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Abstract
Surface and volume meshes of 3D anatomical
structures are widely used in biomedical engi-
neering and medicine. The advent of machine
learning enabled viable applications which come
with the unique challenge of applying deep neural
networks to large 3D meshes. In this work, we
scale the recently introduced geometric algebra
transformers (GATr) to meshes with hundreds of
thousands of vertices by projection to a coarser set
of vertices via cross-attention. The resulting neu-
ral network inherits GATr’s equivariance under
rotation, translation and reflection, which are de-
sirable properties when dealing with 3D objects.

1. Introduction
The application of machine learning to 3D meshes of
anatomical structures, e.g. in cardiovascular hemodynamics
modelling, has been an ongoing area of research (Arzani
et al., 2022; Li et al., 2021). Hemodynamics strongly de-
pend on up- and downstream anatomy and their estimation
requires global context across the mesh. Several previous
works have focussed on graph neural networks (GNN) to
estimate hemodynamic quantities (Suk et al., 2024a; 2023).
However, GNNs are known to exhibit over-squashing (Alon
& Yahav, 2021) and thus can be inefficient at accummulating
the necessary receptive fields within large 3D meshes. Partly
inspired by the success of large language models, transform-
ers (Vaswani et al., 2017) have moved into the attention of
the biomedical research community (Sarasua et al., 2021;
Dahan et al., 2023; Suk et al., 2024b). Self-attention models
global interactions between all mesh vertices and optimised
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Figure 1. Cross attention between mesh vertices (keys kh, values
vh) and sub-sampled points (queries qh). Inputs are embedded in
G(3, 0, 1). Attention scores determine a transformation from the
fine to the coarse resolution. Output is in coarse resolution.

implementations are available with linear memory complex-
ity (Rabe & Staats, 2021).

Clifford and geometric algebras have been shown to be a
viable inductive bias in neural networks for a multitude of
tasks including fluid modelling (Brandstetter et al., 2023;
Ruhe et al., 2023a;b; Brehmer et al., 2023). Ruhe et al.
(2023b) and Brehmer et al. (2023) introduced neural net-
work layers that are equivariant under transformations of the
family of symmetry groups Pin(α, β, γ) which capture all
Euclidean symmetries (rotation, translation and reflection).
Group equivariance has been shown to increase accuracy
and data efficiency for cardiovascular hemodynamics esti-
mation (Suk et al., 2024a; 2023).

3D meshes of patient anatomy should be understood as
artefacts rather than features of the underlying data. The
mesh connectivity and granularity are usually owed to the
downstream application (e.g. fluid simulation) and rarely
indicative of biomedical mechanisms. Large biomedical ge-
ometric algebra transformer (LaB-GATr) (Suk et al., 2024b)
acknowledges this by introducing geometric tokenisation of
the input mesh to a reduced sequence of tokens. This addi-
tionally enables control over the neural network’s memory
complexity which depends on the number of tokens. How-
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ever, LaB-GATr’s tokenisation uses message passing layers
which are by design restricted to accumulating local context.
In this work we propose an extension to LaB-GATr by re-
placing its tokenisation by projection, via cross-attention, of
the input mesh onto a coarse set of vertices, sub-sampled via
farthest point sampling. This leads to matched performance
on one and superior performance on another dataset in the
context of cardiovascular hemodynamics estimation. Our
implementation is available online.1

Related works Jaegle et al. (2022) proposed a trans-
former model that encodes arbitrary input data via cross-
attention. This is similar to our model with the difference
that we construct the input queries and thus “latent arrays”
via sub-sampling of 3D geometry which links them to 3D
space. Wang et al. (2023) propose a similar model that uses
sub-sampling for the output queries but stil uses generic
“latent arrays” that are not linked to 3D space. However, this
geometric context might be relevant for our model because
it operates in geometric algebra. In contrast to both above
works, LaB-GATr and our extension are E(3)-equivariant.

2. Geometric algebra
Clifford algebras, also known as geometric algebras, are
an alternative to the ubiquitous linear algebra. Geometric
algebra provides far simpler calculus when dealing with
and manipulating geometric objects. While we will not for-
mally introduce geometric algebra here2, we will motivate
basic geometric calculus. A geometric algebra G(α, β, γ) is
characterised by the signature (α, β, γ) of its bilinear form
(used in the formal introduction). In this paper (compare
(Suk et al., 2024b)), we use the projective geometric algebra
G(3, 0, 1) in which a homogeneous coordinate is added to
R3 in order represent translations in 3D as linear map. At
the core of geometric algebra lies the introduction of an
associative (but not commutative) geometric product of vec-
tors y, z, simply denoted as yz. Given an orthogonal basis
{ei}i, the following holds:

e0e0 = 0, eiei = 1 (i 6= 0), eiej = −ejei (i 6= j).

Elements x ∈ G(3, 0, 1), called multivectors, are composed
of all possible linearly independent geometric products:

e0

e0, e1, e2, e3

e0e1, e0e2, e0e3, e1e2, e1e3, e2e3

e0e1e2, e0e1e3, e0e2e3, e1e2e3

e0e1e2e3

1github.com/sukjulian/lab-gatr
2We refer the interested reader to (Brandstetter et al., 2023;

Ruhe et al., 2023b;a; Brehmer et al., 2023)

which span a 16-dimensional vector space and can be equiv-
alently written as

x = ( xs︸︷︷︸
scalar

, x0, x1, x2, x3︸ ︷︷ ︸
vectors

, x01, x02, x03, x12, x13, x23︸ ︷︷ ︸
bivectors

,

x012, x013, x023, x123︸ ︷︷ ︸
trivectors

, x0123︸ ︷︷ ︸
pseudoscalar

).

Brehmer et al. (2023) provide a look-up table of how to em-
bed common geometric objects, such as points and planes,
as multivectors.

3. Methods
3.1. Neural network architecture

We consider an extension to LaB-GATr (Suk et al., 2024b)
by replacing its message-passing pooling module by cross-
attention. We embed the nfine mesh vertices as multivectors
which are reduced to ncoarse point embeddings by the cross-
attention. Afterwards, GATr (Brehmer et al., 2023) updates
these with geometric self-attention. As in LaB-GATr, a
learned interpolation block then recovers the original mesh
resolution nfine. To differentiate our model and LaB-GATr,
we here denote ours LaB-GATr++.

3.2. Cross-attention

Given an embedding X(0)
fine ∈ Rnfine×c×16 of the mesh ver-

tices, we compute an equidistantly spaced, coarse embed-
ding X(0)

coarse ∈ Rncoarse×c×16 via farthest point sampling. We
project the fine-scale embedding onto the coarse scale using
a multi-head cross-attention block:

a
(0)
h = Softmax

(
qh(X

(0)
coarse)kh(X

(0)
fine)

T

√
8c

)
vh(X

(0)
fine)

A(0) = X(0)
coarse + ξ

(
Concat

h
a
(0)
h

)
X(1) = A(0) + φ(A(0)).

where qh, kh, vh are vertex-wise permutation-equivariant
layers consisting of layer normalisation composed with
learned linear maps introduced in (Brehmer et al., 2023).
Attention heads, indexed by h, are combined with a learned
linear map ξ and feature updates are computed with a geo-
metric nonlinear layer φ. For discussion of the scale factor√
8c, see (Brehmer et al., 2023). The attention layer is visu-

alised in Figure 1. The attention matrix a(0)h ∈ Rncoarse×nfine

constitutes a transformation map from the fine to the coarse
resolution. Cross-attention blocks are equivariant under ro-
tations, translations and reflections ρ ∈ E(3) of the input
geometry as embedded in X(0)

fine , i.e. ρX(0)
fine 7→ ρX(1).
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3.3. Interpolation

Given a tensor X(l) ∈ Rncoarse×c×16 we recover the original
mesh resolution with the following learned interpolation
block (compare (Suk et al., 2024b)):

X(l+1)|v =

∑
p λp,v X

(l)|p∑
p λp,v

, λp,v :=
1

‖p− v‖22 + ε
,

Y = ψ(X(l+1), X
(0)
fine) ∈ Rnfine×c×16

where |v denotes the embedding of mesh vertex v,
∑

p sums
over the three (four) nearest coarse-scale points p in the
case of a surface (volume) mesh, ε is a small constant and ψ
is a geometric nonlinear layer. Note that this interpolation
is a convex combination of multivectors. It thus admits
interpolation of, e.g., points encoded in multivectors. This
is expressed in the following proposition.

Proposition 3.1. Consider a set of multivectors xi ∈
G(3, 0, 1) and denote by

t(xi) :=
1

xi123

xi012xi013
xi023


the extraction of point coordinates from a multivector. As-
sume xi123 > 0. Then the point extracted from convex com-
bination of xi is an element of the convex hull of {t(xi)}i.

3.4. Variants

The original LaB-GATr (Suk et al., 2024b) implements
learned, geometric tokenisation by message passing: graph
edges connect each (fine-scale) mesh vertex to the closest,
sub-sampled (coarse-scale) point. Within these neighbour-
hoods, messages are computed via nonlinear geometric-
algebra layers. LaB-GATr++ replaces this strictly local
tokenisation module by the global cross-attention described
above.

In a similar fashion, the interpolation module described
above could be replaced by expanding cross-attention with
the fine-scale features as queries. We investigate its effect
on performance in an ablation study in Section 4.3.

4. Experiments
We evaluate LaB-GATr++ on the same cardiovascular hemo-
dynamics regression tasks as in (Suk et al., 2024b). We
train LaB-GATr++ under L1 loss using the Adam opti-
miser (Kingma & Ba, 2015) with initial learning rate of
3e-4 and exponential decay. We use up to four NVIDIA L40
(48 GB) GPUs for parallelised training. With our hyper-
parameter setup, LaB-GATr++ has around 690k trainable
parameters.

Table 1. Accuracy compared to the baselines on the wall shear
stress (WSS) and velocity field datasets. We report mean approxi-
mation error ε across the test sets.

Dataset Model ε[%] ↓

WSS

GEM-CNN (Suk et al., 2024a) 7.8
GATr (Brehmer et al., 2023) 5.5
LaB-GATr (Suk et al., 2024b) 5.5
LaB-GATr++ (ours) 5.5

velocity
SEGNN (Suk et al., 2023) 7.4
LaB-GATr (Suk et al., 2024b) 3.5
LaB-GATr++ (ours) 2.7

4.1. Wall shear stress (WSS)

We compare LaB-GATr++ against several baselines in the
task of 3D WSS estimation on surface meshes of synthetic
coronary arteries (Suk et al., 2024a). The dataset consists of
2k differently sized and shaped meshes of around 7k vertices.
We choose sampling ratio ncoarse

nfine
= 10% (see Section 3.2)

and train LaB-GATr++ for 4k epochs (1 min 6 s per epoch)
with batch size 8. Visual inspection of a test-split prediction
(see Figure 2) shows excellent correspondence to the ground
truth and the error is an order of magnitude smaller than the
WSS. In Table 1 we report global approximation error ε (Suk
et al., 2024a) and compare it to the baselines. LaB-GATr++
matches state-of-the-art.

4.2. Velocity field in bifurcating arteries

Furthermore, we evaluate LaB-GATr++ on the task of 3D
velocity field estimation in volume meshes of bifurcating
coronary arteries (Suk et al., 2023). The meshes in this
dataset are considerably larger at around 175k vertices. To
accommodate for this, we choose an aggressive sampling
ratio of ncoarse

nfine
= 1% and train on four GPUs in parallel

for 300 epochs (10 min 37 s per epoch) with batch size
1. Again, visual inspection of a test-split prediction (see
Figure 2) shows excellent correspondence to the ground
truth and the error is an order of magnitude smaller than the
velocity. Table 1 shows that LaB-GATr++ improves over
the previous state-of-the-art by 0.8 percentage points.

4.3. Ablation of variants

We study the influence of cross-attention for sequence re-
duction and expansion and compare it to the original pool-
ing and interpolations modules of LaB-GATr. To this end,
we create model variants with all four possible combina-
tions: message passing & interpolation (Lab-GATr), cross-
attention & interpolation (LaB-GATr++), cross-attention
& cross-attention and message passing & cross-attention.
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Figure 2. Visual comparison of ground truth obtained via fluid simulation and LaB-GATr++ prediction. We visualise 3D wall shear
stress (WSS) vectors and error magnitude as surface map (top) as well as velocity streamlines and error vectors (bottom).

Table 2. Ablation study on the WSS dataset. We report mean
approximation error ε across the test split, averaged over four
training runs of 1k epochs.

Model (training time per epoch) ε[%] ↓
LaB-GATr (1 min 6 s) 6.35
LaB-GATr++ (1 min 6 s) 6.23
cross-attention & cross-attention (1 min 41 s) 6.50
message passing & cross-attention (1 min 33 s) 6.54

We train each model variant for 1k epochs on the WSS
dataset in four separate training runs and average the eval-
uation errors. Results are shown in Table 2. We find that
replacing interpolation (Section 3.3) by cross-attention in
LaB-GATr++ (i.e. cross-attention & cross-attention) leads
to inferior accuracy as well as incurs training time overhead
of 53 %. In contrast, cross-attention seems to be favourable
over message-passing tokenisation for both accuracy and
runtime.

5. Discussion and conclusion
In this work, we propose an extension to LaB-GATr (Suk
et al., 2024b) by replacing its message-passing pooling by
cross attention. We demonstrate that this increases accu-
racy on a task in cardiovascular velocity field estimation.

We attribute this to the global context of cross-attention
compared to the strictly local context of message passing.
Using a coarsening operation in geometric graph transform-
ers is beneficial for two reasons: 1) it alleviates learning
on extremely large meshes and 2) it retracts focus off the
granularity and placement of mesh vertices, which – in con-
tinuum mechanics – are an artefact, not a feature, of the 3D
geometry. While we experimented with cross attention as
replacement of the interpolation module, we found inferior
performance in terms of accuracy and runtime. The former
might be specific to our data rather than the module itself.
The latter is because the interpolation module (Section 3.3)
is extremely light-weight. To gain more insight into both the
coarsening and interpolation layer, it would be interesting
to investigate how much features are shared across long dis-
tances and wether the difference in performance depends on
size or granularity of the mesh and the level of coarsening.

With the presented primitives, we could realise a geometric
version of sliding window (Swin) attention (Liu et al., 2021),
which is an interesting direction for future work. However,
we do not expect it to benefit applications with similarly
structured data as the two presented ones. This is due to the
long-range, global nature of blood flow in arteries and the
meshes’ oversampling of their 3D continuum. Geometric
cross-attention could also be interesting for classification
tasks involving 3D meshes as well multi-modal settings
where geometric information should be fused with seman-
tic infomration. Geometric algebra introduces an inductive
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bias to our learning framework. In future work, we aim to
investigate to which extent this affects hemodynamics esti-
mation by deriving theoretical guarantees. Like GATr and
LaB-GATr, LaB-GATr++ is equivariant under E(3) trans-
formations, i.e. rotations, translations and reflections of the
input geometry.

In conclusion, cross-attention is a powerful alternative to
message passing for downsampling in LaB-GATr.
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A. Proof of proposition 3.1
Proof. Let w =

∑
i ωix

i, such that ωi > 0 and
∑

i ωi = 1. Then

t(w) =
1

w123

w012

w013

w023

 =
1∑

i ωixi123

∑i ωix
i
012∑

i ωix
i
013∑

i ωix
i
023

 .

Define

ω′i =
ωix

i
123∑

j ωjx
j
123

and note that ω′i > 0 and
∑

i ω
′
i = 1. Now

∑
i

ωi∑
j ωjx

j
123

xi012∑
i

ωi∑
j ωjx

j
123

xi013∑
i

ωi∑
j ωjx

j
123

xi023

 =


∑

i
ω′

i

xi
123
xi012∑

i
ω′

i

xi
123
xi013∑

i
ω′

i

xi
123
xi023


=
∑
i

ω′it(x
i)

and thus
t(w) = t(

∑
i

ωix
i) =

∑
i

ω′it(x
i).

Since the convex hull of a set of points is defined as the set of all convex combinations of its elements, t(
∑

i ωix
i) is an

element of the convex hull of {t(xi)}i.
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