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Abstract

There is a concerted effort to build domain-general artificial
intelligence in the form of universal neural network models
with sufficient computational flexibility to solve a wide va-
riety of cognitive tasks but without requiring fine-tuning on
individual problem spaces and domains. To do this, mod-
els need appropriate priors and inductive biases, such that
trained models can generalise to out-of-distribution exam-
ples and new problem sets. Here we provide an overview of
the hallmarks endowing biological neural networks with the
functionality needed for flexible cognition, in order to estab-
lish which features might also be important to achieve similar
functionality in artificial systems. We specifically discuss the
role of system-level distribution of network communication
and recurrence, in addition to the role of short-term topo-
logical changes for efficient local computation. As machine
learning models become more complex, these principles may
provide valuable directions in an otherwise vast space of pos-
sible architectures. In addition, testing these inductive biases
within artificial systems may help us to understand the bio-
logical principles underlying domain-general cognition.

Introduction
An aspiration of machine learning research is not just to cre-
ate architectures capable of achieving increasingly high lev-
els of task-specific performance, but the genesis of models
able to achieve good performance across different domains
simultaneously. Recent striking advances in network mod-
els have enabled them to solve many problems within a do-
main with just one architecture (Brown et al. 2020; Webb,
Holyoak, and Lu 2022; Srivastava et al. 2022). Additionally,
networks are increasingly acquiring multi-modal capabili-
ties (Xu, Zhu, and Clifton 2022; Akkus et al. 2023) and learn
in open-ended task environments (Fan et al. 2022; Adap-
tive Agent Team et al. 2023). These advances provide nec-
essary building blocks for models capable of domain gen-
eral cognition, as observed in intelligent human behaviour.
Crucially, these new models may be able to go beyond sim-
ple generalisation to unseen data (Hardt and Recht 2022);
they may be able to learn new abilities and directly abstract
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them, allowing for generalisation across entire input modal-
ities and the reuse of skills learned in one domain to sup-
port learning in entirely new domains. Indeed, this parallels
how children learn over the course of their own development
(Kievit 2020). However, the extent to which current models
can achieve this remains limited.

For decades, neuroscientists have been focused on iden-
tifying core features of the brain’s structural and functional
architecture. This allows us to connect our knowledge of hu-
man neural architectures that enable flexible domain-general
cognition (Duncan, Assem, and Shashidhara 2020), with
ideas on how we hope to achieve similar capabilities in arti-
ficial systems. Here we provide an overview of mechanisms
underlying domain-general cognition in biological neural
networks to derive which features of the systems-level ar-
chitecture may be important to build flexible multimodal
problem-solving capabilities into artificial systems. Previ-
ously published reviews have already outlined which cogni-
tive ideas and modules might be essential (Russin, O’Reilly,
and Bengio 2020; Goyal and Bengio 2022; VanRullen and
Kanai 2021; LeCun 2022; Lake et al. 2017). We aim to ex-
pand these cognitive perspectives by providing a brief in-
troduction to the system-level network structure underly-
ing domain-general cognition in the brain, highlighting what
structural optimisation processes we think could be used in
machine learning models. In this, our goal is not to hard-
code brain-like anatomy into a network model’s architec-
ture. Instead, we aim to identify computationally beneficial
structural motifs which can be soft-coded into the network’s
learning process to serve as helpful inductive biases or pri-
ors. As we see increasingly complex machine learning mod-
els being built as a combination of functional submodules
(Pfeiffer et al. 2023; Akkus et al. 2023), we believe that the
system-level priors we outline may provide helpful guidance
to coordinate information flow in the most complex artificial
neural networks (Goyal et al. 2022).

A core domain-general network in the brain
The human brain, as with many complex physical systems,
is economically organised to balance numerous competing
objectives – including metabolic, computational, and ge-
ometric (Cajal et al. 1995; Bullmore and Sporns 2012).



These objectives have a strong influence on the topology
of the brain’s network; not only is it energetically expen-
sive to fully build and sustain neural connections (Raichle
and Gusnard 2002; Tomasi, Wang, and Volkow 2013) but it
is highly costly to constantly communicate signals between
neurons and assemblies of neurons, particularly over longer
distances (Levy and Calvert 2021). Owing to its size, com-
plexity, and these economic considerations, it is infeasible
for each neural region to communicate directly with every
other region equivalently (Horvát et al. 2016). To avoid this
problem, evolutionary pressures have guided the brain to-
wards a modularised network, with modules of very strong
local connectivity and high-connection hub nodes connect-
ing across these modules (Suarez et al. 2022; Luppi et al.
2022). Networks with this structure are described as hav-
ing “small-world” characteristics, defined as having concur-
rently a highly clustered topology and short path lengths,
meeting a balance between totally random versus regular
networks (Bassett and Bullmore 2006, 2017). Small-world
structures are commonly found in distributed systems under
resource constraints, showing patterns of locally specialised
computation alongside good propagation of signals within
and between hubs. In brains, this locality of computations
results in concentration of specific cognitive function within
specific anatomical regions. Specialised regions act as foci
for cognitive functions like sensory processing, semantic
knowledge, and language abilities (Kaas and Collins 2001;
Ralph et al. 2017; Skeide and Friederici 2016). These are
likely semi-specialised, meaning that they mostly focus on
unique local computation but also partially integrate mean-
ingful information across areas and domains (Atilgan et al.
2018; Steinmetz et al. 2019).

This picture of a functionally modular system becomes
more nuanced when we consider human domain-general
cognition. As the tasks to be solved become more compli-
cated, the brain increasingly abandons solely relying on its
specialised modular structure. Instead, neural architectures
must increasingly integrate signals across modules (Power
et al. 2013) and rely on its Multiple Demand system (MD)
(Duncan, Assem, and Shashidhara 2020; Assem et al. 2020).
This is a core network in the brain (depicted in Figure 1A)
which is highly active when a complex task of any nature
is solved. It is thought that the MD system serves as a cen-
tral processing unit, receiving information from more spe-
cialised input notes, to compress it into meaningful abstract
representations on which it can run problem solving algo-
rithms (schematic shown in Figure 1B). It also plays a cen-
tral role in controlling information in other brain regions, us-
ing knowledge and complex analysis of the situation to con-
trol thought processes in specialised brain regions through
top-down control processes (Duncan, Assem, and Shashid-
hara 2020; Deco, Vidaurre, and Kringelbach 2021; Dehaene,
Kerszberg, and Changeux 1998; Miller and Cohen 2001;
Norman and Shallice 1986). Ultimately it is this central pro-
cessing circuit that likely gives the primate brain the ability
to have abstract thoughts used to solve complex problems to
reach long-term goals.

What are the key principles underpinning this system? In
the following we will discuss three computational / struc-

tural motifs which vary across the hierarchy from specialised
regions to the integrative MD system, which allow the net-
work to show domain-general cognitive skills. These are:
Recurrence, communicability, and short-term topological
changes. We will review each of these in terms of their rele-
vance in biological networks before then discussing possible
directions for artificial implementations, in the context of re-
lated existing implementations.

Computational motifs supporting
domain-general cognition

Global recurrence
Computations in functionally more specialised regions de-
pend strongly on a feed-forward structure that extracts
increasingly abstract features from sensory inputs (Grill-
Spector and Malach 2004; Hackett 2011; Mashour et al.
2020). Much work shows how this process can be modelled
using an artificial feed-forward network (Schrimpf et al.
2018; Lindsay 2021). While there is also recurrent process-
ing in these specialised systems (Grill-Spector and Malach
2004; Hackett 2011; Kietzmann et al. 2019), the recurrent
loops in these systems are likely very local and cover rela-
tively short distances and timescales. This means that a sig-
nal sent from a node will only travel a short path before ar-
riving back at its starting point. As we move towards more
integrative and domain-general cognition, recurrent connec-
tions become a hallmark feature of the brain’s systems-level
design. The frontal cortex, where a large part of the MD sys-
tem lies, is often thought of as implementing recurrent loops
for abstract information processing (Mashour et al. 2020;
Miller and Buschman 2007). Importantly, these loops not
only process information locally but also broadcast infor-
mation widely across the brain, influencing and controlling
computations in specialised regions. It does so by not only
having local recurrent connections within the circuit but also
many loops spanning large distances in the brain, reaching
out to nodes which lie far outside the core (Miller and Co-
hen 2001; Munakata et al. 2011; Mashour et al. 2020; De-
haene, Kerszberg, and Changeux 1998). With nodes widely
distributed over the cortex, coupled to strong communica-
tion between these nodes, the MD system is well positioned
for widespread integration and communication. A large set
of recursive processing loops with varied scales in terms of
time and spatial distance likely facilitate the MD system’s
abstract domain-general processing and deliver the ability to
coordinate computation in a large distributed system (Dun-
can, Assem, and Shashidhara 2020).

The use of recurrent loops in artificial neural networks
has a long history (Schmidhuber 2022). They proved to be
useful tools for processing and predicting time series data
but also suffered from problems of vanishing gradient and
computational complexity when capturing long-range de-
pendencies in the input (Hochreiter and Schmidhuber 1997;
Vaswani et al. 2017; Fawaz et al. 2019). To avoid these is-
sues, feed-forward based architectures can be used as sub-
stitutes (Fawaz et al. 2019) and various attention-based ar-
chitectures have recently been very effective in capturing
dependencies in language time courses and multiple other



Figure 1: A - The cortical areas forming the core Multiple Demand system in the human brain, from (Assem et al. 2020). B –
Schematic depiction of a systems-level view of the brain. The Multiple Demand system lies at the core of information processing
in the brain, exchanging inputs with more specialised regions such as language, memory, sensory and social processing. Due
to its central position, the MD core can influence computations in multiple specialised areas by broadcasting information it
constructed from integrating across domains back to specialised regions, e.g., influencing perception by abstract understanding
of the environment / situation at large. Refer to (Assem et al. 2020) for detailed anatomical perspective of the MD system’s core
and penumbra regions not discussed here.

modalities (Vaswani et al. 2017; Tay et al. 2022). This works
by inputting an entire time series in a single time step so
that the attention mechanism learns the relationship between
timesteps without needing to hold past time points in mem-
ory. While these architectures likely can be good substitutes
for the local recurrent loops, we believe that ultimately, re-
searchers are going to have to find a way to also introduce
global recurrent loops to arrive at domain-general cognition
in artificial systems. Approaches like weight-sharing in deep
models paired with skip-connections may allow us to mimic
a recurrent process in a regular forward pass but it seems
likely that alternative ways will be needed to allow abstract
multimodal knowledge to be broadcasted through the net-
work to inform distributed computations. This seems even
more timely now that models generate impressive responses
to inputs such as images or language (Brown et al. 2020;
Rombach et al. 2022), but struggle to be constrained by
meaningful world models (e.g., intuitive physics, (Lake et al.
2017)). Instead, researchers rely on human feedback signals
in the training pipeline (Ouyang et al. 2022). As such, ma-
chine learning models may need to be adapted to allow for
the introduction of a global recurrent architecture similar to
the MD system.

Communicability in large scale networks

For any complex network which is concerned with process-
ing information, it is of central importance to optimise how
signals are communicated between the nodes within the net-
work (Estrada, Hatano, and Benzi 2012). This becomes an
increasingly challenging problem as a network grows, leav-
ing nodes to only be able to communicate with a smaller
proportion of the network. This limited communication ca-
pacity naturally leads to variation in terms of how much

information is exchanged between different pairs of nodes
across the network. This results in a very real challenge
for any large-scale network system to optimise its struc-
ture to integrate information most effectively and efficiently
across its functional hubs. This is constrained, ultimately,
by the topological arrangement of the network. The idea of
how much information is exchanged between nodes is cap-
tured by the concept of communicability (Estrada, Hatano,
and Benzi 2012; Crofts and Higham 2009; Srivastava et al.
2020) and is a highly effective framework to understand
how the structure of the brain guides function (Goñi et al.
2014; Seguin, Razi, and Zalesky 2019; Betzel et al. 2022;
Griffa et al. 2022; Avena-Koenigsberger, Misic, and Sporns
2018; Avena-Koenigsberger et al. 2019; Laughlin and Se-
jnowski 2003). Specifically, across the brain’s complex net-
work, regions vary in terms of how well they can com-
municate to other regions, and the macro-scale dynamics
and capabilities of the brain will be determined by this in-
terareal communication. This heterogeneous communicabil-
ity becomes especially interesting when one considers how
system-level communication link to domain-general cogni-
tion. In the previous section, we described how more spe-
cialised regions tend to have a mostly feed-forward structure
with some local recurrence. As such, information tends to
be communicated locally between adjacent and functionally
related regions. This changes as information approaches the
domain-general MD system with its wider communicative
influence. In its central position, the MD system not only
receives information from all over the brain but utilises its
widespread connectivity as global recurrent loops to broad-
cast processed information to a distributed set of brain re-
gions (Mashour et al. 2020; Duncan, Assem, and Shashid-
hara 2020; Dehaene, Kerszberg, and Changeux 1998). On



the systems-level perspective of the brain, a given region’s
communicative structure heavily depends on its functional
role and hence its degree of specialisation.

The concept of heterogeneous communicability between
regions and modules of the brain has not been particularly
relevant in artificial neural network architectures which were
state-of-the-art until very recently. Take convolutional neu-
ral networks (CNNs) as an example. In CNNs, which dom-
inated processing of visual information for several years
(Schmidhuber 2022), information is mostly passed along
from layer to layer in a relatively even fashion. This means
regions do not stick out has having a particular communica-
tive ability (though see work like (Shrivastava et al. 2017)
for interesting communicative extensions of CNNs). How-
ever, this is changing with new architectures which have
been growing in scale (Kaplan et al. 2020). Especially for
network models which utilise multiple modalities, architec-
tures have increasingly been created by combining exist-
ing pre-trained models into more complex modular archi-
tectures (Rombach et al. 2022; Akkus et al. 2023). Once we
build complex system like these, it becomes increasingly
important to not only think about which models to com-
bine, but also how to combine them. This means that the
communicability between parts of the network can be op-
timised to achieve better information flow between compo-
nents and hence improve performance. A first step in this di-
rection was made by a multimodal transformer model which
outperformed prior networks by introducing a set of spe-
cial bridge layers to connect two modality specific models.
These bridge layers allow the model to learn a communica-
tive structure in which abstract semantic knowledge is grad-
ually merged across modalities. This increased performance
in several relevant benchmark tasks (Xu et al. 2023). In addi-
tion, other implementations have shown that bringing ideas
from highly communicative small world graph structures
into a Transformer’s attention mechanism can help with pro-
cessing longer sequences (Zaheer et al. 2021). In simple
recurrent neural networks, we also have seen that system-
level communicability can easily be used as a regularisation
term to optimise the communicative structure of a sparsely
connected network to arrive at a network with many brain-
like structural and functional properties (Achterberg et al.
2022a). As network models grow in complexity and increas-
ingly make use of composite structures which combine sub
models into larger networks, it will be important to fine tune
the communicative structure of a network. Having good pri-
ors and inductive biases for these linkages can help circum-
vent problems arising from adding the extensive set of con-
nections it would require to fully connect multiple models
which already have a complex structure themselves. Follow-
ing this line of thinking, we believe that making use of work
on communicability and how it can be optimised in com-
plex networks will be of central importance to inform model
building on a systems-level.

Short-term topological changes
The discussion so far has focused on how the systems-level
network structure of the brain and the unique communicative
structure of its MD system play a key role in the domain-

general cognition we see in humans. An important element
of its flexible and multimodal information processing ca-
pabilities is how the MD system’s network structure is not
fully fixed but often rapidly changing. This means that while
the MD system is running multimodal computations inter-
nally, the connections between its neurons are in continu-
ous flux. As such, the general problem-solving ability of
this network is assumed to be due to its inherent flexibil-
ity. In it, local computations are organised by rapid changes
to the network structure (Stokes 2015; Tang et al. 2022;
Garcı́a-Cabezas et al. 2017), often called short-term plas-
ticity. This allows the network to continuously reassign its
neurons and modules new computational roles while solving
complex sequential problems (Duncan 2001; Miller and Co-
hen 2001; Crowe, Averbeck, and Chafee 2010; Meyers et al.
2008; Achterberg et al. 2022b). Rapid topological changes
are likely induced by local learning rules which supplement
the more long-term optimisation of the global network struc-
ture. These mechanisms likely underly a multitude of com-
plex abilities of the human brain (Assem et al. 2020; Duncan
2010) and some of them strongly overlap with timely discus-
sions in machine learning. As one example, research points
to the fact that the MD system uses its short-term dynam-
ics for attentional control, to focus on information which is
relevant for the current operation (Sakagami and Niki 1994;
Rainer, Asaad, and Miller 1998; Buschman et al. 2012) and
break complex pieces of information down into simple com-
putable bits (Duncan, Assem, and Shashidhara 2020) – a
function which has played a central role in machine learning
discussion recently (Shrivastava et al. 2017; Lindsay 2020).
Another example is the MD system’s ability to construct ab-
stract representations of problems (Wallis, Anderson, and
Miller 2001) to then tie observed stimuli rapidly to their
roles in this abstract problem representation (Duncan, As-
sem, and Shashidhara 2020; Achterberg et al. 2022b), a phe-
nomenon going by the name of variable binding (Smolensky
1990) or meta-learning (Botvinick et al. 2019). These are
very related to few-shot learning (Brown et al. 2020) and in-
context learning abilities (von Oswald et al. 2022) observed
in large Transformer models.

As we already see foundations of these skills emerging
in currently existing architectures it is reasonable to believe
that they will continue to improve purely by scaling existing
architectures (Kaplan et al. 2020). In this case models would
use their unit activations to implement rapid in-context
learning and it has been shown that this can work well with-
out any short-term synaptic changes (Wang et al. 2018). In
fact, even in the brain many complex computations are likely
facilitated due to dynamics of the network activations which
do not necessarily have to rely on changes in the network
structure (Vyas et al. 2020). But once computations reach
the scale of using network-wide attention processes to con-
trolling the flow of information across the entire brain net-
work and flexibly combining task modules to solve the task
at hand (Duncan, Assem, and Shashidhara 2020; Buschman
and Miller 2014; MacDowell et al. 2023), rapid topologi-
cal network changes might be necessary for domain-general
computations (Stokes 2015; Duncan, Assem, and Shashid-
hara 2020). Reaching this level of flexible and multimodal



cognition might not be possible in current static architec-
tures and hence might require us to allow models to mod-
ify some of their connections in the moment through lo-
cal learning rules. Some work in smaller network models
is highlighting how local learning mechanisms can com-
plement network-wide optimisation processes (Whittington
et al. 2020; Dekker, Otto, and Summerfield 2022) with rel-
evant comparisons to Transformer implementations (Whit-
tington, Warren, and Behrens 2022). Other examples point
to how local learning rules and single neuron-based opti-
misation principles by themselves can be sufficient to solve
meaningful cognitive tasks (Masse et al. 2019; Falandays
et al. 2023). In addition, we have seen how standard net-
work optimisers can be updated with certainty judgements
to support rapid relational learning (Nelli et al. 2023). If we
could scale these rapid learning dynamics to large Trans-
former models, this might allow models to flexibly combine
abstract task structures with capabilities learned in the past,
to flexibly apply skills across modalities in a truly domain-
general way. One research direction which might support
rapid learning processes is work on using local loss func-
tions and learning mechanisms to substitute costly global
optimisation processes (Löwe, O’Connor, and Veeling 2020;
Ren et al. 2023; Hinton 2022). Combining these local opti-
misation processes with more wide-spread recurrent loops
and an optimised communicative structure in large networks
might bring us closer to observing flexible domain-general
cognition in artificial neural networks.

Conclusion
We believe that in the pursuit of building artificial intel-
ligence which is able to engage in domain-general prob-
lem solving, a systems-level view of the human brain will
provide useful guidance (Hassabis et al. 2017; Zador et al.
2023). We believe this will become increasingly relevant as
AI systems become more and more complex. The topics of
recurrence, communication and rapid structural changes are
particularly relevant at the current point due to their central
role in theories of domain-general cognition in the brain and
their links to existing works in neural network models. As
such, they might be key drivers behind efficient and flex-
ible information processing in large multimodal networks.
But we do not believe that any of these features should be
fully hard-coded – instead we should think of them as use-
ful priors and inductive biases which can guide complex
learning processes. Ultimately, bringing these features into
machine learning models opens up the perspective of not
only improving the performance of artificial neural networks
but also for us to understand which core principles underly
domain-general and multimodal computations in neural net-
works - may these be biological or artificial.
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Pfeiffer, J.; Ruder, S.; Vulić, I.; and Ponti, E. M. 2023. Mod-
ular Deep Learning. ArXiv:2302.11529 [cs].
Power, J. D.; Schlaggar, B. L.; Lessov-Schlaggar, C. N.; and
Petersen, S. E. 2013. Evidence for Hubs in Human Func-
tional Brain Networks. Neuron, 79(4): 798–813.



Raichle, M. E.; and Gusnard, D. A. 2002. Appraising the
brain’s energy budget. Proceedings of the National Academy
of Sciences, 99(16): 10237–10239. Publisher: Proceedings
of the National Academy of Sciences.
Rainer, G.; Asaad, W. F.; and Miller, E. K. 1998. Selective
representation of relevant information by neurons in the pri-
mate prefrontal cortex. Nature, 393(6685): 577–579. Num-
ber: 6685 Publisher: Nature Publishing Group.
Ralph, M. A. L.; Jefferies, E.; Patterson, K.; and Rogers,
T. T. 2017. The neural and computational bases of seman-
tic cognition. Nature Reviews Neuroscience, 18(1): 42–55.
Number: 1 Publisher: Nature Publishing Group.
Ren, M.; Kornblith, S.; Liao, R.; and Hinton, G.
2023. Scaling Forward Gradient With Local Losses.
ArXiv:2210.03310 [cs].
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-Resolution Image Synthesis with Latent
Diffusion Models. ArXiv:2112.10752 [cs].
Russin, J.; O’Reilly, R. C.; and Bengio, Y. 2020. DEEP
LEARNING NEEDS A PREFRONTAL CORTEX. “Bridg-
ing AI and Cognitive Science” (ICLR 2020).
Sakagami, M.; and Niki, H. 1994. Encoding of behavioral
significance of visual stimuli by primate prefrontal neurons:
relation to relevant task conditions. Experimental Brain Re-
search, 97(3): 423–436.
Schmidhuber, J. 2022. Annotated History of Modern AI and
Deep Learning. ArXiv:2212.11279 [cs].
Schrimpf, M.; Kubilius, J.; Hong, H.; Majaj, N. J.; Rajal-
ingham, R.; Issa, E. B.; Kar, K.; Bashivan, P.; Prescott-Roy,
J.; Schmidt, K.; Yamins, D. L. K.; and DiCarlo, J. J. 2018.
Brain-Score: Which Artificial Neural Network for Object
Recognition is most Brain-Like? BioRxiv: 407007 Section:
New Results.
Seguin, C.; Razi, A.; and Zalesky, A. 2019. Inferring neural
signalling directionality from undirected structural connec-
tomes. Nature Communications, 10(1): 4289. Number: 1
Publisher: Nature Publishing Group.
Shrivastava, A.; Sukthankar, R.; Malik, J.; and Gupta, A.
2017. Beyond Skip Connections: Top-Down Modulation for
Object Detection. ArXiv:1612.06851 [cs].
Skeide, M. A.; and Friederici, A. D. 2016. The ontogeny
of the cortical language network. Nature Reviews Neuro-
science, 17(5): 323–332. Number: 5 Publisher: Nature Pub-
lishing Group.
Smolensky, P. 1990. Tensor product variable binding and the
representation of symbolic structures in connectionist sys-
tems. Artificial Intelligence, 46(1): 159–216.
Srivastava, A.; Rastogi, A.; Rao, A.; Shoeb, A. A. M.;
Abid, A.; Fisch, A.; Brown, A. R.; Santoro, A.; Gupta, A.;
Garriga-Alonso, A.; Kluska, A.; Lewkowycz, A.; Agarwal,
A.; Power, A.; et al. 2022. Beyond the Imitation Game:
Quantifying and extrapolating the capabilities of language
models. ArXiv:2206.04615 [cs, stat].
Srivastava, P.; Nozari, E.; Kim, J. Z.; Ju, H.; Zhou, D.;
Becker, C.; Pasqualetti, F.; Pappas, G. J.; and Bassett, D. S.

2020. Models of communication and control for brain net-
works: distinctions, convergence, and future outlook. Net-
work Neuroscience, 4(4): 1122–1159.
Steinmetz, N. A.; Zatka-Haas, P.; Carandini, M.; and Harris,
K. D. 2019. Distributed coding of choice, action and engage-
ment across the mouse brain. Nature, 576(7786): 266–273.
Number: 7786 Publisher: Nature Publishing Group.
Stokes, M. G. 2015. ‘Activity-silent’ working memory in
prefrontal cortex: a dynamic coding framework. Trends in
Cognitive Sciences, 19(7): 394–405.
Suarez, L. E.; Yovel, Y.; van den Heuvel, M. P.; Sporns, O.;
Assaf, Y.; Lajoie, G.; and Misic, B. 2022. A connectomics-
based taxonomy of mammals. eLife, 11: e78635. Publisher:
eLife Sciences Publications, Ltd.
Tang, H.; Riley, M. R.; Singh, B.; Qi, X.-L.; Blake, D. T.;
and Constantinidis, C. 2022. Prefrontal cortical plasticity
during learning of cognitive tasks. Nature Communications,
13(1): 90. Number: 1 Publisher: Nature Publishing Group.
Tay, Y.; Dehghani, M.; Bahri, D.; and Metzler, D. 2022. Ef-
ficient Transformers: A Survey. ACM Computing Surveys,
55(6): 109:1–109:28.
Tomasi, D.; Wang, G.-J.; and Volkow, N. D. 2013. Energetic
cost of brain functional connectivity. Proceedings of the Na-
tional Academy of Sciences, 110(33): 13642–13647. Pub-
lisher: Proceedings of the National Academy of Sciences.
VanRullen, R.; and Kanai, R. 2021. Deep learning and the
Global Workspace Theory. Trends in Neurosciences, 44(9):
692–704.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.
von Oswald, J.; Niklasson, E.; Randazzo, E.; Sacramento,
J.; Mordvintsev, A.; Zhmoginov, A.; and Vladymyrov, M.
2022. Transformers learn in-context by gradient descent.
ArXiv:2212.07677 [cs].
Vyas, S.; Golub, M. D.; Sussillo, D.; and Shenoy, K. V.
2020. Computation Through Neural Population Dynamics.
Annual Review of Neuroscience, 43(1): 249–275. eprint:
https://doi.org/10.1146/annurev-neuro-092619-094115.
Wallis, J. D.; Anderson, K. C.; and Miller, E. K. 2001. Sin-
gle neurons in prefrontal cortex encode abstract rules. Na-
ture, 411(6840): 953–956. Number: 6840 Publisher: Nature
Publishing Group.
Wang, J. X.; Kurth-Nelson, Z.; Kumaran, D.; Tirumala, D.;
Soyer, H.; Leibo, J. Z.; Hassabis, D.; and Botvinick, M.
2018. Prefrontal cortex as a meta-reinforcement learning
system. Nature Neuroscience, 21(6): 860–868. Number: 6
Publisher: Nature Publishing Group.
Webb, T.; Holyoak, K. J.; and Lu, H. 2022. Emer-
gent Analogical Reasoning in Large Language Models.
ArXiv:2212.09196 [cs].
Whittington, J. C. R.; Muller, T. H.; Mark, S.; Chen, G.;
Barry, C.; Burgess, N.; and Behrens, T. E. J. 2020. The
Tolman-Eichenbaum Machine: Unifying Space and Rela-
tional Memory through Generalization in the Hippocampal
Formation. Cell, 183(5): 1249–1263.e23.



Whittington, J. C. R.; Warren, J.; and Behrens, T. E. J. 2022.
Relating transformers to models and neural representations
of the hippocampal formation. ArXiv:2112.04035 [cs, q-
bio].
Xu, P.; Zhu, X.; and Clifton, D. A. 2022. Multimodal Learn-
ing with Transformers: A Survey. ArXiv:2206.06488 [cs].
Xu, X.; Wu, C.; Rosenman, S.; Lal, V.; Che, W.; and
Duan, N. 2023. BridgeTower: Building Bridges Be-
tween Encoders in Vision-Language Representation Learn-
ing. ArXiv:2206.08657 [cs].
Zador, A.; Escola, S.; Richards, B.; Ölveczky, B.; Bengio,
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