
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERVALGP-VAE: LEARNING UNOBSERVED CON-
FOUNDERS WITH UNCERTAINTY FOR PERSONALIZED
CAUSAL EFFECT ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimating individual treatment effects (ITEs) in the presence of unobserved con-
founding remains a central challenge in causal inference. Existing proxy-based
methods aim to recover latent confounders from observational proxies, but typi-
cally produce only point estimates without uncertainty quantification. This lack of
uncertainty modeling leads to incomplete and potentially insufficient information
for downstream decision-making, especially when uncertainty is inherent in the
data. We propose IntervalGP-VAE, a novel framework that combines variational
autoencoders with Gaussian Process (GP) to model both the latent confounders
and their associated uncertainty. At the core of our method is an interval-valued
GP prior, which enables the model to capture a distribution over plausible latent
confounders and treatment responses, rather than relying on potentially unreli-
able point estimates. This approach accounts for uncertainty arising from noisy
and imperfect proxy variables and yields calibrated ITE interval to support more
robust causal decisions. We provide theoretical guarantees for identifiability of
the latent confounder up to a smooth monotonic transformation under weak as-
sumptions. Experiments on synthetic and semi-synthetic datasets demonstrate that
IntervalGP-VAE achieves superior performance in ITE estimation and uncertainty
calibration, outperforming existing methods.

1 INTRODUCTION

Estimating Individual Treatment Effects (ITEs) from observational data is a core challenge, espe-
cially under unobserved confounding (Pearl, 2009; Peters et al., 2017). Recent advances have
enabled the inference of latent confounders from proxy variables Louizos et al. (2017); Zhang et al.
(2021); Wu et al. (2024); Harada & Kashima (2024), yet significant uncertainty remains in this in-
ference process. Proxy variables are often noisy and only weakly related to the true confounders;
limited data or poor proxy quality further amplifies this uncertainty. In decision support, quantifying
the uncertainty in recovered latent structure and treatment effect estimates is crucial. Modeling the
latent confounder as an interval-valued variable captures and propagates uncertainty to counterfac-
tual and ITE estimates.

Recovering unobserved confounders and estimating ITEs under uncertainty requires explicit uncer-
tainty quantification throughout the pipeline from latent confounder inference to outcome prediction.
The model must also preserve spatial or structural coherence in the latent space, enabling smooth
transitions across similar individuals while capturing heterogeneity. These demands call for flexible,
nonparametric probabilistic models. Gaussian Processes (GPs), which inherently model smooth-
ness, uncertainty, and spatial correlation, are a natural fit (Rasmussen & Williams, 2006). However,
standard GPs assume fully observed inputs and outputs, whereas our setting requires a principled in-
tegration of deep latent variable models with uncertainty quantification and spatial coherence under
interval constraints in the latent space.

We propose IntervalGP-VAE, a novel framework that integrates interval-valued Gaussian Processes
with variational autoencoders (VAEs) to recover unobserved confounders with uncertainty for per-
sonalized causal effect estimation. The model employs a VAE encoder to infer a structured latent
representation from noisy proxy measurements, enabling individualized confounder modeling under
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uncertainty. An interval-valued GP prior is imposed over this latent representation to model con-
founders as interval-valued function of the proxies. Outcome prediction is then performed via an
interval-valued GP regressor, which maps the inferred confounder intervals to calibrated outcome
bounds. This enables principled uncertainty propagation and supports smooth, individualized ITE
estimation with calibrated confidence intervals, accounting for both latent uncertainty and proxy
noise. To our knowledge, IntervalGP-VAE is the first method that combines proxy-based latent vari-
able modeling with interval-valued GPs. Although GPs are increasingly used, few methods handle
interval-valued data, and none incorporate GP priors for confounder recovery from proxies. Exist-
ing approaches such as CEVAE (Louizos et al., 2017) typically rely on standard VAE priors (e.g.,
isotropic Gaussians) and lack structured uncertainty propagation grounded in structured priors.

Our main contributions are summarized as follows:

• Theory: We present a theoretical analysis of the identifiability conditions under which latent
confounders can be recovered from proxies with uncertainty, offering formal guarantees for the
proposed method.

• Methodology: We propose IntervalGP-VAE, a novel framework that combines VAEs with
interval-valued GPs to disentangle latent confounders and measurement noise from noisy prox-
ies and quantify predictive uncertainty. The model integrates an interval-valued GP prior over
the latent space and a GP-based interval likelihood head to enable smooth and uncertainty-aware
estimation of counterfactual outcomes and treatment effects.

• Empirics: We evaluate on 24 synthetic settings constructed to satisfy the identification conditions,
and on the semi-synthetic IHDP benchmark across 100 replications. IntervalGP-VAE achieves
lower or comparable PEHE and ATE error to strong baselines (e.g., TEDVAE Zhang et al. (2021))
while additionally providing calibrated ITE intervals.

2 PROBLEM SETTING

Table 1: Summary of key notations.

Symbol Description

Z ∈ Rk Proxy variables
ZY ∈ Rk

′
Auxiliary variables

T ∈ {0, 1} Binary treatment variable
Y ∈ R Outcome variable
U ∈ Rd Latent confounder(s)
ϵY , ϵZ Noise for Y and Z
f(T,U, ZY ) Outcome function
g(U) Mapping from U to proxies
Ŷ (t) Estimated outcome under t
q(u | z) Posterior over U (encoder)
pθ(z | u, ϵ) Proxy likelihood (decoder)
[τ̂ lower
j , τ̂ upper

j ] ITE interval for individual j

Key notations used in this paper are listed in Table 1 for
clarity and brevity. We assume the outcome is gener-
ated according to the following structural equation:

Y = f(T,U, ZY ) + ϵY (1)

where f : {0, 1} ×Rd ×Rk′ → R is a potentially non-
linear function and ZY ⊆ Z ∈ Rk represents a selected
subset of observed proxy variables that may directly in-
fluence the outcome (e.g., acting as mediators or addi-
tional covariates), with k′ < k. The noise term ϵY is
assumed exogenous, satisfying ϵY ⊥ (T,U, ZY ). We
observe samples of the triplet (Z, T, Y ), where Z pro-
vides indirect information about the latent confounder
U , with its informativeness determined by the structural
assumptions. Each proxy variable Zi is assumed to be
generated from U via a noisy, smooth, and injective
function:

Zi = gi(U) + ϵZi , ϵZi ⊥ U, i = 1, . . . , k, (2)
where ϵZi

are mutually independent noise terms, and the functions gi : R → R are unknown but
sufficiently non-redundant. Given observed samples {(Zi, T i, Y i)}ni=1, the objective is to under-
stand the identifiability of the latent confounder U and its implications for recovering downstream
causal quantities. Specifically, we aim to address:

• Identifiability: Under what structural or statistical conditions can the latent variable U be recov-
ered (up to an equivalence class such as an invertible or monotonic transformation), and treatment
effect τ(U) := f(1, U, ZY )− f(0, U, ZY ) becomes identifiable.

• Quantification of uncertainty: When U is only partially identifiable, we aim to derive mean-
ingful bounds (e.g., lower and upper bounds) on treatment outcomes and effects, and characterize
these bounds via confidence intervals or posterior uncertainty regions whenever feasible.

To support the identifiability, we adopt the following standard assumptions from causal inference:
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(i) Positivity: Every individual has a non-zero probability of receiving both treatment and control,
i.e.,

0 < P (T = 1 | U) < 1. (3)

(ii) Latent Ignorability: Treatment assignment is independent of potential outcomes conditional
on U :

(Y (0), Y (1)) ⊥⊥ T | U. (4)

This implies that U fully accounts for confounding between between T and Y , and that ZY does not
introduce spurious confounding.

(iii) Consistency and Well-Defined Outcomes: For each treatment level t ∈ {0, 1}, the potential
outcome Y (t) is generated by the structural equation

Y (t) = f(t, U, ZY ) + εY , (5)
εY ⊥ (T,U, ZY ). (6)

Consistency holds in the sense that if T = t then Y = Y (t). Hence, outcomes are well-defined as
functions of the latent confounder U and auxiliary covariates ZY .

A common assumption in prior proxy-based models (e.g. CEVAE (Louizos et al., 2017)) is that
the full proxy vector Z is conditionally independent of both treatment and outcome given U : Z ⊥⊥
(T, Y ) | U. However, this assumption is often unrealistic in practice. Our formulation relaxes this
constraint to capture richer and more realistic causal structures.

3 RELATED WORK

We categorize related work into three areas: latent confounder modeling, Gaussian Processes and
VAE, and interval-valued Gaussian Processes.

3.1 FROM PROXY-BASED IDENTIFICATION TO PERSONALIZED LATENT RECOVERY

Leveraging proxy variables to identify causal effects in the presence of unobserved confounding is
a foundational strategy in causal inference. Early work by Kuroki and Pearl Kuroki & Pearl (2014)
and Miao et al. Miao et al. (2018) established identifiability conditions using proxies under linear
and parametric assumptions. More recent approaches, such as Deep Proxy Causal Learning (Deep-
PCL) Xu et al. (2021), extend these ideas to nonlinear settings via neural architectures. However,
these methods typically focus on population-level identification. Also, some of them Xu et al.
(2021) rely on unverifiable assumptions, such as partitioning proxies into treatment- or outcome-
specific subsets. There is growing interest in personalized latent recovery, particularly via nonlinear
ICA Hyvärinen et al. (2019) and its variational counterpart iVAE Khemakhem et al. (2020). In
causal inference, VAE-based models such as CEVAE Louizos et al. (2017), TEDVAE Zhang et al.
(2021), CEMVAE (Wu et al., 2024), InfoVAE Zhao et al. (2019) and InfoCEVAE Harada & Kashima
(2024) have been proposed to learn latent confounders from proxies. Gaussian Process-based alter-
natives include the Sequential Deconfounder Kuzmanovic et al. (2021); Hatt & Feuerriegel (2024)
and Structured GP Confounder Witty et al. (2020). However, most of these approaches lack struc-
tural identifiability guarantees. InfoVAE Zhao et al. (2019) and InfoCEVAE Harada & Kashima
(2024) encourages latent recovery via mutual information, but does not provide formal identifiabil-
ity analysis linking proxies to latent variables. Our method departs from prior work by establishing
structural identifiability through the tensor decomposition framework of Allman et al. Allman et al.
(2009). We show that under nonlinear, injective proxy mappings, the latent confounder U ∈ Rd can
be recovered (up to a smooth invertible transformation) from k ≥ 2d + 1 proxy variables, where
d is the number of latent confounders. This result ensures that the recovered latent representation
supports valid causal inference, including ITE estimation. Moreover, our framework generalizes a
wide range of causal structures involving latent confounders and proxy variables, including but not
limited to, the settings addressed by CEVAE and TEDVAE. It enables recovery of latent confounders
from a unified proxy set under a general DAG-based formulation. This flexibility allows the model
to accommodate diverse proxy–treatment–outcome dependency structures within a single principled
and identifiable framework.
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3.2 GP-VAE AND UNCERTAINTY-AWARE ESTIMATION

Gaussian Processes (GPs) offer a flexible, nonparametric framework for uncertainty modeling (Ras-
mussen & Williams, 2006). The foundational work by (Casale et al., 2018) introduced GP-VAEs,
replacing the isotropic Gaussian prior in VAEs with a GP prior to induce structured latent repre-
sentations that vary smoothly with the input. Subsequent work extended this idea to sequential
data (Fortuin et al., 2020) and latent confounder trajectories (Hatt & Feuerriegel, 2024). In the
Structured GP Confounder model Witty et al. (2020), separate GPs are used to model treatment
and outcome given latent confounders. Our proposed IntervalGP-VAE introduces an interval-valued
GP prior over the latent space to capture both structured dependencies and epistemic uncertainty in
confounder recovery from noisy proxies. For outcome prediction, we incorporate a GP head trained
on interval-valued targets to produces calibrated calibrated predictive uncertainty for counterfac-
tual queries. To our knowledge, this is the first model to integrate GP-based latent inference with
interval-valued uncertainty propagation for personalized treatment effect estimation.

3.3 INTERVAL-VALUED GAUSSIAN PROCESSES

Modeling interval-valued outputs with GPs has received limited attention in the literatures. To the
best of our knowledge, the only existing work that explicitly supports interval observations in a GP
setting is the Generalized Multi-Output Censored GP model by Gammelli et al. (2020; 2022). Their
framework introduces a likelihood formulation capable of handling output intervals across multiple
outputs. However, their method is designed for multi-output regression tasks and does not address
causal inference, latent confounders, or proxy variables. Our approach supports interval supervision
of the latent space and, through a GP, interval prediction of individual treatment effects. This allows
us to model both uncertainty in confounder inference and outcome prediction in a principled and
calibrated manner.

4 IDENTIFIABILITY ANALYSIS

Definition 1 (Identifiability). A latent variable U is said to be identifiable if there exists a mapping
from the observed variables to U , up to a smooth and invertible transformation, such that model
outputs, e.g., counterfactual outcomes or treatment effects, remain invariant under that transforma-
tion.

Theorem 1 (Identifiability of a Latent Vari-
able from Noisy Proxy Variables)

Under the proxy structural equation denoted by
equation 2, suppose the latent confounderU gener-
ates k proxy variablesZi, where each gi : Rd → R
is unknown, continuously differentiable, and injec-
tive, and the noise terms ϵZi are mutually indepen-
dent and independent of U . Then:

• If k < 2d + 1, then U is not identifiable from
the marginal distribution p(Z) in general.

• If k ≥ 2d+1, and the functions {gi}ki=1 are suf-
ficiently smooth, nonlinear, and non-redundant,
then U is identifiable from p(Z), up to a smooth
and invertible transformation.

If the latent confounder U were fully observed,
the structural outcome function in equation 1
would yield identifiable causal effects under
standard assumptions. However, when U is un-
observed and must be inferred from proxies,
the key question is: under what conditions is
U still identifiable, and valid causal effects re-
coverable? Theorem 1 formally characterizes
the identifiability conditions necessary for such
recovery.

Proof. See Appendix A for the detailed proof
of Theorem 1, and Appendix B for an illustra-
tive example.

The identifiability result in Theorem 1 is based on the following assumptions: 1) Structural Form:
The observed proxies Zi are generated from the latent confounder U via the structural equations
equation 2, where the additive noise terms ϵZi

are mutually independent and independent of U . The
functions {gi} are not only smooth, injective, but also sufficiently nonlinear and non-redundant,
meaning they provide diverse and informative mappings of U . 2) Conditional Independence of
Proxies: The proxy variables Zi are conditionally independent given U , i.e.,

Z1 ⊥⊥ Z2 ⊥⊥ · · · ⊥⊥ Zk | U.

4
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Since identifiability only holds up to a smooth, strictly monotonic, and invertible transformation of
U , a natural question arises: does this ambiguity affect ITE estimation? Theorem 2 establishes that
ITE estimation is invariant to smooth, monotonic, and invertible reparameterizations of the latent
space. This result holds for fixed ZY

1.

Theorem 2 (Invariance of the ITE under Transformations of the Latent Space)

Let h : R → R be a smooth, strictly monotonic, and invertible function. Then the individual
treatment effect (ITE) remains invariant under such transformations of the latent confounder.
Specifically, if Û = h(U), then ITE(Ûi) = ITE(Ui).

Proof. See the detailed proof of Theorem 2 in Appendix D.

5 INTERVALGP-VAE

5.1 MOTIVATION FOR GP PRIOR

Proposition 1 (GP Priors Enable Regularized and Invariant Latent Recovery in Causal Mod-
els)

Let U = (u1, . . . , un)
⊤ denote latent confounder values for n observed samples, each as-

sociated with proxy observations Zi ∈ R via the structural equation equation 2. Suppose a
Gaussian Process prior is placed over U as

U ∼ GP(0,K(Zi, Zj)),

where K is a smooth, positive-definite kernel over the proxy space. Then:
1. The GP prior does not affect the identifiability of causal effects, such as ITEs.
2. For any smooth and invertible transformation h : R → R, the transformed latent

Ũ = h(U) inherits the same geometric structure via an induced kernel, preserving regu-
larization.

Proof. See Appendix E for the detailed proof of Proposition 1.

Proposition 1 holds under the following additional assumptions: 1) the kernel function K(Zi, Zj)
is smooth and positive-definite; 2) the GP prior encodes a distribution over U that respects relative
similarity in the proxy space without enforcing absolute coordinates; and 3) identifiability of U is
defined up to a smooth, strictly monotonic, and invertible transformation, consistent with Theorem 2.

5.2 INTERVALGPS FOR LATENT REPRESENTATION AND ITE ESTIMATION

We extend the Variational Autoencoder (VAE) framework by introducing a structured prior over la-
tent variables using Interval Gaussian Processes (IntervalGP) Gammelli et al. (2020; 2022). Unlike
standard VAEs that impose an isotropic Gaussian prior over latent representations, we define a GP
prior over the proxy space Z and model the latent variable U as an interval-valued random function
of Z.

Interval-Valued GP Regression. Given input features Xi ∈ Rd and scalar targets yi ∈ R, stan-
dard GP regression assumes a latent function f(x) ∼ GP(0,K(X,X ′)), where K(·, ·) is the kernel:

k(Xi, Xj) = σ2
f exp

(
−∥Xi −Xj∥2

2ℓ2

)
, (7)

1If ZY appears in the outcome model, it is assumed to be observed and held fixed when evaluating counter-
factual outcomes.

5
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with hyperparameters σ2
f (variance) and ℓ(lengthscale). In many practical settings, however, targets

are not point-valued but known to lie within intervals: yi ∈
[
ylower, i, yupper, i

]
. To accommodate

this, IntervalGP Gammelli et al. (2020; 2022) generalizes standard GP regression to interval targets
by replacing the Gaussian likelihood with a truncated Gaussian likelihood:

p
(
ylower,i≤f(Xi)≤yupper,i | Xi

)
= Φ

(
yupper,i − µi

σi

)
− Φ

(
ylower,i − µi

σi

)
. (8)

where µi and σi denote the predictive mean and standard deviation of the GP at Xi, and Φ(·) is the
standard Gaussian cumulative distribution function (CDF).

IntervalGP Prior on the Latent Confounder. To infer the latent confounder U from observed
proxies Z, we employ a variational encoder:

q(U | Z) = N (µu(Z), σ2
u(Z)), (9)

where each latent estimate Ui is treated as an interval-valued random variable, interpreted as ui ∈
[µi

u − σi
u, µ

i
u + σi

u].

To regularize the learned latent space U , we impose a Gaussian Process prior over U(Z), i.e.,
U(Z) ∼ GP(0, k(Z,Z ′)). is placed over the latent space to regularize the learned U -space. This
GP prior treats each encoder-derived interval as an interval-valued observation under the GP poste-
rior, enabling structured and uncertainty-aware regularization. For each data point i:

log pGP
(
ui∈ [µi

u±σi
u] | Zi

)
= log

[
Φ

(
µi
u + σi

u − µGP,i

σGP,i

)
− Φ

(
µi
u − σi

u − µGP,i

σGP,i

)]
. (10)

where µGP, i, σGP, i denote the posterior predictive mean and standard deviation of the GP at input
Zi.

Latent Confounder Prediction via GP Posterior. The GP prior enables coherent prediction for
unseen inputs using interval-valued observations. Specifically, we define:

• K ∈ Rn×n: the kernel matrix over training inputs, with Kij = K(Zi, Zj) + σ2δij ,

• Ks ∈ Rn×1: the cross-covariance vector between training inputs and a test input Z∗,
• Kss ∈ R: the prior variance at Z∗, i.e., Kss = k(Z∗, Z∗) + σ2.

The GP posterior over the latent confounder at Z∗ is:

p(u∗ | Z∗,D) = N (µ∗, σ∗2), (11)

where µ∗
u = K⊤

s K−1µu, σ∗2
u = Kss − K⊤

s K−1Ks. The resulting latent interval is interpreted
as: u∗ ∈ [µ∗

u − σ∗
u, µ

∗
u + σ∗

u] .

ITE Prediction via GP Posterior. Similarly, the GP posterior for the ITE at test input Z∗ is
computed as:

µlower
ITE (Z∗) = K⊤

s K
−1µlower

ITE , µupper
ITE (Z∗)= K⊤

s K
−1µupper

ITE , σ2
ITE(Z

∗) = Kss −K⊤
s K

−1Ks. (12)

where µlower
ITE and µupper

ITE are obtained by drawing multiple samples from the GP posterior q(u | Z∗)
and computing empirical quantiles:

ITElower = Quantileα(Y1 − Y0), ITEupper = Quantile1−α(Y1 − Y0). (13)

The final ITE prediction is expressed as an interval: ITEGP(Z
∗) ∈ [µlower

ITE (Z∗), µupper
ITE (Z∗) ], with

uncertainty quantified by the predictive variance σ2
ITE(Z

∗).

5.3 INTERVALGP-VAE ARCHITECTURE

6
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Proxy vars
Z

Treatment
T

Double Encoder
q(U | Z), q(ε | Z)

Noise
ε

Latent
U

Additive Decoder
Ẑ = g(U) + ε

Outcome Head
Y = f(U, T, ZY )

GP Prior over U

GP Prior over Y

IntervalGP-VAE

Figure 1: Architecture of the IntervalGP-VAE model.

Algorithm 1: IntervalGP–VAE Algorithm
Input: Train set Dtrain, test set Dtest, joint

training epochs E
Output: Estimated ITEs {τ̂j}mj=1; ITE intervals

[τ̂ lower
j , τ̂upperj ]

Initialize model M with
encoder qϕ(u, ϵ | z), decoder pθ(z | u, ϵ),
and causal head fψ(u, t);

for epoch = 1 to E do
for each mini-batch (z, t, y) do

Sample (u, ϵ) ∼ qϕ(u, ϵ | z);
Reconstruct ẑ ∼ pθ(z | u, ϵ);
Predict ŷ = fψ(u, t, zy);
Compute total loss L and update
(ϕ, θ, ψ);

Posterior over u: for each zj estimate qϕ(u | zj)
and draw u

(s)
j ;

Estimate yj(0), yj(1), compute ITE and CI
[ITElower

j , ITEupper
j ];

Fit GP (RBF) ztrain→utrain; predict uj for test
zj ;

Compute ŷj(0), ŷj(1) and ITEj = ŷj(1)− ŷj(0);
obtain GP-based ITE intervals;

The proposed IntervalGP-VAE extends the
standard VAE framework by incorporating
structured GP priors over both the latent con-
founder space U and ITE. This architecture
enables the model to produce both point esti-
mates and calibrated uncertainty intervals for
latent variables and causal effects. The key
components are outlined below and illustrated
in Fig. 1: Encoder: Maps each input Zi to
a variational posterior over U , defining a la-
tent interval ui ∈ [µi

u − σi
u, µi

u + σi
u] via

equation 9 to capture epistemic uncertainty in
the latent representation. IntervalGP over U :
A GP prior regularizes the latent space by
maximizing the interval-based log-likelihood
log pGP (µu ± σu | Z) as given in equation 10.
Decoder: Reconstructs the proxies via ẑ =
gdec(u, ϵ), using sampled latent variables and
noise. Outcome Head: Predicts the outcome
y from u, t, enabling estimation of potential
outcomes and corresponding ITEs. IntervalGP
over ITE: A second GP regressor predicts cal-
ibrated ITE intervals, propagating uncertainty
from latent inference to treatment effect esti-
mation. To train the model, we formulate a
composite training objective that jointly optimizes reconstruction accuracy and GP-based prior
regularization. The overall training procedure is summarized in Algorithm 1. The weights and
implementation-specific parameters used in the IntervalGP-VAE method are detailed in the experi-
ment section.

6 EXPERIMENTS

We conduct both synthetic and semi-synthetic experiments to evaluate the effectiveness of our pro-
posed method. All experiments were conducted on a laptop running Windows 11 Home (version
22H2, build 22631), equipped with a 13th Gen Intel® Core™ i9-13900H processor (14 cores, 20
threads, 2.6 GHz), 32 GB of RAM, and a 1 TB SSD. We compare our IntervalGP-VAE method
with TEDVAE (Zhang et al., 2021), which outperforms a range of state-of-the-art methods. These
include traditional approaches such as the Squared t-statistic Tree (t-stats) (Su et al., 2009) and
Causal Tree (CT) (Athey & Imbens, 2016); ensemble-based methods such as Causal Random Forest
(CRF) (Wager & Athey, 2018), Bayesian Additive Regression Trees (BART) (Hill, 2011), and the
X-Learner (Künzel et al., 2019) with Random Forest (Breiman et al., 1984) as the base learner (X-
RF); deep representation learning methods including Counterfactual Regression Net (CFR) (Shalit
et al., 2017), Similarity Preserved Individual Treatment Effect (SITE) (Yao et al., 2018), and the
variable decomposition method DR-CFR (Hassanpour & Greiner, 2020); as well as generative ap-
proaches such as the Causal Effect Variational Autoencoder (CEVAE) (Louizos et al., 2017) and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GANITE (Yoon et al., 2018). We evaluate model performance using two standard metrics: Pre-
cision in Estimation of Heterogeneous Effect (PEHE) and Average Treatment Effect (ATE) error
(Hill, 2011; Shalit et al., 2017; Louizos et al., 2017; Yao et al., 2018). In addition, we also report the
coverage rate of the estimated individual treatment effect intervals, a distinguishing feature of our
method that quantifies its ability to capture uncertainty in counterfactual predictions. Model training
follows a staged strategy: joint training of the encoder, decoder, and causal head for E = 200 epochs
using the Adam optimizer with a batch size of 128 and learning rate of 10−3. The implementation
of IntervalGP-VAE uses the following parameters: latent dimension is 1, hidden layer width is 64,
GP lengthscale ℓ = 0.4, GP variance σ2

f = 5.0, and GP noise variance = 10−4.

6.1 SYNTHETIC EXPERIMENTS

Table 2: Treatment mechanisms and proxy/outcome functions used in synthetic experiments.

Functions

Proxy Functions

{u, sin(u), u2}, {tanh(u), sin(2u), log(|u| + 10−3)}, {u2 + ua0, log(1 + |u|) + ua1,
u3 + 0.1 · ua0 · ua1}

{tanh(u) + ua0, arctan(u) + 0.1 · ua1, sin(u) + exp(−|ua0|) + u}
{ u

|ua0|+0.1
, sin(u)

1+u2 + 0.05ua1, log(1 + u2) + 0.2ua0}
{log(1 + eu) + 0.1ua0, u3 + 0.1ua1, σ(u) + 0.05ua0ua1}

Treatment Functions {Bernoulli(σ(1.5u + 0.8ua0))}, {Bernoulli(σ(0.5u + 1.2ua0))}
Outcome Functions {sin(u) + u2 + 0.3ua0 + 0.3 cos(ua1) + ε}, {sin(u) + t + 0.5ut + 0.5 cos(ua1) + ϵ}

We evaluate the methods on 24 synthetic settings combining proxy functions, binary treatment
mechanisms, and outcome functions, as detailed in Table 2. The proxy functions are constructed
to satisfy the identifiability conditions outlined in Theorem 1. Specifically, three proxy functions are
used—the minimal number required to identify a single latent confounder according to Theorem 1.
This experimental setup is designed to validate the effectiveness of the proposed IntervalGP-VAE
framework under theoretically justified conditions. For each setting, we generate 1,000 training sam-
ples and 50 testing samples. The noise in the outcome function is drawn from a normal distribution
with standard deviation σ = 0.1, and the latent confounder u is sampled from a standard normal dis-
tribution. The results are presented in Figure 3a. From Figure 3a, we can observe that, IntervalGP-
VAE achieves a lower average PEHE (orange dashed line) compared to TEDVAE (blue dashed line),
while attaining comparable ATE error. Notably, IntervalGP-VAE exhibits a high coverage rate ex-
ceeding 90% (91.9%), indicating that its predicted ITE intervals are well-calibrated with respect to
the 90% confidence level. These findings validate the theoretical claims of the paper: when the
proxy functions satisfy the identifiability conditions formalized in Theorem 1, the latent confounder
U becomes recoverable up to equivalence, and the model can accurately quantify uncertainty in the
inferred treatment effects. Figure 2 displays the Gaussian-process (GP) posterior intervals for the
ITE on one of the 24 synthetic replicates, computed by conditioning the GP on five randomly sam-
pled training points (highlighted in pink) to enforce smoothness. The figure indicates that the learnt
latent structure yields well-calibrated uncertainty quantification for individualized treatment effects.

Figure 2: GP posterior ITE intervals.

6.2 SEMI-SYNTHETIC EXPERIMENTS

Beyond the synthetic settings, we conduct a
100-replication study on the semi-synthetic
IHDP benchmark (Hill, 2011). In this setting,
the observed covariates Z are treated as proxies
for latent socio-demographic confounders U ,
providing a realistic yet evaluable testbed with
ground-truth counterfactuals. To reduce vari-
ance and ensure reproducibility, we use only the
continuous covariates specified by the IHDP in-
dex. We follow the standard evaluation protocol: train on the prescribed training split and assess
on the held-out test split across multiple realizations, reporting PEHE, ATE error, and the empirical
coverage of the 90% confidence intervals. The results are presented in Figure 3b. On the IHDP
benchmark, IntervalGP-VAE achieves comparable performance in terms of PEHE and ATE error,
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(a) Experimental results on the synthetic datasets. (b) Experimental results on the IHDP datasets.

Figure 3: Experimental results on synthetic (left) and IHDP (right) datasets.

relative to TEDVAE. However, the empirical coverage rates of the 90% confidence intervals are
lower than those observed on the synthetic datasets (52.8% vs 91.9%). This discrepancy can be
theoretically explained by the identifiability conditions outlined in Theorem 1. Specifically, the syn-
thetic datasets are constructed to satisfy the minimum sufficient conditions for identifying the latent
confounder via multiple proxy variables. In contrast, the proxy generation mechanism in the IHDP
dataset may fail to fulfil all these conditions, such as the use of at least three nonlinear, complemen-
tary proxy functions, thereby weakening the model’s ability to reliably infer the true latent structure.
Additionally, the GP prior in IntervalGP-VAE assumes that the latent variable is a smooth function
of observed proxies. If this assumption is violated, due to poor alignment between the selected co-
variates and the underlying confounder structure, both posterior inference and interval calibration
may degrade. Furthermore, the performance sensitivity to GP hyperparameters, such as the prior
variance σ2

f and lengthscale ℓ, becomes more pronounced in real-world settings where proxy infor-
mativeness is limited. This highlights the practical importance of model selection and proxy variable
design when applying theory-grounded causal inference frameworks such as IntervalGP-VAE to ob-
servational datasets. Therefore, relaxing and extending the identifiability conditions underpinning
IntervalGP-VAE becomes a critical direction for future work.

7 CONCLUSION

We presented IntervalGP-VAE, a generative framework for estimating individualized treatment ef-
fects (ITEs) under unobserved confounding. By disentangling latent confounders and measurement
noise from noisy proxies and imposing an interval-valued Gaussian process prior, the model provides
well-calibrated ITE intervals rather than only point estimates. Our identifiability analysis shows that,
under minimal structural conditions on the proxy generation mechanism, the latent confounder can
be recovered up to a smooth monotonic transformation and that ITE estimation remains invariant
to such transformations, as demonstrated on synthetic and semi-synthetic benchmarks. Future di-
rections include: first, integrating richer latent structures, including multivariate or hierarchical con-
founders, with deeper theoretical guarantees. Second, temporal or spatial extensions would enable
counterfactual reasoning in longitudinal health, education, or environmental studies. Third, robust-
ness to incomplete or partially informative proxies, via adaptive kernel learning or causal feature
selection, would enhance applicability to real-world observational data. Finally, exploring decision-
theoretic uses of ITE intervals, such as risk-sensitive treatment recommendation and fairness-aware
policy optimization, could enhance the societal impact of uncertainty-aware causal inference.

9
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sonally identifiable information, or sensitive attributes. All datasets used are either synthetic or the
publicly available IHDP benchmark, which is fully de-identified and commonly used in causal in-
ference research. No proprietary or restricted-access data were employed. The methods and results
do not promote harmful applications or discriminatory practices, and there are no known risks to
privacy, security, or safety. All theoretical claims are supported by complete proofs in the supple-
mentary materials, ensuring research integrity and transparency. We disclose no conflicts of interest
or sponsorship that could influence this research.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of the results presented in Fig. 3, the theoretical assumptions and identifi-
ability guarantees underpinning the model are stated in Sec. 4 and proven in Apps. B–F. All mod-
eling details—including the IntervalGP-VAE architecture and the complete training procedure—are
provided in Sec. 5. The synthetic data-generating mechanism settings are enumerated in Table 2.
Hyperparameters and experimental setups for both synthetic and semi-synthetic (IHDP) datasets are
described in Sec. 6. To facilitate exact replication, an anonymized implementation of IntervalGP-
VAE together with data-processing scripts and configuration files are submitted as supplementary
material.
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Appendix

A LLM USAGE DISCLOSURE

In this work, Large language models (LLMs) were used as an auxiliary tool to assist refine state-
ments and improve grammar, style, and readability of the written text. All conceptual development,
technical derivations, experiments, and final claims are the authors’ own work, and the authors take
full responsibility for the correctness and originality of the content.

B PROOF OF THEOREM 1

Theorem 1 (Identifiability of a Latent Variable from Noisy Proxy Variables)

Under the proxy structural equation defined in equation 2, assume the latent confounder
U generates k observed proxy variables Zi, where each gi : Rd → R is unknown, con-
tinuously differentiable, and injective, and the noise terms ϵi are mutually independent and
independent of U . Then:

• If k < 2d+ 1, then U is not identifiable from the marginal distribution p(Z), in general.
• If k ≥ 2d + 1, and the functions {gi}ki=1 are sufficiently smooth, nonlinear, and non-

redundant, then U is identifiable from p(Z), up to a smooth and invertible transformation.

Proof. Let p(Z | U) =
∏k

i=1 p(Zi | U), where each p(Zi | U) is induced by a transformation of
the noise ϵi through the mapping in equation 2. The joint distribution p(Z | U) defines a smooth
manifold over U ∈ Rd. The marginal distribution over Z ∈ Rk can be written as:

p(Z) =

∫
p(Z | U) p(U) dU. (14)

To apply identifiability results from tensor decomposition theory (e.g., Kruskal’s theorem via Allman
et al. (2009)), we temporarily discretize each observed proxy Zi into ni bins (e.g., via quantization
or histogram binning). This induces a discrete representation of the joint distribution p(Z | U),
which can be grouped into three disjoint subsets L1, L2, L3 ⊆ {1, . . . , k} with k1 + k2 + k3 = k.

Let r denote the number of discretized latent bins for U . Then for each group Lj , we construct the
conditional matrix:

Mj =

P (z
(Lj)
1 | u1) · · · P (z

(Lj)
nj | u1)

...
. . .

...
P (z

(Lj)
1 | ur) · · · P (z

(Lj)
nj | ur)

 ∈ Rr×nj , for j = 1, 2, 3. (15)

These matrices represent the discretized conditional distributions of grouped proxies given U . The
joint distribution over Z in discretized space induces a 3-way tensor T ∈ Rn1×n2×n3 with a CP
(PARAFAC) representation

T = [M1,M2,M3]CP =

r∑
ℓ=1

aℓ ⊗ bℓ ⊗ cℓ, (16)

where the factor matrices are M1,M2,M3. Let L1, L2, L3 be a partition of {Z1, . . . , Zk} (pairwise
disjoint and L1 ∪ L2 ∪ L3 = {Z1, . . . , Zk}). Under conditional independence of proxies given U
and sufficient variability (generic position) within each group, the Kruskal ranks satisfy

k(Mj) ≥ min{ |Lj |, r }, j = 1, 2, 3. (17)

Hence
k(M1) + k(M2) + k(M3) ≥ min{|L1|, r}+min{|L2|, r}+min{|L3|, r}

≥ min{ k, 2r + 2 }. (18)
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By Kruskal’s condition,
k(M1) + k(M2) + k(M3) ≥ 2r + 2, (19)

which is guaranteed, for example, when k ≥ 2r+2 and each |Lj | ≤ r (or, more generally, whenever
min{|L1|, r}+min{|L2|, r}+min{|L3|, r} ≥ 2r+2). Taking r ≥ d+1 (so that the discretization
retains at least d+ 1 latent states) yields the sufficient requirement

k ≥ 2r + 2 ≥ 2d+ 4. (20)

Kruskal’s theorem guarantees that the decomposition of T = [M1,M2,M3] is unique up to simul-
taneous row permutation and scaling. Thus, the prior p(U) and the conditional densities p(Z | U)
are identified (up to permutation). Then from Bayes’ theorem we have:

p(U | Z) =
p(Z | U) p(U)

p(Z)
, (21)

Thus, the posterior distribution p(U | Z) is identifiable.

Note that, the discretization is only used as a proof device; our result does not depend on the partic-
ular binning scheme or discretization level. As the bin widths shrink, the discrete model approaches
the continuous distribution. Therefore, identifiability in the discrete approximation implies identi-
fiability in the original continuous setting, by standard arguments of approximation and continuity
of probability densities. See a toy illustration of tensor construction from conditional matrices in
Appendix C.

C AN ILLUSTRATIVE EXAMPLE FOR THEOREM 1

Let us consider cases when d = 1 as below:

CASE 1: k = 1 — NOT IDENTIFIABLE

Consider the following proxy variable:

Z1 = g1(u) = tanh(u),

where the function g1 is smooth, strictly increasing, and injective on R. Now, consider a smooth,
strictly monotonic transformation h(u) = u+ 2, so that v = h(u) and u = h−1(v) = v − 2. Then,
define:

g̃1(v) := g1(h
−1(v)) = tanh(v − 2),

and observe that:
Z1 = g1(u) = g̃1(v).

This shows that the same observed value Z1 could have been produced from either u or v = h(u),
depending on how the function is defined. Although g1 is injective and we assume Z1 = tanh(u),
without knowing the exact form of g1, we cannot determine whether the underlying variable is u
or a reparameterized version v = h(u). Thus, even with an injective proxy function, u remains
unidentifiable up to a monotonic transformation. To further illustrate the argument that the latent
variable u is not identifiable from a single proxy variable—even when the proxy function is injec-
tive—we examine the following plot comparison. The solid blue curve shows the original proxy
function g1(u) = tanh(u), while the dashed orange curve shows the reparameterized function
g̃1(v) = tanh(v − 2), where v = u+ 2.

Although the input variables differ (u vs. v), the two curves are identical in shape—they are simply
horizontally shifted. Since we only observe the output Z1, and do not know the form of the function
or the latent input variable, we cannot determine whether the underlying cause was u or a trans-
formed version V = h(U). This visual comparison confirms that u is not identifiable from a single
proxy variable, even when the mapping g1 is injective.
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Figure 4: Illustration when k=1.

CASE 2: k = 2 — STILL NOT IDENTIFIABLE

Consider the following two proxy variables:

Z1 = g1(u) = sin(u), Z2 = g2(u) = cos(u),

and define the joint mapping:

G(u) = (g1(u), g2(u)) = (sin(u), cos(u)).

This mapping G(u) traces out the unit circle in R2 as u varies. However, due to the periodic nature
of the sine and cosine functions, we have:

G(u) = G(u+ 2π),

and more generally:
G(u) = G(u+ 2nπ) for any integer n.

This means that all values of u that differ by an integer multiple of 2π produce the same ob-
served proxy values. As a result, we cannot distinguish between u, u + 2π, u + 4π, etc., based
on (g1(u), g2(u)) alone. Therefore, the latent variable u is not identifiable from these two proxy
variables — multiple values of U map to the same point in the observed space. We illustrate the
mapping G(u) = (sin(u), cos(u), u) by plotting its 3D trajectory as u varies from 0 to 6π. In
this representation, the projection of the curve onto the (sin(u), cos(u))-plane traces the unit circle
repeatedly, while the vertical axis records the increasing values of u.

Figure 5: Illustration when k=2.

This visualization clearly demonstrates that G(u) is periodic in its first two components, repeating
every 2π. For example, the points u = 0, 2π, 4π, and 6π all map to the same location in the 2D
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plane:(sin(u), cos(u)) = (0, 1), but they are separated along the third (vertical) dimension, since:
G(0) = (0, 1), G(2π) = (0, 1), G(4π) = (0, 1), G(6π) = (0, 1).

This confirms that the latent variable u is not identifiable from the pair of proxy variables
(sin(u), cos(u)), since infinitely many values of u result in the same 2D observation.

CASE 3: k = 3 — IDENTIFIABLE UP TO MONOTONIC TRANSFORMATION

Consider the following three proxy variables:

Z1 = g1(u) = u, Z2 = g2(u) = u2, Z3 = g3(u) = u3, G(u) = (u, u2, u3).

Then, G is injective and smooth. G′(u) = (1, 2u, 3u2) ̸= 0 for all u ̸= 0. To illustrate injectivity,
consider the following examples:

• u = 1 ⇒ G(1) = (1, 1, 1)

• u = −1 ⇒ G(−1) = (−1, 1,−1)

Distinct u values yield distinct G(u), so u is identifiable up to a strictly monotonic transformation.

CASE 4: k > 3 — IDENTIFIABILITY STILL HOLDS

Consider the following four proxy variables:

Z1 = g1(u) = u, Z2 = g2(u) = u2, Z3 = g3(u) = u3, Z4 = g4(u) = sin(u).

Then, G(u) = (u, u2, u3, sin(u)) is injective and smooth. To illustrate injectivity, consider the
following examples:

• u = 1 ⇒ G(1) = (1, 1, 1, sin(1))

• u = 2 ⇒ G(2) = (2, 4, 8, sin(2)),

each u yields a unique G(u), so u is identifiable up to a smooth, strictly monotonic transformation.

D A TOY EXAMPLE ILLUSTRATING TENSOR CONSTRUCTION FROM
CONDITIONAL MATRICES

In this example, each matrix Mj ∈ Rr×6 represents two proxy variables with 3 discrete values each
in 6 columns. Specifically:

M1 =

[
0.7 0.2 0.1 0.3 0.5 0.2
0.4 0.4 0.2 0.6 0.3 0.1
0.2 0.3 0.5 0.1 0.3 0.6

]
,

M2 =

[
0.5 0.3 0.2 0.6 0.3 0.1
0.6 0.3 0.1 0.4 0.4 0.2
0.2 0.5 0.3 0.3 0.3 0.4

]
,

M3 =

[
0.6 0.2 0.2 0.4 0.3 0.3
0.3 0.4 0.3 0.3 0.3 0.4
0.5 0.3 0.2 0.2 0.3 0.5

]

Each entry represents a conditional probability P (Zk = z | U = u) for the appropriate proxy Zk

value z, and latent state u. For example, the six entries in the first row of M1 correspond to:

• P (Z1 = 0 | U = 0)

• P (Z1 = 1 | U = 0)

• P (Z1 = 2 | U = 0)

• P (Z2 = 0 | U = 0)
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• P (Z2 = 1 | U = 0)

• P (Z2 = 2 | U = 0)

Subsequent rows of M1, as well as all entries in M2 and M3, follow the same pattern for U = 1 and
U = 2, and for proxy variables Z3, Z4, Z5, and Z6. We then construct a tensor T [i, j, k] ∈ R6×6×6

as:

T [i, j, k] =

3∑
r=1

πr ·M1[r, i] ·M2[r, j] ·M3[r, k], (22)

where πr = P (U = r − 1) = 1
3 is the uniform prior over latent states U ∈ {0, 1, 2}. Each index

i, j, k ∈ {0, . . . , 8} corresponds to two proxy values using:

(za, zb) =

(⌊
index
3

⌋
, index mod 3

)
. (23)

For instance, if i = 1, j = 2, k = 3, then:

(z1, z2) = (0, 1), (z3, z4) = (0, 2), (z5, z6) = (1, 0).

From the matrices above, we have:

Component u = 0 u = 1 u = 2
P (Z1 = 0 | u) 0.7 0.4 0.2
P (Z2 = 1 | u) 0.5 0.3 0.3
P (Z3 = 0 | u) 0.5 0.6 0.2
P (Z4 = 2 | u) 0.1 0.2 0.4
P (Z5 = 1 | u) 0.2 0.4 0.3
P (Z6 = 0 | u) 0.4 0.3 0.2

We can compute:

T [1, 2, 3] =

2∑
u=0

P (U = u) · P (Z1 = 0 | u) · P (Z2 = 1 | u)

· P (Z3 = 0 | u) · P (Z4 = 2 | u) · P (Z5 = 1 | u) · P (Z6 = 0 | u).

E PROOF OF THEOREM 2

Theorem 2 (Invariance of the ITE under Transformations of the Latent Space)

Let h : R → R be a smooth, strictly monotonic, and invertible function. The individ-
ual treatment effect (ITE) is invariant under any smooth, strictly monotonic, and invertible
transformation of the latent confounder. That is, if Û = h(U), then ITE(Ûi) = ITE(Ui).

Proof. Let Ûi = h(Ui), where h is a smooth, strictly monotonic, and invertible transformation.
Since h is invertible, we have Ui = h−1(Ûi). From the structural equation defined in equation 1,
the counterfactual outcome depends on T and U , and not on the specific representation of U . Thus,
for any treatment t ∈ {0, 1}, we have:

E[Yi | do(T = t), Ûi] = E[Yi | do(T = t), h−1(Ûi)] = E[Yi | do(T = t), Ui]. (24)

Therefore, we can conclude:

ITE(Ûi) = E[Yi | do(T = 1), Ûi]− E[Yi | do(T = 0), Ûi]

= E[Yi | do(T = 1), Ui]− E[Yi | do(T = 0), Ui] = ITE(Ui).
(25)
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F PROOF OF PROPOSITION 1

Proposition 1 (Benefits of GP Priors for Latent Confounder Regularization in Causal Mod-
els with Unobserved Confounding)

Let U = (u1, . . . , un)
⊤ denote the latent confounder values corresponding to n observed

samples. Suppose each sample is associated with observed data Zi, where Zi ∈ R represents
noisy proxies of U , via the proxy structural equation denoted by equation 2. Let the latent
confounders be endowed with a GP prior:

U ∼ GP(0,K(Zi, Zj)),

where K is a positive-definite kernel function applied to two observed variables Zi, Zj .
Then:
1. The GP prior does not violate identifiability of the causal effect (e.g., ITE).

2. For any smooth and invertible transformation h : R → R, defining Ũ = h(U), the GP
prior still encodes the same relative geometry via an induced kernel.

Proof. From Theorem 2, the ITE remains invariant under any smooth, strictly monotonic, and in-
vertible transformation h of the latent confounder U , i.e., ITE(h(U)) = ITE(U). The GP prior
over U ∼ GP(0, k(Zi, Zj)) encourages smoothness by enforcing that similar inputs Zi ≈ Zj

induce similar latent values ui ≈ uj , and regularizes only the relative geometry of the latent
space, without constraining its absolute coordinate values. Hence the GP prior does not conflict
with identifiability and preserves valid estimation of causal effects. For any monotonic bijection
h, we may write ũi = h(ui). Under this transformation, the learned decoder g or treatment/out-
come functions f can be reparameterized accordingly (e.g., g̃ = g ◦ h−1). The GP kernel ma-
trix K̃ij = k(h−1(Zi), h−1(Zj)) induces a valid alternative prior with identical relative geometry.
Therefore, the learned model remains observationally and causally equivalent.
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