Dual Grained Quantization: efficient fine-grained quantization for LLM

Anonymous ACL submission

Abstract

Large Language Models (LLMs) demonstrate
considerable potential across a range of tasks;
however, they pose significant challenges due
to their extensive memory requirements and
computational demands. Fine-grained quanti-
zation effectively preserves model performance
during aggressive weight compression, yet its
inefficiency on hardware platforms hinders its
applicability in real-world production environ-
ments. To enhance hardware efficiency while
preserving the performance of fine-grained
quantization, we propose a novel quantization
framework, Dual Grained Quantization (DGQ),
employing a W4 A8 configuration specifically
tailored for LLMs. By employing a dual-phase
search strategy, DGQ minimizes quantization
error without significantly extending quantiza-
tion time. To improve the accuracy of W4AS-
configured LLMs, we introduce aggressive se-
lective equalization. This approach is grounded
in the observation that key weights and outliers
frequently coexist within the same channels.
Comprehensive experiments with our W4A8
CUDA kernel highlight DGQ’s exceptional per-
formance, delivering speedups of 1.37x and
2.5x over standard INT8 and FP16 kernels,
respectively, while preserving the superior per-
formance of fine-grained quantization.

1 Introduction

Large Language Models (LLMs) such as GPT-
4 (Bubeck et al., 2023) and LLaMA (Touvron et al.,
2023a,b) have excelled in comprehending and gen-
erating natural language. However, these models
have become much larger. For instance, LLaMA-
65B (Touvron et al., 2023a) is approximately 190x
larger than Bert-Large (Devlin et al., 2018), neces-
sitating around 130 GB of memory storage, which
requires 2x80GB NVIDIA A100 during inference.
The deployment of LLMs presents notable chal-
lenges, particularly in the allocation of substantial
computing and storage resources.

Given the challenges outlined, network quan-
tization (Krishnamoorthi, 2018) propose to map
weights and/or activations to lower-bit represen-
tations, significantly reduces memory footprint
and boosts inference. For LLMs, the quantization
schemes that have received the most attention in-
clude W4A16 (Lin et al., 2023; Frantar et al., 2022)
and W8AS8 (Shao et al., 2023; Xiao et al., 2023; Yao
et al., 2022). W4A16 reduces the memory usage
and transfer durations by converting weight into
4-bit, albeit introducing dequantization overhead
and retaining FP16 calculations. W8AS accelerates
the matrix multiplication(MatMul) by leveraging
INTS kernels, yet has a minimal impact on reduc-
ing the memory footprint associated with weight
storage. To harness the benefits of both, more com-
pact W4AS8 (Yao et al., 2023; Li et al., 2023b,a)
and W4A4 with mixed precision (Ashkboos et al.,
2023; Zhao et al., 2023) are proposed. To pre-
serve model performance, W4A8 methods apply
fine-grained quantization, inserting FP16 accumu-
lation within integer MatMul. Concurrently, W4A4
with mixed precision introduces a dynamic reten-
tion strategy, selectively keeping critical activations
and weights in high precision to preserve model
efficacy. Despite these advancements, such meth-
ods lead to slower inference times by interrupting
the efficient integer MatMul computation pipeline
within existing computing units. Figure 1 illus-
trates the performance across various quantization
schemas, indicating that current methods struggle
with calculations across diverse token sequences.

In this paper, we propose Dual Grained
Quantization (DGQ), a hardware-efficient fine-
grained quantization framework for LLMs. To
eliminate float addition within integer MatMul for
group-wise quantization, we address the group-
wise quantization challenge by implementing
group-wise quantization of weights prior to the
MatMul process by converting 4-bit weights back
to 8-bit representations. Following this adjust-



FP16 Baseline
—o— WA4A16
W8A8
W4A4
WB8A4-FG
1 —e— W4A8(ours)

N
u

N
o

Tops improvement
= -
o (S,

o
8]
/|

o
o

2'4 2'7 210 213
Sequence Length

Figure 1: Speed Comparison of different quantiza-
tion schemes to FP16 kernels. The curve of DGQ is
formed by joining two distinct lines: the former rep-
resents the kernel for the pre-fill phase, and the latter
illustrates the kernel for the self-decoding phase.

ment, the modified procedure facilitates the exe-
cution of continuous INT8 MatMul and channel-
wise dequantization. To minimize the quantiza-
tion error and eliminate quantization clipping over-
head, we propose a dual-phase search algorithm
tailored to hardware constraints. Additionally, to
further reduce the overhead associated with group-
wise weight dequantization, we have developed
two W4AS kernels, each optimized for handling
either long or short sequence lengths.

To maintain the model accuracy, we propose ag-
gressive selective equalization(ASE), enhancing
the performance of static quantization for activa-
tion. Our method is based on the observation that
salient weight and outliers often manifest in the
same channel. Smoothing the outliers could reduce
the relative quantization error of salient weight,
benefiting the quantization for both activations and
salient weights. To reduce the impact on less signif-
icant weights, we strategically reduce the smooth-
ing channel, exclusively choosing channels con-
taining outliers for the smoothing process.

In summary, our key contributions include:

¢ The Dual Grained Quantization (DGQ) frame-
work enhances W4A8 LLM inference through
an optimized dual-grained schema, two
inference-stage kernels, and a rapid, gradient-
free method.

» Aggressive Selective Equalization strategy
that selectively smoothens channels.

» Extensive DGQ evaluation shows significant
performance and efficiency improvements,
achieving up to 2.5x and 1.37 x faster speeds
than FP16 and W8AS8 implementations with
negligible loss of accuracy, respectively.

2 Related Works

2.1 Model Quantization

Quantization falls into two primary categories:
Quantization-Aware Training (QAT) (Martinez
et al., 2018; Esser et al., 2019) and Post-training
Quantization (PTQ) (Choukroun et al., 2019; Li
etal., 2021; Wei et al., 2022). QAT fine-tunes quan-
tized models with the full dataset, maintaining accu-
racy but requiring complex computations, thus be-
ing less ideal for LLMs. Conversely, PTQ applies
quantization with minimal data and computational
demand. Techniques such as AdaRound (Nagel
et al., 2020) and Adaquant (Hubara et al., 2020)
optimize quantization parameters and distill quan-
tized models layer by layer. Some approaches (Qin
et al., 2022; He et al., 2022) push the boundaries
by compressing transformations into binary values.

2.2 Quantization on LLMs.

Given that QAT for LLM demands substantial
data and computational resources, the predom-
inant quantization techniques for LLM lean to-
wards PTQ. Current research primarily explores
two quantization scenarios: (1) weight and acti-
vation quantization (Yao et al., 2022; Xiao et al.,
2023; Wei et al., 2023; Liu et al., 2023b; Chai et al.,
2023; Yuan et al., 2023; Li et al., 2023b; Liu et al.,
2023a; Ashkboos et al., 2023), (2) weight only
quantization (Frantar et al., 2022; Lin et al., 2023;
Dettmers et al., 2023a,b; Lee et al., 2023). No-
tably, QLLM (Liu et al., 2023a) and QUIK (Ashk-
boos et al., 2023) push the limit of LLM quanti-
zation into 4 bits without significant quantization
errors. Both LLM.int8() (Dettmers et al., 2022)
and QUIk (Ashkboos et al., 2023) preserve the
outliers with high precision to maintain model
performance. Maintaining outliers at high preci-
sion incurs additional overhead during inference.
For W4 A8 quantization, ZeroQuantV?2 (Yao et al.,
2023) concludes, based on extensive experimen-
tation, that fine-grained quantization is crucial for
preserving model performance in W4A8 quanti-
zation schemes. ZeroQuantFP (Wu et al., 2023)
employs float quantization within a W4AS8 frame-
work, and FPTQ (Li et al., 2023b) presents an adap-



tive quantization granularity strategy for activation
quantization, aimed at minimizing inference over-
head. Accelerating fine-grained weight quantiza-
tion remains a challenging problem that requires
further investigation.

QLoRA (Dettmers et al., 2023a) introduces the
NF4 double quantization technique, which im-
proves memory utilization by converting FP32
group-wise quantization scales to FP8 and employ-
ing a channel-wise FP32 scale. This approach pri-
oritizes memory efficiency over computational effi-
ciency illustrating that direct conversion of quanti-
zation scales to FP8 does not significantly impact
accuracy. In our proposed methodology, we place
significant emphasis on enhancing inference effi-
ciency. This involves initially dequantizing UINT4
weights back to INTS8 weights, thereby facilitating
INT8 General Matrix Multiply (GEMM) opera-
tions to expedite the inference process.

3 Preliminary

Quantization is an essential process that converts
high-precision values into low-precision precision
formats. In our research, we focus on the appli-
cation of uniform integer quantization, which is
advantageous due to its superior hardware support
and increased computational efficiency. The pro-
cess of asymmetric quantization is mathematically
represented as:

BN X
X = clamp({ -‘ + zp, 0,2V — 1),

S
Xmin

(1
o \\Xmin—‘ - Xmax —
zZp = , S= ————

S 2N —1

Here, X denotes the full-precision tensor, X rep-
resents its quantized version, s is the quantization
scale, and N signifies the bit width. We denote
the quantization process as Q(X, s, zp), where s
represents the scale and zp the zero point. For sym-
metric cases, the zero-point ZP is assigned a value
of zero, and the quantization scale s is calculated
using the formula max(|X|)/(2N"1 — 1).

Different Levels of Quantization Granularity.
For weight quantization, granularity is differen-
tiated into two distinct levels: channel-wise and
group-wise quantization, as depicted in Figure 2
(a) and (b). Compared to channel-wise quantiza-
tion, vanilla group-wise quantization requires float
addition calculation across groups, thereby dimin-
ishing efficiency. For activation quantization, two
distinct granularities are identified: token-wise and

tensor-wise. Token-wise quantization requires the
dynamic computation of the quantization scale for
each token, which introduces additional overhead
during inference. In our framework, we use static
quantization for efficient inference.

Different Inference Phase of LLMs. There are
two phases for LLM inference, the pre-fill phase
(calculating key-value (KV) cache with long se-
quence input) and the self-decoding phase (generat-
ing the word with KV cache). In the pre-fill phase,
the LLMs usually deal with long-sequence context
while the LLMs deal with only one word during
the self-decoding phase.

Scaling Equalization. Migrating quantization dif-
ficulty from activation/weight to weight/activation
reduces quantization error in coarse-grained quan-
tization. This is captured by the equation:

X' =diag(s)"'X, W' = diag(s)W (2

4 Dual Grained Quantization

4.1 Inference Schema

To enhance the hardware efficiency of fine-grained
quantization and avoid group-wise float scales, we
propose dual-grained quantization (DGQ), see Fig-
ure 2 (c). This approach incorporates a pivotal
dequantization step preceding the GEMM opera-
tion. It entails the conversion of UINT4 weights
into INTS8 weights, thereby facilitating the execu-
tion of INT8 GEMM operations. DGQ employs a
two-step quantization process: initially, quantiza-
tion is performed using a channel-wise FP16 scale
s(1), followed by a group-wise INTS scale S(?) for
the second step. Furthermore, the second-step de-
quantization can be integrated with the process of
loading UINT4 weights into INT8 kernels, stream-
lining the procedure. For the scenario described,
involving hidden states X g € Nggh and a weight
matrixW4 € NZ?O, the quantization methodol-
ogy is characterized by the following equations:

Sf16 = SX * S(l),

ng = S(2) . (Wu4 + ZPU4), (3)

Of16 =sy16 - (XsgWig),

Here, S(?) ¢ Ngg ° represents the group-wise
quantization scales, ZP,4 € NY7° represents the
group-wise quantization zero points and s(t) &
]R?m represents channel-wise quantization scales.
o is the number of output channels, ng signifying
the number of groups in group-wise quantization,



s

1 1

1 S 1

1 W 1 m
E 2w ! = J:‘:H- | = 2
™ M ™ [ s@

I == : %

1

1 1

W, 1 1

xs8 ud : XS8 Wu4 : xss

| |

1 1

* 1 1 *

1 1

1 1

1 1

| |

L R .. S
To=s-XxW) ! 0=73,S; (W, xX,) i " 0=s-Xx (V\{ - S@))
. S=SxSw_ | S = sxSw | s = sysV

(a) Channel-wise Quantization

(b) Group-wise Quantization

(c) Dual Grained Quantization

Figure 2: Different grained quantization method. Unlike channel-wise and DGQ quantization, group-wise
quantization tends to result in FP16 accumulation, which conflicts with typical hardware design.

and g denoting the size of each group within the
group-wise quantization (where the product of ng
and g equals h, the number of input channels).

4.2 Dual-phase Search

DGQ requires to quantize the group-wise FP16
scales into channel-wise FP16 scales s™*) and
group-wise INTS scales s(2). However, directly
quantizing the FP16 scales to INT8 following Dai
et al. (2021) results in a significant quantization er-
ror, as demonstrated in Table 1. The primary reason
for this limitation is that the number of quantization
bits allocated for the second step of fine-grained
quantization is restricted to prevent overflow during
the dequantization process. To address this limi-
tation, we propose a novel dual-phase method to
search proper dual-grained quantization scales.

Following prior studies (Choukroun et al., 2019;
Lin et al., 2023), our method also employs the
Mean Squared Error (MSE) of the output to cali-
brate, as delineated in equation 4. Given the ex-
tensive search space of quantization parameters,
it is imperative to first determine an optimal fine-
grained scale S’ to serve as a constraint, thereby
narrowing the search space. To further refine the
model, we compute the MSE for each weight and
activation group Wy, Xy, following the approach
described in Equation 5.

PPL | 1-7B 1-13B  1-30B 2-7B 2-13B
Original 6.03 5.39 4.43 5.87 5.23
VS-Quant  6.93 6.00 483 215554 548

Table 1: Wikitext2 Results for W4A8 LLaMA family:
Original Group-Wise Quantization vs. VS-Quant.
Here, we use 4bit for Sy to avoid overflow.

argmin | XW — XQ(W, S, ZP)|>. (4
S ZP

arg min | Xy Wy, — XkQ(Wk, s'ezpp) |12 (5)

'k, 2Py,

To refine our quantization scales further, we ad-
just the calibration process by altering the optimiza-
tion objective to focus on s(*). The optimization
objective for this phase is depicted in Equation 6.

argmin | XW — XOy (W, S, ZP)|%,
s(1)

g/ (0)
S® = |27 s=s1.83
s

For the second phase, our method continues to
utilize the absolute maximum of X for grid search.
This strategy is informed by the discrepancy be-
tween the absolute maxima of S’ and X, poten-
tially leading to the neglect of relevant sections of
the search space. To enhance inference efficiency
through the avoidance of clipping, our optimization
framework embeds constraints on the datatype’s
upper and lower limits, as specified in Equation 7.

W4 € [0,15],8) € [-128,127],
WsS®? e [-128,127]

The rounding operation in the second phase of
quantization, represented by |-], may result in S
surpassing S’. This can lead to a reduction in the
maximum weight values to less than 15. In ex-
ploring the search space, it’s possible for the range
of S to surpass 15. As a result, we have opted
to loosen the constraints on S(2), concentrating
instead on the limitations for W g and W 4. Con-
sequently, it suffices to apply clamping to W 4 as



600
5 400
200

-200

—400

7.5

5.0

25

0.0

0 1000 2000 3000 4000 5000 0 2800 5600 8400 11200 14000

0 1000 2000 3000 4000 5000 0 4000 8000 12000 16000 20000

bt il

0.6

0.4

20 0.2

0 0.0

0 1000 2000 3000 4000 5000 0 2800 5600 8400 11200 14000
channel_idx channel_idx

(a) llama-13b.2.self_attn.v_proj (b) llama-13b.2.mlp.down_proj

0 1000 2000 3000 4000 5000 0
channel_idx

(c) opt-13b.2.self_attn.v_proj

4000 8000 12000 16000 20000
channel_idx

(d) opt-13b.2.fc2

Figure 3: Figures of maximum, minimum and mean values for different layers of different models. Blue lines
mean the maximum, orange lines present the minimum and green lines signify the mean value.

described in Equation 8.

—-127
Wy € [max(0, LW} +ZP),
127 ®)
g@ | T ZP)]

4.3 Aggressive Selective Equalization

Unlike W8AS (Xiao et al., 2023), 4-bit quantized
weight is hard to cover the quantization difficulty
migrated from activations. To reduce the quan-
tization error associated with weights, our focus
intensifies on salient weights (Lin et al., 2023),
identified as those exerting the greatest influence
on model accuracy. Given that the Hessian matrix
of weights, calculated using H = XXT, correlates
directly with the absolute values of the inputs, it is
possible for outlier activations and salient weights
to coexist within the same input channel. To eluci-
date this point, Figure 3 illustrates both the maxi-
mum and mean activation values. For a systematic
visualization, we organize the maximum values in
ascending order and align the mean values accord-
ingly, using the indices of the maximum values.
This organization demonstrates that outliers in both
maximum and mean values often correspond to the
same channels, highlighting their variability across
different models and layers. Therefore, it suffices
to consider only the values of outliers when devis-
ing our equalization strategy. To prevent disruption
to the distribution of other weights and those of
preceding layers, our approach selectively smooths
the channels containing outliers.

In our equalization strategy, we determine the
smoothing scale k; using the following formulas:

min(15, |

©))
(10)

z; = max(|X[;[)

k; = clamp(z;/maxp(z),low = 1)

Here, the top p of the highest values serve as
the threshold for clipping. Outliers exceeding the
p threshold are adjusted to this threshold, and the
resulting scale is utilized to boost channels that
are particularly sensitive to quantization. We con-
ducted evaluations with various settings of p, ul-
timately selecting p = 1.0% for LLaMA models
and p = 0.3% for OPT models.

4.4 Optimization of Kernel Design

As shown in Figure 4(b), W4A16’s dequantiza-
tion necessitates extra computations prior to the
MatMul operation, with weight dequantization oc-
curring right after loading to reduce memory trans-
fer time. This process is applied to each input
individually. However, this approach requires re-
peated dequantization for sequences longer than
one, introducing overhead that offsets the benefits
of lower memory transfer time and thus impairs per-
formance. Contrastingly, the W4AS8 configuration,
with fewer bit operations (BOPs) than W4A16, is
expected to outperform due to its ability to pro-
cess longer sequences before hitting computational
limits. To address these challenges, we suggest
moving the dequantization step to precede the Mat-
Mul operation for all inputs.

Figure 4(c) and (d) show our innovative kernel
designs tailored for both the self-decoding and pre-
fill phases. During the self-decoding phase, dequan-
tization is seamlessly integrated into the MatMul
process, following the vanilla W4A16 kernel de-
sign. However, we have increased the sequence
length for each computation. While this adjust-
ment may reduce performance in single-size self-
decoding, it significantly improves performance for
smaller sequences, as depicted in Figure 1. This
scenario more accurately reflects typical real-world



Xsg

(b) AL6W4 Or16

e "
U4ToF16 U4ToF16

(a) ABWS

GEMM

Xr16  (c) DGQ Self-decoding  Of16 Xr16 (d) DGQ Pre-fill Or16

Figure 4: Design of our W4A8 Kernels (c) and (d)
compared to W8AS8(a) and W4A16(b).

applications. Transitioning to the pre-fill phase, the
strategy involves separating dequantization from
the MatMul operation. This allows for the dequan-
tization of weights to occur only once per MatMul.
Although this change is likely to incur substantial
additional memory transfer overhead, it is justified
by the pre-fill phase’s handling of longer sequences.
This overhead is effectively mitigated, facilitating
an enhancement in performance.

5 [Experiments

5.1 Experiments Setups

Baseline. We benchmark against established
baselines within the W4A8 quantization setting,
SmoothQuant (Xiao et al., 2023), LLM-QAT (Liu
et al., 2023b) and FPTQ (Li et al., 2023b). Since
the quantization granularity varies from different
quantization methods, we detail the quantization
granularity of each in Table 2.

Method activation weight
SmoothQuant token-wise tensor-wise
LLM-QAT token-wise channel-wise
FPTQ token/tensor-wise  group-wise
Ours tensor-wise dual-grain

Table 2: Quantization granularity of different meth-
ods. FPTQ uses adaptive quantization granularity.

Models and datasets. We choose LLaMA! (Tou-
vron et al., 2023a) and LLaMA2? (Touvron et al.,
2023b) families to evaluate our quantization meth-
ods. For Common Sense Question Answers evalu-
ation, we employ four zero-shot evaluation tasks:
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), Winogrande (Sakaguchi et al., 2021) and
ARC (Clark et al., 2018). The benchmarking for

"https://huggingface.co/huggyLLaMA/LLaMA-*b
“https://huggingface.co/meta-LLaMA/LLaMA-2-*b-hf

Common Sense Question Answers is conducted us-
ing Im-eval (Lin and Chen, 2023). Additionally, we
use WiKiText2 (Merity et al., 2016) and C4 (Raf-
fel et al., 2020) to compare the generation ability.
For calibration purposes, we select 128 samples
from the PTB (Marcus et al., 1994) dataset to serve
as the calibration dataset. Furthermore, to demon-
strate the broad applicability of our approach, we
evaluate its performance on OPT models.
Implementation. We implement our methods with
Pytorch Huggingface for the proof of concept. We
use the CUTLASS® GEMM kernels to develop
our two-grained quantization kernels. All latency
measurements in the paper are tested on NVIDIA
RTX3090 24G GPUs.

5.2 Performance Evaluation

Table 3 presents the performance of our quantiza-
tion methods across various tasks, including Wiki-
text2, C4, and Common Sense QA. Compared to
FPTQ (Li et al., 2023b), our methods demonstrate
equivalent or superior performance. FPTQ intro-
duces extra dynamic quantization for specific lay-
ers and employs naive group-wise quantization
approach, introducing extra inference overhead.
Compared to LLM-QAT (Liu et al., 2023b), our
methods exhibit enhanced performance. Notably,
LLM-QAT, as a QAT approach, incurs consider-
able overhead in terms of computational resources.
Table 4 presents a comparison on the MMLU task
between our methods and FPTQ, demonstrating
our method’s superior performance over FPTQ on
MMLU task. Additional Perplexity (PPL) test re-
sults are available in the Appendix B .

5.3 Efficiency Evaluation

Comparison on End-to-End inference. In Fig-
ure 5, we conduct a comparison of the end-to-end
efficiency among LLaMA-7B, LLaMA-13B, and
OPT-13B models with different quantization meth-
ods: SmoothQuant (W8AS), AWQ (W4AS8), and
our methods. We conducted tests using an in-
put context length of 1024, generating 128 words
across three batch sizes: 2, 4, and 6. In the pre-
fill phase, our method achieves the highest accel-
eration ratio in comparison to both W8AS8 and
W4A16 configurations, attaining an acceleration
ratio of up to 1.67 times relative to FP16. During
the self-decoding phase, the W4A16 configuration
exhibits superior performance, while our methods

3https://github.com/NVIDIA/cutlass



Size Bit Method PPL | Zero-Shot CSQA 1
wikitext2 ¢4 PIQA ARC-e ARC-c HellaSwag Winogrande Avg.
FP16 5.68 7.08 79.0 72.7 44.7 76.1 70.3 68.6
1-7B WS8A8 SmoothQuant 5.89 723 79.0 72.2 44.5 75.2 70.1 68.2
W4A8 LLM-QAT - - 71.5 70.2 43.3 73.5 67.7 66.4
W4AS8 FPTQ 5.95 737 784 70.8 - 74.5 70.0 67.5
W4A8 DGQ 6.02 743 782 71.6 44.2 73.5 68.4 67.2
FP16 5.09 6.61 80.1 74.7 47.8 79.1 72.9 70.9
1-13B WS8A8 SmoothQuant 5.21 6.72  79.7 73.9 47.6 78.3 72.1 70.3
W4AS8 LLM-QAT - - 79.1 73.0 47.1 77.5 70.6 69.5
W4A8 FPTQ 5.35 6.83 793 72.7 - 77.5 72.1 69.7
W4A8 DGQ 5.39 6.93 79.7 73.3 474 77.5 71.3 69.8
FP16 3.53 5.62 823 79.8 55.6 84.2 774 75.9
1-65B W8A8 SmoothQuant 3.73 593 8l1.1 774 54.4 82.3 74.9 74.04
W4A8 FPTQ 3.88 585 814 78.4 - 83.4 75.8 74.8
W4A8 DGQ 3.89 597 8l1.1 78.9 54.9 81.0 75.8 74.3
FP16 5.47 6.97 79.1 74.5 46.3 76.0 69.4 69.1
278 W8A8 SmoothQuant 5.80 7.24  78.0 76.0 46.4 75.9 69.1 69.1
W4AS8 FPTQ 5.85 735 78.0 72.8 - 74.9 69.4 67.8
W4A8 DGQ 5.87 7.44 784 73.0 44.3 74.0 68.0 67.5
FP16 4.88 6.46 80.6 77.5 49.2 79.4 72.0 71.7
2-13B W8A8 SmoothQuant 5.04 6.55 795 773 49.1 79.3 72.1 71.5
W4A8 FPTQ 5.19 6.83 794 75.8 - 78.1 70.6 70.4
W4A8 DGQ 5.23 6.82 79.5 76.0 48.5 77.5 70.9 70.5
FP16 3.31 5.52 827 81.0 57.3 83.8 78.0 76.6
2-70B W8A8 SmoothQuant 3.46 5.61 824 80.7 57.2 82.6 78.1 76.2
W4A8 FPTQ 3.64 578 824 79.9 - 82.6 77.0 75.7
W4A8 DGQ 3.68 5.89 82.0 80.2 57.0 81.3 76.9 75.5
Table 3: Comparison on WikiText2, C4 and Common Sense QA.
Acct  Method Humans STEM Social Other Avg. BS Kernel FP16 W8A8 W4A4  Ours
FP16 33.60 31.10 3820 3840 35.20 (4096,4096) 0.048 0.091  0.094 0.050
17p _FPTQ 3020 2995 3276 3587 3202 | (5120,5120)  0.070 0.111  0.094  0.059
FP16 3127 3053 36.79 3590 33.50 (11008,4096) 0.132  0.095 0.118 0.111
Ours 28.96 30.22 3591 3424 32.20 (4096,11008) 0.121 0.226 0.134 0.104
FP16 4460 37.10 5400 53.50 47.10 (4096,4096)  1.117  0.504 0518  0.443
L13p _FPTQ 4096 3419 4972 49.75 43.46 204g  (O120,5120)  1.5970.663  0.655 0.598
FP16 40.73 3831 54.60 54.04 47.06 (11008,4096) 2963  1.181 1.157 1.154
Ours 39.56  41.50 48.66 5127 4574 (4096,11008) 3.146 1200  0.981 1.075
FP16 61.80 52.00 7330 67.60 63.50
|6sp _FPTQ 5985 4924 7150 6589 61.52 Table 5: Single Kernel latency comparison.
FP16 57.72 47.04 7596 6744 62.18
Ours 55.60 4486 72.11 63.53 59.57

Table 4: Comparison on MMLU.

surpass the efficiency of the W8AS8 schema. Over-
all, our method achieves the highest acceleration
ratio in end-to-end inference. Since our quantiza-
tion schema is one of the important points in our
paper, we only replace the linear layers into quanti-
zation layers and adapt the KV cache quantization,
the end-to-end latency could be further reduced.

Comparison of Single Kernel Performance. Our
kernel performance is evaluated in Table 8§ against
WS8AS (Xiao et al., 2023) and W4A4 with mixed
precision kernels (Ashkboos et al., 2023). Consid-
ering the specific phases of self-decoding and pre-
filling, alongside varying kernel sizes in LLaMA

models, our experimental analysis encompasses di-
verse comparisons. The results demonstrate that
our kernels significantly outperform both W8AS8
and W4A4 kernels. This superiority can be at-
tributed to the fact that W4A4 kernel, when em-
ploying mixed precision, encounter delays due to
additional dynamic quantization processes.

5.4 Ablation Study

Different quantization granularity for W4AS8
LLaMA models. In our experiments with LLaMA-
7b model, we explored different quantization granu-
larity combinations, as detailed in Table (6). The re-
sults indicate that fine-grained and coarse-grained
quantization methods can lead to up to a 1 PPL
(Perplexity) difference. Specifically, in fine-grained



LLaMA-7B LLaMA-13B OPT-13B
80001 = FpP16 == FP16 == FP16
=1 W4A16 == W4A16 10000 ] B WAAL6
70001 EEE W8AS 100007 m=gy wsAs = WwsAs
== W4As == W4As == Wd4ns
6000
8000 80001
% 50001 I I
g g £
= = 60004 = 6000
£ 4000 2 2
Q Q [
5 5 5
30001 4000 4000 1
2000 1
2000 20001
10001
0 + + + 0 + t + 0 + + +
2 4 8 2 4 8 2 4 8

Batch Size

Batch Size

Batch Size

Figure 5: End to End latency comparison on LLaMA-7B, LLaMA-13B and OPT-13B. The lower part shows
the pre-fill phase time cost and the upper part shows the self-decoding phase time cost.

quantization, we observe that static activation quan-
tization in combination with group-wise weight
quantization outperforms dynamic activation quan-
tization coupled with channel-wise weight quanti-
zation. Additionally, our dual-grained quantization
approach demonstrates that it introduces minimal
additional quantization errors compared to group-
wise quantization.

PPL | FP16 S+CW S4+GW D+CW  S4DG
WikiText2  5.68 6.57 6.03 6.37 6.04
C4 7.08 8.10 7.44 7.75 7.43

Table 6: Comparison for different quantization gran-
ularity combinations for W4AS8 LLaMA models. S
means static tensor-wise quantization, D means dynamic
token-wise quantization, CW means channel-wise quan-
tization, GW means Group-wise quantization and DG
means Dula-Grained quantization.

Effect of p in Aggressive Selective Equalization.
We evaluate varying p from 0.1% to 2% as shown
in Table 7. When p exceeds the optimal value,
unnecessary equalization distorts the weight distri-
bution. Conversely, a too-small p fails to include
outliers within the equalization range. Incorporat-
ing GLU (Dauphin et al., 2017) into LLaMA ampli-
fies outlier effects via element-wise multiplication,
raising outlier values. Consequently, LLaMA-13b
requires a larger p to accommodate outliers com-
pared to OPT-13b.

PPL | LLaMA-13b LLaMA2-13b OPT-13b
p=0.1% 5.55 5.32 11.04
p=0.3% 5.45 5.27 10.92
p=0.5% 5.45 5.25 11.12
p=10% 541 5.23 11.26
p =2.0% 5.44 5.29 11.21

Table 7: Comparison for different p in ASE.

Effect of Aggressive Selective Equalization. We
replace the ASE with different equalization meth-
ods from SmoothQuant (Xiao et al., 2023) and
FPTQ (Li et al., 2023b), to show the efficiency of
our approach. Our method surpasses the equaliza-
tion techniques employed by both SmoothQuant
and FPTQ. In the context of OPT models, where
outliers are less pronounced, the SmoothQuant

strategy proves adequate, and our method achieves
comparable performance.

PPL | task naive SQ FPTQ  Ours
wikitext 3857 609 568 539

LLaMA-13b 982 766 723 693
wikitext 11086 573 543 5.3

LLaMA2-13b 3305 743 707 682
. wikitext 372276 1099 1113 10.30
P o4 470002 1189 1213 11.89

Table 8: Comparison for different equalization meth-
ods via different models. Quantization granularity is
static activation and dual-grained quantization.

6 Conclusion

In this paper, we introduce DGQ, an innovative
and efficient approach for W4AS8 quantization tai-
lored for LLMs. DGQ addresses the inefficien-
cies of group-wise quantization through a dual-
scale strategy, combining fine-grained integer and
coarse-grained full-precision quantizations. We en-
hance the quantization scale search algorithm to fit
our scheme and introduce an Aggressive Selective
Equalization strategy for smoother scale optimiza-
tion without extensive searching. Additionally, our
optimized kernels delivering speedups of 1.37 X
and 2.5 x over standard INT8 and FP16 kernels.



Limitation

In this paper, we introduce a hardware-efficient
W4AS8 quantization framework tailored for LLMs.
Our initial latency performance evaluation is con-
ducted using CUTLASS kernels as a preliminary
test. For deployment in real-world production en-
vironments, the development of specialized ker-
nels is necessary to achieve significantly enhanced
acceleration performance. Additionally, our test-
ing focused exclusively on the widely-used CUDA
computation platform. Future work will explore the
adaptation of our framework to other computing
platforms, broadening its applicability and perfor-
mance optimization across diverse hardware envi-
ronments.

References

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan
Zhong, Xincheng Wang, Jie Ren, Torsten Hoefler,
and Dan Alistarh. 2023. Towards end-to-end 4-bit
inference on generative large language models. arXiv
preprint arXiv:2310.09259.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-74309.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Yuji Chai, John Gkountouras, Glenn G Ko, David
Brooks, and Gu-Yeon Wei. 2023. Int2. 1: Towards
fine-tunable quantized large language models with
error correction through low-rank adaptation. arXiv
preprint arXiv:2306.08162.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel
Kisilev. 2019. Low-bit quantization of neural net-
works for efficient inference. In 2019 IEEE/CVF
International Conference on Computer Vision Work-

shop (ICCVW), pages 3009-3018. IEEE.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zim-
mer, William Dally, and Brucek Khailany. 2021. Vs-
quant: Per-vector scaled quantization for accurate
low-precision neural network inference. Proceedings
of Machine Learning and Systems, 3:873-884.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International conference on
machine learning, pages 933-941. PMLR.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Al-
istarh. 2023b. Spqr: A sparse-quantized representa-
tion for near-lossless llm weight compression. arXiv
preprint arXiv:2306.03078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S
Modha. 2019. Learned step size quantization. arXiv
preprint arXiv:1902.08153.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Yefei He, Zhenyu Lou, Luoming Zhang, Weijia Wu,
Bohan Zhuang, and Hong Zhou. 2022. Bivit: Ex-
tremely compressed binary vision transformer. arXiv
preprint arXiv:2211.07091.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner,
and Daniel Soudry. 2020. Improving post training
neural quantization: Layer-wise calibration and inte-
ger programming. arXiv preprint arXiv:2006.10518.

Raghuraman Krishnamoorthi. 2018. Quantizing deep
convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun
Kim, and Eunhyeok Park. 2023. Owq: Lessons
learned from activation outliers for weight quanti-
zation in large language models. arXiv preprint
arXiv:2306.02272.

Qingyuan Li, Ran Meng, Yiduo Li, Bo Zhang, Liang Li,
Yifan Lu, Xiangxiang Chu, Yerui Sun, and Yuchen
Xie. 2023a. A speed odyssey for deployable quanti-
zation of 1lms. arXiv preprint arXiv:2311.09550.

Qingyuan Li, Yifan Zhang, Liang Li, Peng Yao,
Bo Zhang, Xiangxiang Chu, Yerui Sun, Li Du, and
Yuchen Xie. 2023b. Fptq: Fine-grained post-training
quantization for large language models. arXiv
preprint arXiv:2308.15987.


https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng
Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. 2021. Brecq: Pushing the limit of post-training
quantization by block reconstruction. arXiv preprint
arXiv:2102.05426.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for 1lm compression and
acceleration. arXiv preprint arXiv:2306.00978.

Yen-Ting Lin and Yun-Nung Chen. 2023. Llm-eval:
Unified multi-dimensional automatic evaluation for
open-domain conversations with large language mod-
els. arXiv preprint arXiv:2305.13711.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong,
Jianfei Cai, and Bohan Zhuang. 2023a. Qllm: Accu-
rate and efficient low-bitwidth quantization for large
language models. arXiv preprint arXiv:2310.08041.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023b. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint
arXiv:2305.17888.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MaclIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn tree-
bank: Annotating predicate argument structure. In
Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March
8-11, 1994.

Julieta Martinez, Shobhit Zakhmi, Holger H Hoos, and
James J Little. 2018. Lsq++: Lower running time and
higher recall in multi-codebook quantization. In Pro-

ceedings of the European Conference on Computer
Vision (ECCV), pages 491-506.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020. Up
or down? adaptive rounding for post-training quan-
tization. In International Conference on Machine

Learning, pages 7197-7206. PMLR.

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua
Yan, Aishan Liu, Qingqing Dang, Ziwei Liu, and Xi-
anglong Liu. 2022. Bibert: Accurate fully binarized
bert. arXiv preprint arXiv:2203.06390.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

10

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqgian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu,
and Fengwei Yu. 2022. Qdrop: Randomly dropping
quantization for extremely low-bit post-training quan-
tization. arXiv preprint arXiv:2203.05740.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo
Zhang, Ruihao Gong, Jinyang Guo, and Xiang-
long Liu. 2023. Outlier suppression+: Accurate
quantization of large language models by equiva-
lent and optimal shifting and scaling. arXiv preprint
arXiv:2304.09145.

Xiaoxia Wu, Zhewei Yao, and Yuxiong He. 2023.
Zeroquant-fp: A leap forward in llms post-training
w4a8 quantization using floating-point formats.
arXiv preprint arXiv:2307.09782.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR.

Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn,
and Yuxiong He. 2023. A comprehensive study on
post-training quantization for large language models.
arXiv preprint arXiv:2303.08302.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168—
27183.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xing-
gang Wang, Yuzhang Shang, Guangyu Sun, Qiang
Wu, Jiaxiang Wu, and Bingzhe Wu. 2023. Rptq:
Reorder-based post-training quantization for large
language models. arXiv preprint arXiv:2304.01089.



Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tiangi Chen, and Baris Kasikci. 2023. Atom: Low-
bit quantization for efficient and accurate llm serving.
arXiv preprint arXiv:2310.19102.

A More performance results

In this section, we provide a comprehensive pre-
sentation of our results across various datasets to
complement the main paper. Here, we use dynamic
token-wise activation quantization. Specifically,
the results include:

» WikiText2 perplexity in the LLaMA families
(Table 10).

* C4 perplexity in the LLaMA families (Table
11).

* WikiText2 perplexity in the OPT families (Ta-
ble 12).

* C4 perplexity in OPT families (Table 13).
* PTB perplexity in OPT families (Table 14).

B Overhead introduced by Dual-phase
search

We evaluate the time cost associated with our dual-
phase search algorithm to quantify the overhead
introduced by the second phase. The results are
presented in the table below, from which we deduce
that the second phase of our algorithm does not
significantly increase quantization duration.

Model T Ty A
LLaMA-7B  548.18 52.57 9.59%
LLaMA-13B  964.44 128.81 13.04%

Table 9: The time consumption of Dual-Phase Search.
Here T presents the total time and the T is the second
phase time.

11



LLaMA PPL | 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B

FP16 - 568 509 410 353 547 488 33l
wiale FIN 701 588 487 424 666 551 397
o128 GPTQ 6.55 562 480 417 629 542 385
AWQ 646 551 463 399 624 532 -
RTN 872 781 676 616 572 4482 8.0

ZeroQuantv?2 6.44 532 4.36 - - - -
SmoothQuant 6.04  5.36 4.48 398 597 523 3.65

Wi ZeoQuantFP 632 526 426 - - - :
Ours 585 521 428 371 564 501 345
Ours' 604 539 445 389 587 523 374

Table 10: Quantization Results on Wikitext2 (Merity et al., 2016) with A16W3 and A8§W4 LLaMA Models. |
indicates static quantization for activation.

LLaMA PPL | 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B
FPl6 - 708 661 598 562 697 646 552
RTN 862 749 658 6.10 840 7.18  6.02
W3Al6 GPTQ 785 7.0 647 600 7.89 7.00 5.85
gl28  AWQ 792 707 637 594 784 694 -
OmniQuant 734 676 611 573 735 665 5.86
RTN 1076 994 814 796 1729 90.57 11.86

ZeroQuantv?2 7.79 6.78 6.16 - - - -
SmoothQuant  7.51 6.89 6.39 5.94 7.50 6.82 5.78

ngil 2ASS ZeroQuant-FP  7.51 5.73 6.09 - - - -
Ours 729 6.73 6.10 573 716  6.62 5.62
Ours' 743  6.93 6.31 597 744  6.82 5.89

Table 11: Quantization Results on c4 (Raffel et al., 2020) with A16W3 and A8W4 LLaMA Models. { indicates
static quantization for activation.

OPT PPL | 125M 13B 27B 6.7B 13B 30B 66B
FP16 - 27.65 14.63 1247 1086 10.12 9.56 9.34
W3AL6 RTN 51.22 119.00 297.98 23.54  46.03 18.80  136.89
o128 GPTQ 39.24 1647 13.69 11.65 10.35 9.73 10.96
AWQ 36.74 1632 1358 1141 10.68 9.85 9.60
RTN 3221 1733 1551 51.57 3978.101 2407.99 2832.57

ZeroQuantv2  31.69 1553 13.02 11.29 1043 9.86 9.62
SmoothQuant 29.01 14.71 1271 1090  10.25 9.57 9.32

\gf%ﬁ; RPTQ - 15.39 - 11.21 10.90 10.22 9.46
ZeroQuant-FP - 15.32 - 10.89 10.16 9.52 -
Ours 29.25 1478 12.67 10.93 10.29 9.53 9.31
Oursy 2994 1496 12.75 1092 10.30 9.55 9.32

Table 12: Quantization Results on Wikitext2 (Merity et al., 2016) with A16W3 and ASW4 OPT Models. |
indicates static quantization for activation.

12



OPT PPL | 125M  1.3B 27B  6.7B 13B 30B 66B
FP16 - 2461 1473  13.17 1175 11.21 10.69 10.28
RTN 40.13 12647 372.23 3256 44.12 25.70 286.87
W3Al16 GPTQ 30.08 1647 1454 1248  11.58 10.91 11.35
gl28  AwQ 3039 1627 14.19 1230 11.61 10.96 10.53
OmniQuant 29.34  16.11 14.15 1231 11.63 10.98 10.51
RTN 2793 1752 1633 98.34 3926.05 3557.30 2493.73
ZeroQuantv2  27.19 1573 13.82 12.19 11.64 11.00 10.63
WAAS SmoothQuant 2599 15.16 1346 11.88 11.39 10.75 10.32
2128 RPTQ - 15.48 - 12.11  11.62 11.01 10.57
ZeroQuant-FP - 15.32 - 11.95 11.30 10.75 -
Ours 26.03 15.10 1342 11.87 1140 10.74 10.33
Ours' 26.64 1524 1345 11.89 1142 10.76 10.33

Table 13: Quantization Results on c4 (Raffel et al., 2020) with A16W3 and A8W4 OPT Models 1 indicates

static quantization for activation.

OPT PPL | 125M 13B 27B 6.7B 13B 30B 66B
FP16 - 3255 1697 1511 13.09 1234  11.84 11.36
RTN 64.67 22213 337.75 3990 6533 3427  309.69
W3A16 GPTQ 4517 1990 17.06 1424 12.84  12.54 13.27
gl28  AWQ 4407 1959 1652 1398  12.87 66.68 3.4e3
OmniQuant 4529 2042 17.08 1423 13.49 12.54 12.06
RTN 3831 20.84 1975 65.86 3370.84 2972.69 2556.84
ZeroQuantv2  36.66 1835 16.11 13.70 1291 12.28 11.84
Waag  SmoothQuant 3432 1737 1527 1327 1255 11.93 11.42
o128 RPTQ - 17.79 - 1374 1340 1241 11.73
ZeroQuant-FP - 18.19 - 13.44 1255 11.90 -
Ours 3429 1748 1531 1326 12.61 11.93 9.25
Ours' 3529 17.61 1534 1329  12.63 11.93 11.42

Table 14: Quantization Results on ptb (Marcus et al., 1994) with A16W3 and A8W4 OPT Models 1 indicates

static quantization for activation.

13



