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Abstract

We consider the problem of learning a safe policy that will maximize the cumulative
reward while satisfying a constraint even when there is a mismatch between the
testing and training environment. In particular, we consider the robust constrained
Markov decision problem (CMDP) where an agent needs to maximize the reward
and satisfy the constraint against the worst possible stochastic model under the
unknown uncertainty set. Such a problem poses significant additional challenges
compared to the non-robust CMDP problem and the unconstrained robust MDP
problem. We seek to characterize the number of samples required to bound both the
sub-optimality gap and the violations by at most ϵ. We observe that the primal-dual-
based approaches that achieves sample complexity bounds for non-robust CMDP
cannot achieve the same in the robust CMDP case as the strong duality does not
exist even when Slater’s condition is satisfied. Nevertheless, we propose a robust safe
value learning algorithm by considering an approach where rectified penalty for the
constraint violation is added with the objective. We consider that the algorithm has
access to a generative model of the nominal (training) environment around which
the uncertainty set is defined. We show that our proposed algorithm can achieve a
policy with ϵ suboptimality gap and violation bound after Õ(H5|S||A|/ϵ2) samples;
where |S| is the cardinality of the state-space, |A| is the cardinality of the action
space, and H is the length of the episode for uncertainty sets specified by various
popular distance metrics. This is the first result that achieves a sample complexity
bound for robust CMDP problems.

1 Introduction

In many practical applications of online reinforcement learning (RL) (e.g., safety, resource constraints),
there exist additional constraints on the learned policy in the sense that it also needs to ensure that
the expected total utility (cost, resp.) exceeds a given threshold (is below a threshold, resp.). Such
problems are formulated as constrained Markov Decision Processes (CMDPs) (Altman, 1999; Efroni
et al., 2020). Algorithms are proposed with provable performance guarantee to solve for CMDP using
both simulator or with online interaction (Vaswani et al., 2022; Ding et al., 2020; 2021).

However, a feasible policy for CMDP found by training using a simulator may violate the constraints
when employed in the real environment because of the mismatch between the models. Such mismatch
may exist because of the non-stationarity, sim-to-real gap, or even because of the adversarial attacks.
Standard RL algorithms even fail to adapt to the model-mismatch in the unconstrained setting
Sünderhauf et al. (2018); Tobin et al. (2017). Thus, it is important to find a feasible (nearly)
and yet close to the optimal policy even when there is a model mismatch using only simulator
data. Furthermore, we want to provide provable performance guarantee for the achieved policy. In
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particular, when the uncertainty set on the models are unknown, and one is learning, we want to
understand how many samples are required to attain such a policy.

While there are works that obtain sample complexity bound for unconstrained robust MDP, it
still remains open for robust CMDP setup. Finding sample complexity bound for robust CMDP is
inherently more challenging compared to the unconstrained case as one not only needs to find a
policy that maximizes the worst-case, one also needs to ensure that the policy satisfies the constraint
even when there is a mismatch in the model. Additional challenge arises as one even does not know
the uncertainty set, rather it is learning. Recently, Sun et al. (2024) developed a policy-optimization
based approach to improve the robust policy while ensuring feasibility. Wang et al. (2022) proposed
primal-dual algorithm to obtain local solution. However, sample complexity bound have not been
considered there. While primal-dual based and LP-based approaches are proposed for obtaining
near-optimal sample complexity bound for non-robust CMDP, those approaches rely on the convexity
of the state-action occupancy measure. However, Wang et al. (2022) shows that for the robust
CMDP state-action occupancy measures are not convex. Hence, it is unclear on whether it is possible
to achieve sample complexity bound for robust CMDP problem using primal-dual approach or
traditional LP-based approach Efroni et al. (2020). We seek to answer the following open question–

Can we design an algorithm that achieves provable sample complexity result for robust CMDP?

Our Contributions: We consider an episodic robust CMDP setup where we seek to solve the
following–

max
π

min
P ∈P

V π,P
r (x) subject to min

P ∈P
V π,P

g (x) ≥ b (1)

where the objective is to maximize the worst case cumulative reward (minP V π,P
r (x)) subject to the

constraint that the worst case cumulative utility (minP V P
g (x)) is above a certain threshold. We

consider that the uncertainty set P of the transition probabilities P is unknown and is centered
around the nominal model P 0. Similar to the unconstrained setup Panaganti et al. (2022); Xu et al.
(2023); Gheshlaghi Azar et al. (2013); Kalathil et al. (2021), we consider that the agent only has
access to the samples from this nominal model. We need to find a policy π̂ after Ntot number of
samples with the provable performance guarantee. In particular, we are interested in the following–
Definition 1. We seek to obtain policy π̂ such that after Ntot number of samples with high probability

Sub − Opt(π̂) := min
P

V π∗,P
r − min

P
V π̂,P

r ≤ ϵ Violation(π̂) := min
P

V π̂,P
g ≥ b − ϵ (2)

where π∗ is the optimal policy for (1). Hence, we want to find the policy π̂ such that it will be
sub-optimal by at most ϵ amount and will violate by only ϵ amount. Note that compared to the
unconstrained case, here, one also needs to bound violation.

Our main contributions are the followings:

1. We show that we can achieve Sub − Opt(π̂) ≤ ϵ, and Violation(π̂) ≤ ϵ using Õ(H5|S||A|/ϵ2)
samples where H is the time-steps in an episode, |S| is the cardinality of the state-space, and |A|
is the cardinality of the action-space. This is the first finite sample complexity result for robust
CMDP, and yet matches the sample complexity guarantee for the unconstrained robust MDP. We
completely characterize the sample complexity results for various uncertainty sets.

2. The traditional primal-dual-based approaches may be unable to achieve sample complexity results
for the robust CMDP case unlike the non-robust case. This is because the strong duality result
does not hold for the robust CMDP Wang et al. (2022). Further, while, the robust Bellman
equation does hold for individual robust value function, it does not hold for the combined value
functions since the worst case model may be different for the reward and the utility value function.
Hence, one cannot apply the robust value iteration approach for the Lagrangian to solve for policy
unlike the non-robust case. To address this, we propose a rectified penalty to consider the following
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objective minP V π,P
r (x) − λ(b − minP V π,P

g (x))+. We then consider an oracle that returns π
solving the above for suitable choice of λ. It turns out that finding a policy that maximizes the
above objective is key in obtaining the sample complexity bound for robust CMDP.

3. Our result does not depend on the strong duality unlike the approaches for the non-robust CMDP.
Thus, our analysis techniques are also novel and hence can be of independent interest.

1.1 Related Literature

CMDP: Algorithms to compute policies for CMDP with provable performance guarantees are
well-studied. For example, primal-dual based approaches with provable performance guarantee have
been proposed Vaswani et al. (2022); Ghosh et al. (2022); Wei et al. (2022); Ding et al. (2020; 2021;
2023); Ghosh et al. (2024). The approaches used the strong duality result to show that the primal-dual
approach converges to the optimal solution. Another popular methods including LP-based approaches
can be classified as primal methods Xu et al. (2021); Efroni et al. (2020); Bura et al. (2022); Liu
et al. (2021). The key idea idea was to use the convexity of the state-action occupancy measure.
However, none of the works considered robust CMDP problem. Hence, the policy obtained by those
approaches might not be feasible when there is a model mismatch. Further, as we described the
robust state-action occupancy measure may not be convex as the worst-case transition kernel depends
on the policy itself rendering the analysis inapplicable to obtain sample complexity bound.

Robust MDP: Robust MDP has been studied with known uncertainty set Iyengar (2005); Nilim
& Ghaoui (2003); Wang & Zou (2021) and with unknown uncertainty set Panaganti et al. (2022);
Xu et al. (2023); Yang & Wang (2019); Wang & Zou (2022); Ma et al. (2022); Zhou et al. (2021);
Panaganti et al. (2022). Compared with the robust unconstrained MDP, robust MCDP is more
challenging as one needs to ensure that the policy is feasible for every transition kernel under the
uncertainty set. Directly applying the policy designed for unconstrained robust MDP will not satisfy
the constraint for robust CMDP.

Robust CMDP: Unlike the non-robust CMDP, there are limited work on robust CMDP. Primal-dual
based approach has been proposed in Russel et al. (2020); Mankowitz et al. (2020); Wang et al. (2022).
However, Wang et al. (2022) showed that robust CMDP may not have strong duality guarantee
even when a strictly feasible policy exists (aka Slater’s condition) unlike the non-robust CMDP.
Naturally, those approaches are unable to provide theoretical sample complexity bound. Recently,
Sun et al. (2024) proposed an approach to improve the policy without violating the constraint,
however, theoretical sample complexity bound has not been provided there.

2 Problem Formulation

Constrained Markov Decision Problem: An episodic constrained Markov Decision Process
(CMDP) is characterized by the tuple {S, A, R, G, P, H} where S is the state-space, A is the action-
space; R = {rh}H

h=1 and G = {gh}H
h=1 are respectively the collection of rewards and utility for

state-action pair (s, a) at step h ∈ [H]. H is the length of the episode. P = {Ph}H
h=1 denotes the

transition probability Ph,s,a(s′) = Ph(s′|s, a) at step h. Without loss of generality, we assume that rh,
and gh are deterministic, and |rh(x, a)| ≤ 1, and |gh(x, a)| ≤ 1. We denote the policy πh(·|x) ∈ ∆(A)
as the policy at time-step h. In a CMDP Efroni et al. (2020); Ghosh et al. (2022); Ding et al. (2021);
Wei et al. (2022) setup one seeks to solve the following optimization problem.

max
π

V π,P
r (x) subject to V π,P

g (x) ≥ b (3)

where V π,P
r (x) = Eπ,P [

∑H
h=1 rh(xh, ah)|x1 = x] and V π

g (x) = Eπ,P [
∑H

h=1 gh(xh, ah)|x1 = x] are the
expected cumulative reward and the expected cumulative cost respectively following the policy π.
We also denote V π,P

j,h (x) = Eπ,P [
∑H

i=h ji(xi, ai)|xh = x] for j = r, g. Hence, V π,P
j,1 (x) = V π,P

j (x). The
optimization problem in (3) denotes that we want to maximize the cumulative reward subject to the
constraint that expected cumulative utility is above a certain threshold.
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Example 1. Consider the setup where the agent wants to maximize the reward while being at the
safe state. In this case, the utility is gh(x) = 1 if x is safe and 0 otherwise. This problem can be cast
as a CMDP where b = H.

Robust CMDP: We often use a simulator to train our policy before implementing in the real-life.
However, the simulator setup and the real-life environment are often different, hence, we need a
robust policy so that the policy can perform reasonably well in the real-life setup. In particular, we
seek to solve the robust CMDP problem described in (1). ρ > 0, and is known.

In (1), P denotes the set of all transition probabilities. In particular, different transition probability
defines different set of randomness inherent in the true environment. The problem in (1) defines
that we seek to maximize the worst case expected cumulative reward subject to the constraint
that the worst case cumulative utility is above the threshold b. The objective of the robust CMDP
formulation is that constraints are satisfied even if there are mismatch between training and evaluation
the constraint is satisfied while maximizing the reward among the worst of all the transition probability
model. Such robustness guarantee is important for implementing RL algorithms in practice. Consider
the example we described above, there, the solution in (1) ensures that the policy will still be safe
even if there is a mismatch.

Note that our analysis and approach can be easily applicable to the setting where maxP V π,P
g ≤ b

as well where gh denotes the cost instead of utility at time-step h, and we are interested in the
constraint such that the worst-case cost is below a certain threshold b. Further, we can easily
extend our analysis for multiple constraints. For notational simplicity, we interchangably denote
V π

j,h(x) = minP ∈P V π,P
j,h (x) for j = r, g, and all h.

Uncertainty Set on models: Similar to the one considered in the unconstrained episodic MDP
setup Xu et al. (2023), we consider a set of transition probability models within a ball centered
around the nominal model P 0

h,s,a ∀(h, s, a) ∈ [H] × S × A. We consider the uncertainty set P =⊗
(h,s,a)∈[H]×S×A Ph,s,a such that

Ph,s,a = {P ∈ ∆(S) : D(P, P 0
h,s,a) ≤ ρ} (4)

where D is the distance metric between two probability measures, and ρ is the radius of the uncertainty
set. This uncertainty set satisfies the (s, a)-rectangularity assumption Iyengar (2005); Nilim & Ghaoui
(2003). Our analysis can be extended trivially to s-rectangularity assumption as well Yang & Wang
(2019). Without rectangualarity assumption, even for unconstrained robust MDP, obtaining policy
is NP-hard problem Wiesemann et al. (2013). We do not assume that that we know the nominal
model P 0, and thus we do not know the uncertainty set of transition kernels. We consider various
uncertainty sets– i) Total variation uncertainty sets, ii) χ-squared uncertainty set, iii) KL-divergence
uncertainty set, and iv) Wasserstein uncertainty set. Here, we describe the total variation uncertainty
set, the rest are in Appendix D.

Total Variation uncertainty set: Let PT V =
⊗

(h,s,a)∈[H]×S×A PT V
h,s,a be the uncertainty set

defined in (4) with total variation distance Xu et al. (2023)

DT V (P, P 0
h,s,a) = (1/2)||P − P 0

h,s,a||1 (5)

Generative Model: We do not know the uncertainty set, rather, we assume that we have access
to a generative model or a simulator where the agent submits a query (h, s, a) ∈ [H] × S × A, and
receives sh+1 ∼ P 0

h,s,a(·), rh(s, a), and gh(s, a). Accessing the generative model or simulator is a
common assumption even for unconstrained robust MDP Xu et al. (2023); Panaganti & Kalathil
(2022); Yang & Wang (2019). In fact, finding the sample complexity guarantee without the simulator
is still an open question even for the unconstrained robust unconstrained MDP.

Learning Goal: Since we do not know the uncertainty set, we cannot obtain an optimal policy
from the beginning. Rather, the goal is to obtain a policy π̂ such that for a given ϵ > 0, using Ntot

samples or queries from the generative model such that Sub − Opt(π̂) ≤ ϵ, and Violation(π̂) ≤ ϵ (see
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Definition 1). Unlike the unconstrained robust MDP, one needs to ensure that both the violation
and the sub-optimality gap are small.

Robust Bellman Consistency equation: Directly applying the result from Iyengar (2005), we
have for any π, for j = r, g, and for all h, and s,

V π
j,h(s) =

∑
a

πh(a|s)[jh(s, a) + LPh,s,a
V π

j,h+1] (6)

where LPh,s,a
V = inf{PV : P ∈ Ph,s,a}.

3 Solution Methodology

In this section, we first discuss why one cannot directly apply the primal-dual methods popular for
solving the non-robust CMDP to the robust CMDP. Subsequently, we describe our novel approach.

Why existing primal-dual methods for non robust CMDP do not work?:

In the non-robust CMDP, one solve for the Lagrangian

min
λ≥0

max
π

V π,P
r (x) + λ(V π,P

g (x) − b) (7)

It has been shown that strong duality holds if a strict feasible policy (a.k.a. Slater’s condition)
Paternain et al. (2019) exists. Thus, one can solve in the dual-domain. For non-robust CMDP
problems, Vaswani et al. (2022); Ghosh et al. (2022) demonstrate that primal-dual based approaches
can in fact achieve a feasible and an ϵ-sub optimal policy using Õ(1/ϵ2) interactions with the
environment Ghosh et al. (2022) or generative model Vaswani et al. (2022) using the strong duality
result. The key to obtain strong duality result in Paternain et al. (2019) is that the state-action
occupancy measure dπ,P

h (s, a) for a given transition probability measure P is convex. In particular,
consider π1, and π2 with the corresponding state-action occupancy measures dπ,P

1,h and dπ,P
2,h , then

there exists π′ such that (1 − λ)dπ,P
1,h (s, a) + λdπ,P

2,h (s, a) = dπ′,P
h (s, a) for a λ ∈ (0, 1). All the existing

primal-dual methods Ghosh et al. (2022); Wei et al. (2022); Ding et al. (2020); Efroni et al. (2020)
uses such strong duality result to obtain sample complexity bound. However, the robust state-action
occupancy measure is not convex as shown in Lemma 1 in Wang et al. (2022). Intuitively, the
worst-case transition model depends on the policy, hence, the convexity is not assured. Thus, the
robust CMDP may not admit strong duality even if there exists a strictly feasible policy. Hence, the
traditional primal-dual based algorithms will be unable to obtain the sample complexity guarantees.

Second, in (7), for a given λ, one can solve for the optimal using the standard Dynamic programming
approach as it would be a simply unconstrained problem with modified per-step reward rh + λgh.
Hence, the standard value-based approach can be applied for the composite value function. For
unconstrained robust MDP, one can apply robust value iteration to solve for the policy Iyengar (2005).
One might be curios why not apply the robust value iteration to solve for π for the Lagrangian
V π

r (x) + λ(V π
g (x) − b) for a given π similar to the non-robust CMDP. However, this won’t work as

the worst case model for the reward value function and the worst-case model for the utility value
function can be different. In particular, LPh,s,a

V π
r,h + LPh,s,a

V π
g,h ≠ LPh,s,a

[V π
r,h + V π

g,h] because of the
non-linearity unlike the non-robust CMDP. Thus, one cannot apply the robust value iteration to
the combined value function to solve for the lagrangian V π

r (x) + λ(V π
g (x) − b) for the robust CMDP

even for a given fixed λ.

3.1 Rationale behind Our proposed approach

Since the traditional primal-dual algorithm will not work, we transform the problem into the following
rectified penalty form:

max
π

min
P ∈P

V π,P
r (x) − λ(b − min

P ∈P
V π,P

g (x))+ (8)
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where (x)+ = max{x, 0}. Note that only when minP V π,P
g (x) < b (i.e., the policy does not satisfy

the constraint), then it adds a penalty. Note that solving (8) might be simpler compared to solving a
constrained problem which is not convex. Such a rectified penalty is inspired from Guo et al. (2022;
2023). However, they did not consider MDP setups. The advantage of the above formulation is
captured below:
Lemma 1. If λ = 2H/ϵ, the optimal solution π̂ of (8) will have a violation of at most ϵ, i.e.,
(b − minP ∈P V π̂,P

g (x)) ≤ ϵ.

The above result shows that the violation is bounded by O(ϵ) by a proper choice of λ. The above
lemma also implies the following:
Corollary 1. Fix λ = 2H/ϵ. If for any infeasible policy π, (minP ∈P V π,P

g (x) − b) < ϵ, then π∗

(optimal solution of (1) is also the optimal solution of (8).
Remark 1. Corollary 1 shows that if one makes λ → ∞, the optimal solution of (8) coincides with
(1). The proofs of Lemma 1 and Corollary 1 are in Appendix A.
Remark 2. Corollary 1 also states that if there is a gap of ϵ in the value functions for the feasible
and infeasible policies, i.e, minP V π,P

g < b − ϵ for any infeasible π, then solving (8) is equivalent to
solving (1) for a finite value, λ = 2H/ϵ. Thus, if there is a gap between the value functions for the
feasible policies, and infeasible policies then solving (8) is enough.

Algorithm 1 Robust Safe Reinforcement Learning Algorithm
1: Input: Uncertainty radius ρ, Performance bound ϵ, λ = 6H/ϵ.
2: Initialization: V̂r,H+1(s) = 0, V̂g,H+1(s) = 0, ∀s.
3: for steps h = H, H − 1, . . . , 1 do
4: Collect N (value is in Section 4) samples for each state-action pair (s, a) ∈ S × A.
5: Compute the empirical uncertainty set for all (s, a) ∈ S × A according to (9).
6: π̂ = arg maxπ V̂ π

r (x) − λ(b − ϵ/3 − V̂ π
g (x))+ (the computation of V̂ π

r (x), and V̂ π
g (x) for a given π

is obtained according to (10) in backward induction manner).

3.2 Handling unknown uncertain transition probability kernel set

We now discuss how we address the other challenge where the agent does not know the nominal
transition probability model P 0, and it only has access to a simulator where the next states are
drawn from the nominal model P 0 for a given state-action pair. The agent needs to learn efficiently
to optimize the sample complexity.

We consider that the agent is estimating the transition probability model, P̂ 0, of the nominal
model. Formally, in Algorithm 1 we generate N samples from each state-action pair at step h.
We denote Nh(s, a, s′) as the number of times the state-action pair (s, a) transitions to s′, then
P̂ 0

h (s′|s, a) = Nh(s, a, s′)/N . We then build the empirical uncertainty set as

P̂ =
⊗

P̂h,s,a, P̂h,s,a = {P ∈ ∆(S)|D(P, P̂ 0) ≤ ρ} (9)

After collecting Ntot = NH|S||A| samples, we have an estimate for the value function for estimated
model P̂ as V̂ π,P̂

j,h (s), and the robust empirical value function V̂ π
j,h(x) = minP̂ ∈P̂ V̂ π,P

j,h (s) for any π,
s, and h from the robust Bellman consistent equation for j = r, g which we obtain recursively as
V̂j,h+1(s) = 0 for all s. In particular, similar to (6), we compute

V̂ π
j,h(s) =

∑
a

π(a|s)[jh(s, a) + LP̂h,s,a
V̂ π

j,h+1] (10)

where LP̂h,s,a
V̂ = inf{PV : P ∈ P̂h,s,a}. For different uncertainty set, one can do an exhaustive

search for finite state-space to compute LP̂h,s,a
V̂ . However, we will discuss later how to efficiently

compute LP̂h,s,a
V̂ for different uncertainty sets.



RLJ | RLC 2024

Rectified penalty for estimated model: Note that π∗ is feasible for the original problem (1).
Since we do not know the nominal model rather we are learning, there will be an error in estimating
V π

g (x) for a policy π. In particular, the estimated value function for the optimal policy V̂ π∗

g (x) < b

even though V π∗

g (x) ≥ b because of the error. If we do not account for that, while solving for (8), we
will get a conservative policy and will obtain a poor sub-optimality gap. Rather, we need to relax
the constraint a little to maintain the balance.

In other words, we have to bound the error between V π∗

g (x) and V̂ π∗

g (x). In the standard non-robust
case one can use the standard concentration inequality of Hoeffding to bound the error between the
empirical value and the actual value. In particular, for the non-robust case, we have

V π,P 0

j (x) − V̂ π,P̂ 0

j (x) ≤ H max
h,s,a

|P 0V̂ − P̂ 0V̂ |.

One can bound the error in the above using standard concentration inequality since E[P̂ 0] = P 0.

However, in the robust case, it is more challenging as we cannot apply the standard concentration
bound. Rather, we obtain in Appendix B–
Lemma 2. For a given π,

V π
j (x) − V̂ π

j (x) ≤ H max
h,s,a

|LPh,s,a
V̂ π

j − LP̂h,s,a
V̂ π

j | (11)

Unlike the non-robust case, because of the non-linearity, E[LP̂ V̂ ] ̸= LP V̂ . Hence, the standard
concentration inequalities won’t work.

In order to (11) we use the same technique as proposed in Xu et al. (2023). In particular, we obtain
a dual representation for LPV to obtain a tighter upper bound for (11). In the following, we describe
the procedure for the total variational distance metric. One can easily extend it to other metrics
from the results in Xu et al. (2023) and in Appendix F.1.

Total Variational Distance: For total variational distance metric, from Proposition 2 we have
Proposition 1. For any (s, a, h) ∈ S × A × [H], and j = r, g, θ, δ ∈ (0, 1), and ρ ∈ (0, 1], we have
with probability 1 − δ,

H max
h,s,a

|LP T V
h,s,a

V̂j,h − LP̂ T V
h,s,a

V̂j,h| ≤ 2θH + H
√

H2 log(4H2|S||A|/δθ)/(2N) (12)

where we use the θ-covering number for the value function.

Using θ = ϵ/(12H), and

N = 18H4 log(48H3|S||A|/ϵδ)
ϵ2 (13)

in Lemma 2, we obtain (see Appendix B)
Lemma 3. For a given policy π, for j = r, g with probability 1 − 2δ when N is set according to (13),

|V π
j (x) − V̂ π

j (x)| ≤ ϵ/3

Relaxed Problem: Hence, in order to ensure that the optimal policy π∗ of the original robust
CMDP (cf.(1)) problem, we consider the following in terms of the estimated value functions.

max
π

V̂ π
r (x) s.t V̂ π

g (x) ≥ b − ϵ/3. (14)

when N is set according to (13) in Algorithm 1 for total variation uncertainty set. By Lemma 3, it
ensures that the optimal policy of the original problem (1) is feasible to the (14) with high probability
accounting for the estimated value function. Note that even though we consider the relaxed problem,
we still obtain the violation bound of ϵ by proper choice of N . In particular, we select N such that
the constraint becomes V̂ π

g ≥ b − ϵ/3 for a given ϵ > 0. For different uncertainty sets, the values of N
to bound by ϵ/3 are characterized in Appendix D.
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3.3 Optimization Oracle

As we described, standard primal-dual approach won’t work. Based on the insights obtained in
Lemma 1 for the rectified penalty objective (cf.(8)), our algorithm 1 assumes the existence of the
optimization oracle (see line 6) that finds the following policy

max
π

min
P̂ ∈P̂

V̂ π,P
r (x) − λ

(
b − ϵ/3 − min

P̂ ∈P̂
V̂ π,P

g (x)
)

+
(15)

As we described in Lemma 1, for λ = 6H/ϵ, one can guarantee that it achieves a policy with violation
of at most ϵ/3 for (14). We use the above bound for our analysis.

One can use policy gradient or policy optimization approach to find such a policy (e.g., using neural
network). We also discuss on how to develop such a policy-optimization oracle in Section 5. However,
characterization of the sample complexity analysis without such an oracle has been left for the future.

4 Main Results

We now state the main result of our paper. We prove it in Appendix C.
Theorem 1. For total variation distance uncertainty set, after Ntot ≥ NT V samples, where

NT V = 18H5|S||A|
ϵ2 log

(
48H3|S||A|

ϵδ

)
(16)

Algorithm 1 returns the policy π̂ such that with probability 1 − 3δ, Sub − Opt(π̂) ≤ ϵ, and
Violation(π̂) ≤ ϵ.

The result indicates that one needs Õ(H5|S||A|/ϵ2) samples to bound both the sub − opt and
Violation by ϵ. This is the first such sample complexity result result for the robust CMDP. Note
that the bound matches that of known bounds for the robust unconstrained MDP Xu et al. (2023).
The lower bound Ω(H4|S||A|/ϵ2) for the unconstrained non-robust MDP, hence, we are off by a
factor of H, however, it is optimal (nearly) in terms of ϵ. Note that such a gap also exists for the
unconstrained case as well.
Remark 3. Exact Feasibility: Note that we can obtain exact feasibility for the scenario where
V π

g (x) < b − ϵ for any infeasible π. Also, note that we can achieve exact feasibility if V π∗

g (x) ≥ b + ϵ
(i.e., the optimal policy is not in the boundary), by simply replacing b with b + ϵ in the algorithm.

5 Discussions, Limitations, and Future Works

We provide the sample complexity of Õ(H5|S||A|/ϵ2) guarantee using a generative model and an
optimization oracle. We characterize the number of samples required to bound the sub-optimality
and violation gaps by ϵ amount for various popular distance metrics.

Dependency on the oracle: We can develop a practical version of our approach (while compromising
on the sample complexity) based on the double loop approach proposed by Wang et al. (2023) for
unconstrained robust MDP–in the inner loop, the algorithm seeks to obtain the worst-case models
for the reward value function and the utility value function for a given policy. In the outer loop, the
policy parameter is updated using the policy gradient approach. Note that taking the gradient with
respect to π in (8) is easy. The characterization of the sample complexity result for robust CMDP
without the policy optimization oracle constitutes an important future research work.

We consider a tabular case. The characterization of the sample complexity guarantee for large
state-space (possibly infinite) also constitutes an interesting future research direction. Reducing the
dependence on H also remains an open question. Finally, our algorithm is model-based, characterizing
the sample complexity guarantee using model-free approach is an important future research direction.
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Organization of Appendix: We prove Lemma 1 and Corollary 1 in Appendix A. We prove
Lemmas 2 and 3 in Appendix B. Subsequently, We prove Theorem 1 in Appendix C. We state the
other uncertainty sets and state the complexity results in Appendix D. We prove Theorems 3, 2, and
4 in Appendix E. Finally, we state some important results in Appendix F which we use for proving
results.

A Proof of Lemma 1 and Corollary 1

A.1 Proof of Lemma 1

Proof. We prove this by contradiction. Suppose that the statement is not true.

Consider π∗ the optimal solution of the original problem (1). Since this is feasible, then (b−V π∗

g (x))+ =
0, then

V π∗

r (x) − λ(b − V π∗

g )+ ≥ −H (17)

as |rh(x, a)| ≤ 1. For any π (including the optimal policy π̂) of (8) ,we have

V π
r − λ(b − V π

g )+ ≤ H − λ(b − V π
g )+ (18)

For the optimal policy π̂, we have (b − minP ∈P V π̂,P
g (x)) > ϵ (by contradiction). Hence, by (18), we

have

V π̂
r − λ(b − V π̂

g )+ < H − (2H/ϵ)ϵ = −H

However, it contradicts (17) as π∗ can achieve a better value for the objective in (8).

A.2 Proof of Corollary 1

Proof. By Lemma 1 the optimal policy in (8) must have a constraint violation of at most ϵ. Now,
since any infeasible policy now must satisfy the condition (b − minP ∈P V π,P

g (x)) < ϵ, it means that
only the feasible policies of the original robust CMDP (1) can be optimal solution of (8). Hence,

min
P ∈P

V π̂,P
r − λ(b − min

P ∈P
V π̂,P

g (x))+ ≤ min
P ∈P

V π∗,P
r − λ(b − min

P ∈P
V π∗,P

g (x))+

where we have used the fact that (b − minP ∈P V π∗,P
g (x))+ = 0, and (b − minP ∈P V π̂,P

g (x))+ = 0.
Thus, the optimal solution of (1) is actually the optimal in (8).
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B Proof of Lemmas 2 and 3

B.1 Proof of Lemma 2

Proof. From (6) and (10) we have ∀s and j = r, g,

V̂ π
j,h(s) − V π

j,h(s) =
∑

a

π(a|s)[jh(s, a) + LP̂h(s,a)V̂
π

j,h+1] −
∑

a

π(a|s)[jh(s, a) + LPh(s,a)V
π

j,h+1]

=
∑

a

π(a|s)[LP̂h(s,a)V̂
π

j,h+1 − LPh(s,a)V
π

h+1]

=
∑

a

π(a|s)[LP̂h(s,a)V̂
π

j,h+1 − LPh(s,a)V̂
π

j,h+1 + LPh(s,a)V̂
π

j,h+1 − LPh(s,a)V
π

h+1]

≤ max
a

|LP̂h(s,a)V̂
π

j,h+1 − LPh(s,a)V̂
π

j,h+1| + max
a

|LPh(s,a)V̂
π

j,h+1 − LPh(s,a)V
π

j,h+1|

where we use Holder’s inequality and ||π||1 = 1. Since the above holds for every s, thus, for any s

V̂ π
j,h(s) − V π

j,h(s) ≤ max
a

|LP̂h(s,a)V̂
π

j,h+1 − LPh(s,a)V̂
π

j,h+1| + max
a

|LPh(s,a)V̂
π

j,h+1 − LPh(s,a)V
π

j,h+1|

Expanding recursively, we obtain

|V̂ π
j,1(s) − V π

j,1(s)| ≤ max
s

max
a

max
h

H|LPh(s,a)V̂
π

j,h+1 − LP̂h(s,a)V̂
π

j,h+1| (19)

B.2 Proof of Lemma 3

Note from Lemma 2 we obtain

|V̂ π
j,1(s) − V π

j,1(s)| ≤ max
s

max
a

max
h

H|LPh(s,a)V̂
π

j,h+1 − LP̂h(s,a)V̂
π

j,h+1|

Now, from lemma 4 and applying union bound over (h, s, a) we obtain with probability 1 − δ

|V̂ π
j,1(s) − V π

j,1(s)| ≤
√

H4 log(4H2|S||A|/(θδ))
2N

+ 2θH (20)

Taking θ = ϵ/12H, and N = 18H4 log(16H3|S||A|/(ϵδ))
ϵ2 , we obtain

|V̂ π
j,1(s) − V π

j,1(s)| ≤ ϵ/3 (21)

C Proof of Theorem 1

Bounding the Sub-optimality bound: First, we observe the following

V π∗

r (x) − V π̂
r (x) = V ∗

r (x) − V̂ π∗

r︸ ︷︷ ︸
T1

+ V̂ π∗

r − V̂ π̂
r (x)︸ ︷︷ ︸

T2

+ V̂ π̂
r (x) − V π̂

r (x)︸ ︷︷ ︸
T3

(22)

Since N = 18H4 log(48H3|S||A|/(ϵδ))/ϵ2, by Lemma 3, T1, and T3 both can be bounded by ϵ/3 with
probability 1 − 2δ. We now bound T2 which we describe next.

Since π̂ is optimal of (15), thus, replacing the value of N there, we obtain

V̂ π∗

r (x) − λ(b − ϵ/3 − V̂ π∗

g (x))+ ≤ V̂ π̂
r (x) − λ(b − ϵ/3 − V̂ π̂

g (x))+ (23)

By Lemma 3, we have (b − ϵ/3 − V̂ π∗

g (x)) ≤ 0 with probability 1 − δ. Hence,

V̂ π∗

r (x) − V̂ π̂
r (x) ≤ −λ(b − ϵ/3 − V̂ π̂

g (x))+ ≤ 0 (24)
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where the inequality follows from the fact that (x)+ ≥ 0.

Hence, T2 ≤ 0 with probability 1 − δ. Thus, combining all, we have with probability 1 − 3δ,

V ∗
r (x) − V π̂

r (x) ≤ ϵ/3 + ϵ/3 = 2ϵ/3 ≤ ϵ.

Violation Bound: Now, we show the violation bound. We decompose in the following way–

(b − V π̂
g (x)) = (b − ϵ/3 − V̂ π̂(x)︸ ︷︷ ︸

T4

+ϵ/3 + V̂ π̂(x) − V π̂
g (x)︸ ︷︷ ︸

T5

) (25)

We bound T5 using Lemma 3 by ϵ/3. Note that using the value of N , we obtain,√
3H4 log(16H3|S||A|)

Nδ
≤ ϵ/3. In order to bound T4 we use Lemma 1 to obtain

(b − ϵ/3 − V̂ π̂
g (x)) ≤ ϵ/3 (26)

when λ = 6H/ϵ.

Hence, combining all, we obtain

(b − V π̂
g (x)) ≤ ϵ/3 + ϵ/3 + ϵ/3 = ϵ

D Results for other Uncertainty Sets

1. Chi-squared uncertainty set: Let Pχ =
⊗

(h,s,a)∈[H]×S×A Pχ
h,s,a be the uncertainty set

defined in (4) with chi-squared distance Xu et al. (2023)

Dχ(P, P 0
h,s,a) =

∑
s′

(P (s′) − P 0
h,s,a(s′))2

P 0
h,s,a(s′) (27)

2. KL-uncertainty set: Let PKL =
⊗

(h,s,a)∈[H]×S×A PKL
h,s,a be the uncertainty set defined in

(4) with KL-divergence metric Kullback & Leibler (1951)

DKL(P, P 0
h,s,a) =

∑
s′

P (s′) log
(

P (s′)
P 0

h,s,a(s′)

)
(28)

3. Wasserstein uncertainty set: Let PW =
⊗

(h,s,a)∈[H]×S×A PW
h,s,a be the uncertainty set

defined in (4) with the Wasserstein distance metric Xu et al. (2023)

DW (P, P 0
h,s,a) = inf

ν∈m(P,P 0
h,s,a

)

∫
dp(x, y)dν(x, y) (29)

where the integration is over all (x, y) ∈ S × S, p ∈ [1, ∞), and m(P, P 0
h,s,a) denote all

probability measures on S × S with marginals P and P 0
h,s,a. In addition, we set Bp =

maxs,s′ dp(s, s′).

We now state the results for the other distance metrics
Theorem 2. For Chi-squared uncertainty set, if the total number of samples Ntot ≥ Nχ where

Nχ =
288C4

ρH5|S||A|
(Cρ − 1)2ϵ2 log

2H|S||A|
(

1 + 12CρH2

ϵ(Cρ − 1)

)
δ

 (30)

and where Cρ =
√

1 + ρ, then, the policy π̂ returned by Algorithm 1 satisfies with probability 1 − 3δ,
Sub − Opt(π̂) ≤ ϵ, and Violation(π̂) ≤ ϵ.
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Theorem 2 shows that the sample complexity result is Õ(H5|S||A|/ϵ2) which is the same as the
unconstrained case Xu et al. (2023). Remark 3 is also applicable here.
Theorem 3. For the KL uncertainty set, if the total number of samples Ntot ≥ NKL where

NKL = 4.5 exp(3H/ζ)H5|S||A|
ρ2ϵ2 log

(
8H|S||A|

ζδ

)
(31)

where ζ is the problem-dependent parameter, and independent NKL, then the policy π̂ returned by
Algorithm 1 satisfies with probability 1 − 3δ Sub − opt(π̂) ≤ ϵ, and Violation(π̂) ≤ ϵ.

Note that here the sample complexity bound is Õ(exp(H)H5|S||A|/ϵ2). The exponential dependence
is also observed in the unconstrained non-robust case as well Xu et al. (2023). Recently, Fei et al.
(2020) shows that exponential dependency on H is unavoidable for the risk-sensitive MDP (similar
to the MDP with KL uncertainty set). Remark 3 is also applicable here.
Theorem 4. For the Wasserstein uncertainty set, if the total number of samples Ntot ≥ NW where

NW = 18H5|S||A|(Bp + ρp)2

ρ2pϵ2 log
(

24H2|S||A|(HBp + max(H, ρp))
ρpδϵ

)
(32)

then, with probability 1 − 3δ, the policy π̂ returned by Algorithm 1 satisfies Sub − Opt(π̂) ≤ ϵ, and
Violation(π̂) ≤ ϵ.

The sample complexity bound here is Õ((Bp + ρp)2H5|S||A|/ρ2pϵ2) which is the same as in the
unconstrained case Xu et al. (2023). Remark 3 is also applicable here.

E Proofs of Theorems 2, 3, and 4

E.1 Proof of Theorem 2

By applying Lemma 2, 5, and union bound we obtain with probability 1 − δ

|V̂ π
j,1(s) − V π

j,1(s)| ≤ H

√
2C2

ρH

(Cρ − 1)2
√

N
(
√

log(2H|S||A|(1 + CρH/(θ(Cρ − 1)))
δ

) + 1) + 2θH (33)

Now, using θ = ϵ/(12H), and

N =
72C4

ρH4

(Cρ − 1)2ϵ2 (
√

log(2H|S||A|(1 + Cρ12H/(ϵ(Cρ − 1)))
δ

) + 1)2 (34)

we have with probability 1 − δ,

|V̂ π
j,1(s) − V π

j,1(s)| ≤ ϵ/3 (35)

Using the identity (a + b)2 ≤ 2a2 + 2b2, we get the sample complexity result that

|V̂ π
j,1(s) − V π

j,1(s)| ≤ ϵ/3 (36)

when

N =
288C4

ρH4

(Cρ − 1)2ϵ2 log(2H|S||A|(1 + Cρ12H/(ϵ(Cρ − 1)))
δ

) (37)

The rest of the proof is similar to the proof of Theorem 1. Hence, we omit it here.
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E.2 Proof of Theorem 3

By applying Lemma 2, 6, and union bound we obtain with probability 1 − δ

|V̂ π
j,1(s) − V π

j,1(s)| ≤ H2

ρ
exp(θH) exp(H/ζ)

√
log(4H|S||A|/θζδ)

2N
(38)

Now, taking θ = 1/2, and putting

N = 4.5H4 exp(3H/ζ) log(8H|S||A|/ζδ)
ρ2ϵ2 (39)

then

|V̂ π
j,1(s) − V π

j,1(s)| ≤ ϵ/3 (40)

with probability 1 − δ. The rest of the proof follows the same as in Theorem 1.

E.3 Proof of Theorem 4

By applying Lemma 2, 7, and union bound we obtain with probability 1 − δ

|V̂ π
j,1(s) − V π

j,1(s)| ≤ H2(Bp + ρp)
ρp

√√√√ log(H|S||A|HBp + max(H, ρp)
ρpθδ

)

2N
+ 2θH (41)

Taking θ = ϵ/(12H), and plugging the following value of N ,

N = 18H4(Bp + ρp)2

ρ2pϵ2 log(24H2|S||A|2HBp + 2 max(H, ρp)
ρpϵδ

) (42)

then, we have with probability 1 − δ,

|V̂ π
j,1(s) − V π

j,1(s)| ≤ ϵ/3 (43)

The rest of the proof is the same as in the proof of Theorem 1. Hence, we omit it here.

F Technical Lemmas

Lemma 4. Xu et al. (2023) For the total-variation uncertainty set, for any V ∈ V, and fix any
(h, s, a) ∈ [H] × S × A. For any θ, δ ∈ (0, 1), and ρ > 0, we have with probability 1 − δ,

|LPh,s,a
V − LP̂h,s,a

V | ≤
√

H2 log(4H/(θδ))
2N

+ 2θ (44)

where N is the number of samples used to approximate P 0
h,s,a.

Note that θ is the covering number for the value function.
Lemma 5. Xu et al. (2023)For Chi-squared uncertainty set, fix any V ∈ V, and fix any (h, s, a) ∈
[H] × S × A. For any θ, δ ∈ (0, 1), and ρ > 0, we have with probability 1 − δ,

|LPh,s,a
V − LP̂h,s,a

V | ≤
√

2C2
ρH

(Cρ − 1)2
√

N

√
log(2(1 + CρH/(θ(Cρ − 1))

δ
) + 1) (45)

where N is the number of samples used to approximate P 0
h,s,a.
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Lemma 6. Xu et al. (2023) For KL-divergence uncertainty set, fix any V ∈ V, and fix any
(h, s, a) ∈ [H] × S × A. For any θ, δ ∈ (0, 1), and ρ > 0, we have with probability 1 − δ,

|LPh,s,a
V − LP̂h,s,a

V | ≤ H

ρ
exp(θH) exp(H/ζ)

√
log(4/θζδ)

2N
(46)

where N is the number of samples used to approximate P 0
h,s,a. ζ problem dependent parameter and

independent of N .
Lemma 7. Xu et al. (2023) For Wasserstein distance uncertainty set, for any V ∈ V, and fix any
(h, s, a) ∈ [H] × S × A. For any θ, δ ∈ (0, 1), and ρ > 0, we have with probability 1 − δ,

|LPh,s,a
V − LP̂h,s,a

V | ≤ H(Bp + ρp)
ρp

√√√√ log(2HBp + 2 max(H, ρp)
ρpθδ

)

2N
+ 2θ (47)

where N is the number of samples used to approximate P 0
h,s,a.

F.1 Efficient computation of robust value function for different uncertainty metrics

In this section, we state the results from Xu et al. (2023) and Yang & Wang (2019) for equivalent
dual representation for worst-case value function evaluation for different uncertainty sets.
Proposition 2. For total variation distance metric, and any value function Vj, j = r, g

LPT V
h,s,a

Vj(s) = − inf
η∈[0,2H/ρ]

Es′∼P 0
h

(·|s,a)[(η − Vj(s′))+] + ρ(η − inf
s′

Vj(s′))+ − η (48)

Proposition 3. For χ-squared uncertainty set, for any value function V ∈ V, we have

LPχ
h,s,a

V = − inf
η∈R

{
√

ρ + 1
√
Es′∼P 0

h
(·|s,a)(V (s′) − η)2} − η (49)

The expression within the infimum is convex in η, and thus can be efficiently solved.
Proposition 4. For KL-divergence uncertainty set, and for any value function V ∈ V, we have

LPKL
h,s,a

V = − inf
η∈[0,H/ρ]

{
ηρ + log

(
Es′∼P 0

h
(·|s,a)[exp(−V (s′)/η)]

)}
(50)

Again the expression within the infimum is convex, and thus, can be efficiently solved.
Proposition 5. For Wasserstein uncertainty set, and for any V ∈ V, we have

LPW
h,s,a

V = − inf
η∈[0,H/ρp]

(
ηρp − Es′∼P 0

h,s,a
[inf

s′′
{V (s′′) + ηdp(s′′, s′)}]

)
(51)

Again it is a convex optimization problem.


