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ABSTRACT

Test-time adaptation (TTA) for black-box large language models (LLMs) seeks to
adapt models to target-domain inputs during testing to address distribution shifts,
without accessing model parameters. Most existing approaches rely on adapters
trained with substantial target-domain data—often scarce or unreliable—and these
adapters are tightly coupled to their training distribution, degrading in dynamic
scenarios with changing domains. To solve this, we propose LADA (Learning-to-
ADapt for black-box LLMs), a framework leveraging meta-training for continu-
ous, rapid adaptation to unseen, dynamic domains. Specifically, LADA meta-trains
an adapter on diverse tasks from multiple datasets (covering semantic clusters and
error types) to learn transferable adaptation skills. At test time, the adapter needs
only a few target-domain examples for lightweight adaptation and guides the LLM
stepwise toward domain-appropriate reasoning via adaptive selection of reliable
steps—no LLM parameter updates required. Experiments on various benchmark
datasets validate the effectiveness of the proposed approach.

1 INTRODUCTION

Large language models (LLMs), such as OpenAI’s GPT series (OpenAI, 2023) and Meta’s Llama
family (Touvron et al., 2023), have demonstrated remarkable capabilities in language understand-
ing, reasoning, and generation through training on vast text corpora. These models are now being
deployed across diverse real-world applications—including software engineering (Fan et al., 2023;
Hou et al., 2024), healthcare (Wang & Zhang, 2024; Bedi et al., 2025), and legal assistance (Huang
et al., 2023a; Zhou et al., 2024)—where they often encounter inputs that deviate significantly from
their pretraining distribution.

To address this distribution shift, test-time adaptation (TTA) has been adopted for improving model
robustness by adapting to target-domain inputs during inference (Hu et al., 2025a). A growing body
of work focuses on white-box TTA methods, which update internal model parameters using unla-
beled test data via fine-tuning (Hardt & Sun, 2024; Hübotter et al., 2025) or perplexity minimization
(Hu et al., 2025a). While effective, these approaches require full access to model weights and in-
cur high computational costs, making them incompatible with black-box, API-served LLMs widely
used in practice.

In response, recent studies explore black-box TTA strategies that leverage auxiliary adapters or scor-
ers to guide the LLM without modifying its parameters. For example, (Liu et al., 2024) use a small
trainable model to adjust next-token probabilities, while (Shi et al., 2024) and (Sun et al., 2024b)
employ rerankers or scoring models to select among multiple generated candidates. However, these
methods share a critical limitation: they rely on substantial target-domain data for adapter training,
resulting in domain-tied adapters that fail in dynamic real-world settings—where task requirements
and data distributions shift (e.g., changing customer service intents, evolving medical guidelines,
emerging coding domains). Re-collecting domain-specific data and retraining adapters for every
new context is impractical, and assuming prior knowledge of future domains contradicts the open-
ended nature of dynamic deployment environments.

To overcome this challenge, we propose LADA (Learning-to-ADapt for black-box LLMs), a novel
framework enabling continuous, rapid adaptation to unseen, changing domains at test time—even
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without prior domain information. Unlike approaches with static, domain-specific adaptations,
LADA meta-trains an adapter across diverse tasks (spanning datasets, semantic clusters, error types)
to learn transferable skills, letting it quickly adapt to new domains via few in-context examples at
inference. At test time, the adapter uses a small set of current-domain positive–negative reasoning
pairs for lightweight adaptation, then guides the frozen LLM step-by-step to select reliable reasoning
steps, steering generation toward domain-appropriate trajectories without parameter updates or prior
domain exposure. Critically, its cross-domain and error-mode generalization ensures effectiveness
as the target domain evolves.

• We propose LADA, a meta-learning-based framework for black-box LLMs that enables continuous
test-time adaptation to dynamic, changing domains (rather than a single fixed domain), eliminating
reliance on prior knowledge of specific target domains.

• LADA avoids the need for substantial training data from a specific target domain; instead, it meta-
trains an adapter on diverse tasks from multiple datasets and only requires a few target-domain
examples for lightweight adaptation at test time.

• We theoretically prove that our adaptive selection TTA policy for black-box LLMs would obtain
equal or higher cumulative reward expectation than the baseline policy that naively accepts the
first sampled reasoning step at test time with mild assumptions.

2 RELATED WORK

Traditional TTA. Deep neural networks often experience performance degradation when there is a
distribution shift between training and test data (Quiñonero-Candela et al., 2022). Test-time adapta-
tion (TTA) (Wang et al., 2024; Liang et al., 2025) has emerged as a promising paradigm to mitigate
this problem by adapting a pre-trained model to unlabeled test data prior to prediction. Some TTA
methods achieve adaptation through entropy minimization. For example, Wang et al. (2021) opti-
mize batch normalization layers by minimizing the entropy of predictions, while Niu et al. (2022)
build on this by focusing on reliable and non-redundant samples, and Zhang et al. (2025) further ex-
tend it with a conservative strategy for unreliable samples. Other approaches perform self-training
with pseudo-labels: Goyal et al. (2022) utilize a specialized soft label termed the conjugate pseudo-
label, Sun et al. (2024a) construct pseudo-labels via label propagation, and Hu et al. (2025b) employ
candidate pseudo-labels to refine the model. A further line of work adapts models using consis-
tency information, for example, by enforcing consistency among neighboring samples (Jang et al.,
2023), with class prototypes (Wang et al., 2023a), or between the current model and a teacher model
(Döbler et al., 2023). While these approaches have shown effectiveness in classification tasks, they
do not transfer well to LLMs and often fail when applied directly (Hu et al., 2025a).

LLM TTA. In general, this paradigm can be categorized into white-box and black-box settings, de-
pending on whether LLM parameters are accessible. In the white-box setting, the model parameters
are updated using the target examples. For each test input, Hardt & Sun (2024) retrieve its neigh-
bors and fine-tune the model on their text at test time. Building on this idea, Hübotter et al. (2025)
further reduce redundancy among the selected data to optimize the overall information gain of the
chosen examples. Along similar lines, (Yu et al., 2025) enable LLM to retrieve and learn from re-
lated reasoning traces to enhance reasoning capabilities. More recently, Hu et al. (2025a) reveal that
more accurate predictions can be obtained by minimizing the input perplexity of unlabeled test data.
Yet, these approaches incur substantial computational and memory overhead and are inapplicable to
today’s API-served LLMs, where parameters are inaccessible, thereby limiting their practicality in
real-world scenarios.

For black-box TTA, model parameters are inaccessible. Some methods assume access to the output
token probabilities of the LLM and perform adaptation by correcting the probability distribution
of the next token. For example, Huang et al. (2023b) adaptively interpolate the LLM’s prediction
probabilities with retrieval results from a datastore. Ormazabal et al. (2023) and Liu et al. (2024)
leverage a smaller model fine-tuned on target-domain data to correct the LLM’s next-token prob-
abilities using its context-dependent predictions during inference. It is worth noting that certain
LLMs, such as Claude models (Anthropic, 2025), do not expose token-level probabilities, thereby
restricting the applicability of such methods. Another line of work relies only on observable outputs
generated by LLM. They typically leverage target-domain training data to train a scoring model
that ranks candidate responses through multiple sampling. For instance, Khalifa et al. (2023) use

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

a step-level discriminator to select the best reasoning step, Sun et al. (2024b) employ an adapter
to guide sentence-level beam search, and Shi et al. (2024) utilize a reranker to rank complete solu-
tions, thereby enabling adaptation to the target domain. However, these approaches assume access
to substantial target-domain data, which is not always feasible in practical scenarios.

3 PROPOSED METHOD

We begin by introducing the notations used throughout the paper and outlining the problem set-
ting. In step-by-step reasoning tasks such as question answering or problem solving, given an input
question q, a black-box LLM πLLM incrementally generates a sequence of l intermediate reasoning
steps r = (r1, . . . , rl). Let Sample (p, t) denote the t-th trial to sample the next sentence from
distribution p. The generation of each reasoning step usually follows the standard sampling process:

rs = Sample (πLLM(· | q, r1, . . . , rs−1) , 1) . (1)

When πLLM is applied to a new target domain, the distribution of input questions pT (q) often dif-
fers from the distribution pS(q) seen during pretraining. This distribution shift typically leads to
degraded reasoning quality and reduced accuracy. To address this problem, we introduce a meta-
trained adapter fθ that acts as a step-level scoring model, and each step is generated as:

rs =

t∗∑
t=1

1[fθ(Sample(πLLM(· | q, r1, . . . , rs−1) , t)) > τ ]

· Sample(πLLM(· | q, r1, . . . , rs−1) , t) ,

(2)

where t∗ denotes the first sample index t such that fθ (Sample (πLLM (q, r1, . . . , rs−1) , t)) > τ ,
with τ a predefined threshold. To ensure efficiency, we set a maximum number of trials tmax. If
no sample satisfies this condition within tmax trials, the step with the highest score is selected. By
iteratively applying this rule, the adapter guides πLLM step by step, selecting reliable reasoning steps
and avoiding potential errors induced by distribution shift, thereby steering its reasoning toward
domain-appropriate trajectories.

3.1 OVERVIEW

LADA achieves test-time adaptation for black-box LLMs using an adapter that is meta-trained in
advance. To meta-train the adapter, we construct tasks via the Cartesian product of partitioned
semantic clusters and specified error types, with each task containing step-level positive–negative
reasoning pairs with the same semantic topic and error type. Then these tasks are utilized to meta-
train the adapter as a step-level scorer in an inner–outer loop: the inner loop adapts to each task with a
few samples, while the outer loop optimizes meta-parameters to capture transferable patterns across
diverse tasks, thereby enabling effective adaptation to dynamic domain changes. At test-time, the
adapter is rapidly optimized with a few paired examples from the target domain and guides the black-
box LLM stepwise by adaptively retaining reliable reasoning steps while resampling unreliable ones,
thereby steering the generation process toward domain-appropriate reasoning trajectories.

3.2 THE LADA FRAMEWORK

3.2.1 TASK CONSTRUCTION

Our goal is to construct diverse meta-training tasks that simulate potential adaptation cases and en-
able the adapter to capture transferable patterns across tasks. Owing to their accessibility and cross-
domain coverage, we leverage multiple publicly available datasets {Di}ai=1, where each dataset is
defined as Di = {(qj , rj)}bij=1, with a denoting the number of datasets and bi the number of exam-
ples in the i-th dataset.

To ensure semantic diversity across tasks, we first cluster examples according to their semantic
similarity. Specifically, we obtain embeddings of all q in each Di using an embedding model and
apply k-means to partition Di into ki clusters. In total, we obtain m =

∑a
i=1 ki clusters from all

datasets, denoted as {Ci}mi=1. Each cluster is of the form Ci = {(qj , rj)}ni
j=1, where rj = (rj,s)

lj
s=1.
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When distribution shifts occur in input questions, πLLM may produce various reasoning errors, such
as hallucination, repetition, or missing steps. To capture this variety and ensure diversity of error
types across tasks, we formalize them into h categories, denoted {eg}hg=1. In order for the adapter to
recognize these errors, we employ an oracle LLM πoracle to synthesize positive–negative reasoning
pairs for each error type eg in three steps. Given an example (qj , rj), πoracle first selects a step rj,sg
from rj that is susceptible to the error type eg . Conditioned on (qj , rj) and the chosen step rj,sg ,
πoracle then produces two corresponding variants: a correct argumentation r o

j,sg
that augment the

step, and an erroneous counterpart r eg
j,sg

that distorts it. This process can be formalized as:{
r o
j,sg ∼ πoracle

(
·
∣∣ (qj , rj), rj,sg , ⟨o⟩)

r
eg
j,sg
∼ πoracle

(
·
∣∣ (qj , rj), rj,sg , ⟨eg⟩) , (3)

where ⟨o⟩ and ⟨eg⟩ denote the prompts for correct argumentation and error generation of type
eg , respectively. Then by truncating the reasoning sequence after rj,sg , we construct a pos-
itive–negative reasoning pair (x+

j ,x
−
j ), where x+

j = (qj , rj,1, . . . , rj,sg−1, r
o
j,sg

) and x−
j =

(qj , rj,1, . . . , rj,sg−1, r
eg
j,sg

). The two reasoning sequences differ only in their final step, and contin-
uing reasoning from x−

j typically leads πLLM to fail in producing the correct answer. This design
isolates the impact of a single step correctness, allowing the adapter to focus on step-level scoring
while avoiding interference from later steps.

Finally, taking the Cartesian product of the m clusters and the h error types yields mh tasks, where
each task is defined by the same semantic topic and consistent error type in the final reasoning
step. Formally, the meta-learning task set is M = {Ti}ui=1 with u = mh, where each task Ti =
{(x+

j ,x
−
j )}

vi
j=1 consists of vi positive–negative pairs.

3.2.2 META-TRAINING

Building on the constructed task set, we employ a meta-training (Finn et al., 2017) stage to enable fθ
to be quickly adapted when only a few target-domain examples are available. In each meta-training
iteration, we first sample z tasks {Ti}zi=1 from the task set M. For a given task Ti, a support set
Si = {(x+

j ,x
−
j )}

ci
j=1 of ci positive–negative pairs is sampled for inner-loop adaptation, while a

query set Qi = {(x+
j ,x

−
j )}

di
j=1 of di pairs is held out to evaluate generalization in the outer loop,

with Si ∩Qi = ∅.

In the inner loop, the goal is to obtain the task-specific adapter for Ti. To this end, the base adapter
fθ is adapted by minimizing the inner loss Lin on the corresponding support set Si:

min
θ
Lin(fθ,Si) , (4)

which simulates the adaptation to an unseen target task with a few examples. The resulting task-
specific parameters are obtained through the update:

θ′
i ← θ − α∇θLin(fθ,Si), (5)

where α is the adaptation step size.

Subsequently, the outer loop evaluates the generalization of the adapted parameters θ′
i on the corre-

sponding query set Qi through the outer loss Lout. By minimizing the aggregated Lout across all
query sets {Qi}zi=1, we obtain the meta-objective:

min
θ

z∑
i=1

Lout
(
fθ′

i
,Qi

)
. (6)

Since each θ′
i is derived from θ through the inner update, the meta-objective’s dependence on θ′

i
implicitly links the optimization to θ. Therefore, the meta-parameters are updated as:

θ ← θ − β∇θ

z∑
i=1

Lout(fθ′
i
,Qi), (7)

where β is the meta step size. Specifically, the meta-update relies on a meta-gradient calculated
over the performance on a variety of query sets. This meta-gradient averages information from
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multiple tasks, thereby preventing the model from overfitting to any single task’s data. Consequently,
the meta-parameters are steered towards a general-purpose initialization that captures the shared
structure across different tasks, which is key for acquiring transferable knowledge.

In practice, the adapter produces a score in the range (0, 1), interpreted as the probability that a
reasoning step is correct. The inner objective is defined using the binary cross-entropy loss:

Lin(fθ,Si) = −
1

ci

ci∑
j=1

[
log fθ

(
x+
j

)
+ log

(
1− fθ

(
x−
j

))]
. (8)

For the outer objective, we adopt a max-margin loss:

Lout
(
fθ′

i
,Qi

)
=

1

di

di∑
j=1

max
(
0, ζ −

[
fθ′

i

(
x+
j

)
− fθ′

i

(
x−
j

)])
, (9)

where ζ denotes the margin hyperparameter. Binary cross-entropy loss in the inner loop provides
absolute probabilistic supervision, serving as a stable anchor for task-specific adaptation, whereas
the margin loss in the outer loop promotes relative ranking, encouraging larger margins between
correct and incorrect pairs so that the learned parameters transfer more robustly to new tasks.

Through meta-learning across diverse tasks, the adapter acquires an initialization θ that encodes
cross-task patterns, allowing it to adapt efficiently to unseen domains with limited data and remain
effective in dynamic real-world scenarios.

3.2.3 TEST-TIME ADAPTION

Building on the meta-trained adapter, we proceed to describe the TTA process, consisting of
lightweight adaptation and stepwise adaptive selection. To generate responses for a question
q ∼ pT (q), we first exploit a small set of paired examples BT =

{
(x+

j ,x
−
j )

}w

j=1
from the tar-

get domain, to quickly adapt the meta-trained adapter fθ by minimizing the inner loss:

θ̂ ← θ − γ∇θLin(fθ,BT ), (10)
where γ is the adaptation step size. Through few-shot adaptation, fθ̂ acquires the ability to score
reasoning steps in accordance with the target domain, then it steers πLLM stepwise toward domain-
appropriate reasoning trajectories.

At reasoning step s for question q, πLLM samples one candidate step r t
s at a time, conditioned on

the question q and all previously accepted steps (r̂1, · · · , r̂s−1):
r t
s = Sample (πLLM(· | q, r̂1, . . . , r̂s−1) , t) , (11)

where t is the index of the trial. Then the sampled candidate step r t
s is evaluated by the adapter fθ̂:

y t
s = fθ̂

(
qj , r̂1, . . . , r̂s−1, r

t
s

)
, (12)

where y t
s denote the score for r t

s . Based on these scores, we devise an adaptive selection strategy.

During the sampling–scoring process, if a candidate step r t
s obtains a score y t

s exceeding the pre-
defined threshold τ , it is accepted as correct and no further candidates are sampled for step s. The
index of the first such trial, t∗, is defined as:

t∗ = min
{
t | y t

s > τ, t ≤ tmax

}
. (13)

When no candidate exceeds the threshold within tmax trials, we fall back to selecting the candidate
with the highest score, whose index t′ is given by

t′ = argmax
1≤t≤tmax

y t
s . (14)

Overall, the acceptance of step s can be formalized as r̂s = r t̂
s , where t̂ denotes the accepted index:

t̂ =

{
t∗, if { t | yts > τ, t ≤ tmax } ≠ ∅,

t′, otherwise.
(15)

By iteratively applying this adaptive selection strategy across all reasoning steps, the system effec-
tively constructs a complete and adapted reasoning path r̂ = (r̂1, . . . , r̂l) for a given question q. The
resulting path is inherently more reliable, as this process evaluates and selects each step to proac-
tively avoid erroneous reasoning in the face of domain shifts, thereby enhancing the final output’s
robustness. The algorithmic description of LADA is presented in Algorithm 1.
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Algorithm 1 LADA Algorithm

Require: Black-box LLM πLLM, pretrained adapter fθ, publicly available datasets {Di}ai=1, meta
batch size z, paired few-shot example set BT ;
# Task construction and meta training:

1: Construct meta-training task setM from {Di}ai=1 via clustering and error synthesis;
2: while not converged do
3: Sample z tasks {Ti}zi=1 fromM;
4: for all Ti do
5: Sample a support set Si and a query set Qi from task Ti;
6: Compute adapted parameters θ′

i using Eq. (5) based on Si;
7: end for
8: Update θ using Eq. (7) based on {Qi}zi=1;
9: end while

# Test-time adaptation:
10: Obtain the adapted parameters θ̂ using Eq. (10) based on BT ;
11: for q ∼ pT (q) do
12: Obtain adapted response r̂ step by step using Eq. (11) and Eq. (15);
13: end for
Ensure: Adapted responses r̂ for q ∼ pT (q).

3.3 THEORETICAL ANALYSIS

We model the stepwise reasoning process as a Markov decision process (Puterman, 1994; Sutton
& Barto, 2018; Wang, 2025). Each state S is a partially constructed reasoning sequence, with S
denoting the state space. An action A ∈ A is defined as the policy π’s generation and selection of
the next reasoning step given S, which is appended to the current reasoning sequence to form the
next state. The reward function R(S,A) measures the immediate reward of an action A given the
current state S. In our method, it is instantiated by the output score of the adapter, which is trained
to align with the final task objective and therefore provides a surrogate signal for the true reward.

We denote by π0 the baseline policy that naively accepts the first sampled reasoning step at test
time, and by πτ our adaptive selection TTA policy. The value function of a policy π is defined as
Vπ(S) = EA∼π(·|S) [R(S,A) + γVπ((S,A))], where γ ∈ (0, 1) is a discount factor. This represents
the expected cumulative reward starting from state S and captures the overall reasoning quality of
policy π. The associated Bellman operator is TπV (S) = EA∼π(·|S) [R(S,A) + γV ((S,A))], and
the Q-function is defined as Qπ(S,A) = R(S,A) + γVπ((S,A)), which evaluates the expected
reward of taking action A in state S and subsequently following π. To proceed with our analysis,
we introduce the following assumption:

Assumption 1 For any state S ∈ S and candidate actions A1, A2 ∼ π0(· | S), if R(S,A1) ≥
R(S,A2), then

Vπ0
((S,A1)) ≥ Vπ0

((S,A2)). (16)

Assumption 1 means that taking an action with a higher reward leads to more favorable downstream
trajectories under the baseline policy. This is reasonable when the reward reflects progress toward the
final task, and actions with lower rewards are more likely to take the model in the wrong reasoning
direction. With this condition in place, we now present the following theorem.

Theorem 1 Under Assumption 1, the adaptive resampling policy πτ guarantees an expected value
that is equal to or higher than that of the baseline policy π0 at every state:

Vπτ
(S) ≥ Vπ0

(S) ∀S ∈ S. (17)

The proof of Theorem 1 is provided in Appendix A. Theorem 1 guarantees the safety of the adaptive
resampling policy πτ , ensuring reasoning quality is preserved or improved relative to the baseline
policy π0, and thus provides a rigorous theoretical foundation for its use in TTA of black-box LLMs.
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Table 1: Reasoning accuracy of comparing methods on three reasoning datasets.

Methods Model GSM8K StrategyQA ScienceQA

ZERO-SHOT COT

Qwen2-7B

81.58 ± 0.69 64.92 ± 2.09 72.20 ± 0.71
COT PROMPTING 83.19 ± 0.27 66.08 ± 1.79 76.00 ± 0.99
SELF-CONSISTENCY 83.76 ± 0.29 66.96 ± 0.82 76.07 ± 0.66
BBOX-ADAPTER 78.45 ± 0.31 68.56 ± 0.94 76.67 ± 0.09
LADA 84.10 ± 0.38 69.73 ± 0.67 80.20 ± 0.35
ZERO-SHOT COT

Mixtral-8x7B

69.04 ± 0.50 55.31 ± 1.10 71.07 ± 0.25
COT PROMPTING 68.49 ± 1.33 57.35 ± 2.29 78.47 ± 0.93
SELF-CONSISTENCY 69.22 ± 0.30 58.23 ± 0.67 78.60 ± 0.35
BBOX-ADAPTER 68.03 ± 0.49 60.26 ± 1.31 76.73 ± 0.83
LADA 70.05 ± 0.83 63.51 ± 0.74 80.07 ± 0.25

4 EXPERIMENTS

4.1 EXPERIMENTAL CONFIGURATIONS

Datasets. We evaluate LADA on three question-answering benchmarks. GSM8K (Cobbe et al.,
2021) is a math reasoning dataset where solving each problem requires multi-step reasoning.
StrategyQA (Geva et al., 2021) is an implicit reasoning dataset that challenges models to in-
fer unstated assumptions. ScienceQA (Lu et al., 2022) is a science-domain reasoning benchmark,
organized into three categories: natural science, social science, and language science. Complete
dataset details are given in Appendix B.1.

Baselines. We compare our method with four black-box approaches, including:

• ZERO-SHOT COT (Kojima et al., 2022): A prompt-based approach that instructs the model to
“think step by step” at test time to derive the final answer.

• COT PROMPTING (Wei et al., 2022): A prompt-based approach that augments the prompt with
chain-of-thought examples to guide multi-step reasoning.

• SELF-CONSISTENCY (Wang et al., 2023b): A decoding-based approach that samples multiple
reasoning paths and aggregates them by majority voting to obtain the final answer.

• BBOX-ADAPTER (Sun et al., 2024b): A training-based approach that learns a scoring model on
the target-domain training set and leverages it to guide beam search for the final prediction.

Settings. We consider two experimental settings: fixed target-domain TTA and changing target-
domain TTA. In the first setting, we select one dataset from GSM8K, StrategyQA, or ScienceQA
as the target domain, while the remaining two serve as available datasets. In the second setting, we
regard the three subsets of ScienceQA (natural science, social science, and language science) as
dynamically changing target domains, and use GSM8K and StrategyQA to meta-train the adapter.

Implementation Details. For the black-box LLM, we simulate API-style behavior using two repre-
sentative open-source models: Qwen2-7B-Instruct (Yang et al., 2024), a dense decoder-only model,
and Mixtral-8x7B-Instruct (Jiang et al., 2024), a sparse Mixture-of-Experts model. As the adapter,
we employ DeBERTa-v3-large (He et al., 2020), which contains 0.3B parameters.

For task construction, we follow the taxonomy of reasoning errors proposed by Golovneva et al.
(2023), from which we adopt h = 7 error types. For each available dataset, we partition the data into
k = 10 semantic clusters using embeddings obtained from a pretrained LLM encoder. Consequently,
for each target domain, we derive u = 140 meta-training tasks. Further details on task construction
are provided in Appendix B.2.

For meta-training, we run for 10 epochs. In each epoch, we iterate over all tasks with meta-batch
size b = 8. For each task, we use a support set of size c = 3 and a query set of size d = 10. The
inner update uses 3 gradient steps with step size α = 5×10−6 and is performed with SGD, while the
outer update uses 1 gradient step with step size β = 5 × 10−6, optimized by AdamW (Loshchilov
& Hutter, 2019) with a weight decay of 0.01. We set the margin ζ = 0.5.
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Table 2: Reasoning accuracy of comparing methods under domain changes of ScienceQA.

Methods Model Natural Social Language

ZERO-SHOT COT

Qwen2-7B

71.21 ± 1.06 83.84 ± 1.43 74.86 ± 2.47
COT PROMPTING 74.61 ± 1.12 90.91 ± 4.95 77.44 ± 1.08
SELF-CONSISTENCY 74.89 ± 0.85 91.92 ± 1.75 77.72 ± 0.65
BBOX-ADAPTER 75.31 ± 1.16 90.91 ± 3.03 78.16 ± 1.74
LADA 78.44 ± 0.87 92.93 ± 1.43 81.47 ± 1.41
ZERO-SHOT COT

Mixtral-8x7B

65.39 ± 0.20 85.86 ± 3.78 74.43 ± 1.33
COT PROMPTING 77.02 ± 2.41 91.92 ± 1.75 77.87 ± 2.69
SELF-CONSISTENCY 77.44 ± 0.85 92.93 ± 1.74 78.01 ± 0.75
BBOX-ADAPTER 76.31 ± 1.91 91.92 ± 4.62 77.16 ± 1.72
LADA 79.57 ± 1.93 94.95 ± 1.43 82.33 ± 0.93

Table 3: Reasoning accuracy
of LADA and its variants on
ScienceQA dataset.

Methods Acc. (%)

LADA-NS 75.93 ± 0.78
LADA-NM 76.47 ± 0.84
LADA-NA 77.73 ± 0.62
LADA 80.20 ± 0.35

Table 4: Adaptation time and 10-sample infer-
ence time, evaluated for LADA and baselines on
StrategyQA dataset.

Methods Adapt. (s) Infer. (s)

COT PROMPTING - 8.49
SELF-CONSISTENCY - 86.35
BBOX-ADAPTER 4.15 46.49
LADA 2.61 20.54

For test-time adaptation, we perform 3 update steps using AdamW, with the adaptation step size
γ = 1 × 10−6. Only the last four layers and the classification head of the adapter are updated. We
set the acceptance threshold τ = 0.5 and the maximum number of sampling attempts tmax = 5.
For the baselines, the number of reasoning paths sampled for SELF-CONSISTENCY is set to 10, and
BBOX-ADAPTER is run with its default parameters. Each baseline is given access to the same 3
target-domain examples, except for ZERO-SHOT COT.

4.2 EXPERIMENTAL RESULTS

We conduct 3 trials with different random seeds, reporting both the mean and standard deviation of
the reasoning accuracy, and the results are summarized in Table 1 and Table 2. The best performance
is shown in boldface, and the second-best result is underlined. The results show that:

• LADA consistently achieves the best performance across three benchmark datasets in two settings,
outperforming all baseline approaches.

• In the fixed target-domain TTA setting, LADA performs meta-training with different combina-
tions of available datasets, yielding average target-domain improvements of 3.89% on Qwen2-7B-
Instruct and 4.61% on Mixtral-8x7B-Instruct over COT PROMPTING, showing its effectiveness in
transferring knowledge from varied sources to new targets.

• In the changing target-domain TTA setting, LADA leverage the meta-trained adapter and improve
performance on dynamic target domains, with an average performance gain of 4.06% on Qwen2-
7B-Instruct and 4.07% on Mixtral-8x7B-Instruct compared with COT PROMPTING, demonstrat-
ing that the meta-trained adapter generalizes effectively across dynamic target domains.

4.3 FURTHER ANALYSIS

To verify the effectiveness of the components in LADA, we conduct an ablation study with three
vanilla variants: LADA-NS, LADA-NM, and LADA-NA. In LADA-NS, the first sampled reasoning
step is directly accepted without selection. In LADA-NM, the meta-training procedure is removed,
and the adapter is trained with supervised learning. In LADA-NA, we directly apply the adapter
trained with meta-learning, without further adapting it to the target domain. We evaluate these
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Table 5: GPU memory consumption dur-
ing adaptation phase and reasoning accu-
racy of LADA and compared methods on
StrategyQA dataset.

Methods Mem. (GiB) Acc. (%)

LADA 3.87 80.20
LADA-ALL 7.83 79.80
LLM-FT 15.14 76.07
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Figure 1: Sensitivity analysis of tmax and τ .

variants on StrategyQA using Qwen2-7B-Instruct, and results are reported in Table 3. The results
show that LADA-NS and LADA-NM suffer substantial performance degradation, highlighting the
importance of both selection and meta-training. For LADA-NA, although meta-training enables the
adapter to acquire transferable adaptation skill, its performance still falls short of LADA, which
further adapts to the target domain.

To evaluate the efficiency of LADA, we measured the adaptation and inference time of LADA and
the baselines on StrategyQA using Qwen2-7B-Instruct. Inference time was evaluated on a subset
of 10 samples to simulate a single conversation with thematically related questions, as is typically
the case in real-world scenarios (Deng et al., 2023). We invoke torch.cuda.synchronize
before measurement to guarantee that reported computational overhead reflects completed GPU op-
erations. The results are presented in Table 4. It can be observed that, compared with inference time,
the adaptation time of LADA accounts for only a small fraction. Moreover, thanks to its adaptive se-
lection mechanism, LADA requires less than one-quarter of the time used by SELF-CONSISTENCY
for full-answer resampling, highlighting its efficiency.

We further evaluate the GPU memory consumption of our approach. To this end, we introduce a
variant, LADA-ALL, which updates all adapter parameters during adaptation. In addition, we in-
clude a baseline, LLM-FT, which directly accesses the LLM parameters and fine-tunes them with
LoRA (Hu et al., 2022) on the same 3 examples for consistency. We measure peak GPU memory
usage with torch.cuda.max_memory_allocated during the adaptation phase. The GPU
memory consumption and reasoning accuracy of the three methods, evaluated on ScienceQA with
Qwen2-7B-Instruct, are reported in Table 5. The results show that LADA consumes the least GPU
memory, whereas LLM-FT requires nearly four times more memory than LADA, making it im-
practical in resource-constrained scenarios. Moreover, the few-shot setting hinders LLM-FT from
achieving strong generalization. Interestingly, LADA also outperforms LADA-ALL, suggesting that
full adapter updates in the few-shot setting may lead to overfitting, whereas restricting updates to
the top layers helps preserve the generalization learned during meta-training.

Lastly, we study the sensitivity of two test-phase hyperparameters in LADA, tmax and τ , on
ScienceQA with Qwen2-7B-Instruct. The results are presented in Fig.1. We observe that when
tmax ≥ 3, the performance continues to improve with larger values of tmax but remains overall
stable, indicating that LADA can correct faulty reasoning steps with only a small number of resam-
pling attempts. Since we formulate the decision of whether the next reasoning step is acceptable as
a binary classification problem during training, τ = 0.5 is a natural choice. Setting τ below this
threshold tends to introduce erroneous reasoning steps, while higher thresholds yield marginal per-
formance gains at the cost of repeatedly resampling correct steps, thus reducing overall efficiency.

5 CONCLUSION

In this paper, we propose a novel framework LADA for continuous, rapid adaptation of black-box
LLMs to unseen, dynamic domains at test time. LADA meta-trains an adapter on diverse tasks
from multiple datasets (covering semantic clusters and error types) to learn transferable adapta-
tion skills. At test time, the adapter uses a small set of current-domain positive–negative reasoning
pairs for lightweight adaptation, then guides the frozen LLM step-by-step to select reliable reason-
ing steps, steering generation toward domain-appropriate trajectories without parameter updates or
prior domain exposure. Experiments on various benchmark datasets under two settings validate the
effectiveness of the proposed approach.
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A PROOFS

A.1 USEFUL LEMMAS

Lemma 1 For any policy π, the Bellman operator Tπ is a γ-contraction on (RS, ∥ · ∥∞). Therefore,
there exists a unique fixed point Vπ such that TπVπ = Vπ .

Proof. Let V1, V2 ∈ RS. For any fixed state S,

|TπV1(S)− TπV2(S)| =
∣∣EA∼π(·|S) [R(S,A) + γV1((S,A))]

− EA∼π(·|S) [R(S,A) + γV2((S,A))]
∣∣

=
∣∣EA∼π(·|S) [γ(V1((S,A))− V2((S,A)))]

∣∣
≤ γ · EA∼π(·|S) [ |V1((S,A))− V2((S,A))| ]
≤ γ · ∥V1 − V2∥∞.

(18)

Taking supremum over all S yields:

∥TπV1 − TπV2∥∞ ≤ γ∥V1 − V2∥∞, (19)

showing that Tπ is a γ-contraction mapping with γ < 1.

Since (RS, ∥ · ∥∞) is a complete metric space, Banach’s fixed-point theorem (Puterman, 1994)
ensures that Tπ admits a unique fixed point Vπ ∈ RS satisfying TπVπ = Vπ , and the iteration
Vk+1 = TπVk converges to Vπ for any initialization V0. □

Lemma 2 Given two policies π and π′, if Tπ′Vπ(S) ≥ Vπ(S) ∀S ∈ S, then it follows that
Vπ′(S) ≥ Vπ(S) ∀S ∈ S.

Proof. From the Bellman equation, we obtain

Tπ′Vπ′(S) = EA∼π′(·|S) [R(S,A) + γVπ′((S,A)) ]

= EA∼π′(·|S) [R(S,A) ] + γES′∼Pπ′ (·|S)Vπ′(S′)

= EA∼π′(·|S) [R(S,A) ] + γPπ′Vπ′(S),

(20)

where Pπ′ is the transition kernel, representing the conditional distribution over the next state S′

given the current state S when policy π′ is applied.

From Lemma 1, we have

Vπ′(S) = Tπ′Vπ′(S) = Rπ′(S) + γPπ′Vπ′(S), (21)

where we write Rπ′(S) = EA∼π′(·|S)[R(S,A)] as the expected one-step reward under policy π′ for
brevity. Define ∆(S) = Vπ′(S)− Vπ(S). Then we obtain

∆ = Vπ′ − Vπ

= R+ γPπ′Vπ′ − Vπ

= R+ γPπ′Vπ + γPπ′(Vπ′ − Vπ)− Vπ

= Tπ′Vπ + γPπ′∆− Vπ,

(22)

which rearranges to
(I − γPπ′)∆ = Tπ′Vπ − Vπ. (23)

By the premise of this lemma, the right-hand side is non-negative.

Since Pπ′ is a stochastic kernel, it defines a positive contraction on (RS, ∥ · ∥∞), hence ∥γPπ′∥∞ ≤
γ < 1. Therefore I − γPπ′ is invertible with the Neumann series (I − γPπ′)−1 =

∑
k≥0(γPπ′)k,

which is a positive operator (Horn & Johnson, 2012). Since Tπ′Vπ(S) − Vπ(S) ≥ 0 for all S, and
(I − γPπ′)−1 is a positive operator, applying it preserves non-negativity, hence ∆(S) ≥ 0 for all S.
Therefore Vπ′(S) ≥ Vπ(S) for all S. □
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A.2 PROOF OF THEOREM 1

Proof. Let A0 ∼ π0(·|S) be the baseline action, and Aτ ∼ πτ (·|S) be the action of adaptive
resampling policy. We have

E[Qπ0
(S,Aτ )]− E[Qπ0

(S,A0)]

= E[R(S,Aτ )−R(S,A0)] + γ E[Vπ0
((S,Aτ ))− Vπ0

((S,A0))]

≥ 0.

(24)

The reward term is nonnegative since the adaptive resampling policy never accepts a lower-reward
action than the baseline, and the value term is nonnegative by Assumption 1. So,

E[Qπ0
(S,Aτ )] ≥ E[Qπ0

(S,A0)] = Vπ0
(S). (25)

Using the Bellman operator Tπτ
Vπ0

(S) = E[Qπ0
(S,Aτ )], we have

Tπτ
Vπ0

(S) ≥ Vπ0
(S) ∀S ∈ S. (26)

From Lemma 2, since TπτVπ0(S) ≥ Vπ0(S), we conclude:

Vπτ (S) ≥ Vπ0(S) ∀S ∈ S. (27)

This finishes the proof. □

B EXPERIMENTAL DETAILS

B.1 ADDITIONAL DATASET DETAILS

Our evaluation spans three benchmarks: GSM8K for mathematical reasoning, StrategyQA for
commonsense inference, and ScienceQA for scientific reasoning, covering distinct domains and
reasoning paradigms. Details of these datasets are summarized below:

• GSM8K (Cobbe et al., 2021) contains 8.5K grade school math word problems, with 7.5K for
training and 1K for testing. Problems require 2–8 reasoning steps using basic arithmetic. Written
by human annotators with quality control, solutions are provided in natural language, supporting
interpretable step-by-step reasoning evaluation of LLMs.

• StrategyQA (Geva et al., 2021) contains 2,288 yes/no questions, with 2,059 for training and
229 for testing, targeting implicit multi-step reasoning. Unlike explicit multi-hop datasets, rea-
soning steps are not given but inferred as strategies. Each question is short, diverse, and linked to
supporting Wikipedia evidence, covering a broad range of domains and reasoning types.

• ScienceQA (Lu et al., 2022) is a multimodal multiple-choice benchmark of 21,208 science ques-
tions across natural, social, and language sciences, with text and image contexts. Each question
includes lectures and explanations for reasoning evaluation. Following Sun et al. (2024a), we
excluded image-based questions and sampled 2,000 training and 500 testing questions from the
original splits for our experiments.

B.2 ADDITIONAL TASK CONSTRUCTION DETAILS

Before synthesizing data for meta-training, we obtain step-by-step reasoning traces for the training
splits of the relevant datasets. GSM8K directly provides annotated step-by-step reasoning traces,
whereas for StrategyQA and ScienceQA, which lack such annotations, we employ DeepSeek-
V3 (DeepSeek-AI, 2024) to generate corresponding traces and discard erroneous samples.

To better simulate the error types that arise under distribution shift, we employ DeepSeek-V3 to
synthesize seven types of reasoning error types frequently observed in LLMs (Golovneva et al.,
2023): factuality, hallucination, redundancy, repetition, missing step, coherency, and commonsense.
To ensure the rationales and formats of the generated samples remain consistent, we instruct the
LLM to verify its own outputs and provide justifications. The prompts used for error synthesis are
as follows.
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Prompt used for data synthesis

You are a data synthesis assistant.

Your input is a correct reasoning process, which can be formalized as
follows: Q: question A: Let’s think step by step. rstart, ... ,ri,
... ,rend, where r denotes a reasoning step.

First, you need to **randomly select** any reasoning step ri from the
correct reasoning steps.
Then:
- Generate a correct version right(ri) by rewriting the original step
ri in a different form, while fully preserving its factual meaning.
- Generate a corresponding faulty version wrong(ri) by introducing an
error into ri.
Note:
- The type of error you need to synthesize is: **Coherency**, which
refers to: **Steps contradict each other or do not follow a cohesive
story**.
- The faulty step should realistically simulate the **Coherency**
mistake that large language models are likely to make during
reasoning and should be significant enough to affect the subsequent
reasoning.

Next, you need to construct a positive and a negative sample. You
only need to include the reasoning steps up to and including the
synthesized correct step right(ri) (for the positive sample), or up
to and including the synthesized incorrect step wrong(ri) (for the
negative sample). Do not include the rest of the reasoning chain.

The positive sample can be formalized as: " Q: question A: Let’s
think step by step. rstart, ... ,right(ri) # the synthesized right
reasoning step "

The negative sample can be formalized as: " Q: question A: Let’s
think step by step. rstart, ... ,wrong(ri) # the synthesized wrong
reasoning step "

Finally, in terms of output format, please return the positive and
negative samples in a list. Each sample should be a string, and each
reasoning step should occupy one line, as follows: [ " Q: question
A: Let’s think step by step. rstart ... right(ri) ", " Q: question A:
Let’s think step by step. rstart ... wrong(ri) " ]

Before providing the list, briefly explain the rationale behind the
construction of positive and negative samples, and how the negative
(faulty) samples may affect subsequent reasoning. At last, please
check whether your output format meets the specified requirements.

Your task:

B.3 CASE STUDY

Q: Could you go to New York Public Library and the Six Flags Great Escape in the same day?
A: New York Public Library is in Manhattan, New York City. (0.92,→)
Six Flags Great Escape is located in Lake George, New York. (0.87,→)
New York City and Lake George are in different states and far apart. (0.24, ⟳)
The average driving time between Manhattan and Lake George is around 5-6 hours, depending
on traffic. (0.76,→)
#### Yes.

Figure 2: Case study of LADA on StrategyQA, where parentheses show (score, action); → de-
notes moving to the next step, and ⟳ denotes regenerating the current step.
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Figure 2 presents a case study on the StrategyQA dataset, where the original model generates an
erroneous reasoning step that would mislead the solution, but LADA intervenes to revise the step
and successfully guides the reasoning trajectory to the correct answer.

C LLMS USAGE

LLMs were used exclusively to assist with writing and polishing the manuscript. They helped re-
fine language, improve readability, and enhance clarity through tasks such as sentence rephrasing,
grammar checking, and improving the overall flow of the text.

The LLM was not involved in ideation, research methodology, or experimental design. All scientific
concepts, analyses, and conclusions were developed solely by the authors. The authors take full
responsibility for the content of the manuscript, and the use of the LLM adhered to ethical guidelines
without contributing to plagiarism or scientific misconduct.
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