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ABSTRACT

To develop safe control strategies, Inverse Constrained Reinforcement learning
(ICRL) infers constraints from expert demonstrations and trains policy models un-
der these constraints. Classical ICRL algorithms typically adopt an online learning
diagram that permits boundless exploration in an interactive environment. How-
ever, in realistic applications, iteratively collecting experiences from the environ-
ment is dangerous and expensive, especially for safe-critical control tasks. To
address this challenge, in this work, we present a novel Inverse Dual Values Esti-
mation (IDVE) framework. To enable offline ICRL, IDVE dynamically combines
the conservative estimation inherent in offline RL and the data-driven inference
in inverse RL, thereby effectively learning constraints from limited data. Specifi-
cally, IDVE derives the dual values functions for both rewards and costs, estimat-
ing their values in a bi-level optimization problem based on the offline dataset. To
derive a practical IDVE algorithm for offline constraint inference, we introduce
the method of 1) handling unknown transitions, 2) scaling to continuous environ-
ments, and 3) controlling the degree of sparsity regularization. Under these ad-
vancements, empirical studies demonstrate that IDVE outperforms other baselines
in terms of accurately recovering the constraints and adapting to high-dimensional
environments with diverse reward configurations.

1 INTRODUCTION

In order to deploy Reinforcement Learning (RL) algorithms to solve safety-critical applications, the
control policy must conform to some underlying constraints in the environment (Liu et al., 2021).
However, in many real-world tasks, due to the inherent complexity of environmental dynamics,
the optimal constraint is often time-varying, context-sensitive, and rooted in the human experience.
These constraints are difficult to specify manually with prior knowledge and may not be readily
available to RL agents in policy learning.

To resolve these problems, Inverse Constraint Reinforcement Learning (ICRL) considers inferring
constraints from the expert demonstrations. Existing ICRL algorithms (Scobee & Sastry, 2020;
Malik et al., 2021; Liu & Zhu, 2022; Gaurav et al., 2023; Liu et al., 2023; Papadimitriou et al.,
2023) follow an online learning paradigm where the agent can explore and collect experience from
an interactive environment. However, the boundless exploration often involves unsafe behaviors that
potentially violate the underlying constraints. Such a shortcoming is fundamental since the violation
of constraint contradicts the primary goal of safe control and may cause significant loss in practical
applications, especially for the algorithms that require a large number of training samples.

An effective method to overcome the above limitations is designing an offline ICRL algorithm that
relies only on offline datasets for constraint inference. This task is challenging, primarily due to 1)
offline datasets can cover only a partial knowledge of the training environment and the algorithm
must learn to handle the lack of knowledge in unvisited states. 2) without actively exploring specific
actions and observing their outcomes, the offline ICRL algorithm must accurately identify the unsafe
behaviors by relying only on the offline dataset.

To address the aforementioned challenges in offline ICRL, in this work, we propose an Inverse Dual
Value Estimation (IDVE) framework. IDVE reformulates constraint inference as a regularized pol-
icy learning problem, thereby ensuring both the safety and conservatism of a control strategy. This
is achieved by regularizing the deviation from the expert policy and incentivizing the agent to op-
erate within the distribution of offline datasets. By leveraging the Lagrange duality, we deduce an
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analytic solution for our problem by embedding the optimal visitation distribution into value func-
tions of costs and rewards. Such functions, being sensitive to the agent’s performance in reward
maximization and cost avoidance, provide an effective quantification of the agent’s behavioral feasi-
bility. To learn these value functions from datasets, we derive a bi-level optimization objective that
alternatively updates the value functions for rewards and costs in an offline diagram.

For practical usage, we design a IDVE algorithm that can effectively handle the incomplete or un-
known transition, scale to a continuous environment, and control the sparsity of learned constraints.
These advancements enable IDVE to significantly outperform other baselines by inferring more
accurate constraints and safer control policies. We conduct an in-depth evaluation to study its per-
formance under various hyperparameters and how well the constraints transfer to new environments.

Our main contributions are as follows: 1) To the best of our knowledge, there is no prior solution
for offline ICRL. As the first attempt, our IDVE framework derives dual value functions from regu-
larized policy learning and proposes the bi-level optimization method for updating value functions,
which could serve as a strong cornerstone for future advancements. 2) We design an IDVE algorithm
that solves critical problems caused by the continuous environment, unknown transitions, and scale
of constraints. These advancements bridge IDVE to accomplish practical applications.

2 RELATED WORK

Inverse Constrained Reinforcement Learning (ICRL). Prior ICRL methods extend the maximum
entropy framework (Ziebart et al., 2008) for learned constraints from both the expert demonstrations
and the interactive MDP environment (without the constraints). In the discrete state-action space,
some recent research (Scobee & Sastry, 2020; McPherson et al., 2021) inferred the constrained sets
for recording infeasible state-action pairs in Constrained MDP, but these studies were restricted to
the environments with known dynamics. A subsequent work (Malik et al., 2021) extended this
approach to continuous state-action spaces with unknown transition models by utilizing neural net-
works to approximate constraints. To enable constraint inference in stochastic environments, (Pa-
padimitriou et al., 2023) inferred probability distributions over constraints by utilizing the Bayesian
framework, and (Baert et al., 2023) incorporate the maximum causal entropy objective (Ziebart
et al., 2010) into ICRL. Some recent works explore ICRL under different settings, e.g., (Gaurav
et al., 2023) extended ICRL to infer soft constraints, and (Liu & Zhu, 2022) explored ICRL under
the multi-agent setting. Striving for efficient comparisons, (Liu et al., 2023) established an ICRL
benchmark across various RL domains. However, these algorithms primarily target online ICRL
that infer constraints by interacting with environments instead of with only offline datasets.

Offline Reinforcement Learning. Offline RL utilizes a data-driven RL paradigm where the agent
learns the control policy exclusively from static datasets of previously collected experiences (Levine
et al., 2020). To mitigate the distributional shift between training samples and testing data, previous
offline RL solutions commonly involve constraining the learned policy to the data-collecting pol-
icy (Fujimoto et al., 2019; Kumar et al., 2019), making conservative estimates of future rewards (Ku-
mar et al., 2020; Yu et al., 2021), and developing uncertainty-aware action selector (Janner et al.,
2019; Kidambi et al., 2020). Some recent advancements on Offline RL (Sikchi et al., 2023; Xu
et al., 2023) studied a regularized policy optimization problem with convex objective and linear
constraints. A recent IRL work (Yue et al., 2023) considered recovering conservative rewards from
offline datasets, but none of these methods has studied the offline constraint inference.

3 PROBLEM FORMULATION

Constrained Reinforcement Learning (CRL). A CRL problem is commonly based on a stationary
Constrained Markov Decision Process (CMDP)M∪ c := (S,A, pT , r, c, ϵ, ρ0, γ) where: 1) S and
A denote the space of states and actions. 2) pT ∈ ∆S

S×A
1 defines the transition distributions. 3)

r : S × A → [0, Rmax] and c : S × A → [0, Cmax] denotes the reward and cost functions. 4)
ϵ ∈ R+ denotes the bound of cumulative costs. 5) ρ0 ∈ ∆S denotes the initial states distribution.
6) γ ∈ [0, 1) is the discount factor. The goal of CRL policy π ∈ ∆A

S is to maximize the expected
discounted rewards under known constraints:

argmax
π

EpT ,π,ρ0
[ T∑
t=0

γtr(st, at)
]

s.t. EpT ,π,ρ0
[ T∑
t=0

γtc(st, at)
]
≤ ϵ (1)

1∆X denotes the probabilistic simplex in the space X , and ∆X
Y denotes a function maps Y to ∆X .
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Following the setting in Malik et al. (2021), we are mainly interested in the hard constraints such
that ϵ = 0. Striving for clarity, we define the CMDP with the known cost asM∪ c, and the CMDP
without cost (i.e., CMDP\c) asM. Accordingly, the visitation distribution dπ ∈ ∆S×A (i.e., the
normalized occupancy measure) produced by policy π can be denoted as:

dπ(s, a) = (1− γ)π(a|s)
∞∑
t=0

γtp(st = s|π) (2)

where p(st = s|π) defines the probability of arriving state s at time step t by performing policy π.

Inverse Constraint Reinforcement Learning. Note that traditional CRL problems often assume
the constraint signals c(·) are directly observable from the environment, but in real-world prob-
lems, instead of observing the constraint signals, we often have access to expert demonstrations DE
that adhere to these constraints, and the agent is required to recover the constraint models from the
dataset. This task is challenging because various combinations of rewards and constraints can ex-
plain the same expert demonstrations. Striving for the identifiability of solutions, ICRL algorithms
Malik et al. (2021); Liu et al. (2023); Papadimitriou et al. (2023) typically assume that reward signals
are observable and the goal is to recover only the constraints, in contrast to Inverse Reinforcement
Learning (IRL) Ziebart et al. (2008), which aims to learn rewards from an unconstrained MDP.

Identifiability Issue. Similar to IRL, the optimal constraint in ICRL is not uniquely identifiable.
indicating that multiple constraints may equivalently explain the expert behaviors. To address this
issue, ICRL algorithms aim to learn the minimal constraints under which the imitation agent can
reproduce the behaviors of the expert (Scobee & Sastry, 2020). These constraints are defined so as
to prohibit risky movements that could yield cumulative rewards exceeding those obtained by the
expert. This is because we assume that experts optimally maximize rewards within their constraints.
Hence, if an agent surpasses an expert’s rewards, it indicates inherent risk in the move.

From Online to Offline ICRL. Classic ICRL algorithm typically follows an online learning
paradigm where the agent iteratively collects experience by interacting with the environment and
using that experience for updating constraints and policy. Nevertheless, in many realistic settings,
online interaction is impractical, either because data collection is expensive (e.g., in robotics, edu-
cational agents, or healthcare) or dangerous (e.g., in autonomous driving, or healthcare). To extend
ICRL to the offline setting, we formally define the problem of offline ICRL as follows:
Definition 1. (Offline ICRL) LetDE = {sEn , aEn , rEn }

NE
n=1 denote the expert dataset generated by the

agent adhering to the unobserved ground-truth constraints. LetD¬E = {sn, an, rn}N¬E
n=1 denote the

sub-optimal dataset generated by the agent without knowing the ground-truth constraints. Given an
offline dataset DO = {DE ,D¬E} and the threshold ϵ̂, an offline ICRL problem requires estimating
the cost function ĉ(·) such that the reward-maximising policy π̂ learned under the inferred constraint
can reproduce expert demonstration DE .

The challenge of solving an offline ICRL problem lies in the absence of an MDPM that the algo-
rithm can interact with, more specifically,
• To infer the correct constraint, traditional online ICRL algorithms rely on active exploration of the

environment for identifying the unsafe trajectories that yield larger cumulative rewards compared
to expert ones. However, offline ICRL algorithms have no access to the environment.

• The demonstration dataset Do captures only the partial information of the environment, and thus
the offline ICRL algorithms must learn a conservative constraint and policy representation, thereby
mitigating the influence of epistemic uncertainty due to the incomplete knowledge.

4 CONSTRAINT INFERENCE VIA DUAL REINFORCEMENT LEARNING

The offline forward constraint-solving function is defined by the regularized policy learning objec-
tive. We use dO to represent the visitation distribution in the offline dataset DO, and Df (· || ·)
denotes the f -divergence between two distributions. Instead of maximizing the reward, we augment
the reward with a divergence regularizer to prevent it from deviating beyond the coverage of the
offline data. This guarantees that the agent adheres to a conservative policy. Specifically, we aim to
maximize J(π) = Edπ(s,a)[r(s, a)]− ξrDf (d

π(s, a) || dO(s, a)), i.e.

max
π

Edπ(s,a)[r(s, a)]− ξrDf (d
π(s, a) || dO(s, a)) s.t. dπ(s, a)c(s, a) ≤ ϵ ∀s, a (3)

3



Under review as a conference paper at ICLR 2024

Motivated by the computational efficiency, and inspired by Sikchi et al. (2023), we reformulate the
aforementioned objective (3) into a convex problem. Specifically, we aim to identify a visitation
distribution that adheres to the Bellman-flow constraints:

max
d(s,a)c(s,a)≤0,d(s,a)≥0

Ed[r(s, a)]− ξrDf (d || dO) (4)

s.t.
∑
a∈A d(s, a) = (1− γ)d0(s) + γ

∑
(s′,a′)

d(s′, a′)p(s|s′, a′), ∀s ∈ S

To derive a solution for the problem (4), we introduce the dual variables V r to consider the La-
grangian dual problem. Please find the detailed derivation in appendix B.1.

min
V r

max
d

Ed[δrV ]− ξrDf (d || dO) + (1− γ)Ed0 [V r] s.t. d(s, a)c(s, a) ≤ ϵ and d(s, a) ≥ 0 (5)

where δrV (s, a) = r(s, a) +
∑
s′∈S pT (s

′|s, a)γV r(s′)− V r(s).
Intuitively, δrV (s, a) defines the temporal difference error in policy evaluation and the advantages
in policy improvement respectively. In this study, we focus on hard constraints, denoted by ϵ = 0.
This implies that the feasible set is constrained by the condition d(s, a)c(s, a) ≤ 0 for all s, a.
We assume c(s, a) is derived from the state function c(s′), indicating state safety, with c(s, a) =
Es′∼P (s′|s,a)[c(s

′)]. We provide the closed-form solution for the inner optimization problem in
Equation (5) when ϵ = 0. Note that a similar derivation under the non-constraint case can be
found in Lee et al. (2021), Sikchi et al. (2023).
Proposition 1. Assume the following: 1) The learned visitation distribution d(s, a) > 0 for all
(s, a) such that dO(s, a) > 0. 2) The range of the derivative of the function f , i.e., f ′, includes 0. In
other words, there exists some x ≥ 0 s.t. f ′(x) = 0.
The optimal solution for the inner optimization problem in 5, denoted as d∗, is given by :

d∗(s, a) = dO(s, a)1c(s,a)=0w
∗
f (δ

r
V (s, a)) (6)

Substituting d∗ into problem 5, the problem becomes:

min
V r

EdO
[
ξr1δcV (s,a)=0f

∗
p (

δrV (s, a)

ξr
)

]
+ (1− γ)Ed0 [V r] (7)

where w∗
f and f∗

p is related to the convex function f specified in f-divergence: w∗
f (y) =

max(0, f ′−1( yξr )),f
∗
p (y) = Ew∗ [y]− f(w∗(y)).

The proof is in Appendix B.2. Following Proposition 1, we observe that the inner optimization
problem projects every unsafe ω∗

f (δ
r
V (s, a)) to d∗(s, a) = 0. Now, considering the problem of

inversely learning the cost c(s, a) from expert demonstration dE , the following proposition provides
conditions for c(s, a) to solve the inverse problem, ensuring that dE is the solution to problem (3).
Definition 2. The set of optimal visitation distributions is defined as those distributions that satisfy
Bellman flow constraints and achieve a higher cumulative reward with a regularizer, denoted as O =
{d : J(d) > J(dE)}∩{d :

∑
a∈A d(s, a) = (1−γ)d0(s)+γ

∑
(s′,a′) d(s

′, a′)p(s|s′, a′), ∀s ∈ S}.

Proposition 2. The c(s, a) is a feasible solution for the inverse constraint learning problem if and
only if 1) For every d ∈ O, there exists at least one c(s, a) > 0 when d(s, a) > 0 and 2) c(s, a) = 0
for all dE(s, a) > 0.

Motivated by this proposition, we formalize our inverse constraint learning problems as a bi-level
optimization problem. Initially, we solve the forward constraint equation using the formula 5, which
can be viewed as sampling from the optimal visitation distribution O. Once the solution V r is ob-
tained, representing the optimal solution under a learned cost, we update the cost function to ensure
c(s, a) > 0 for some (s,a) such that dr(s, a) > 0, derived from dr(s, a) = dO(s, a)w∗

f (δ
r
V (s, a)).

This iterative process is repeated until convergence. We define the objective function for the bi-level
optimization problem as follows:

min
V r

EdO
[
ξr1δcV (s,a)≤0f

∗
p (

δrV (s, a)

ξr
)

]
+ (1− γ)Ed0 [V r] (8)

max
V c

∑
(s,a)∈T e

w∗
f (δ

r
V (s, a)− (δcV (s, a))+)−

∑
(s,a)∈Tv

w∗
f (δ

r
V (s, a)− (δcV (s, a))+) (9)
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where δcV (s, a) =
∑
pT (s′|s,a) γV

c(s′) − V c(s) and V c(s) = Eπ,pT ,ρ0 [
∑
t γ

tc(st, at)|s0 = s]

defines the cost value function. We use (x)+ to represent max(x, 0). The state-action set vis-
ited by the expert is denoted as T e = (s, a) : dE(s, a) > 0, and the set not visited by the ex-
pert is denoted as T v = (s, a) : dE(s, a) = 0. In this formula: 1. We use the advantage of
the cost function δcV (s, a) to represent the cost function c(s, a), aligning with our setting where
c(s, a) =

∑
pT (s′|s,a) γV

c(s′)− V c(s) should solely depend on the future state and not the action.
2. When using the gradient method to update 9, we maximize δcV to 0 when dE(s, a) > 0. This en-
sures that dE(s, a) > 0 leads to δcV = 0. Furthermore, by minimizing δcV to 0 where dE(s, a) = 0,
V c will have a gradient only when ω∗

f (δ
r
V ) > 0. This guarantees an increase in the cost value in

the state-action pair where dr(s, a) > 0. We can prove that, following such a learning process, the
optimizing process can maintain the learned optimal occupancy d∗ in each round as a better policy
than dE with respect to J(d). See appendix B.4.

4.1 ANALYSIS OF THE IDVE

A critical challenge in ICRL is finding the minimum constraint that can explain the behavior of
expert agents (Scobee & Sastry, 2020; Malik et al., 2021; Liu et al., 2023). Developing a sparse
constraint is critical for fostering generalizability. Without sparsity, one can learn an excessively
restrictive constraint that blocks all the movement not covered by the expert dataset. While such
a constraint may accurately reflect the observed expert behaviors, it lacks practical utility because:
1) the expert dataset might not record all possible movements, and 2) it cannot be generalized to
environments with even minor modifications to dynamics (see experiments in Section 6.2), which
commonly appears in bridging the Sim-to-Real gap in practice. To achieve this goal, it is important
to encourage the sparsity of constraints. We claim that IDVE achieves sparsity by identifying only
those constraint-violating movements that yield high rewards, aligning with the goals of ICRL (see
Section 3).

As an illustrative example, we consider chi-square divergence for Df :

f = (x− 1)2 and f ′(x) = 2(x− 1) and f ′−1(x) = 1 +
x

2
(10)

w∗
f (x) = 1(x > −2ξr)

(
1 +

x

2ξr

)
=

(
1 +

x

2ξr

)
+

(11)

In the cost learning step, if the temporal difference δrV (s, a) ≤ −2ξr for any (s, a) pair, indicating
negligible future rewards for the action in that state, our objective ensures ∇w∗

f (·) = 0 in the cost
learning objective (equation (9)). Consequently, the cost-value function V c(s) remains unchanged
in the low-reward state-action pairs, which encourages the sparsity of updates in V c(s). Intuitively,
this method makes the cost function only sensitive to regions exhibiting constraint-violating behav-
iors, particularly those associated with rewards exceeding the expert level. In the forward solving
step, for any state-action transition (s, a, s′) with nonzero cost c(s, a), 1δcV ≤0 will block the up-
date of V r(s) from V r(s′).This acts as a safe Bellman operator, defining the optimal value function
V ∗(s) as V safe(s) = maxa∈A ∧ c(s,a) ̸=0

(
r(s, a) + γP (s′|s, a)V safe(s′)

)
.
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Figure 1: An example of recovery V r and V c

under the experiment setting 1 in Section 6.1.
[x, y] denotes the state, and the action is the
moving direction (e.g., move right).

An example of the sparse constraint. We
take the gridworld as an example. If ξr =
1
2 , as shown in Figure 1, for (s, a, s′) =
([4, 2], ’move up’, [4, 1]), since V r([4, 2]) −
V r([4, 1]) < 0 and r([4, 1], ”move up”) = −1,
we can conclude that δrV ([4, 2], ”move up”) =
V r([4, 2])−V r([4, 1])+r([4, 1], ”move up”) <
−1. Therefore, δrV−max(δcV , 0) will be clipped
by the indicator 1(x > 2ξr) during the com-
putation of w∗(x) in objective (9). Thus, the
value of V c([4, 2]) and V c([4, 1]) remains un-
changed.

However, for ([4, 2], ’move down’, [4, 3]),
δrV ([4, 2], ”move down”) = V r([4, 3]) −
V r([4, 2]) + r([4, 2], ”move down”) > −1, so
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the gradient in δcV will increase the value of V c([4, 3]), marking [4, 3] as an unsafe space. In the
next optimizing forward problem, [4, 3] will be blocked from back-propagating the gradient to any
other V r, to ensure a safe policy improvement.

5 PRACTICAL IMPLEMENTATION

In this section, we introduce the practical implementation of IDVE (see Algorithm 1) by proposing
the following key updates to our IDVE objective (8) and (9). We use χ-square divergence as Df .

5.1 REWRITING OF FORWARD OPTIMIZATION PROBLEM

Following Sikchi et al. (2023), we simplify the bi-level optimization objective (8) by replace ξr and
γ with temperature parameter λ and sparsity parameter α. becomes:

max
V c

∑
(s,a)∈T e

(δrV (s, a)− (δcV (s, a))+ − α)+ −
∑

(s,a)∈Tv

(δrV (s, a)− (δcV (s, a))+ − α)+ (12)

min
V r

λEdO
[
1δcV (s,a)≤0f

∗
p (δ

r
V (s, a))

]
+ (1− λ)Ed0 [V r] (13)

Intuitively, λ governs the level of conservatism in optimization, representing the tradeoff between
maximizing immediate rewards (first term) and aligning with offline data (second term). On the
other hand, α dictates the lower bound for clipping and update equations, capturing the trade-off
associated with the sparsity of constraint recovery.

5.2 SCALING TO CONTINUOUS ENVIRONMENT

Sampling from dE(s, a) = 0 is challenging due to limited expert trajectory samples, leaving some
(s, a) pairs absent. We address this by sampling (s, a) from d∗(s, a) whenever (s, ae) exists in ex-
pert trajectory samples. we can store the state-action pairs that significantly deviate from expert
behavior in the replay buffer Bv . To implement this, we use a Gaussian representation for the
actor-network πψ ∼ N (µ, σ) to extract the policy from learned V r and Qr. The maximization of
log likelihood under optimal state-action visitation is expressed as: maxψ Es,a∼d∗ [log πψ(s, a)] =
maxψ Es,a∼dO

[
1δcV (s,a)≤0ω

∗
f (δ

r
V (s, a)) log πψ(s, a)

]
(δcV and δcV denote advantages in policy up-

date). We optimize:

max
V c

EdE [(δrV −max(δcV , 0))]− α)+ − Edv [(δrV −max(δcV , 0))]− α)+ (14)

Since the actions in the violation buffer result in higher rewards but are also more likely to lead to
unsafe states, the reduction of w∗

f (δ
r
V (s, a)−max(δcV (s, a), 0) in dv effectively increases the values

of V c(s′) for states followed by state actions pair (s, a) stored in the violation action replay buffer.

5.3 TACKLING UNKNOWN TRANSITIONS IN THE OFFLINE LEARNING

In our IDVE algorithm, the computing of δrV (s, a) and δcV (s, a) function requires complete knowl-
edge of the transition (s, a, r, s′). In value update, online learning algorithms can interact with the
environment to explore the resulting states s′ by performing an action a on the state s. However,
in the offline setting, the dataset might not cover the returns of performing a specific action, and s′

becomes unavailable without the interactive environment. To circumvent this issue, we define:
δrV (s, a) = Qr(s, a)− V r(s) and δcV (s, a) = Qc(s, a)− V c(s) (15)

Since the reward signals are known in the offline ICRL dataset, we adopt a semi-gradient update
rule to update Qr. Specifically, we fix V r and update Qr by:

min
ϕr

E(s,a,s′)∼D
[
(Qr

ϕr (s, a)− (r(s, a) + γV r
θr (s

′)))2
]

(16)

where ϕr and θr denote the parameters of Q and V functions. For cost value learning, we update
Qc using the equation in 12 and approximate V c(s′) with the maximum possible learned cost Q
function to propagate high learned cost in violation action to an unsafe state in the offline dataset,
i.e., V c(s′) = max(s,a,s′)∈DO [γQc

θc(s, a)]. This update rule ensures the consistency of c(s, a)
across different (s, a) pairs that lead to same destination s′

6 EMPIRICAL RESULTS.
Running Settings. By following Malkin et al. (2022), we adopt the following evaluation metric: 1)
Constraint Violation Rate, which assesses the likelihood of a policy violating a constraint in a given
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Algorithm 1: Inverse Dual Values Estimation (IDVE)

Require: Offline dataset DO = {DE ,D¬E}, Running iterations I;
1: Initialize Qc

ϕc = 0, V c
θc = 0;

2: Run offline RL to warm up Qr
ϕr , V r

θr , πψ , and the violating action replay buffer Bv = {∅};
3: for i = 1 . . . I iterations do
4: Sample violate action av from av ∼ Es∼D[πψ(s)], add (s, av) to buffer Bv;
5: Update Qr

ϕr by minimizing the TD error (16) with dataset DO;
6: Update V r

θr with the dual value objective (13) and dataset DO;
7: Update Qc

ϕc by minimizing the behavioral gap to experts (objective (14)) with dataset

8: Update V c
θc with the objective minϕc E(s,a,s′)∼DO

[
min(γV c

θc(s
′)−Qc

ϕc(s, a), 0)
]
;

9: Update πψ with maxψ Es,a∼dO
[
1δcV (s,a)≤0ω

∗
f (δ

r
V (s, a)) log πψ(s, a)

]
;

10: end for

trajectory, and 2) Feasible Cumulative Rewards, which calculates the total rewards accumulated by
the agent before violating any constraints. 3) the success rate of reaching the destination for the
grid-world environment. We run experiments with 5 different seeds and present the mean ± std
results for each algorithm. Appendix A.3 reports the detailed settings and random seeds.

Comparison Methods. Due to the lack of offline ICRL baselines, we mainly compare IDVE with
its variants and other relevant offline control methods, including 1) IDVE w/o S removes the control
of sparsity by removing the clipping term in function (12) 2) IDVE w/o A excludes the violating
action buffer Bv from objective (9) by following only the expert density for learning cost values. 3)
Offline IL follows the Inverse Soft Q-Learning Garg et al. (2021) method that infers reward value
functions from offline data to imitate expert policy. 4) Offline RL refers to the recently proposed
f-DVL Sikchi et al. (2023) algorithm that leverages the dual and offline reward function to control.

6.1 DISCRETE ENVIRONMENT

Figure 2: Four settings in grid-world. Blue, red,
and black mark the starting, target, and absorb-
ing states. The algorithms should infer the con-
strained region (gray) from demonstrations.

We utilize grid-world environments for evalu-
ating our algorithm. These environments con-
sist of 7x7 discrete maps, each designed with
four unique constraint map settings (Figure 2).
Within these environments, each agent is per-
mitted to perform eight actions: moving up,
down, right, left, or in one of four diagonal di-
rections. The primary objective for every agent
is to navigate from the start to the end point,
taking the shortest possible route while avoiding specific constrained states. The agent receives a -1
reward for each step taken until it reaches its destination. To enable offline ICRL, we provide an ex-
pert datasetDE and a sub-optimal datasetD¬E (collected random walks) for each environment. The
size of the offline dataset DO = {DE ,D¬E} is 50 (trajectories) (Check details in Appendix A.1).

Figure 3: The visualization for the recovered constraints in four settings.
Constraint Visualization. Figure 3 visualizes the normalized value functions learned by dif-
ferent methods. By comparing with the ground-truth constraints in Figure 2, we find our
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IDVE successfully identifies the most sparse constraint, which plays a critical role in enabling the
agent to navigate safely to its intended destination. An important phenomenon is that the learned
cost values of IDVE w/oS significantly become denser, thereby constraining lots of safe regions. It
reflects the necessity of applying a sparsity regularizer. The value function learned by the imitation
model fails to capture the accurate constraint.

Sensitivity to hyper-parameters. We conduct
an in-depth study to investigate how the key pa-
rameters (λ and α) in IDVE influence the per-
formance of constraint recovery. Figure 4 vi-
sualizes the results. By scaling the regularizing
α from 0 to −∞ ( −∞ indicates no regulariza-
tion), we observe an increase in constraint density,
which demonstrates the efficacy of IDVE in con-
trolling sparsity. When we elevate λ from 0.4 to
0.55, IDVE shows a bias towards behaviors that
maximize cumulative rewards (refer to our objec-
tive 13). Consequently, the constraints that pre-
vent agents from reaching the target states in the
fewest steps diminish in significance. We find this
phenomenon is most apparent when α = 0, and it
becomes less apparent as the density of the con-
straint increases (α becomes larger).

Figure 4: Effect of hyper-parameters to
Cost Value function V c.

6.2 GENERALIZABILITY TO NEW ENVIRONMENTS.
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Figure 5: New settings for evaluation. Blue and
red denote the new starting and target states.

We study how well the inferred constraints can
be generalized to new environments with dif-
ferent starting and target states. In the experi-
ment, the constraints are learned with data col-
lected for training environments (Figure2), and
these constraints are evaluated under the new
environment in Figure 5.

Table 1 shows the results. The results show IDVE can outperform other baselines as it uniquely
achieves a high success rate while maintaining a low cost. In contrast, IDVE w/oS does not achieve
comparable performance, as over-dense constraints prohibit actions that have not been explored by
the expert, yet may not necessarily be infeasible. The policy learned by offline RL also does not
scale well, and we omit the offline IL as the distribution of rewards changes when the environment
is modified, rendering the rewards learned by IL invalid.

Table 1: Generalization performance in a Grid-World Environment. We bold the largest rewards
corresponding to safe policy without constraint violation.

Expert demonstration Env Offline RL IDVEw/o S IDVE
Reward Success Rate Cost Reward Success Rate Cost Reward Success Rate Cost

10% expert

setting1 -5.5 100% 100% −∞ 0% 0% −∞ 80% 40%
setting2 -5.0 100% 100% −∞ 0% 0% -6.0 100% 0%
setting3 -6.0 100% 100% −∞ 60% 0% -6.6 100% 100%
setting4 -5.0 100% 100% −∞ 0% 0% -7.5 100% 60%

50% expert

setting1 -5.5 100% 100% −∞ 0% 0% -7.1 100% 0%
setting2 -5.0 100% 100% −∞ 0% 0% -6.0 100% 0%
setting3 -6.0 100% 100% −∞ 80% 0% −∞ 80% 100%
setting4 -5.0 100% 100% −∞ 0% 0% -7.1 100% 0%

100% expert

setting1 -5.5 100% 100% −∞ 0% 0% -7.5 100% 0%
setting2 -5.0 100% 100% −∞ 0% 0% -6.0 100% 0%
setting3 -6.0 100% 100% -6.0 100% 0% -6.0 100% 0%
setting4 -5.0 100% 100% −∞ 0% 0% -7.0 100% 0%

6.3 CONTINUOUS ENVIRONMENT

Our Continuous environments utilize MuJoCo Todorov et al. (2012), a virtual simulator suited for
robotic control tasks. To extend MuJoCo for constraint inference, we modify the MuJoCo environ-
ments by incorporating predefined constraints into each environment. We design constraints from

8
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different perspectives for these agents: 1) We draw inspiration from two experiments conducted in
Liu et al. (2023), where robots are forbidden from moving backward when it’s easier to move back-
ward than to move forward (e.g., Half-Cheetah and Walker). We also create two other constraints
inspired by real-world experiments. First, we impose a constraint on the agent’s maximum forward
speed to simulate real-world speed limits. In the second environment, we enforce a constraint on the
agent’s leg angles to prevent movement of its first leg. Table 3 summarizes the environment settings.

The results and corresponding learning curve can be found in Table 2 and Figure 6. Across all
environments, both IDVE and IDVE w/oS exhibit robust performance in imitating high-performing
policies offline while maintaining the safety of the policy. This finding aligns with our expectations,
as the sparsity regularizer is primarily tailored for enhancing generalizability (Section 4.1). Since
MuJoCo uses identical training and testing environments, the benefits of encouraging sparsity are not
readily apparent. When it comes to offline IL, it achieves a low cost when operated in offline mode,
but it demonstrates relatively inferior reward-maximizing performance. Meanwhile, for offline RL,
the associated costs rise substantially since it is not sensitive to the underlying constraint. Figure 7
in the appendix also visualizes the constraints of the Blocked Half-cheetah. The recovered rewards
of offline IL show that its reward function assigns negative rewards to the unsafe states. Conversely,
our method yields a sparse cost function centered around point 0, which effectively facilitates safe
movements by solely discouraging backward movement from the start point.
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Figure 6: The cumulative rewards and the costs from the evaluation during training.

Table 2: MuJoCo testing performance. We report the average cumulative rewards and cumulative
costs in 10 runs. The best average performance is highlighted in bold.

Method Limited Speed Ant Limit Arm HalfCheetah Blocked Walker Blocked Half-Cheetah
Cumulative Rewards

Offline RL 461.10±182.45 2,269.86±198.45 495.62±60.49 3,565.56±234.58
Offline IL 1,284.85±77.07 850.74±374.66 440.13±90.62 726.65±61.68

IDVE w/oA -108.67±53.34 3,099.46±670.42 458.47±79.86 4,297.64±571.42
IDVE w/oS 1,043.50±12.07 1,405.13±133.72 419.28±94.90 828.01±78.04

IDVE 1,061.11±21.90 2,433.99±445.43 483.97±38.21 901.62±74.09

Cumulative Costs
Offline RL 330.24±79.84 330.24±79.84 115.32±42.67 902.10±14.19
Offline IL 6.06±2.97 133.56±48.47 70.04±39.16 10.30±20.60

IDVE w/oA 52.36±24.02 905.60±38.22 60.76±24.84 917.04±28.89
IDVE w/oS 4.40±0.41 228.97±69.93 51.38±11.31 0.00±0.00

IDVE 9.48±3.75 421.50±157.57 85.26±36.10 5.04±10.08

7 CONCLUSION

In this paper, we present a IDVE framework as the first attempt to facilitate offline ICRL. This
is achieved by deriving dual value functions from regularized policy learning and formulating a
bi-level optimization problem to update these value functions. To enhance practical applicability,
we introduce a IDVE algorithm that effectively addresses unknown transitions, continuous environ-
ments, and insufficient sparsity. Empirical results demonstrate the performance of IDVE in various
settings. A promising avenue for future research involves extending our method to accommodate
diverse ICRL configurations, such as soft constraints in stochastic environments.
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A IMPLEMENTATION AND ENVIRONMENT DETAILS

A.1 DISCRETE ENVIRONMENTS

Our discrete environments use a 7x7 gridworld map, with four different settings for constraint learn-
ing. In each setting, we assign two absorbing states: one as the reward state in the training environ-
ment and another as the reward state in the transfer learning test. We employ value iteration to obtain
the expert demonstration, and we shape the reward as r̂ = r − 100c by subtracting a cost*100 term
to ensure that the demonstration is safe. For offline data collection, we sampled from random walks
starting at grids [1,1], [1,5], [5,1], and [5,5]. To enrich the dataset with additional information, the
agent was instructed to choose a state it had not visited previously whenever making a move.

To obtain the value function recovered by inverse imitation learning, we employed inverse q learning.
All the recovered cost value functions in Figure 3 are used with a single set of hyperparameters.

A.2 CONTINUOUS ENVIRONMENTS

Our virtual environments are based on Mujoco. We provide more details about the virtual environ-
ments as follows:

1. Blocked HalfCheetah and Blocked Walker These two environments are taken from Liu
et al. (2023). In these environments, The agent controls a robot that can move faster back-
ward than forward. The reward is based on the distance it moves between the current and
previous time steps, along with a penalty related to the magnitude of the input action. We
have defined a constraint that restricts movement in the region where the X-coordinate is
less than or equal to 0, allowing the robot to move forward only.
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2. Limit Arm HalfCheetah
In this environment, the agent controls a robot to move forward and obtain rewards related
to moving distance. However, we enforce a constraint on the agent’s leg angles to prevent
the use of its first leg. The cumulative sum of the angles at the agent’s front thigh, shin,
and foot joints (represented as

∑
t |θfthigh,t|+ |θfshin,t|+ |θffoot,t|) must not exceed 100

degrees.
3. Limited Speed Ant

In this environment, the agent controls a robot to move forward and obtain rewards related
to moving distance. However, it must not exceed a speed limit of 0.2, resulting in obtaining
fewer rewards compared to no constraint.

Table 3: Summary of Environment Settings

Environment Constraints
Blocked Half-cheetah X-Coordinate > 0

Blocked Walker X-Coordinate > 0
Limited Speed Ant X-velocity < 0.2

Limit Arm HalfCheetah
∑
t |θfthigh,t|+ |θfshin,t|+ |θffoot,t| < 100

Data Generation. To obtain offline data, we adhere to the guidelines provided in Fu et al. (2020).
We utilize the data from a 100000-step early stop SAC replay buffer as an offline dataset. Addition-
ally, we sample 100 trajectories from the expert dataset. When sampling from the offline dataset,
we maintain a balanced approach by selecting half of the samples from the offline dataset and half
from the expert trajectories. We evaluate the learned policy every 25,000 steps and run a total of 1
million training steps.

A.3 IMPLEMENTATION DETAILS

We implement the violation buffer as a queue. We sample actions, denoted as av , from the actor
network given a state denoted as se, from the pair (se, ae) in expert demonstrations. We calculate the
difference between the Q-values of these two actions in the reward Q-function, i.e., Qr(se, av) −
Qr(se, ae), and select the top K actions with the highest differences to add to the buffer. When
the buffer reaches its capacity, we remove actions that have lower values in terms of Qr(se, av) −
V r(se).

To ensure stable trainning, we have added L1 regularization to both the Q and value functions.
Across our set of environments, we maintain the same hyperparameters (except for the temperature
parameter λ, where we use 0.7 in the Walker environment and 0.8 in others). We utilize a two-layer
MLP with 256 hidden units and a ReLU activation function. The complete set of hyperparameters
used in our experiments is presented in Table 4 and the details of dataset used are list in Table 5.

Hyperparameter Value
Batch Size 256
Violate Action Buffer Size 10000
Violate Action Sample Size k 500
Policy Learning Rate 3e-4
Value Learning Rate 3e-4
LR Decay Schedule Linear
L1 Regularization Coefficient 0.001
Clipping Coefficient α -10
Random Seed α 1 2 3 4 5

Table 4: Hyperparameters for our experiments.
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Table 5: Details of offline dataset and expert demonstration

Task Name Number of Offline Transitions Number of Expert Transitions
Limited Speed Ant 100000 100000

Limit Arm HalfCheetah 100000 100000
Blocked Walker 100000 9985

Blocked Half-Cheetah 100000 100000

A.4 EXPERIMENTAL EQUIPMENT AND INFRASTRUCTURES

We ran the experiment on a cluster that has multiple RTX 3090 GPUs, each with 24 GB of memory.
There is only one running node. With the aforementioned resources, running one seed in the virtual
environment takes about 40 minutes.

B PROOF AND DERIVATION

B.1 DERIVING LAGRANGIAN OF PROBLEM (4)

By introducing the Lagrange multiplier V r and λd. The Lagrangian of problem (4) can be:

Ed[r(s, a)]− ξrDf (d || dO)− V r(s)(
∑
a∈A

d(s, a)− (1− γ)d0(s)− γ
∑

(s′,a′)

d(s′, a′)p(s|s′, a′))

=Ed

r(s, a) + γ
∑

(s′,a′)

d(s′, a′)p(s|s′, a′))V r(s′)− V r(s)

+ (1− γ)Ed0 [V r]− ξrDf (d || dO)

=Ed[δrV ]− ξrDf (d || dO) + (1− γ)Ed0 [V r]

B.2 PROOF OF PROPOSITION 1

Proof. In order to solve:

max
d

Ed[δrV − δcV ]− ξrDf (d || dO) + (1− γ)Ed0 [V r] (17)

s.t. d(s, a)c(s, a) ≤ 0 and d(s, a) ≥ 0 ∀s, a (18)

Assume d(s, a) > 0 implies dO(s, a) > 0. We introduce a new variable w(s, a) = d(s,a)
dO(s,a)

and
redefine our optimization objective as follows:

max
w

EdO [w(s, a)δrV − ξrf(w(s, a))] + (1− γ)Ed0 [V r(s)] (19)

s.t. ω(s, a)c(s, a) ≤ 0 and ω(s, a) ≥ 0 (20)

Without the constraint on d(s, a), the maximization of the first part is equivalent to finding the
convex conjugate of the function f , denoted as f∗(y) = maxx(xy − f(y)). However, we must
consider the non-negativity constraint d(s, a) ≥ 0 and feasible constraint ω(s, a)c(s, a) ≤ 0.

We can form the Lagrangian function:

L(V r, λc, λ) = EdO [w(s, a)δrV − ξrf(w(s, a))]+(1−γ)Ed0 [V r(s)]+
∑
s,a

(λ(s, a)ω(s, a)−λc(s, a)c(s, a)ω(s, a))

The KKT condition of this problem is:

1.Primal feasibility ω(s, a)c(s, a) ≤ 0, ω∗(s, a) ≥ 0 ∀s, a
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2.Dual feasibility λ∗
c(s, a) ≥ 0, λ∗(s, a) ≥ 0 ∀s, a

3.Stationarity ∂L
∂V r = dO(s, a)(−f ′(ω∗(s, a)) + δrV (s, a) + λ∗(s, a)− λ∗

c(s, a)c(s, a)) = 0 ∀s, a
4.Complementary Slackness ω∗(s, a)λ∗(s, a) = 0, λ∗

c(s, a)ω
∗(s, a)c(s, a) = 0

Using Complementary Slackness, we have two case:

Case 1:λ∗
c(s, a) = 0, which means solution without introducing constraint is feasible. Following

a similar proof given in Sikchi et al. (2023)(Refer to equation 43 in appendix of the cited paper
for more details), we solving the optimal solution with stationary equation and first complementary
slackness equation:

ω∗(s, a) = ωr(s, a) = max(0, f ′−1(
δrV (s, a)

ξr
))

. and ωr(s, a) satisfies primal feasibility ω∗(s, a)c(s, a) = 0.

Case2:λ∗
c(s, a) ̸= 0, which means ω∗(s, a)c(s, a) = 0. Which means we need solve following

question. Note that such solution is possible if only there exists some x s.t. f ′(x) = 0.

ω∗(s, a) = max(0, f ′−1(
δrV (s, a)− λ∗

c(s, a)c(s, a)

ξr
)) (21)

ω∗(s, a)c(s, a) = 0 (22)

Summarizing these two case and replace ω∗ with d∗, we have

d∗(s, a) = dO(s, a)1c(s,a)=0 max(0, f ′−1(
δrV (s, a)

ξr
)) (23)

B.3 PROOF OF PROPOSITION 2

Proof. ”→”: If d = dE solve the problem. then the c(s, a) = 0 for all dE(s, a) > 0, otherwise the
dE is not feasible. And if there exist a d ∈ O s.t. d(s, a)c(s, a) = 0 ∀s, a, then d is feasible and d is
optimal than dr in primal problem, which leads to constridiction.

”←”: If ∀d ∈ O there is at least one (s, a),s.t. dc ̸= 0, then all d ∈ O are all not feasible. Since
c(s, a) = 0 ∀(s, a)s.t.dE(s, a) > 0 dE is feasible, so dE is optimal.

B.4 PROPOSITION OF MAINTAINING OPTIMALITY

Proposition 3. For finite state space S and finite action space A. If d is the only optimal solution
under constraint. We initialize c(s, a) = 0, then V r

(0) = argminV r EdO
[
ξrf

(
p
δrV (s,a)
ξr

)
]
+ (1 −

γ)Ed0 [V r], i.e., the optimal solution without constraint. By alternatively solving for V r and if
resulting distribution is not dE , updating c to project at least one w∗

f (δ
r
V (s, a)) to 0, while keeping

c(s, a) = 0 for all dE(s, a) > 0.

Then, the algorithm will converge to dE . During the learning process, the visting distribution d∗(k)
corresponding to V ∗

(k) maintain J(d∗(k)) ≥ J(dE).

Proof. We know J(d) ≥ J(dE) since dE is always a candidate for a solution in each round of the
update. We now prove that if d∗(k) ̸= dE , we can always find some s, a such that d∗(k)(s, a) > 0

and dE(s, a) > 0. First, we observe that for any policy d that visits fewer state-action pairs than
dE , i.e., if {(s, a) : d(s, a) > 0} ⊂ {(s, a) : dE(s, a) > 0}, we have J(d) < J(dE). Otherwise,
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d is feasible, which would contradict the uniqueness of optimality of dE . Thus, we can always find
some (s, a) in {(s, a) : d(s, a) > 0} but not in {(s, a) : dE(s, a) > 0}.
From this, we also know that if the algorithm converges, it will always converge to dE . We notice
that for every round of updating, the number of zeros in c(k)(s, a) is increasing. Since in every round
k, the optimal visitation distribution d∗(k)(s, a) with respect to V ∗

(k) satisfies d∗(k)(s, a)c(k−1)(s, a) =

0, and in round k, we must set some c(k)(s, a) to be above 0 for d∗(k)(s, a) > 0.

Now, the spaces S andA are finite. We know the algorithm will converge to dE since there are only
a finite number of combinations of (s, a).

C EXPERIMENTS

This section contains additional results.

C.1 RESULTS IN GRID WORLD

Metric Violation Rate Cumulative Return Success Rate
Offline RL 100% -6 100%

Offline Imiataion learning 0% -11.0 100%
IDVE 0% -11.0 100%

IDVE w/o Sparse 0% -11.0 100%

Table 6: Comparison of Learned policy

C.2 RESULTS IN MUJOCO
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Figure 7: Recovered reward/cost results in Blocked HalfCheetah. The x-axis represents the x-
position of the agent, and the y-axis represents the learned normalized reward/cost.

C.3 INFLUENCE OF HYPERPARAMETERS ON TRANSFER LEARNING IN GRIDWORLD

We are comparing the impact of hyperparameters on both the successful transfer rate and the con-
straint violation rate under different parameter combinations. As depicted in the figures 8 and 9, the
success rate and violation rate improve with an increase in the number of expert demonstrations.
Additionally, when the clip coefficient α is set to a higher value, it becomes more frequent to reach
the new reward state but also more likely to violate the constraint.
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Figure 8: The x-axis represents the percentage of provided expert data, and the y-axis represents the
probability of trained agents reaching the reward state.
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Figure 9: The x-axis represents the percentage of provided expert data, and the y-axis represents the
probability of trained agents violating the constraint.
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