user days.

Figure 8 shows the average competitive ratio and entropy change across user days, considering the scenario where SeqRTS
assigns a minimum probability of 0 to remaining risk times once the budget is depleted. Owing to the Penalization term 2,
this results in the objective function being negative infinity and the entropy change reaching infinity.

G. Derivation of Lower Bound
In this section, we derive a loose upper bound for any randomized algorithm for the OUS problem.

Proof. We utilize Yao’s Lemma (Yao, 1977), which states that an upper bound can be established by constructing a
distribution over problem instances where every deterministic algorithm performs poorly. We construct a randomized
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(a) Competitive ratio (b) Entropy Change

Figure 8. Average competitive ratio and entropy change across user days under various prediction interval widths on the HeartSteps V1
dataset. The shaded area represents the ±1.96 standard error bounds across user days. Note: For SeqRTS, a minimum probability of 0 is
assigned to the remaining times when the budget is exhausted.

instance I with budget b = 1 and time horizon T = 5, where the true number of risk times τ∗ takes values in 1, 2, 3, 4, 5
with probabilities π1 = 0.6, π2 = 0.15, π3 = 0.1, π4 = 0.1, and π5 = 0.05.

For this instance, the best deterministic algorithm with probabilities (p1, p2, p3, p4, p5) solves:

arg max
p1,p2,p3,p4,p5

π1p1 + π2(p1 + p2) + π3(p1 + p2 + p3) + π4(p1 + p2 + p3 + p4) + π5b

− π2
1

2
ln

p1
p2

− π3
1

3
ln

p1
p3

− π4
1

4
ln

p1
p4

− π5
1

5
ln

p1
p5

subject to p1 + p2 + p3 + p4 + p5 = b.

The optimal solution yields probabilities p1 = 0.6970, p2 = 0.1919, p3 = 0.0606, p4 = 0.0404, and p5 = 0.0101,
achieving an expected competitive ratio of 0.504. By Yao’s Lemma, this implies no randomized algorithm can achieve a
competitive ratio exceeding 0.504.

While this bound provides insight, deriving a tight upper bound remains an open challenge. The difficulty stems from several
factors:

1. The analysis requires evaluating every possible deterministic algorithm’s expected performance under the budget
constraint.

2. Each deterministic algorithm is characterized by a sequence of randomization probabilities (p1, . . . , pT ), making
general analysis without a specific sequence structure intractable.

3. The objective function’s non-smooth nature and the problem’s distinct regimes (finite vs. infinite horizons) further
complicate the analysis.

We leave the derivation of a tighter bound as future work, noting that our current bound suggests the potential existence of
improved algorithms.
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