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ABSTRACT

Supervised machine learning techniques are increasingly being adopted to speed
up electronic structure predictions, serving as alternatives to first-principles meth-
ods like Density Functional Theory (DFT). Although current DFT datasets mainly
emphasize chemical properties and atomic forces, the precise prediction of elec-
tronic charge density is essential for accurately determining a system’s total en-
ergy and ground state properties. In this study, we introduce a novel electronic
charge density dataset named ECD, which encompasses 140,646 stable crys-
tal geometries with medium-precision PerdewBurkeErnzerhof (PBE) functional
data. Within this dataset, a subset of 7,147 geometries includes high-precision
electronic charge density data calculated using the HeydScuseriaErnzerhof (HSE)
functional in DFT. By designing various benchmark tasks for crystalline materi-
als and emphasizing training with large-scale PBE data while fine-tuning with a
smaller subset of high-precision HSE data, we demonstrate the efficacy of cur-
rent machine learning models in predicting electronic charge densities. The ECD
dataset and baseline models are open-sourced to support community efforts in de-
veloping new methodologies and accelerating materials design and applications.

1 INTRODUCTION

The electronic charge density (ECD) is a fundamental yet informative observable in materials
physics. Density functional theory (DFT) demonstrates that the properties of materials in their
ground state can be completely and uniquely determined by the ECD Lewis et al. (2021); Fabrizio
et al. (2019). This theory has been widely applied across various physical systems, from individual
molecules to crystalline solids, significantly advancing our understanding and control of the natural
world. For example, bonding characteristics between neighboring atoms (covalent, ionic, metal-
lic bonds) can be fully described through the ECD. Leveraging this property, novel materials with
specific structures and target properties can be artificially designed Macchi (2013). Additionally,
according to modern band structure theory, a wide range of electronic, magnetic, and optical prop-
erties, as well as their couplings-such as electrostatic moments, potentials and interaction energies,
spin susceptibility, light absorption, and electromagnetic responses-can be directly derived from the
ECD Kolb et al. (2017); Tan et al. (2021). Due to these advantages, obtaining the ECD has broad
applications.

Obtaining ECD from experimental techniques, such as high-resolution electron diffrac-
tion Schmøkel et al. (2014); Chopra (2012), is time-consuming and complex. Theoretically, cal-
culating ECD through DFT calculations is more convenient. However, this approach is computa-
tionally intensive due to its complexity of O(n3T), where n is the number of electrons and T is the
number of iterations in the structural optimization process Kohn & Sham (1965). Recently, ma-
chine learning methods have shown great potential in accelerating DFT computations. For example,
various invariant geometric deep learning methods have been developed for representation learn-
ing of material and molecular structures, providing data-driven approximations to DFT calculations
for faster predictions of physical and chemical properties Choudhary & DeCost (2021); Yan et al.
(2022); Chen et al. (2022). Additionally, extensive DFT datasets have been generated for training
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Figure 1: The objectives and scope of the proposed ECD dataset and benchmark.

machine learning models Jain et al. (2013); Choudhary et al. (2018); Kirklin et al. (2015). Notably,
predicting ECD differs significantly from general physical and chemical property predictions, as the
representation of charge density can be uniquely determined by three vectors and a scalar matrix in
real or reciprocal space. In data-driven ECD prediction tasks, maintaining the equivariance of the
quantum tensor network architecture is crucial for ensuring that the network can make physically
meaningful predictions. Specifically, this equivariance can be represented by the rotational Wigner
D-matrix, which may include higher-order rotations beyond three-dimensional space. Therefore, to
conduct systematic and in-depth research on these tasks, it is necessary to generate large-scale ECD
datasets.

To provide a realistic dataset and enable thorough evaluation, we meticulously constructed a charge
density dataset named ECD. This dataset encompasses 140,646 stable crystal geometries calculated
using the medium-precision Perdew-Burke-Ernzerhof (PBE) functional. Additionally, we carefully
selected a subset of 7,147 geometries for high-precision electronic charge density calculations using
the Heyd-Scuseria-Ernzerhof (HSE) functional. The construction of this large-scale dataset was a
significant challenge due to the extensive computational resources required and the careful planning
involved. To the best of our knowledge, this dataset represents the largest publicly available col-
lection of DFT calculations that includes both PBE and HSE functionals. The creation of the ECD
dataset demanded approximately 130 million CPU core hours on cutting-edge supercomputers. No-
tably, the HSE functional calculations alone consumed around 25 million core hours, accounting
for 19.2% of the total computational resources. This substantial investment of computational time
underscores the complexity and resource-intensive nature of generating high-precision charge den-
sity data at this scale. To conduct comprehensive studies on quantum tensor networks, we have
designed three types of experiments: 1. Developing and evaluating methodologies for training mod-
els capable of accurate charge density prediction, specifically by training on large-scale PBE data
and fine-tuning with a smaller subset of high-precision HSE data; 2. Investigating the impact of
charge density prediction accuracy on related applications; 3. Assessing model performance on
out-of-distribution (OOD) data to evaluate their suitability for real-world applications. To demon-
strate the quality of the predicted charge density, we employ two metrics: MAE on charge density to
evaluate the accuracy of the model’s predictions, and acceleration ratio in DFT calculation to assess
whether the predicted charge density can effectively speed up DFT computations. We present the
ECD dataset, along with the benchmark objectives and scope, in Fig. 1.

2 BACKGROUND AND RELATED WORKS

2.1 DENSITY FUNCTIONAL THEORY

DFT functional. DFT functionals are mathematical expressions that describe the exchange-
correlation energy, which is a crucial component in the total energy calculation. These functionals
vary in complexity and computational cost, typically following a Jacob’s Ladder hierarchy Tran et al.
(2016). As one ascends this ladder, functionals incorporate more physical effects and offer higher
accuracy but at the expense of increased computational effort as shown in Figure 2. In this study,
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we focus on the PBE Perdew et al. (1998) and HSE functionals Heyd & Scuseria (2004). The PBE
functional strikes a balance between accuracy and computational efficiency, making it highly cost-
effective and widely used for constructing large-scale DFT computation databases. On the other
hand, the HSE functional, although computationally intensive, offers higher accuracy in electronic
structure information.

Specially, the PBE functional is a widely used exchange-correlation functional within the DFT
framework. It belongs to the Generalized Gradient Approximation (GGA) Perdew et al. (1996)
class of functionals, which improve upon the Local Density Approximation (LDA) Jackson & Ped-
erson (1990) by including the gradient of the electron density. The PBE functional is designed to
balance accuracy and computational efficiency for various systems.

The exchange-correlation energy Exc in the PBE functional is given by:

EPBE
xc =

∫ (
εPBE
x (n(r),∇n(r)) + εPBE

c (n(r),∇n(r))
)
n(r) dr (1)

where n(r) is the electron density at position r, εPBE
x is the exchange energy density, and εPBE

c is the
correlation energy density.

Figure 2: Jacob’s ladder of density functional approxima-
tions.

The HSE functional is a hybrid func-
tional that incorporates a portion of
exact exchange from Hartree-Fock
theory Jiménez-Hoyos et al. (2012)
with the PBE exchange-correlation
functional. This combination en-
hances the accuracy for electronic
structure calculations, especially for
systems with localized d and f elec-
trons.

The HSE functional modifies the
PBE functional by including a
screened Coulomb potential, which
limits the range of the Hartree-Fock
exchange interaction, thus improving
computational efficiency. The HSE
exchange-correlation energy is given
by:

EHSE
xc = αEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (2)

where EHF,SR
x (ω) represents the short-range Hartree-Fock exchange energy, EPBE,SR

x (ω) and
EPBE,LR
x (ω) denote the short-range and long-range PBE exchange energies, respectively, and EPBE

c
is the PBE correlation energy. The parameter α is the mixing parameter (typically around 0.25), and
ω is the screening parameter.

The combination of these terms allows the HSE functional to achieve a better balance between
accuracy and computational cost, making it suitable for a wide range of materials and electronic
properties.

Electronic Charge Density. In DFT, the ECD ρ(r) and the wave function Ψ(r1, r2, . . . , rN ) are
related by:

ρ(r) = N

∫
d3r2 · · ·

∫
d3rN |Ψ(r, r2, . . . , rN )|2 (3)

The total number of electrons N within a unit cell equals the integral of ρ(r) over the entire volume
Vun:

N =

∫
Vun

ρ(r) dV (4)
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After discretization, this relationship is expressed as:

N =

NGXF ·NGY F ·NGZF∑
i=1

ρ(ri) ·
Vun

NGXF ·NGY F ·NGZF
(5)

where NG(X,Y, Z)F are the fine Fast Fourier Transform (FFT) grids in reciprocal space along the
x, y, and z directions. The discrete values ρ(ri) at each fine FFT grid point are recorded in the charge
density file, which contains all the necessary information about ρ(r).

In non-spin-polarized calculations for non-magnetic materials, the ECD includes the total electronic
charge density ρ(r) = ρspin-up(r)+ρspin-down(r). For spin-polarized calculations of magnetic materi-
als, an additional spin electronic charge density ρspin(r) = ρspin-up(r)−ρspin-down(r) is also provided.

2.2 HIGHER-ORDER EQUIVARIANT MATRICES

Given a crystal material structure M = (A,X,L) where A represents atomic species, X denotes
atomic positions, and L is the unit cell, we aim to predict the electronic charge density ρ(~r) :
R3 → R at any point X . Similar to other tensor properties such as Hamiltonian and forces, the
charge density preserves the SE(3) equivariance of the atomic system. This means that rotations
and translations of the atomic system in Euclidean space result in equivalent transformations of the
charge density. Representing graph structures using only invariant scalar features (e.g., interatomic
distances) can achieve SE(3) invariance, but lacks angular information, thus limiting the model’s
accuracy. Moreover, incorporating vector R3 features to integrate angular information has been
shown to enhance the performance of charge density predictions Jørgensen & Bhowmik (2022).

Translation invariance is maintained by utilizing relative atomic coordinates, while rotation equiv-
ariance is ensured by confining features to the irreducible representations (irreps) of SO(3), which
are manipulated by equivariant functions. These features are denoted as V (`,p)

cm , a collection of ten-
sors indexed by rotation order ` ∈ {0, 1, 2, . . .} and parity p ∈ {−1, 1}. Each tensor has a channel
index c ∈ [0, Nchannels) and an index m ∈ [−`, `]. Consequently, the representation for specific `
and p dimensions is of size RNchannels×(2`+1). These representations are combined using the equiv-
ariant tensor product ⊗ with Clebsch-Gordan coefficients C as detailed in Thomas et al. (2018) and
implemented in e3nn Geiger & Smidt (2022):

(
U(`1,p1) ⊗ V(`2,p2)

)(`o,po)
cmo

=

`1∑
m1=−`1

`2∑
m2=−`2

C
(`1,m1)(`2,m2)
(`o,mo)

U (`1,p1)
cm1

V (`2,p2)
cm2

(6)

where `o and po are defined by |`1 − `2| ≤ `o ≤ |`1 + `2| and po = p1p2. We retain only those
representations with `o ≤ L, where L is the maximum allowed rotation order.

2.3 DATASETS FOR CRYSTALLINE INORGANIC MATERIALS

Materials databases such as JARVIS Choudhary et al. (2018), OQMD Kirklin et al. (2015), NO-
MAD Draxl & Scheffler (2019), Materials Project (MP) Jain et al. (2013), and AFLOW Curtarolo
et al. (2012) primarily provide data on properties such as energy, electronic structure, mechanical,
and magnetic properties. However, only NOMAD and MP provide the option to download charge
density files. The charge density files in NOMAD are generated during structure optimization cal-
culations, not from the self-consistent process, and the parameters used for these calculations are
missing, making reliable subsequent processing from these data challenging. MP provides approxi-
mately 12,000 electronic structure datasets, accessible via the officially released API. However, the
charge density in MP is calculated using the PBE functional, which has limitations for electronic
structure calculations Saßnick & Cocchi (2021), especially when dealing with strongly correlated
materials. Additionally, there are smaller databases focused on charge density data, such as the
ECD-cubic database Wang et al. (2022) with 17,418 entries, but it is limited to cubic inorganic
materials, restricting its applicability. MaterialGo Jie et al. (2019) is the only reported database con-
taining electronic structure data from approximately 10,000 HSE functional calculations. However,
its query and download services are currently unavailable. Additionally, since this database uses
the PWmat software package Jia et al. (2013), combining its data with existing PBE data calculated
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using other software might introduce biases due to differences in the software and computational
parameters. In this study, we constructed a dataset of nearly 140,000 entries with PBE precision
and a subset of approximately 7,000 entries with HSE precision by utilizing supercomputing power.
Apart from the specific calculation parameters of these two functionals, all other aspects, such as
the software and computational environment, remain consistent. By leveraging this mixed-precision
dataset, we aim to develop an electronic charge density prediction model with improved accuracy.

2.4 DATASETS

Dataset Generation. All materials structures are obtained from the Matgen database Chen et al.
(2022). We perform DFT computations using the Vienna Ab initio Simulation Package (VASP) ver-
sion 5.4.4 Kresse & Furthmüller (1996); Hafner (2008). All systems are fully relaxed with respect to
volume and atomic coordinates using the GGA Perdew et al. (1996) of PBE, with pseudopotentials
from the projector augmented wave (PAW) method Kresse & Joubert (1999) at zero temperature and
pressure. A unified plane wave cutoff of 520 eV is used for all structures to ensure consistency and
compatibility. This cutoff energy also satisfies the condition of being 1.25 times the maximum en-
ergy cutoff of the element plane wave basis sets in the pseudopotentials used. Due to the limitations
of pure GGA in accurately describing electronic interactions in strongly correlated materials con-
taining transition metals or rare earth elements with 3d/4f orbitals, we employ the GGA+U method,
with all U values are same as Chen et al. (2022). Brillouin-zone integrations are performed using
the Γ-centered Monkhorst-Pack scheme. We begin with a k-point mesh with a dense sampling mesh
of 2π × 0.02−1. For a small number of structures that are difficult to converge, we use a medium-
dense sampling mesh of 2π × 0.04−1. The blocked Davidson iteration scheme is used to solve the
Kohn-Sham (KS) equations, with convergence criteria set to 0.1 meV for energy and 0.001 eV/ for
force.

For the DFT calculations with the HSE functional (HSE06), hybrid functional calculations are en-
abled, with the exact exchange mixing parameter set to 0.25 and the screening parameter set to
0.2. Additionally, the time step for the calculation is specified with 0.4. These settings ensure that
the HSE functional provides more accurate electronic structure information with appropriate adjust-
ments for exact exchange and screening. Considering that calculations using the HSE functional
are over ten times slower than those using the PBE functional, we selected a subset of 7,147 struc-
tures from an initial pool of 140,646 for computation. The selection criteria is as follows: structures
with fewer than 20 atoms, a diverse range of element types encompassing all elements, inclusion of
unary, binary, and ternary compositions, and representation across various crystal systems. Through
this selection strategy, the HSE functional data domain is ensured to closely approximate the PBE
functional data space. More statistical information is presented in the Appendix A.

We utilized approximately 1,000 computing nodes (64 cores per node) on the supercomputer for
large-scale high-throughput computations. In total, approximately 130 million CPU core hours
were utilized, with the HSE functional alone consuming around 25 million core hours, consti-
tuting 19.2% of the overall computational resources. The DFT calculation workflow is avail-
able at: https://anonymous.4open.science/r/DFTflow-635A. Our benchmark is publicly available at:
https://anonymous.4open.science/r/ECDBench-037F.

Dataset Statistics. The statistical data, including the element distribution and structure size his-
togram for ECD, is presented in Figure 2. These material structures include 94 different elements,
covering nearly all commonly found elements in the periodic table. Existing datasets like MP and
OQMD did not feature the elements Cm, Rn, Ra, Po, and Am. In terms of material size (number
of atoms per crystal cell), about half of the structures in ECD have 20 or fewer atoms, and the
dataset includes approximately 9,000 large structures with over 80 atoms per unit cell. Specifically,
we selected 7,147 structures for HSE functional DFT calculations. The selection strategy aimed to
maximize the resemblance of elemental distribution to the 140,646 dataset. To further reduce com-
putational time, we focused on unary, binary, and ternary materials with fewer than 20 atoms per
unit cell. More detailed information is provided in Appendix B.

2.5 TASKS

To thoroughly evaluate the performance of charge density predictions, we define the following tasks
utilizing PBE functional and HSE functional precision from the ECD dataset, and the MP PBE
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Figure 3: The dataset statics for ECD dataset with 140, 646 entries, including element distribution
and structure size histogram.

precision pretrained model Koker et al. (2024). The statistics of our defined tasks is presented in
Table 1.

Table 1: The statistics of our defined four tasks.
Task Total entries Traning/validation/testing entries
ECD-PBE-id 140,646 138,134/512/2000
ECD-MP-id 2000 -/-/2000
ECD-HSE-id 5,647 4147/500/1000
ECD-PBE HSE-id 1000 -/-/1000
ECD-PBE HSE tuning-id 7147 5647/500/1000
EXP-id 41 -/-/41
OOD-id 2000 -/-/2000

ECD-PBE-id. We partition the PBE data in the ECD dataset following the method Koker et al.
(2024): 138,134 for training, 512 for validation, and 2000 for testing. This forms the primary
evaluation task for predicting charge density matrices.

ECD-MP-id. In this task, we use the model from ECD-PBE-id task to predict the test data of the
ChargE3Net model in the MP dataset for direct comparison with existing models Koker et al. (2024).
We perform a similarity analysis between the test data in the MP dataset and the training data in the
ECD dataset, ensuring no identical data points are present in the training set. This task is designed
to enable a fair comparison with existing charge density models.

ECD-HSE-id. In this task, the dataset comprises 7,147 HSE-calculated data points, which are
partitioned into 5,647 for training, 500 for validation, and 1,000 for testing. This task is designed to
train a model solely on HSE data, serving as a baseline for comparison with a model pretrained on
PBE data.

ECD-PBE HSE-id. We divide the HSE dataset into training, validation, and test sets with 5647,
500 and 1000. We then used the model from the ECD-PBE-id task to predict the HSE test data to
determine the gap between PBE functional and HSE functional. This task aims to assess whether a
model trained on PBE data can accurately predict HSE data directly.

ECD-PBE HSE tuning-id. We fine-tune the model from the ECD-PBE-id task on the HSE dataset.
The trained model is then tested on HSE test set (as in ECD-PBE HSE-id). By comparing the results
with those of ECD-PBE HSE-id, we determine whether the fine-tuned model achieved improved
accuracy.

EXP-id. Building upon the work of Chen et al. (2022), we have compiled a dataset consisting of
47 entries that encompass material properties from wet-lab experiments, alongside various machine
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learning predictions, as well as PBE and HSE computational data. This dataset is intended to assess
the potential of electronic charge density prediction models for real-world applications.

OOD-id. To further evaluate the model’s generalization capability in real-world applications, we
selected 2,000 material structures from the GNoME dataset and conducted DFT calculations to
obtain their electronic charge densities. The structures in the GNoME dataset exhibit novelty and
possess a distribution distinct from our existing database, making them suitable for assessing the
model’s out-of-distribution (OOD) performance.

2.6 METHODS

Machine learning models have been developed to address the challenges of predicting charge den-
sity, relying on custom-fitted basis functions. Early approaches utilized symmetry-adapted Gaussian
process regression to predict coefficients for atom-centered basis functions, expressing the structural
similarity and geometric relationships between target and training atomic environments through ker-
nel functions Fabrizio et al. (2019); Grisafi et al. (2018). Recent work has employed invariant and
equivariant neural networks to predict these coefficients from atomic features, using characteristics
computed from density-functional tight-binding calculations as inputs Qiao et al. (2022). High-
order equivariant neural networks have been used to predict coefficients of small molecules found
in self-consistent DFT calculations and directly from atomic features Rackers et al. (2023). Despite
achieving high accuracy in specific cases, these methods are limited by the expressivity of the den-
sity fitting basis sets. These atom-centered basis sets, typically defined per species, are numerically
more challenging to converge for solid-state systems than plane-wave basis sets, restricting their
applicability to molecular systems in vacuum.

As an alternative, several methods have been proposed to learn electron density directly from a dis-
cretized grid of density points. Charge density predictions on grids are agnostic to the basis set used
for ground-truth quantum chemistry calculations and serve as a natural input format for plane-wave
DFT codes. By inserting each grid or ”probe” point into the atomic graph, charge density prediction
can be modeled as a node regression task Cho et al. (2021); Sunshine et al. (2023). However, these
models mainly focus on small and specialized atomic systems. Invariant graph convolutional net-
works have been trained on small datasets of crystalline polymers, demonstrating transferability to
unseen structures. Invariant graph convolutional networks Schütt et al. (2018); Choudhary & DeCost
(2021), have shown fast and accurate charge density prediction in small molecules, lithium-ion bat-
tery cathode materials, and electrolytes. Improvements in accuracy have been demonstrated using
equivariant graph convolutional networks like PaiNN Schütt et al. (2021), which leverage R3 vector
representations and rotationally equivariant operations. While these models perform well on small,
specialized datasets, their expressive power on larger, diverse datasets like the MP dataset is not yet
fully understood. ChargE3Net Koker et al. (2024) constructs rotationally equivariant networks using
vector representations and improves model accuracy by incorporating higher-order equivariant fea-
tures, showing diverse performance on the MP dataset. Therefore, the equivariant quantum tensor
network ChargE3Net is selected as the primary benchmark for the ECD dataset.

2.7 METRICS

To assess the quality of the predicted charge density, we utilize several metrics that evaluate both
approximation precision and computational performance.

MAE on ρ(r). We evaluate our models’ performance using the mean absolute error (MAE) normal-
ized by the total number of electrons within the atomic system’s volume εmae Koker et al. (2024),
calculated via numerical integration on the charge density grid points G:

εmae =

∑
~gk∈G |ρ(~gk)− ρ̂(~gk)|∑

~gk∈G |ρ(~gk)|
(7)

Unless otherwise stated, the probe points G refer to the complete set of discretized unit cell grid
points for which DFT-computed charge density values are available.

Acceleration Ratios. we use achieved ratio and error-level ratio to assess the effectiveness of the
predicted charge density ρ(r) in expediting DFT calculations. The achieved ratio measures the num-
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ber of optimization steps required when initializing with the predicted charge density compared to
traditional initial guess methods. A well-predicted charge density enables the Self-Consistent Field
(SCF) algorithm to converge more quickly, significantly reducing the number of optimization steps.
Conversely, the optimal ratio evaluates the number of single optimization step for each material
relative to the total number of steps, serving as a benchmark for ideal performance.

3 EXPERIMENTS

3.1 SETUP

To assess the performance of deep learning approaches on the proposed dataset, we carry out ex-
periments on the four designed tasks as described in Section 2.5. Specifically, we evaluate the
performance of ChargE3Net, a network specifically designed for efficient and accurate prediction
of electronic charge density. ChargE3Net is known for its effectiveness and efficiency in handling
the task at hand, making it a suitable testing method for our benchmark evaluation. For quantitative
evaluation, we use the metrics introduced in Section 2.7. We train the models using an Nvidia A800
GPU and an Intel Xeon Gold 6348 CPU.

Following the model setup in ChargE3Net, we employ four node-wise interaction layers to aggre-
gate messages from neighboring nodes and update the node irreducible representations in all imple-
mented models. We train all models with a total training step of 1,000,000 using a batch size of 16
with 200 charge density probe points per batch. For each gradient step, a random batch of materials
is selected, from which a random subset of the charge density probe points is used. To expedite the
convergence of model training, we implement a learning rate scheduler. The scheduler starts with a
learning rate of 0.005, which is decayed by 0.96s/β at step s, where β is set to 3 103. We use L1
error as the loss function for optimization. The Adam optimizer Kingma & Ba (2014) is used for
training the models. During the model tuning phase, we fine-tune our model on the ECD-PBE-id
task, allowing all parameters to be adjusted during training.

3.2 RESULTS AND DISCUSSION.

Overall performance on ECD dataset. Initially, we assess the model’s comprehensive perfor-
mance across the designated tasks by examining the accuracy of the predicted charge density matri-
ces on the test set. As illustrated in Table 2, the ChargE3Net models employed exhibit a satisfactorily
low MAE in predicting the charge density matrices for all specified tasks. We observe the following:
1. ChargE3Net demonstrates strong performance on the MP dataset and shows further improvement
on our ECD dataset, indicating that an increase in data scale contributes to superior performance; 2.
Electronic charge density is an equivariant property, which explains why equivariant models achieve
optimal performance across both the MP and ECD datasets; 3. Training on electronic charge density
data from the PBE functional, followed by fine-tuning with HSE functional data, helps mitigate the
limitations of each dataset in terms of accuracy and data scale.

Table 2: The overall performance on the testing set on the defined tasks.

Dataset Model MAE (eV)
MP-PBE invDeepDFT 1.293±0.03 Jørgensen & Bhowmik (2022)
MP-PBE DeepDFT 1.212±0.02 Jørgensen & Bhowmik (2022)
MP-PBE ChargeE3Net 0.523±0.01 Koker et al. (2024)
ECD-PBE MP-id ChargeE3Net 0.520±0.01
ECD-PBE-id ChargeE3Net 0.685±0.03
ECD-PBE-id invChargeE3Net 0.732±0.02

ECD-HSE-id ChargeE3Net 1.534±0.07
ECD-PBE HSE-id ChargeE3Net 2.156±0.08
ECD-PBE HSE tuning-id ChargeE3Net 1.085±0.03

We evaluate the efficacy of the predicted charge density by examining its impact on accelerating DFT
calculations. As outlined in Section 2.7, we compare the number of optimization steps required
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when starting with the predicted charge density to those needed with conventional initial guess
methods Lehtola (2019). Using VASP for DFT calculations, we determine the average optimization
step ratio for 19 randomly selected materials in each dataset. Table 3 presents the ratio metrics,
showing the number of optimization steps needed when initialized with the model prediction relative
to traditional DFT initialization. The results indicate that starting from the predicted charge density
matrices provided by ChargE3Net reduces the number of optimization steps required to reach the
converged charge density, suggesting that the predicted charge density is close to the convergence
condition. These findings illustrate the potential of machine learning methods in expediting DFT
calculations.

Table 3: The performance of DFT calculation acceleration. Both models, trained on the ECD-PBE-
id split and the ECD-PBE HSE tuning-id split respectively, are evaluated on 19 randomly selected
materials from the intersection of their test sets.

Training Dataset Metric Ratio
ECD-PBE-id Optimal ratio 0.061±0.016

Achieved ratio ↓ 0.757±0.073

ECD-PBE HSE tuning-id Optimal ratio 0.071±0.033
Achieved ratio ↓ 0.681±0.113

We have conducted additional experiments as suggested to evaluate the sufficiency of the HSE
dataset and its impact on model performance. The results are summarized in table 4. As the data
indicates, increasing the proportion of high-quality HSE data consistently improves the model’s
predictive accuracy and accelerates the computation. This trend suggests that further increasing the
amount of HSE data could continue to enhance both accuracy and acceleration.

Table 4: Impact of HSE data ratio on MAE and acceleration rate.
HSE Data Ratio (%) MAE (eV) Acceleration Rate

0 2.156 ± 0.08 0.757 ± 0.073
25 2.057 ± 0.07 0.743 ± 0.081
50 1.524 ± 0.10 0.714 ± 0.082
75 1.203 ± 0.06 0.692 ± 0.098

100 1.085 ± 0.03 0.681 ± 0.113

Evaluation on wet-experimental data. To further demonstrate the potential of predicting elec-
tronic charge densities in real-world material applications, we conducted additional experiments uti-
lizing 41 experimentally measured values to emphasize the importance of accurate ECD predictions.
Specifically, we focused on the band gap, a critical property for applications such as semiconductors,
solar cells, and lighting technologies. Additionally, we compared our results with other methods for
determining band gaps, including machine learning approaches and DFT calculations using both
the PBE and HSE functionals. The results, summarized in Table 5, highlight the value of using
high-precision HSE data for improved band gap predictions, as supported by Chen et al. (2022).
We can observe that the ECD-PBE HSE model demonstrates a significant improvement in accu-
racy compared to direct GNN predictions, and it also outperforms CrystalNet-TL, a model utilizing
transfer learning with HSE functional data. However, this increased accuracy comes at the cost of
approximately 10 times more computational time. Despite this, the charge density prediction ap-
proach offers substantial benefits over direct DFT calculations, as HSE functional calculations take
approximately 10 times longer than PBE functional calculations. Therefore, using electronic charge
density predictions strikes an advantageous balance between accuracy and computational efficiency,
proving highly valuable for band gap prediction in materials science.

ECD prediction models are particularly adept at capturing material properties such as energy, forces,
and band gaps in a more comprehensive manner, as demonstrated in the ChargE3Net study Koker
et al. (2024). These models offer superior accuracy and generalization, especially in complex sys-
tems, when compared to direct property prediction methods. Furthermore, ECD-based models are
capable of achieving chemical accuracy in non-self-consistent calculations, which enhances their
reliability and expands their potential applications within materials science.
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Table 5: Performance comparison of ML and ECD-Based models on wet-experimental data.
Model/Dataset MAE (eV) Time per structure
ML Models - (s)
CGCNN 1.45 Chen et al. (2019) 1.5
MEGNet 1.36 Chen et al. (2019) 1.34
CrystalNet 1.19 Chen et al. (2022) 1.67
CrystalNet-TL 0.70 Chen et al. (2022) 1.58
ECD-Based Models - (min)
ECD-PBE 1.17 14.4
ECD-PBE HSE 0.65 14.4
PBE-Based Datasets - (min)
MP 1.38 Choudhary et al. (2018) -
Matgen 1.21 Chen et al. (2022) 24.5
AFLOW 1.20 Choudhary et al. (2018) -
OQMD 1.09 Choudhary et al. (2018) -
HSE-Based Dataset - (min)
HSE 0.41 Choudhary et al. (2018) 228.1

OOD evaluation using GNoME dataset. To further validate the model’s ability to predict elec-
tronic charge densities in truly novel materials, we using GNoME dataset Merchant et al. (2023) to
evaluation our module for real-world application. Specially, we selected 2,000 structures from the
GNoME dataset and conducted DFT calculations using the PBE functional to generate the necessary
charge density data. The OOD evaluation on this new dataset yielded an MAE of 0.643 eV, which is
comparable to the model’s performance on the MP dataset (0.523 eV) and the ECD dataset (0.685
eV) of same scale, thereby demonstrating the model’s robust generalization capability. These find-
ings support the robustness and broader applicability of models trained on the ECD dataset, further
highlighting its value in the field.

4 CONCLUSION

In this study, we focus on accelerating the computation and prediction of electronic charge densi-
ties, which are critical for elucidating the electronic properties of materials and driving the design of
novel materials. To this end, we introduce ECD, a novel and publicly accessible dataset comprising
140,646 stable crystal structures computed with the medium-precision PBE functional. Addition-
ally, ECD includes a subset of 7,147 crystal structures with high-precision electronic charge density
data calculated using the more accurate HSE functional. We have undertaken rigorous and com-
prehensive experiments to validate the integrity and applicability of the dataset, ensuring that it
meets high standards of quality and relevance for real-world applications. The dataset is designed
to support large-scale benchmarking and the training of machine learning models, demonstrating
their capability in predicting electronic charge densities with remarkable accuracy. Furthermore,
this dataset opens up new avenues for advancing computational materials science, by providing a
robust foundation for the development of data-driven models that can accelerate the discovery and
optimization of new materials with tailored properties.

Limitation: While this study introduces an extensive, mixed-precision dataset of electronic charge
densities, further improvements in data quality remain essential, particularly through increasing the
ratio of high-precision data. Our experimental findings demonstrate that expanding the dataset with
additional HSE functional data can further enhance model accuracy; however, this improvement ne-
cessitates substantial computational resources. Moreover, due to the high dimensionality of charge
density data, which often involves over 1,000 nodes, the complexity of handling node and edge
interactions presents significant computational challenges. This complexity underscores the need
for more efficient algorithms and optimization strategies. Consequently, enhancing the efficiency of
model training and extending the number of training epochs are critical areas for future research,
especially in balancing the trade-off between computational cost and model performance. Addition-
ally, addressing these limitations will enable the scalability of this approach to larger, more complex
systems, thereby broadening the applicability of the dataset to a wider range of materials science
problems.
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A DATA GENERATION

The first part primarily consists of high-quality, literature-reported structures from sources such
as ICSD1 and COD Graulis et al. (2012). We have collected experimental crystal structures from
the ICSD and COD databases, totaling 621,782 structures, and ultimately acquired 76,463 DFT-
calculated data entries, as shown in Figure 4a.

The second part comprises structures generated through algorithmic methods, representing novel
and hypothetical structures not previously observed. Using the DiffCSP Jiao et al. (2024) crystal
structure generation method and ab initio algorithms, we construct a large-scale set of hypothetical
crystal structures, which are further refined using the methods described below.

1. Reasonable chemical compositions. We remove number the structure with number of
chemical components that is more than 10.

2. Electroneutrality approach: We calculate the oxidation states of each element using the
SCMAT toolkit Davies et al. (2019) and remove structures with charge imbalance.

3. Exhibiting symmetry: Structures with space group equal to 1 will be excluded.

Figure 4: The flowchart illustrating the data collection process and DFT calculation workflow.

Next, we employ DFT methods for structural optimization and self-consistent calculations on the
selected results, as depicted in Figure 4b. All charge density files are obtained from the static cal-
culation step within the workflow. To further obtain potentially stable structures, we select about
70,000 hypothetical crystal material calculation results based on formation energy. The distribution
of formation energy is shown in Figure 5, ranging from -4 to 4 eV, which is consistent with existing
databases such as MP Jain et al. (2013) and OQMD Kirklin et al. (2015).

B DATA STATISTICS

Figure 6 illustrates the statistical distribution of data from HSE functional DFT calculations. This
dataset encompasses 94 elements (Figure 6a), consistent with the elemental distribution in PBE
functional DFT data. Additionally, the dataset includes unary, binary, and ternary compounds, with
ternary compounds comprising over half of the total (Figure 6b). Regarding the distribution of the
number of atoms within the unit cells, all structures contain fewer than 20 atoms, with structures
containing more than 10 atoms accounting for approximately one-third of the dataset (Figure 6c).

1https://icsd.products.fiz-karlsruhe.de
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Figure 5: The distribution of formation energy.

Figure 6: The dataset statics for ECD dataset with 7147 HSE entries, including element distribution,
structure component proportion and structure size histogram.
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C HSE CALCULATION DETAILS

We have provided the 41 experimental data points from the HSE-based dataset Choudhary et al.
(2018) in the supplementary materials. These data were obtained through first-principles calcula-
tions using the HSE functional. Additionally, we have included a scatter plot comparing the cal-
culated results with experimental values. It is worth noting KCl and CaO, typically exhibit larger
errors. Moreover, HSE functional calculations are computationally expensive due to the complexity
of solving hybrid functionals, which require a significantly greater number of iterations to converge.
We also present the distribution of computation times for each data point. Materials with a higher
number of atoms and elements located later in the periodic table, such as MoSe2 and ZrO2, exhibit
the longest computation times.

Figure 7: The performance characteristics of HSE calculation in wet-experimental evaluation.

D CASE STUDIES

we have included a failure case for further clarification and analysis (code: ebfc3a7854). We present
a comparison plot of the predicted results and DFT results, where the visualization reveals that
Charge3Net predicts the electron count of certain atoms, such as Be and Ce, to be inconsistent with
the target atom.

Figure 8: Case of OOD validation experiment, material code in Gnome database: ebfc3a7854.
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