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Abstract

Large Language Models (LLMs) demonstrate001
considerable potential across a range of tasks;002
however, they pose significant challenges due003
to their extensive memory requirements and004
computational demands. Fine-grained quanti-005
zation effectively preserves model performance006
during aggressive weight compression, yet its007
inefficiency on hardware platforms hinders its008
applicability in real-world production environ-009
ments. To enhance hardware efficiency while010
preserving the performance of fine-grained011
quantization, we propose a novel quantization012
framework, Dual Grained Quantization (DGQ),013
employing a W4A8 configuration specifically014
tailored for LLMs. By employing a dual-phase015
search strategy, DGQ minimizes quantization016
error without significantly extending quantiza-017
tion time. To improve the accuracy of W4A8-018
configured LLMs, we introduce aggressive se-019
lective equalization. This approach is grounded020
in the observation that key weights and outliers021
frequently coexist within the same channels.022
Comprehensive experiments with our W4A8023
CUDA kernel highlight DGQ’s exceptional per-024
formance, delivering speedups of 1.37× and025
2.5× over standard INT8 and FP16 kernels,026
respectively, while preserving the superior per-027
formance of fine-grained quantization.028

1 Introduction029

Large Language Models (LLMs) such as GPT-030

4 (Bubeck et al., 2023) and LLaMA (Touvron et al.,031

2023a,b) have excelled in comprehending and gen-032

erating natural language. However, these models033

have become much larger. For instance, LLaMA-034

65B (Touvron et al., 2023a) is approximately 190×035

larger than Bert-Large (Devlin et al., 2018), neces-036

sitating around 130 GB of memory storage, which037

requires 2×80GB NVIDIA A100 during inference.038

The deployment of LLMs presents notable chal-039

lenges, particularly in the allocation of substantial040

computing and storage resources.041

Given the challenges outlined, network quan- 042

tization (Krishnamoorthi, 2018) propose to map 043

weights and/or activations to lower-bit represen- 044

tations, significantly reduces memory footprint 045

and boosts inference. For LLMs, the quantization 046

schemes that have received the most attention in- 047

clude W4A16 (Lin et al., 2023; Frantar et al., 2022) 048

and W8A8 (Shao et al., 2023; Xiao et al., 2023; Yao 049

et al., 2022). W4A16 reduces the memory usage 050

and transfer durations by converting weight into 051

4-bit, albeit introducing dequantization overhead 052

and retaining FP16 calculations. W8A8 accelerates 053

the matrix multiplication(MatMul) by leveraging 054

INT8 kernels, yet has a minimal impact on reduc- 055

ing the memory footprint associated with weight 056

storage. To harness the benefits of both, more com- 057

pact W4A8 (Yao et al., 2023; Li et al., 2023b,a) 058

and W4A4 with mixed precision (Ashkboos et al., 059

2023; Zhao et al., 2023) are proposed. To pre- 060

serve model performance, W4A8 methods apply 061

fine-grained quantization, inserting FP16 accumu- 062

lation within integer MatMul. Concurrently, W4A4 063

with mixed precision introduces a dynamic reten- 064

tion strategy, selectively keeping critical activations 065

and weights in high precision to preserve model 066

efficacy. Despite these advancements, such meth- 067

ods lead to slower inference times by interrupting 068

the efficient integer MatMul computation pipeline 069

within existing computing units. Figure 1 illus- 070

trates the performance across various quantization 071

schemas, indicating that current methods struggle 072

with calculations across diverse token sequences. 073

In this paper, we propose Dual Grained 074

Quantization (DGQ), a hardware-efficient fine- 075

grained quantization framework for LLMs. To 076

eliminate float addition within integer MatMul for 077

group-wise quantization, we address the group- 078

wise quantization challenge by implementing 079

group-wise quantization of weights prior to the 080

MatMul process by converting 4-bit weights back 081

to 8-bit representations. Following this adjust- 082

1



24 27 210 213

Sequence Length
0.0

0.5

1.0

1.5

2.0

2.5
To

ps
 im

pr
ov

em
en

t
FP16 Baseline
W4A16
W8A8
W4A4
W8A4-FG
W4A8(ours)

Figure 1: Speed Comparison of different quantiza-
tion schemes to FP16 kernels. The curve of DGQ is
formed by joining two distinct lines: the former rep-
resents the kernel for the pre-fill phase, and the latter
illustrates the kernel for the self-decoding phase.

ment, the modified procedure facilitates the exe-083

cution of continuous INT8 MatMul and channel-084

wise dequantization. To minimize the quantiza-085

tion error and eliminate quantization clipping over-086

head, we propose a dual-phase search algorithm087

tailored to hardware constraints. Additionally, to088

further reduce the overhead associated with group-089

wise weight dequantization, we have developed090

two W4A8 kernels, each optimized for handling091

either long or short sequence lengths.092

To maintain the model accuracy, we propose ag-093

gressive selective equalization(ASE), enhancing094

the performance of static quantization for activa-095

tion. Our method is based on the observation that096

salient weight and outliers often manifest in the097

same channel. Smoothing the outliers could reduce098

the relative quantization error of salient weight,099

benefiting the quantization for both activations and100

salient weights. To reduce the impact on less signif-101

icant weights, we strategically reduce the smooth-102

ing channel, exclusively choosing channels con-103

taining outliers for the smoothing process.104

In summary, our key contributions include:105

• The Dual Grained Quantization (DGQ) frame-106

work enhances W4A8 LLM inference through107

an optimized dual-grained schema, two108

inference-stage kernels, and a rapid, gradient-109

free method.110

• Aggressive Selective Equalization strategy111

that selectively smoothens channels.112

• Extensive DGQ evaluation shows significant 113

performance and efficiency improvements, 114

achieving up to 2.5× and 1.37× faster speeds 115

than FP16 and W8A8 implementations with 116

negligible loss of accuracy, respectively. 117

2 Related Works 118

2.1 Model Quantization 119

Quantization falls into two primary categories: 120

Quantization-Aware Training (QAT) (Martinez 121

et al., 2018; Esser et al., 2019) and Post-training 122

Quantization (PTQ) (Choukroun et al., 2019; Li 123

et al., 2021; Wei et al., 2022). QAT fine-tunes quan- 124

tized models with the full dataset, maintaining accu- 125

racy but requiring complex computations, thus be- 126

ing less ideal for LLMs. Conversely, PTQ applies 127

quantization with minimal data and computational 128

demand. Techniques such as AdaRound (Nagel 129

et al., 2020) and Adaquant (Hubara et al., 2020) 130

optimize quantization parameters and distill quan- 131

tized models layer by layer. Some approaches (Qin 132

et al., 2022; He et al., 2022) push the boundaries 133

by compressing transformations into binary values. 134

2.2 Quantization on LLMs. 135

Given that QAT for LLM demands substantial 136

data and computational resources, the predom- 137

inant quantization techniques for LLM lean to- 138

wards PTQ. Current research primarily explores 139

two quantization scenarios: (1) weight and acti- 140

vation quantization (Yao et al., 2022; Xiao et al., 141

2023; Wei et al., 2023; Liu et al., 2023b; Chai et al., 142

2023; Yuan et al., 2023; Li et al., 2023b; Liu et al., 143

2023a; Ashkboos et al., 2023), (2) weight only 144

quantization (Frantar et al., 2022; Lin et al., 2023; 145

Dettmers et al., 2023a,b; Lee et al., 2023). No- 146

tably, QLLM (Liu et al., 2023a) and QUIK (Ashk- 147

boos et al., 2023) push the limit of LLM quanti- 148

zation into 4 bits without significant quantization 149

errors. Both LLM.int8() (Dettmers et al., 2022) 150

and QUIk (Ashkboos et al., 2023) preserve the 151

outliers with high precision to maintain model 152

performance. Maintaining outliers at high preci- 153

sion incurs additional overhead during inference. 154

For W4A8 quantization, ZeroQuantV2 (Yao et al., 155

2023) concludes, based on extensive experimen- 156

tation, that fine-grained quantization is crucial for 157

preserving model performance in W4A8 quanti- 158

zation schemes. ZeroQuantFP (Wu et al., 2023) 159

employs float quantization within a W4A8 frame- 160

work, and FPTQ (Li et al., 2023b) presents an adap- 161
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tive quantization granularity strategy for activation162

quantization, aimed at minimizing inference over-163

head. Accelerating fine-grained weight quantiza-164

tion remains a challenging problem that requires165

further investigation.166

QLoRA (Dettmers et al., 2023a) introduces the167

NF4 double quantization technique, which im-168

proves memory utilization by converting FP32169

group-wise quantization scales to FP8 and employ-170

ing a channel-wise FP32 scale. This approach pri-171

oritizes memory efficiency over computational effi-172

ciency illustrating that direct conversion of quanti-173

zation scales to FP8 does not significantly impact174

accuracy. In our proposed methodology, we place175

significant emphasis on enhancing inference effi-176

ciency. This involves initially dequantizing UINT4177

weights back to INT8 weights, thereby facilitating178

INT8 General Matrix Multiply (GEMM) opera-179

tions to expedite the inference process.180

3 Preliminary181

Quantization is an essential process that converts182

high-precision values into low-precision precision183

formats. In our research, we focus on the appli-184

cation of uniform integer quantization, which is185

advantageous due to its superior hardware support186

and increased computational efficiency. The pro-187

cess of asymmetric quantization is mathematically188

represented as:189

X̂ = clamp(

⌊
X

s

⌉
+ zp, 0, 2N − 1),

zp =

⌊
Xmin

s

⌉
, s =

Xmax −Xmin

2N − 1

(1)190

Here, X denotes the full-precision tensor, X̂ rep-191

resents its quantized version, s is the quantization192

scale, and N signifies the bit width. We denote193

the quantization process as Q(X, s, zp), where s194

represents the scale and zp the zero point. For sym-195

metric cases, the zero-point ZP is assigned a value196

of zero, and the quantization scale s is calculated197

using the formula max(|X|)/(2N−1 − 1).198

Different Levels of Quantization Granularity.199

For weight quantization, granularity is differen-200

tiated into two distinct levels: channel-wise and201

group-wise quantization, as depicted in Figure 2202

(a) and (b). Compared to channel-wise quantiza-203

tion, vanilla group-wise quantization requires float204

addition calculation across groups, thereby dimin-205

ishing efficiency. For activation quantization, two206

distinct granularities are identified: token-wise and207

tensor-wise. Token-wise quantization requires the 208

dynamic computation of the quantization scale for 209

each token, which introduces additional overhead 210

during inference. In our framework, we use static 211

quantization for efficient inference. 212

Different Inference Phase of LLMs. There are 213

two phases for LLM inference, the pre-fill phase 214

(calculating key-value (KV) cache with long se- 215

quence input) and the self-decoding phase (generat- 216

ing the word with KV cache). In the pre-fill phase, 217

the LLMs usually deal with long-sequence context 218

while the LLMs deal with only one word during 219

the self-decoding phase. 220

Scaling Equalization. Migrating quantization dif- 221

ficulty from activation/weight to weight/activation 222

reduces quantization error in coarse-grained quan- 223

tization. This is captured by the equation: 224

X′ = diag(s)−1X,W′ = diag(s)W (2) 225

4 Dual Grained Quantization 226

4.1 Inference Schema 227

To enhance the hardware efficiency of fine-grained 228

quantization and avoid group-wise float scales, we 229

propose dual-grained quantization (DGQ), see Fig- 230

ure 2 (c). This approach incorporates a pivotal 231

dequantization step preceding the GEMM opera- 232

tion. It entails the conversion of UINT4 weights 233

into INT8 weights, thereby facilitating the execu- 234

tion of INT8 GEMM operations. DGQ employs a 235

two-step quantization process: initially, quantiza- 236

tion is performed using a channel-wise FP16 scale 237

s(1), followed by a group-wise INT8 scale S(2) for 238

the second step. Furthermore, the second-step de- 239

quantization can be integrated with the process of 240

loading UINT4 weights into INT8 kernels, stream- 241

lining the procedure. For the scenario described, 242

involving hidden states Xs8 ∈ Nb×h
s8 and a weight 243

matrixWu4 ∈ Nh×o
u8 , the quantization methodol- 244

ogy is characterized by the following equations: 245

sf16 = sX · s(1),
Ws8 = S(2) · (Wu4 + ZPu4),

Of16 = sf16 · (Xs8Ws8),

(3) 246

Here, S(2) ∈ Ng×o
s8 represents the group-wise 247

quantization scales, ZPu4 ∈ Ng×o
u4 represents the 248

group-wise quantization zero points and s(1) ∈ 249

Ro
f16 represents channel-wise quantization scales. 250

o is the number of output channels, ng signifying 251

the number of groups in group-wise quantization, 252
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Figure 2: Different grained quantization method. Unlike channel-wise and DGQ quantization, group-wise
quantization tends to result in FP16 accumulation, which conflicts with typical hardware design.

and g denoting the size of each group within the253

group-wise quantization (where the product of ng254

and g equals h, the number of input channels).255

4.2 Dual-phase Search256

DGQ requires to quantize the group-wise FP16257

scales into channel-wise FP16 scales s(1) and258

group-wise INT8 scales s(2). However, directly259

quantizing the FP16 scales to INT8 following Dai260

et al. (2021) results in a significant quantization er-261

ror, as demonstrated in Table 1. The primary reason262

for this limitation is that the number of quantization263

bits allocated for the second step of fine-grained264

quantization is restricted to prevent overflow during265

the dequantization process. To address this limi-266

tation, we propose a novel dual-phase method to267

search proper dual-grained quantization scales.268

Following prior studies (Choukroun et al., 2019;269

Lin et al., 2023), our method also employs the270

Mean Squared Error (MSE) of the output to cali-271

brate, as delineated in equation 4. Given the ex-272

tensive search space of quantization parameters,273

it is imperative to first determine an optimal fine-274

grained scale S′ to serve as a constraint, thereby275

narrowing the search space. To further refine the276

model, we compute the MSE for each weight and277

activation group Wk, Xk, following the approach278

described in Equation 5.279

PPL ↓ 1-7B 1-13B 1-30B 2-7B 2-13B
Original 6.03 5.39 4.43 5.87 5.23
VS-Quant 6.93 6.00 4.83 2155.54 5.48

Table 1: Wikitext2 Results for W4A8 LLaMA family:
Original Group-Wise Quantization vs. VS-Quant.
Here, we use 4bit for SW to avoid overflow.

argmin
S′,ZP

∥XW − X̂Q(W,S′,ZP)∥2. (4) 280

281

argmin
s′k,zpk

∥XkWk − X̂kQ(Wk, s
′
k, zpk)∥2. (5) 282

283To refine our quantization scales further, we ad- 284

just the calibration process by altering the optimiza- 285

tion objective to focus on s(1). The optimization 286

objective for this phase is depicted in Equation 6. 287

argmin
s(1)

∥XW − X̂QW (W,S,ZP)∥2,

S(2) = ⌊ S′

s(1)
⌉,S = s(1) · S(2)

(6) 288

For the second phase, our method continues to 289

utilize the absolute maximum of X for grid search. 290

This strategy is informed by the discrepancy be- 291

tween the absolute maxima of S′ and X, poten- 292

tially leading to the neglect of relevant sections of 293

the search space. To enhance inference efficiency 294

through the avoidance of clipping, our optimization 295

framework embeds constraints on the datatype’s 296

upper and lower limits, as specified in Equation 7. 297

Wu4 ∈ [0,15],S(2) ∈ [−128,127],

Ws8S
(2) ∈ [−128,127]

(7) 298

The rounding operation in the second phase of 299

quantization, represented by ⌊·⌉, may result in S 300

surpassing S′. This can lead to a reduction in the 301

maximum weight values to less than 15. In ex- 302

ploring the search space, it’s possible for the range 303

of S(2) to surpass 15. As a result, we have opted 304

to loosen the constraints on S(2), concentrating 305

instead on the limitations for Ws8 and Wu4. Con- 306

sequently, it suffices to apply clamping to Wu4 as 307
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Figure 3: Figures of maximum, minimum and mean values for different layers of different models. Blue lines
mean the maximum, orange lines present the minimum and green lines signify the mean value.

described in Equation 8.308

Wu4 ∈ [max(0, ⌊−127

S(2)
⌉+ ZP),

min(15, ⌊127
S(2)

⌉+ ZP)]

(8)309

4.3 Aggressive Selective Equalization310

Unlike W8A8 (Xiao et al., 2023), 4-bit quantized311

weight is hard to cover the quantization difficulty312

migrated from activations. To reduce the quan-313

tization error associated with weights, our focus314

intensifies on salient weights (Lin et al., 2023),315

identified as those exerting the greatest influence316

on model accuracy. Given that the Hessian matrix317

of weights, calculated using H = XXT, correlates318

directly with the absolute values of the inputs, it is319

possible for outlier activations and salient weights320

to coexist within the same input channel. To eluci-321

date this point, Figure 3 illustrates both the maxi-322

mum and mean activation values. For a systematic323

visualization, we organize the maximum values in324

ascending order and align the mean values accord-325

ingly, using the indices of the maximum values.326

This organization demonstrates that outliers in both327

maximum and mean values often correspond to the328

same channels, highlighting their variability across329

different models and layers. Therefore, it suffices330

to consider only the values of outliers when devis-331

ing our equalization strategy. To prevent disruption332

to the distribution of other weights and those of333

preceding layers, our approach selectively smooths334

the channels containing outliers.335

In our equalization strategy, we determine the336

smoothing scale kj using the following formulas:337

zj = max(|X[j,:]|) (9)338

339
kj = clamp(zj/maxp(z), low = 1) (10)340

Here, the top p of the highest values serve as 341

the threshold for clipping. Outliers exceeding the 342

p threshold are adjusted to this threshold, and the 343

resulting scale is utilized to boost channels that 344

are particularly sensitive to quantization. We con- 345

ducted evaluations with various settings of p, ul- 346

timately selecting p = 1.0% for LLaMA models 347

and p = 0.3% for OPT models. 348

4.4 Optimization of Kernel Design 349

As shown in Figure 4(b), W4A16’s dequantiza- 350

tion necessitates extra computations prior to the 351

MatMul operation, with weight dequantization oc- 352

curring right after loading to reduce memory trans- 353

fer time. This process is applied to each input 354

individually. However, this approach requires re- 355

peated dequantization for sequences longer than 356

one, introducing overhead that offsets the benefits 357

of lower memory transfer time and thus impairs per- 358

formance. Contrastingly, the W4A8 configuration, 359

with fewer bit operations (BOPs) than W4A16, is 360

expected to outperform due to its ability to pro- 361

cess longer sequences before hitting computational 362

limits. To address these challenges, we suggest 363

moving the dequantization step to precede the Mat- 364

Mul operation for all inputs. 365

Figure 4(c) and (d) show our innovative kernel 366

designs tailored for both the self-decoding and pre- 367

fill phases. During the self-decoding phase, dequan- 368

tization is seamlessly integrated into the MatMul 369

process, following the vanilla W4A16 kernel de- 370

sign. However, we have increased the sequence 371

length for each computation. While this adjust- 372

ment may reduce performance in single-size self- 373

decoding, it significantly improves performance for 374

smaller sequences, as depicted in Figure 1. This 375

scenario more accurately reflects typical real-world 376
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Figure 4: Design of our W4A8 Kernels (c) and (d)
compared to W8A8(a) and W4A16(b).

applications. Transitioning to the pre-fill phase, the377

strategy involves separating dequantization from378

the MatMul operation. This allows for the dequan-379

tization of weights to occur only once per MatMul.380

Although this change is likely to incur substantial381

additional memory transfer overhead, it is justified382

by the pre-fill phase’s handling of longer sequences.383

This overhead is effectively mitigated, facilitating384

an enhancement in performance.385

5 Experiments386

5.1 Experiments Setups387

Baseline. We benchmark against established388

baselines within the W4A8 quantization setting,389

SmoothQuant (Xiao et al., 2023), LLM-QAT (Liu390

et al., 2023b) and FPTQ (Li et al., 2023b). Since391

the quantization granularity varies from different392

quantization methods, we detail the quantization393

granularity of each in Table 2.

Method activation weight
SmoothQuant token-wise tensor-wise

LLM-QAT token-wise channel-wise
FPTQ token/tensor-wise group-wise
Ours tensor-wise dual-grain

Table 2: Quantization granularity of different meth-
ods. FPTQ uses adaptive quantization granularity.

394

Models and datasets. We choose LLaMA1 (Tou-395

vron et al., 2023a) and LLaMA22 (Touvron et al.,396

2023b) families to evaluate our quantization meth-397

ods. For Common Sense Question Answers evalu-398

ation, we employ four zero-shot evaluation tasks:399

HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.,400

2020), Winogrande (Sakaguchi et al., 2021) and401

ARC (Clark et al., 2018). The benchmarking for402

1https://huggingface.co/huggyLLaMA/LLaMA-*b
2https://huggingface.co/meta-LLaMA/LLaMA-2-*b-hf

Common Sense Question Answers is conducted us- 403

ing lm-eval (Lin and Chen, 2023). Additionally, we 404

use WiKiText2 (Merity et al., 2016) and C4 (Raf- 405

fel et al., 2020) to compare the generation ability. 406

For calibration purposes, we select 128 samples 407

from the PTB (Marcus et al., 1994) dataset to serve 408

as the calibration dataset. Furthermore, to demon- 409

strate the broad applicability of our approach, we 410

evaluate its performance on OPT models. 411

Implementation. We implement our methods with 412

Pytorch Huggingface for the proof of concept. We 413

use the CUTLASS3 GEMM kernels to develop 414

our two-grained quantization kernels. All latency 415

measurements in the paper are tested on NVIDIA 416

RTX3090 24G GPUs. 417

5.2 Performance Evaluation 418

Table 3 presents the performance of our quantiza- 419

tion methods across various tasks, including Wiki- 420

text2, C4, and Common Sense QA. Compared to 421

FPTQ (Li et al., 2023b), our methods demonstrate 422

equivalent or superior performance. FPTQ intro- 423

duces extra dynamic quantization for specific lay- 424

ers and employs naive group-wise quantization 425

approach, introducing extra inference overhead. 426

Compared to LLM-QAT (Liu et al., 2023b), our 427

methods exhibit enhanced performance. Notably, 428

LLM-QAT, as a QAT approach, incurs consider- 429

able overhead in terms of computational resources. 430

Table 4 presents a comparison on the MMLU task 431

between our methods and FPTQ, demonstrating 432

our method’s superior performance over FPTQ on 433

MMLU task. Additional Perplexity (PPL) test re- 434

sults are available in the Appendix B . 435

5.3 Efficiency Evaluation 436

Comparison on End-to-End inference. In Fig- 437

ure 5, we conduct a comparison of the end-to-end 438

efficiency among LLaMA-7B, LLaMA-13B, and 439

OPT-13B models with different quantization meth- 440

ods: SmoothQuant (W8A8), AWQ (W4A8), and 441

our methods. We conducted tests using an in- 442

put context length of 1024, generating 128 words 443

across three batch sizes: 2, 4, and 6. In the pre- 444

fill phase, our method achieves the highest accel- 445

eration ratio in comparison to both W8A8 and 446

W4A16 configurations, attaining an acceleration 447

ratio of up to 1.67 times relative to FP16. During 448

the self-decoding phase, the W4A16 configuration 449

exhibits superior performance, while our methods 450

3https://github.com/NVIDIA/cutlass
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Size Bit Method PPL ↓ Zero-Shot CSQA ↑

wikitext2 c4 PIQA ARC-e ARC-c HellaSwag Winogrande Avg.

1-7B

FP16 5.68 7.08 79.0 72.7 44.7 76.1 70.3 68.6
W8A8 SmoothQuant 5.89 7.23 79.0 72.2 44.5 75.2 70.1 68.2
W4A8 LLM-QAT - - 77.5 70.2 43.3 73.5 67.7 66.4
W4A8 FPTQ 5.95 7.37 78.4 70.8 - 74.5 70.0 67.5
W4A8 DGQ 6.02 7.43 78.2 71.6 44.2 73.5 68.4 67.2

1-13B

FP16 5.09 6.61 80.1 74.7 47.8 79.1 72.9 70.9
W8A8 SmoothQuant 5.21 6.72 79.7 73.9 47.6 78.3 72.1 70.3
W4A8 LLM-QAT - - 79.1 73.0 47.1 77.5 70.6 69.5
W4A8 FPTQ 5.35 6.83 79.3 72.7 - 77.5 72.1 69.7
W4A8 DGQ 5.39 6.93 79.7 73.3 47.4 77.5 71.3 69.8

1-65B

FP16 3.53 5.62 82.3 79.8 55.6 84.2 77.4 75.9
W8A8 SmoothQuant 3.73 5.93 81.1 77.4 54.4 82.3 74.9 74.04
W4A8 FPTQ 3.88 5.85 81.4 78.4 - 83.4 75.8 74.8
W4A8 DGQ 3.89 5.97 81.1 78.9 54.9 81.0 75.8 74.3

2-7B

FP16 5.47 6.97 79.1 74.5 46.3 76.0 69.4 69.1
W8A8 SmoothQuant 5.80 7.24 78.0 76.0 46.4 75.9 69.1 69.1
W4A8 FPTQ 5.85 7.35 78.0 72.8 - 74.9 69.4 67.8
W4A8 DGQ 5.87 7.44 78.4 73.0 44.3 74.0 68.0 67.5

2-13B

FP16 4.88 6.46 80.6 77.5 49.2 79.4 72.0 71.7
W8A8 SmoothQuant 5.04 6.55 79.5 77.3 49.1 79.3 72.1 71.5
W4A8 FPTQ 5.19 6.83 79.4 75.8 - 78.1 70.6 70.4
W4A8 DGQ 5.23 6.82 79.5 76.0 48.5 77.5 70.9 70.5

2-70B

FP16 3.31 5.52 82.7 81.0 57.3 83.8 78.0 76.6
W8A8 SmoothQuant 3.46 5.61 82.4 80.7 57.2 82.6 78.1 76.2
W4A8 FPTQ 3.64 5.78 82.4 79.9 - 82.6 77.0 75.7
W4A8 DGQ 3.68 5.89 82.0 80.2 57.0 81.3 76.9 75.5

Table 3: Comparison on WikiText2, C4 and Common Sense QA.

Acc↑ Method Humans STEM Social Other Avg.

1-7B

FP16 33.60 31.10 38.20 38.40 35.20
FPTQ 30.20 29.95 32.76 35.87 32.02
FP16 31.27 30.53 36.79 35.90 33.50
Ours 28.96 30.22 35.91 34.24 32.20

1-13B

FP16 44.60 37.10 54.00 53.50 47.10
FPTQ 40.96 34.19 49.72 49.75 43.46
FP16 40.73 38.31 54.60 54.04 47.06
Ours 39.56 41.50 48.66 51.27 45.74

1-65B

FP16 61.80 52.00 73.30 67.60 63.50
FPTQ 59.85 49.24 71.50 65.89 61.52
FP16 57.72 47.04 75.96 67.44 62.18
Ours 55.60 44.86 72.11 63.53 59.57

Table 4: Comparison on MMLU.

surpass the efficiency of the W8A8 schema. Over-451

all, our method achieves the highest acceleration452

ratio in end-to-end inference. Since our quantiza-453

tion schema is one of the important points in our454

paper, we only replace the linear layers into quanti-455

zation layers and adapt the KV cache quantization,456

the end-to-end latency could be further reduced.457

Comparison of Single Kernel Performance. Our458

kernel performance is evaluated in Table 8 against459

W8A8 (Xiao et al., 2023) and W4A4 with mixed460

precision kernels (Ashkboos et al., 2023). Consid-461

ering the specific phases of self-decoding and pre-462

filling, alongside varying kernel sizes in LLaMA463

BS Kernel FP16 W8A8 W4A4 Ours

1

(4096,4096) 0.048 0.091 0.094 0.050
(5120,5120) 0.070 0.111 0.094 0.059

(11008,4096) 0.132 0.095 0.118 0.111
(4096,11008) 0.121 0.226 0.134 0.104

2048

(4096,4096) 1.117 0.504 0.518 0.443
(5120,5120) 1.597 0.663 0.655 0.598

(11008,4096) 2.963 1.181 1.157 1.154
(4096,11008) 3.146 1.200 0.981 1.075

Table 5: Single Kernel latency comparison.

models, our experimental analysis encompasses di- 464

verse comparisons. The results demonstrate that 465

our kernels significantly outperform both W8A8 466

and W4A4 kernels. This superiority can be at- 467

tributed to the fact that W4A4 kernel, when em- 468

ploying mixed precision, encounter delays due to 469

additional dynamic quantization processes. 470

5.4 Ablation Study 471

Different quantization granularity for W4A8 472

LLaMA models. In our experiments with LLaMA- 473

7b model, we explored different quantization granu- 474

larity combinations, as detailed in Table (6). The re- 475

sults indicate that fine-grained and coarse-grained 476

quantization methods can lead to up to a 1 PPL 477

(Perplexity) difference. Specifically, in fine-grained 478

7
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Figure 5: End to End latency comparison on LLaMA-7B, LLaMA-13B and OPT-13B. The lower part shows
the pre-fill phase time cost and the upper part shows the self-decoding phase time cost.

quantization, we observe that static activation quan-479

tization in combination with group-wise weight480

quantization outperforms dynamic activation quan-481

tization coupled with channel-wise weight quanti-482

zation. Additionally, our dual-grained quantization483

approach demonstrates that it introduces minimal484

additional quantization errors compared to group-485

wise quantization.

PPL ↓ FP16 S+CW S+GW D+CW S+DG
WikiText2 5.68 6.57 6.03 6.37 6.04
C4 7.08 8.10 7.44 7.75 7.43

Table 6: Comparison for different quantization gran-
ularity combinations for W4A8 LLaMA models. S
means static tensor-wise quantization, D means dynamic
token-wise quantization, CW means channel-wise quan-
tization, GW means Group-wise quantization and DG
means Dula-Grained quantization.

486
Effect of p in Aggressive Selective Equalization.487

We evaluate varying p from 0.1% to 2% as shown488

in Table 7. When p exceeds the optimal value,489

unnecessary equalization distorts the weight distri-490

bution. Conversely, a too-small p fails to include491

outliers within the equalization range. Incorporat-492

ing GLU (Dauphin et al., 2017) into LLaMA ampli-493

fies outlier effects via element-wise multiplication,494

raising outlier values. Consequently, LLaMA-13b495

requires a larger p to accommodate outliers com-496

pared to OPT-13b.

PPL ↓ LLaMA-13b LLaMA2-13b OPT-13b
p = 0.1% 5.55 5.32 11.04
p = 0.3% 5.45 5.27 10.92
p = 0.5% 5.45 5.25 11.12
p = 1.0% 5.41 5.23 11.26
p = 2.0% 5.44 5.29 11.21

Table 7: Comparison for different p in ASE.

497
Effect of Aggressive Selective Equalization. We 498

replace the ASE with different equalization meth- 499

ods from SmoothQuant (Xiao et al., 2023) and 500

FPTQ (Li et al., 2023b), to show the efficiency of 501

our approach. Our method surpasses the equaliza- 502

tion techniques employed by both SmoothQuant 503

and FPTQ. In the context of OPT models, where 504

outliers are less pronounced, the SmoothQuant 505

strategy proves adequate, and our method achieves 506

comparable performance.

PPL ↓ task naive SQ FPTQ Ours

LLaMA-13b wikitext 38.57 6.09 5.68 5.39
c4 9.82 7.66 7.23 6.93

LLaMA2-13b wikitext 110.86 5.73 5.43 5.23
c4 33.05 7.43 7.07 6.82

opt-13b wikitext 3722.76 10.99 11.13 10.30
c4 4700.02 11.89 12.13 11.89

Table 8: Comparison for different equalization meth-
ods via different models. Quantization granularity is
static activation and dual-grained quantization.

507

6 Conclusion 508

In this paper, we introduce DGQ, an innovative 509

and efficient approach for W4A8 quantization tai- 510

lored for LLMs. DGQ addresses the inefficien- 511

cies of group-wise quantization through a dual- 512

scale strategy, combining fine-grained integer and 513

coarse-grained full-precision quantizations. We en- 514

hance the quantization scale search algorithm to fit 515

our scheme and introduce an Aggressive Selective 516

Equalization strategy for smoother scale optimiza- 517

tion without extensive searching. Additionally, our 518

optimized kernels delivering speedups of 1.37 × 519

and 2.5 × over standard INT8 and FP16 kernels. 520

8



Limitation521

In this paper, we introduce a hardware-efficient522

W4A8 quantization framework tailored for LLMs.523

Our initial latency performance evaluation is con-524

ducted using CUTLASS kernels as a preliminary525

test. For deployment in real-world production en-526

vironments, the development of specialized ker-527

nels is necessary to achieve significantly enhanced528

acceleration performance. Additionally, our test-529

ing focused exclusively on the widely-used CUDA530

computation platform. Future work will explore the531

adaptation of our framework to other computing532

platforms, broadening its applicability and perfor-533

mance optimization across diverse hardware envi-534

ronments.535
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A More performance results744

In this section, we provide a comprehensive pre-745

sentation of our results across various datasets to746

complement the main paper. Here, we use dynamic747

token-wise activation quantization. Specifically,748

the results include:749

• WikiText2 perplexity in the LLaMA families750

(Table 10).751

• C4 perplexity in the LLaMA families (Table752

11).753

• WikiText2 perplexity in the OPT families (Ta-754

ble 12).755

• C4 perplexity in OPT families (Table 13).756

• PTB perplexity in OPT families (Table 14).757

B Overhead introduced by Dual-phase758

search759

We evaluate the time cost associated with our dual-760

phase search algorithm to quantify the overhead761

introduced by the second phase. The results are762

presented in the table below, from which we deduce763

that the second phase of our algorithm does not764

significantly increase quantization duration.765

Model T T2 ∆

LLaMA-7B 548.18 52.57 9.59%
LLaMA-13B 964.44 128.81 13.04%

Table 9: The time consumption of Dual-Phase Search.
Here T presents the total time and the T2 is the second
phase time.
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LLaMA PPL ↓ 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B
FP16 - 5.68 5.09 4.10 3.53 5.47 4.88 3.31

W3A16
g128

RTN 7.01 5.88 4.87 4.24 6.66 5.51 3.97
GPTQ 6.55 5.62 4.80 4.17 6.29 5.42 3.85
AWQ 6.46 5.51 4.63 3.99 6.24 5.32 -

W4A8
g128

RTN 8.72 7.81 6.76 6.16 5.72 44.82 8.70
ZeroQuantv2 6.44 5.32 4.36 - - - -
SmoothQuant 6.04 5.36 4.48 3.98 5.97 5.23 3.65
ZeroQuant-FP 6.32 5.26 4.26 - - - -
Ours 5.85 5.21 4.28 3.71 5.64 5.01 3.45
Ours† 6.04 5.39 4.45 3.89 5.87 5.23 3.74

Table 10: Quantization Results on Wikitext2 (Merity et al., 2016) with A16W3 and A8W4 LLaMA Models. †
indicates static quantization for activation.

LLaMA PPL ↓ 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B
FP16 - 7.08 6.61 5.98 5.62 6.97 6.46 5.52

W3A16
g128

RTN 8.62 7.49 6.58 6.10 8.40 7.18 6.02
GPTQ 7.85 7.10 6.47 6.00 7.89 7.00 5.85
AWQ 7.92 7.07 6.37 5.94 7.84 6.94 -
OmniQuant 7.34 6.76 6.11 5.73 7.35 6.65 5.86

W4A8
g128

RTN 10.76 9.94 8.14 7.96 17.29 90.57 11.86
ZeroQuantv2 7.79 6.78 6.16 - - - -
SmoothQuant 7.51 6.89 6.39 5.94 7.50 6.82 5.78
ZeroQuant-FP 7.51 5.73 6.09 - - - -
Ours 7.29 6.73 6.10 5.73 7.16 6.62 5.62
Ours† 7.43 6.93 6.31 5.97 7.44 6.82 5.89

Table 11: Quantization Results on c4 (Raffel et al., 2020) with A16W3 and A8W4 LLaMA Models. † indicates
static quantization for activation.

OPT PPL ↓ 125M 1.3B 2.7B 6.7B 13B 30B 66B
FP16 - 27.65 14.63 12.47 10.86 10.12 9.56 9.34

W3A16
g128

RTN 51.22 119.00 297.98 23.54 46.03 18.80 136.89
GPTQ 39.24 16.47 13.69 11.65 10.35 9.73 10.96
AWQ 36.74 16.32 13.58 11.41 10.68 9.85 9.60

W4A8
g128

RTN 32.21 17.33 15.51 51.57 3978.101 2407.99 2832.57
ZeroQuantv2 31.69 15.53 13.02 11.29 10.43 9.86 9.62
SmoothQuant 29.01 14.71 12.71 10.90 10.25 9.57 9.32
RPTQ - 15.39 - 11.21 10.90 10.22 9.46
ZeroQuant-FP - 15.32 - 10.89 10.16 9.52 -
Ours 29.25 14.78 12.67 10.93 10.29 9.53 9.31
Ours† 29.94 14.96 12.75 10.92 10.30 9.55 9.32

Table 12: Quantization Results on Wikitext2 (Merity et al., 2016) with A16W3 and A8W4 OPT Models. †
indicates static quantization for activation.
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OPT PPL ↓ 125M 1.3B 2.7B 6.7B 13B 30B 66B
FP16 - 24.61 14.73 13.17 11.75 11.21 10.69 10.28

W3A16
g128

RTN 40.13 126.47 372.23 32.56 44.12 25.70 286.87
GPTQ 30.08 16.47 14.54 12.48 11.58 10.91 11.35
AWQ 30.39 16.27 14.19 12.30 11.61 10.96 10.53
OmniQuant 29.34 16.11 14.15 12.31 11.63 10.98 10.51

W4A8
g128

RTN 27.93 17.52 16.33 98.34 3926.05 3557.30 2493.73
ZeroQuantv2 27.19 15.73 13.82 12.19 11.64 11.00 10.63
SmoothQuant 25.99 15.16 13.46 11.88 11.39 10.75 10.32
RPTQ - 15.48 - 12.11 11.62 11.01 10.57
ZeroQuant-FP - 15.32 - 11.95 11.30 10.75 -
Ours 26.03 15.10 13.42 11.87 11.40 10.74 10.33
Ours† 26.64 15.24 13.45 11.89 11.42 10.76 10.33

Table 13: Quantization Results on c4 (Raffel et al., 2020) with A16W3 and A8W4 OPT Models † indicates
static quantization for activation.

OPT PPL ↓ 125M 1.3B 2.7B 6.7B 13B 30B 66B
FP16 - 32.55 16.97 15.11 13.09 12.34 11.84 11.36

W3A16
g128

RTN 64.67 222.13 337.75 39.90 65.33 34.27 309.69
GPTQ 45.17 19.90 17.06 14.24 12.84 12.54 13.27
AWQ 44.07 19.59 16.52 13.98 12.87 66.68 3.4e3
OmniQuant 45.29 20.42 17.08 14.23 13.49 12.54 12.06

W4A8
g128

RTN 38.31 20.84 19.75 65.86 3370.84 2972.69 2556.84
ZeroQuantv2 36.66 18.35 16.11 13.70 12.91 12.28 11.84
SmoothQuant 34.32 17.37 15.27 13.27 12.55 11.93 11.42
RPTQ - 17.79 - 13.74 13.40 12.41 11.73
ZeroQuant-FP - 18.19 - 13.44 12.55 11.90 -
Ours 34.29 17.48 15.31 13.26 12.61 11.93 9.25
Ours† 35.29 17.61 15.34 13.29 12.63 11.93 11.42

Table 14: Quantization Results on ptb (Marcus et al., 1994) with A16W3 and A8W4 OPT Models † indicates
static quantization for activation.
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