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Abstract001

Large language models (LLMs) excel at text002
generation and reasoning but struggle with003
producing structured output while maintain-004
ing accuracy in zero-shot information extrac-005
tion (IE). Recent studies have explored multi-006
agent frameworks to enhance LLMs’ capabil-007
ities, but these efforts primarily target general008
reasoning and fail to address key structured009
IE challenges such as boundary ambiguity and010
cross-type semantic conflicts. In this work,011
we propose MAF-IE, a multi-agent finetuning012
framework that combines specialization and013
collaborative training to improve both the accu-014
racy and efficiency of multi-agent systems for015
IE. Specifically, we introduce a type-specified016
multi-agent collaboration framework to gener-017
ate high-quality pseudo-labeled data. Based018
on the generated data, we design a novel con-019
trastive data selection strategy to finetune multi-020
ple LLMs on dialogue trajectories, enabling the021
model to better learn from both correct and in-022
correct predictions, enhancing task-specific fea-023
ture learning. Combined with a simple majority024
voting strategy, the finetuned models achieve025
comparable performance to multi-agent LLMs026
while significantly reducing inference costs.027
Extensive experiments on seven datasets across028
five tasks, spanning coarse- and fine-grained029
settings at both sentence and document lev-030
els, demonstrate MAF-IE significantly outper-031
forms zero-shot IE baselines.032

1 Introduction033

Information extraction (IE) converts unstructured034

or semi-structured text into structured representa-035

tions (Li et al., 2023c; Lu et al., 2022). Traditional036

supervised IE methods adapt pre-trained language037

models to labeled datasets with supervision sig-038

nals (Devlin et al., 2019; Zhuang et al., 2021),039

but they rely on costly annotations and struggle040

to generalize to low-resource or evolving domains.041

To address these limitations, zero-shot paradigms042

have emerged as a promising alternative by lever- 043

aging LLMs’ strong language understanding ca- 044

pabilities acquired through extensive pre-training 045

(Xie et al., 2023; Wang et al., 2023a). However, 046

a single LLM under zero-shot often achieves sub- 047

optimal results. For instance, directly prompting 048

GPT-3.5 yields only 45% F1 on CoNLL03 and 049

34% on OntoNotes4 (Li et al., 2024b), highlighting 050

a significant gap between zero-shot methods and 051

reliable structured extraction. 052

To bridge this gap, recent strategies utilize ad- 053

vanced models like GPT-4 (OpenAI, 2024a) to gen- 054

erate synthetic supervision (Heng et al., 2024; Ye 055

et al., 2024), but their effectiveness is bounded by 056

model capability and constrained by heavy compu- 057

tational and legal requirements. Another promis- 058

ing direction employs multi-agent frameworks, en- 059

abling multiple LLMs to collaborate through voting 060

(Wang et al., 2023c), debate (Chen et al., 2024) or 061

decision-making (Sun et al., 2025). These systems 062

promote diverse reasoning paths (Du et al., 2023), 063

critique each other’s outputs (Chan et al., 2023) 064

and aggregate complementary predictions into a 065

final output to address a single model’s limitations 066

(Pham et al., 2024; Zhao et al., 2025). 067

However, existing multi-agent frameworks face 068

critical challenges that hinder their direct applica- 069

bility to diverse IE tasks, including limited task- 070

specific adaptation, poor scalability caused by co- 071

ordination overhead, and insufficient flexibility to 072

accommodate varying IE task requirements. The 073

fundamental issue lies in their high computational 074

costs and low efficiency, making them impractical 075

for time-sensitive or large-scale applications. Ide- 076

ally, these benefits could be achieved by a single 077

model that performs direct inference with both high 078

efficiency and practicality. 079

In this paper, we propose MAF-IE, a novel 080

multi-agent finetuning framework that distills col- 081

laborative strengths into a set of finetuned mod- 082

els. Our method is specifically designed for IE, 083
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Figure 1: The overview of MAF-IE presents a multi-agent finetuning framework for zero-shot IE. We first employ
type-specialized multi-agent debate and confidence-weighted voting to construct finetuning datasets. These datasets
are then used to finetune the contrastive agents. We finetune contrastive models using reformatted dialogue-style
data that includes final-round responses labeled by whether they match the weighted voting result, along with
first-round responses from each type-specific agent to capture both "correction” and "consistency” signals, enabling
the model to differentiate correct and incorrect predictions better. Finally, the finetuned models are combined via
majority voting to produce more accurate predictions.

enabling each finetuned model to capture task-084

specific features while reducing the cost of multi-085

agent inference. Specifically, we propose a type-086

specified multi-agent collaboration system in which087

specialized agents engage in cross-type discussions088

to refine predictions and establish a feedback loop089

that improves extraction accuracy. Next, we lever-090

age the outputs generated from these multi-agent in-091

teractions as pseudo-labeled data to finetune multi-092

ple LLMs, with each model trained on type-specific093

data to promote specialization across models. Fi-094

nally, we combine the multiple finetuned models095

with a majority voting strategy at inference time to096

optimize the final predictions. Experimental results097

demonstrate that MAF-IE achieves significant im-098

provements on seven IE datasets across six tasks099

in diverse domains under a zero-shot setting, span-100

ning sentence- and document-level inputs as well as101

coarse- and fine-grained label schemas, validating102

the effectiveness and efficiency of our approach.103

2 Related Works104

LLMs for IE Recent advances in LLM-based105

IE have shown promise in tasks such as Named106

Entity Recognition (NER), Relation Extraction107

(RE), and Event Extraction (EE). ChatIE (Wei108

et al., 2024) enhances IE through structured di-109

alogue with ChatGPT, enabling interactive refine- 110

ment. CODE4STRUCT (Wang et al., 2023b) and 111

Code4UIE (Guo et al., 2023) formulate EE as a 112

code generation problem, with the former repre- 113

senting event ontologies in code and the latter lever- 114

aging in-context learning with retrieved examples. 115

Multi-agent for IE The rise of LLM agents like 116

GPTs (OpenAI, 2023a), LLaMAs (AI, 2024), and 117

PaLM (Chowdhery et al., 2022) has enabled multi- 118

agent collaboration through either cooperative 119

(Zhang et al., 2024) or adversarial strategies (Aryan, 120

2024) to iteratively output refinement. DoA (Wang 121

and Huang, 2024) introduces a debate optimization 122

with few-shot learning for EE that iteratively re- 123

fines outputs. EPASS (Hou et al., 2024) proposes a 124

supervised dual-agent system for document-level 125

RE, jointly modeling entity pairs and extracting 126

cross-sentence evidence. TriageAgent (Lu et al., 127

2024) proposes a heterogeneous multi-agent clini- 128

cal IE framework, where LLM agents collaborate 129

via multi-round role-playing with confidence scor- 130

ing and early stopping. 131

LLM Finetuning Several methods have been in- 132

troduced for LLM finetunig, including single and 133

multiple LLMs. RLHF (Ouyang et al., 2022) and 134

DPO (Rafailov et al., 2024) employ instruction 135
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tuning to improve the generated response to in-136

structions. Supervised finetuning (SFT) (Pareja137

et al., 2024) employs large-batch and stacked train-138

ing strategies on datasets to improve LLM gener-139

alization without relying on complex schedulers.140

GRPO (DeepSeek-AI et al., 2025) applies large-141

scale reinforcement learning directly on the base142

model, enabling the model to develop reasoning143

capabilities through self-evolution driven by re-144

ward signals autonomously. Multiagent finetun-145

ing (Subramaniam et al., 2025) introduces a self-146

improvement framework where LLM agents gen-147

erate diverse reasoning data through multi-round148

debates to finetune multiple models, enabling per-149

formance improvements.150

3 MAF-IE Framework151

This section introduces MAF-IE, a Multi-Agent152

Finetuning specifically designed for Information153

Extraction. We first formalize the problem (Sec.154

3.1), followed by a type-specialized multi-agent155

debate framework (Sec. 3.2). Next, we describe156

the construction of task-specific finetuning datasets157

(Sec. 3.3) and detail our multi-agent finetuning158

strategy, where each model is trained on data gen-159

erated by all type-specific agents to achieve spe-160

cialization (Sec. 3.4). Finally, we describe the161

inference process (Sec. 3.5). An overview of our162

approach can be seen in Figure 1.163

3.1 Problem Definition164

Given a natural language dataset Dtask = {xi},165

where each input xi is a text sequence, the goal of166

IE is to produce structured outputs depending on167

the requirements. The NER identifies entity spans168

e in xi as mentions and assigns each mention a type169

label t ∈ T , where T is a predefined set of entity170

types (e.g.,PER, ORG, and LOC). The output is a171

set of labeled entity {(e, t) | e ∈ xi, t ∈ T }. Based172

on the identified entity set E = {e1, e2, . . . , ek},173

RE aims to detect and classify semantic relations174

ri ∈ R between entities. The output is relation175

triples:{(ep, ri, eq) | ep, eq ∈ E, ri ∈ R}. EE176

aims to detect event triggers t ⊆ xi in the text177

and classify their event types et ∈ E , where E178

is a predefined event type (e.g., Conflict:Attack,179

Life:Die). For each identified event trigger, ex-180

tract argument-role pairs at = {(rj , ej)}, where181

ej represents entity mention and rj is its seman-182

tic role in the event (e.g., Agent, Victim, Time).183

The output for xi is structured event records Ei =184

{(t, et, at) | t ⊆ xi, et ∈ E , at = {(rj , ej)}mj=1}. 185

Fine-grained entity typing(FET) aims to assign fine- 186

grained type labels to each marked entity mention 187

ej ⊆ xi, where the type labels Tfine are drawn from 188

a hierarchical type ontology (e.g., Person/Artist/Ac- 189

tor). The output for xi is entity-type associations: 190

Ti = {(ej , Sj) | ej ⊆ xi, Sj ⊆ Tfine}. See Ap- 191

pendix C.2 for more task definitions. 192

3.2 Multi-Agent Collaboration 193

We propose a type-specialized multi-agent collabo- 194

ration framework to address key challenges in IE, 195

including fine-grained type discrimination, bound- 196

ary ambiguity, and complex semantic structures. 197

The framework consists of N language models, in- 198

stantiated as identical copies or finetuned variants 199

of a shared base model, which engage in M de- 200

bate rounds. Each agent specializes in a specific 201

label type, generating predictions with higher con- 202

fidence within its domain and providing auxiliary 203

predictions for other labels to support cross-type 204

verification. During each round r, agents exchange 205

structured prompts containing their own and others’ 206

predictions, rationales, self-assessed confidence 207

scores, and aggregated voting statistics. These 208

confidence scores are recalibrated using a func- 209

tion f(·) like min-max normalization to ensure fair 210

contribution weighting in the aggregation process. 211

After M rounds, the final prediction is determined 212

through confidence-weighted voting, formulated as: 213

ŷ(M) = argmaxy∈Y
∑N

n=1 f(p
(M)
n ) · 1(ŷ(M)

n = 214

y), where Y is the set of candidate entities, p(M)
n 215

is agent An’s original confidence score, f(p(M)
n ) 216

is its calibrated value, and 1(ŷ
(M)
n = y) indicates 217

whether agent An voted for y. This voting strategy 218

integrates consensus and agent confidence to im- 219

prove the accuracy of type-specific extraction. We 220

provide pseudocode in Algorithm 1 and 2. 221

3.3 Data Generation via Collaboration 222

We explore enhancing model performance by lever- 223

aging data generated through multi-agent debates 224

among type-specialized agents. Specifically, we 225

aim to construct diverse training datasets that cap- 226

ture label-specific knowledge and collaborative rea- 227

soning strategies. Given a set of natural language 228

inputs Dtask = {xi}, we apply the type-specialized 229

multi-agent debate framework with N type agents 230

and M debate rounds to generate structured re- 231

sponses for each input in Dtask. For each input xi, 232

the final prediction ŷi is determined by weighted 233
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voting over the responses produced in the final234

round of debate. These predicted outputs are then235

used to construct a pseudo-labeled "ground truth"236

dataset {(xi, ŷi)}. In the single-model finetuning237

setting, we subsequently train the model on all238

types of agents’ generated responses yi that match239

the final consensus prediction ŷi for each xi. While240

this approach is effective when the final predic-241

tions ŷi are accurate, it often leads to stylistically242

homogeneous outputs with limited diversity. Con-243

sequently, repeatedly constructing datasets xi, ŷi244

for single model finetuning leads to diminishing245

returns, resulting in a performance plateau.246

3.4 Finetuning Multiple Models247

Our goal in multi-agent finetuning is to construct248

training datasets that promote both response diver-249

sity and high prediction accuracy for diverse IE250

tasks. To achieve this, we leverage data generated251

from multi-agent debates among type-specialized252

agents, capturing both label-specific knowledge253

and collaborative reasoning strategies. We provide254

pseudocode in Algorithm 3.255

Finetuning Contrastive Models The role of a256

contrastive model is to improve decision accuracy257

by learning to distinguish correct from incorrect258

outputs through structured supervision. Contrastive259

agents AC
n , which are constructed from base mod-260

els, are trained on response trajectories collected261

from multi-agent debate outputs. For each input262

xi, we collect the initial prediction y1n and the fi-263

nal prediction yMn from each agent after M rounds264

of debate and compare them with the consensus265

output ŷi through weighted voting.266

To build a contrastive training dataset, we267

categorize the data into two types of samples268

based on the alignment between agent predic-269

tions and the consensus output. Correction270

samples capture cases where the initial predic-271

tion disagrees with the consensus, but the fi-272

nal prediction aligns with it, indicating success-273

ful error correction through debate: DC−
n =274 {

(xi, (y
1
n, . . . , y

M
n )) | y1n ̸= ŷi, y

M
n = ŷi

}
. In275

contrast, consistency samples represent stable276

reasoning, where both the initial and final pre-277

dictions agree with the consensus: DC+
n =278 {

(xi, (y
1
n, . . . , y

M
n )) | y1n = ŷi, y

M
n = ŷi

}
.279

To facilitate contrastive learning, all training data280

are reformatted as multi-turn dialogues. Each dia-281

logue starts with a task-specific prompt, followed282

by the agent’s initial prediction y1n, a feedback283

prompt encouraging reflection on potential errors, 284

and a revised prediction yMn aligned with the con- 285

sensus ŷi. This dialogue structure extends beyond 286

the traditional question→answer paradigm by in- 287

corporating a feedback→correction mechanism, 288

enabling the model to learn both robust extraction 289

and effective error-recovery strategies. To balance 290

the influence of error correction and stable reason- 291

ing, we combine correction and consistency sam- 292

ples using a tunable weight w: DC
n = wDC−

n + 293

(1 − w)DC+
n . This process yields a set of con- 294

trastive datasets {DC
1 , . . . ,DC

N}, which are used to 295

fine-tune contrastive agents {ÂC
1 , . . . , Â

C
N}. 296

3.5 Inference 297

At inference time, we have a set of finetuned con- 298

trastive models that represent contrastive agents 299

{ÂC
1 , . . . , Â

C
N}, each independently performing 300

single-round inference for its designated task. The 301

final output is determined through majority voting 302

across all agent responses, which helps mitigate er- 303

rors and improve overall performance on IE tasks. 304

Unlike reasoning tasks such as math or logical 305

QA, multi-round debating among finetuned mod- 306

els degrades performance on structured IE tasks. 307

Debating relies on generating diverse responses 308

to expand the search space. In contrast, finetuning 309

tends to converge model outputs, reducing response 310

diversity and weakening debate effectiveness by 311

producing more uniform and concentrated outputs. 312

This convergence limits agent perspective diversity 313

in multi-round debates. As a result, excessive de- 314

bating leads to redundant refinements, added noise, 315

and overall performance degradation. To mitigate 316

this, we adopt a lightweight voting strategy where 317

task-specialized models generate independent pre- 318

dictions in parallel, and majority voting aggregates 319

these outputs to achieve consistency and efficiency. 320

We provide pseudocode in Algorithm 4. 321

4 Experiments 322

We evaluate MAF-IE on a diverse set of IE tasks 323

using strict span-level matching and report micro- 324

F1 scores against GPT-3.5 zero-shot baselines. We 325

further assess generalization on GPT-4 and clinical 326

tasks. See Appendix A.1 for details. 327

4.1 Experimental Setup 328

We propose a novel multi-agent finetuning frame- 329

work for zero-shot IE, evaluated against single- 330

model and multi-agent framework baselines. 331
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Tasks and Datasets For a comprehensive eval-332

uation, we examine MAF-IE on seven datasets333

for five IE tasks: (1) for named entity recogni-334

tion (NER): (i) CoNLL04 (Carreras and Màrquez,335

2004), (ii) BC5CDR (Li et al., 2016) ; (2) for336

relation extraction (RE): (i) CoNLL04 (Carreras337

and Màrquez, 2004) (ii) NYT (Zeng et al., 2018);338

(3) for event extraction(EE): (i)ACE05-E 1 (ii)339

MACCROBAT-EE (Ma et al., 2023); (4) for fine-340

grained entity typing (FET): (i) OntoNotes (Gillick341

et al., 2016); (5) for document-level RE: (i) Do-342

cRed (Yao et al., 2019). Please refer to Appendix343

A for more information about tasks and datasets.344

Baselines We conduct our main experiments us-345

ing both GPT-3.5 and GPT-4. We employ the (1)346

Type-Agents, where each agent specializes in a spe-347

cific label type without inter-agent interaction and348

(2) Multiagent finetuning (MAFT) (Subramaniam349

et al., 2025), which employs general-built LLMs350

in iterative collaborative reasoning as the baselines351

for all zero-shot IE tasks.352

NER and RE We consider Direct prompting a353

fundamental single-model baseline for both tasks.354

This method jointly identifies and organizes outputs355

in a one-step prompt. For NER, we additionally356

include: (3) Self-consistency (Wang et al., 2023c),357

which aggregates multiple outputs via voting to358

improve stability; (4) Soft Self-consistency (Wang359

et al., 2024a), which softens voting decisions us-360

ing uncertainty-aware aggregation. For RE, we361

further compare: (5) G&O (Li et al., 2024b), a362

pipeline-based approach that generates triplets and363

then organizes them into structured outputs.364

EE We compare MAF-IE against the following365

additional baselines: (3) ChatGPT-14 (Li et al.,366

2023a), the first study evaluating ChatGPT’s zero-367

shot performance on IE tasks. (4) ChatIE (Wei368

et al., 2024), a multi-turn QA framework that first369

identifies all event types, then performs IE for each370

identified type. (5) G-PTLM (Lin et al., 2023), a371

prompting-based model that encodes argument con-372

straints to regularize event argument predictions,373

and (6) CODE4STRUCT (Wang et al., 2023b) for-374

mulates EE as a code generation problem, and rep-375

resents event ontology in Python code expression.376

Fine-grained Entity Typing We compare MAF-377

IE against additional baselines on the FET task, in-378

cluding (3) ONTOTYPE, combining BERT-based379

1https://catalog.ldc.upenn.edu/LDC2006T06

Tasks (→) NER RE
Baselines (↓) / Metrics (→) F1-Score F1-Score

Single model

GPT-3.5 (OpenAI, 2023a) 58.15 34.72†

+ G&O (Li et al., 2024b) - 33.50
+ Self-consistency (Wang et al., 2023c) 60.48 -
+ Soft Self-consistency (Wang et al., 2023c) 55.13 -

Multi-agent framework

+ MAFT (Subramaniam et al., 2025) 61.12† 20.51
+ MAF-IE (Type-agent w/o debate) 55.73 29.97
+ MAF-IE (Multi-agent Collaboration) 66.83 36.47

Fine-tune (FT)

+ MAFT (Subramaniam et al., 2025) 61.12 20.51
+ MAF-IE (Single FT) 64.21 28.63
+ MAF-IE (Multiple FT) 62.51 33.47

GPT-4 (OpenAI, 2024b) 66.59 21.01
+ MAF-IE (Multi-agent Collaboration) 71.46 44.03
+ MAF-IE (Single FT) 67.26 38.26
+ MAF-IE (Multiple FT) 63.65 41.76

Table 1: Main results on CONLL04 for NER and
RE tasks in zero-shot setting. Bold indicates the best
performance.† marks the second-best. Notations are
consistent across tables.

prompting with RoBERTa-MNLI entailment for 380

ontology-aware selection; (4) ZOE (Zhou et al., 381

2018), which aligns entities to Wikipedia entries 382

via Boolean functions over Freebase types; (5) 383

DZET (Obeidat et al., 2019), which uses distributed 384

description representations for semantic alignment. 385

Implementation Details The proposed system is 386

flexible, allowing any LLM to serve in any arbitrary 387

agent role defined within the framework. We con- 388

duct zero-shot experiments using GPT-3.5-Trubo 389

(OpenAI, 2023b) and GPT-4 (OpenAI, 2024b). We 390

set the number of collaboration iterations to 2 and 391

perform single-step inference. We set the tempera- 392

ture to 1 to ensure reproducibility. Please refer to 393

Appendix B for more details. 394

5 Main Results 395

MAF-IE outperforms zero-shot baselines for 396

NER and RE tasks Table 1 shows that MAF-IE 397

consistently outperforms all zero-shot baselines on 398

CONLL04 NER and RE with GPT-3.5 and GPT-4. 399

With GPT-3.5, MAF-IE achieves gains of 5.71% 400

(NER) and 15.96% (RE) over the multi-agent base- 401

line, and 1.75% over G&O on RE. Finetuning fur- 402

ther improves performance by 5.67% (NER) and 403

10.78% (RE), while our single finetuned model 404

surpasses direct prompting by 3.73% on NER. Ap- 405

plying MAF-IE to GPT-4 achieves the best results 406

on both tasks, with 71.46% (NER) and 44.03% 407

5
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Tasks (→) ED EAE EE
Baselines (↓) / Metrics (→) F1 F1 F1

Single model

GPT-3.5 (OpenAI, 2023a)
+ ChatGPT-14 (Li et al., 2023a) 17.1 28.9 16.6
+ ChatIE (Wei et al., 2024) - 29.5 -
+ G-PTLM (Lin et al., 2023) - 31.2 -
CODE4STRUCT (Wang et al., 2023b) - 37.8 -

Multi-agent framework

+ MAFT (Subramaniam et al., 2025) 23.93 21.73 18.05
+ MAF-IE (Type-agent w/o debate) 23.85 35.98 16.57
+ MAF-IE (Multi-agent Collaboration) 36.98† 38.87 34.32

Fine-tune (FT)

+ MAFT (Subramaniam et al., 2025) 21.36 17.16 14.94
+ MAF-IE (Single FT) 36.21 34.97 22.41
+ MAF-IE (Multiple FT) 41.32 36.41† 24.98†

GPT-4 (OpenAI, 2024b)
+ MAF-IE (Multi-agent Collaboration) 54.01 49.43 45.46
+ MAF-IE (Multiple FT) 43.18 41.56 35.38

Table 2: Main results on ACE05 for ED, EAE, and EE
tasks in zero-shot setting.

(RE), demonstrating its scalability across models.408

MAF-IE outperforms zero-shot baselines for409

EE tasks Table 2 shows that MAF-IE achieves410

strong zero-shot F1 improvements on ACE05 with411

GPT-3.5, outperforming the multi-agent baseline412

by 13.05% (ED), 17.14% (EAE), and 16.27% (EE).413

Compared to ChatGPT-14, MAF-IE achieves414

gains of 19.88% (ED), 9.97% (EAE), and 17.72%415

(EE), and exceeds the second-best EAE baseline,416

CODE4STRUCT, by 1.07%. In the finetuning set-417

ting, MAF-IE achieves even larger improvements,418

with gains of 19.96% (ED), 19.45% (EAE), and419

9.54% (EE), and further improves debating accu-420

racy by 4.34% on ED. Finally, our finetuned single421

model surpasses the best single-model baseline by422

19.11% (ED), 5.81% (EE), and achieves an average423

5.10% improvement on EAE across all zero-shot424

single LLM baselines.425

MAF-IE outperforms zero-shot baselines for426

Fine-grained entity typing Table 3 shows that427

MAF-IE achieves the best zero-shot F1 on428

OntoNotes with GPT-3.5, consistently outperform-429

ing ChatGPT-14, ZOE, and direct prompt meth-430

ods (Komarlu et al., 2024a), with gains of 1.11%,431

13.71%, and 33.21%, respectively. MAF-IE also432

surpasses the state-of-the-art OntoType by 1.11%.433

MAF-IE generalizes across diverse IE set-434

tings (long-document RE) and domains (news,435

biomedicine) We further validate the generaliz-436

Metrics (→) Accuracy F1
Baselines (↓) (%) (%)

Single model

GPT-3.5 (OpenAI, 2023a)
Distant Supervision via KBs

+ DZET(Obeidat et al., 2019) 23.1 28.1
+ ZOE (Zhou et al., 2018) 50.7 60.8

Transfer Learning
+ OTyper (Yuan and Downey, 2018) 31.8 36.0
+ MZET (Zhang et al., 2020) 33.7 43.7

Annotation-Free
+ ChatGPT-14 (Li et al., 2023a) - 73.4
+ OntoType (Li et al., 2023a)

- ChatGPT Prompt 1 27.7 37.5
- ChatGPT Prompt 2 31.3 41.3
- ChatGPT Prompt 3 24.7 33.8
- Original Ontology 65.7† 73.4†

Multi-agent framework

+ MAFT (Subramaniam et al., 2025) 46.81 53.61
+ MAF-IE (Type-agent w/o debate) 11.05 18.91
+ MAF-IE (Multi-agent Collaboration) 66.91 74.51

GPT-4 (OpenAI, 2024b)
+ MAF-IE (Multi-agent Collaboration) 76.14 84.85

Table 3: Main results on OntoNotes for Fine-grained
entity typing task in zero-shot setting.

ability of our multi-agent collaboration framework 437

across diverse IE tasks and domains, including 438

document-level RE (DocRed), biomedical NER 439

(BC5CDR), clinical EE (MACCROBAT), and RE 440

on the NYT dataset. Please see Appendix C. 441

6 Ablation Studies 442

In this section, we investigate the effectiveness of 443

MAF-IE, its impact on enhancing response diver- 444

sity, and its ability to generalize to unseen datasets 445

in a zero-shot setting. 446

Multi-agent debate with different number of 447

rounds We evaluate MAF-IE on the CoNLL04 448

NER task using GPT-3.5 with varying numbers of 449

debate rounds, and compare it against prior work 450

MAFT, as illustrated in Figure 2(a). We observe 451

that increasing the number of rounds beyond two 452

leads to diminishing returns, with both methods 453

reaching a performance plateau. Excessive debate 454

rounds provide limited gains for IE tasks, as early 455

rounds already capture most correct entities, while 456

further iterations risk over-refinement and noise 457

accumulation. We notice recent work MoA (Wang 458

et al., 2024b) uses multiple heterogeneous LLMs to 459

exploit complementary strengths, while MAF-IE 460

focuses on improving a single base model through 461

6



(a) (b) (c)

Figure 2: Ablation study results. (a) shows F1(%) across different debate rounds; (b) shows F1(%) with varying
numbers of training samples; (c) shows the impact of contrastive datasets. All results are evaluated on the CoNLL04
NER task using GPT-3.5.

multi-agent finetuning, offering a more economical462

and lightweight solution. Extending our framework463

to heterogeneous agents is left for future work.464

Multi-agent FT with different dataset construc-465

tion strategies We compare two data construc-466

tion strategies based on multi-agent debate. The467

first uses only consensus outputs as positive exam-468

ples, while the second builds a contrastive dataset469

with both positives (aligned initial responses) and470

negatives, where negatives are represented as di-471

alogue trajectories (question→ incorrect answer472

→ feedback→ revised answer). As shown in Fig-473

ure 2(b), the contrastive strategy improves average474

F1 by 6%, increasing true positives and reducing475

false negatives compared to the positive-only.476

Multi-agent FT with different data selection477

strategies We investigate how the strategy for478

training data selection impacts multi-agent fine-479

tuning, random sampling, and confidence-based480

selection guided by scores assigned by a GPT-3.5481

judge on the CONLL04 NER task. As shown in482

Table 5, the confidence-based strategy achieves a483

higher average F1 (62.72% vs. 61.94%) and lower484

variance (0.22 vs. 1.56) with 50 samples, demon-485

strating more stable and reliable performance in486

low-resource settings.487

Multi-agent FT with different numbers of exam-488

ples We investigate how the number of examples489

from the training data affects the performance of490

multi-agent finetuning on the CONLL04 NER task491

with GPT-3.5. As shown in Figure 2(c), the F1492

score does not consistently improve as the training493

examples increase. Our results indicate that fine-494

tuning each model with 15-20 examples per type495

label yields optimal performance, likely due to a496

balance between sufficient task coverage and the497

overfitting risk.498

Final answer generation from multiple fine- 499

tuned models As shown in Table 8 in Appendix 500

E, the majority voting improves the overall F1 score 501

of individual models. It achieves the highest re- 502

call, demonstrating its effectiveness in enhancing 503

robustness and reducing false negatives without 504

sacrificing precision. 505

Finetune small language models We evaluate 506

the performance of finetuning Qwen2.5 (1.5B), 507

Qwen2.5 (3B), and Phi-4-mini (3B) on generated 508

data for NER (CoNLL04) and EAE (ACE05), com- 509

paring supervised finetuning (SFT) and GRPO 510

(Mroueh, 2025). As shown in Figures 3(a) and 511

(b), SFT results indicate that Qwen2.5 (3B) con- 512

sistently achieves the best and most stable perfor- 513

mance, peaking with around 200 training exam- 514

ples. Qwen2.5 (1.5B) achieves moderate improve- 515

ments, while Phi-4-mini performs poorly on both 516

tasks, showing low and stagnant F1 scores, sug- 517

gesting limited capabilities to benefit from training 518

data. Figure 3(c) shows the GRPO performance on 519

Qwen2.5-(3B) for the EAE task, indicating strong 520

data dependence, with performance steadily im- 521

proving as the amount of training data increases. 522

Interestingly, a simple reward design based on out- 523

put format and accuracy proves more effective 524

than complex alternatives. However, GRPO comes 525

with significant time costs, requiring over 7 hours 526

for 500 examples and several days to reach GPT- 527

3.5-level performance with thousands of examples. 528

Moreover, the high cost of large-scale annotations 529

further limits its scalability in low-resource and 530

real-world applications. 531

Compared with the few-shot setting We eval- 532

uate few-shot prompting on the CoNLL04 NER 533

task using GPT-3.5. As shown in Table 4, adding 534

more in-context examples provides only marginal 535

improvements, with performance quickly plateau- 536

7



(a) (b) (c)

Figure 3: Ablation study results. (a) shows EAE F1(%) across different small language models on SFT; (b) shows
NER F1(%) across different small language models on SFT; (c) shows EAE performance of Qwen2.5(3B) with
GRPO across different number of samples

Few-shot Method Precision Recall F1

5-shots 56.54 81.05 66.61
10-shots 57.73 82.06 67.78
15-shots 57.24 82.06 67.44

Table 4: The results of few-shot learning on CONLL04
NER task with GPT-3.5.

ing. This highlights the limited generalization abil-537

ity of LLMs when relying on static examples for538

IE tasks. Although few-shot prompting appears539

cost-effective, its actual gains are minimal, and540

approaches that depend on carefully designed ex-541

amples often require complex designs and costly542

training, limiting practical utility. In contrast, our543

multi-agent finetuning framework provides a more544

practical and scalable solution. It requires only545

a one-time collaboration and finetuning process,546

after which the resulting models can be directly547

applied to unseen datasets without further adapta-548

tion, achieving both cost and time efficiency for549

real-world IE deployment.550

Efficiency & scalability study We evaluate the551

cost and time per data point on CONLL04 NER552

and RE tasks with GPT-3.5. As shown in Appendix553

H.1 Table 23 and H.2 Table 24, we observe that554

finetuned parallel inference reduces latency by 42%555

on NER and 50% on RE, matching single-agent556

speed while avoiding the overhead of multi-round557

debate. Compared to multi-agent debate, finetuned558

parallel inference improves cost efficiency by 90%559

on NER and 84% on RE, offering a practical and560

scalable alternative that retains most of the perfor-561

mance benefits while significantly reducing costs.562

More analysis is provided in Appendix H.563

Case Study & Error Analysis We compare564

MAF-IE with MAFT on the CONLL04 NER with565

GPT-3.5, conducting a comprehensive error anal-566

ysis covering overall and type-specific improve- 567

ments, representative case studies, and the incre- 568

mental impact of each debate round. Specifically, 569

Table 6 summarizes overall and entity-level gains, 570

Table 25 presents case studies of error corrections, 571

and Table 7 quantifies stepwise improvements 572

across debate rounds. To better understand the 573

source of these improvements, we further analyze 574

how MAF-IE addresses key challenges in struc- 575

tured IE. It improves type discrimination through 576

agent specialization, mitigates boundary ambiguity 577

via cross-type verification, and enhances robust- 578

ness on complex semantics by aggregating diverse 579

rationales through cross-agent voting. All tables 580

mentioned above and additional details are pro- 581

vided in Appendix I. 582

7 Conclusion 583

In this paper, we have introduced MAF-IE, a novel 584

multi-agent finetuning framework that improves 585

the efficiency and effectiveness of LLMs for zero- 586

shot IE. By leveraging a society of specialized 587

agents that collaboratively solve IE tasks through 588

multi-agent debate and confidence-weighted vot- 589

ing, MAF-IE addresses key limitations of single 590

LLMs on IE. This system enables the distillation 591

of collaborative knowledge into a set of finetuned 592

models, achieving substantial performance gains 593

across a broad range of structured IE tasks. Impor- 594

tantly, MAF-IE is generalizable and scalable to 595

both open-source and proprietary language mod- 596

els and provides a more efficient alternative to 597

costly multi-agent inference. Additionally, MAF- 598

IE can be combined with other advanced finetuning 599

paradigms such as GRPO and extended to hetero- 600

geneous model agents, which we leave for future 601

work. This work sets up the foundation for advanc- 602

ing efficient and scalable zero-shot IE with LLMs. 603
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Limitations604

In contrast to existing approaches that rely on direct605

inference or finetuning of a single model, multi-606

agent finetuning introduces computational over-607

head during both training and inference, as it re-608

quires maintaining and running multiple model in-609

stances. Specifically, we identify the following610

limitations of MAF-IE:611

Scalability in Multi-Agent Collaboration As612

the number of agents increases, coordination com-613

plexity grows. Managing conflicts and ensuring614

convergence in large-scale settings require further615

optimization to prevent excessive inference time.616

Dependency on Model Accuracy The frame-617

work relies on LLMs’ reasoning capabilities, which618

can still produce hallucinated or inconsistent out-619

puts. Additionally, due to the risk posed by the620

inherent instability of large language model gen-621

eration, biases, trust issues, or other uncertainties622

may arise, potentially undermining the reliability623

of the extracted information.624

Ontology Constraints Our approach operates625

within predefined entity and relation ontologies,626

limiting adaptability to open-domain or evolving627

schemas. Extending it to dynamic ontologies628

would require additional mechanisms for expan-629

sion and adaptation.630

Ethical Statement631

In this work, we propose a multi-agent finetuning632

method to improve LLM performance on the impor-633

tant and fundamental task of information extraction.634

We do not anticipate any ethical issues regarding635

the topics of this research.636
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A Dataset Details 983

We evaluate MAF-IE on seven diverse IE datasets, 984

including CONLL04, NYT (Zeng et al., 2018), 985

BC5CDR (Li et al., 2016), OntoNotes (Gillick 986

et al., 2016), DocRed (Yao et al., 2019), ACE05, 987

and MACCROBAT, which covers NER, RE, EE, 988

and fine-grained entity typing tasks across both 989

sentence-level and document-level inputs, and 990

spanning coarse- and fine-grained settings. All 991

results are reported under strict span-level full- 992

matching criteria, where only predictions that per- 993

fectly match the ground-truth entity spans and la- 994

bels are counted as true positives. We use GPT- 995

3.5-turbo and report micro-averaged F1 scores for 996

fair comparison with existing zero-shot baselines. 997

Additionally, to assess the generalization capabil- 998

ity of our framework, we further evaluate it with 999

GPT-4 and extend the evaluation to the clinical 1000

datasets. The dataset statistics for all evaluation 1001

benchmarks are summarized as follows: CoNLL04 1002

in Table 18, NYT-RE in Table 22, BC5CDR-NER 1003

in Table 21, OntoNotes in Table 19, DocRED in Ta- 1004

ble 17, ACE05 in Table 20, and MACCROBAT-EE 1005

in Table 16. The proposed data construction proce- 1006

dure for contrastive model finetuning is detailed in 1007

Algorithm 3. 1008

A.1 Metrics and Evaluation 1009

We compute micro-averaged precision, recall, and 1010

F1-score 2 using a strict span-level matching. 1011

For NER and RE tasks, we conduct experi- 1012

ments on the CoNLL04 test dataset (Carreras and 1013

Màrquez, 2004), including three entities and five 1014

relation types. We additionally conduct NER on 1015

the BC5CDR test dataset and RE on the NYT test 1016

dataset. 1017

For the EE task, we evaluate on two public 1018

event extraction test datasets: ACE05-E 3 and 1019

MACCROBAT-EE (Ma et al., 2023). Following 1020

prior split work(Lin et al., 2020), we evaluate three 1021

subtasks: (i) Event Detection (ED), where event 1022

types are given and the goal is to identify triggers; 1023

(ii) Event Argument Extraction (EAE), where both 1024

event types and triggers are provided; and (iii) Joint 1025

EE. We report Exact Match F1 for ED and Argu- 1026

ment Head F1 for EAE and EE. 1027

For fine-grained entity typing, we evaluate the 1028

performance on Ontonotes (Gillick et al., 2016). 1029

The basic statistics of the dataset are shown in 1030

2https://scikit-learn.org/stable/index.html
3https://catalog.ldc.upenn.edu/LDC2006T06
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Appendix 19. We followed previous work (Ko-1031

marlu et al., 2024b) that each entity mentioned is1032

labeled with a fine-grained label represented as a1033

path within the ontology. The ontologies have a1034

maximum depth of three and contain four high-1035

level types (e.g., LOC, PER, and ORG).1036

Details During pre-processing for the NER task,1037

we extract entities for each ontology-defined type1038

from every document, constructing type-specific1039

ground truth annotations. If a document lacks enti-1040

ties of a given type, the corresponding list remains1041

empty. For RE, we extract head-tail entity pairs for1042

each relation type, leaving the output empty when1043

no valid pairs exist.1044

During post-processing, LLMs often introduce1045

noise due to their generative nature, leading to dis-1046

crepancies between outputs and the original text.1047

Common issues include extraneous content, spac-1048

ing inconsistencies, tense variations, and redundant1049

acronym clarifications. These inconsistencies are1050

particularly prevalent in large models, which may1051

alter phrasing or terminology when extracting enti-1052

ties or relationships.1053

To mitigate these issues, we filter noisy content1054

by matching generated outputs with original sen-1055

tences. For RE, we format the output as [head:1056

head_entity, tail: tail_entity] and validate entity1057

pairs for each relation type. Consequently, we ob-1058

tain structured entity lists: in NER, entities of a1059

specific type per document; in RE, head-tail entity1060

pairs per relation type.1061

To maintain the correct logical order between1062

the head entity and tail entity, we provide natural1063

language explanations that explicitly define the ex-1064

pected entity types for each relation. This ensures1065

that extracted entities align with their intended se-1066

mantic roles and follow the correct relationship di-1067

rection. By clarifying entity-role expectations, we1068

aim to mitigate errors such as entity misidentifica-1069

tion or head-tail position errors caused by position1070

bias or incorrect ordering. Furthermore, enforc-1071

ing role consistency through relation constraints1072

reduces relational confusion, enhancing extraction1073

accuracy.1074

We follow the traditional pipeline for fine-tuning1075

inference on a single GPT model, sequentially pro-1076

cessing each sentence for NER and RE across all1077

labels. Finally, we evaluate model performance1078

using precision, recall, and F1-score, measuring1079

alignment between predicted and ground truth en-1080

tity spans. We use a full match criterion, requir-1081

ing exact span agreement between predictions and 1082

ground truth to maintain consistency with tradi- 1083

tional methods. For instance, in the sentence from 1084

doc_id 3: "He’s working for the White House", the 1085

ground truth entity labeled as ORG_Agent might 1086

be: 1087
1088

doc_id 3: [White House] 10891090

If the ORG_agent predicts: 1091
1092

doc_id 3: [the White House] 10931094

with the additional word "the" in the span, it would 1095

be counted as both a false positive and a false nega- 1096

tive under the full match evaluation. Similarly, if 1097

the ORG_Agent label incorrectly includes "White 1098

House" in its list, it would also be considered in- 1099

correct under the matching criteria. This rigorous 1100

evaluation method ensures a thorough assessment 1101

of the model’s performance by capturing subtle 1102

span mismatches that could impact entity recogni- 1103

tion accuracy. 1104

A.2 Document-level Relation Extraction 1105

We apply MAF-IE on document-level RE task on 1106

DocRed (Yao et al., 2019), which deeper verify the 1107

effectiveness of our method. 1108

Problem definition Given a document D that 1109

includes a set of sentences XD = {xi}ki=1 and a 1110

set of entities ED = {ei}ni=1, document-level rela- 1111

tion extraction aims to predict a subset of relations 1112

from R ∪ {NA} for all entity pairs (es, eo) where 1113

s, o = 1, . . . , n and s ̸= o. Here, R represents a 1114

predefined set of relation types, es and eo denote 1115

the subject and object entities respectively, and NA 1116

indicates no relation between the entities. An en- 1117

tity ei can appear multiple times within a document 1118

through its mentions Mi = {mi
j}

Ni
j=1, where mi

j 1119

represents the j-th mention of ei, and Ni is the 1120

number of mentions. During test time, the model 1121

is required to predict relation labels for all possible 1122

entity pairs in the document. Table 17 presents the 1123

statistics of DocRed. 1124

A.3 Clinical Event Extraction 1125

We apply MAF-IE on MACCROBAT-EE, a clin- 1126

ical EE dataset that consists of 200 pairs of En- 1127

glish clinical case reports from PubMed, accom- 1128

panying annotation files with partial event annota- 1129

tion provided by 6 annotators with prior experience 1130

in biomedical annotations. Table 16 presents the 1131

statistics of MACCROBAT-EE. 1132
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Selection Method Time-1 Time-2 Time-3

Randomly selection
10-data points 65.58 64.59 62.19
15-data points 64.38 63.87 61.71
20-data points 61.17 59.09 62.42
30-data points 58.45 57.94 58.37
50-data points 63.54 61.79 60.49
100-data points 63.07 62.27 61.36
Confidence-score selection
10-data points 61.54 61.79 60.21
15-data points 62.51 62.37 61.17
20-data points 61.07 62.97 62.32
30-data points 62.75 61.81 64.57
50-data points 63.37 62.28 62.51
100-data points 62.51 62.35 61.51

Table 5: F1 scores (%) (mean) of different examples
selection strategies.

B Implementation Details1133

The proposed system is flexible, allowing any LLM1134

to serve in any arbitrary agent role defined within1135

the framework. We conduct zero-shot experiments1136

using GPT-3.5-turbo (OpenAI, 2023b) and GPT-41137

(OpenAI, 2024b). Each label is assigned a dedi-1138

cated type agent, forming a one-to-one mapping1139

with the label set. We set the number of collabo-1140

ration iterations to 2 and perform single-step infer-1141

ence. We set the number of finetuned models to 31142

for all tasks. The judge agent to select data points1143

is powered by GPT-3.5-turbo. We set the tempera-1144

ture to 1 to ensure reproducibility. For supervised1145

finetuning and reinforcement learning fine-tuning1146

baselines, we use Qwen2.5-1.5B (Team, 2024b),1147

Qwen2.5-3B (Team, 2024c), and Phi4-mini-3B1148

(Microsoft, 2024). All fine-tuning experiments are1149

conducted on NVIDIA A100 GPUs. Our reinforce-1150

ment learning and related experiments on open-1151

source models were conducted on clusters with1152

four H100 or A100 GPUs, with each model con-1153

suming 80GB to 160GB of memory and requiring1154

24 to 48 hours of multi-GPU inference.1155

C Additional Experimental Results1156

C.1 Fine-grained Entity Typing1157

We conduct experiments on the test set of the1158

OntoNotes dataset (Komarlu et al., 2024b), assign-1159

ing each type label from different levels of the on-1160

tology to a dedicated agent to evaluate the effective-1161

ness of our multi-agent framework on large-scale,1162

fine-grained classification tasks. The OntoNotes1163

dataset contains a total of 89 type labels, and we1164

deploy 89 specialized agents accordingly to per- 1165

form this task in a distributed and parallel manner. 1166

Table 3 shows our results on the test set. MAF- 1167

IE achieves the best zero-shot performance on this 1168

dataset. Compared to the state-of-the-art zero-shot 1169

fine-grained entity typing methods, ChatGPT-14 1170

and ZOE, MAF-IE achieves absolute F1 improve- 1171

ments of 3.71% and 16.31%, respectively. More- 1172

over, compared to direct prompt methods (Komarlu 1173

et al., 2024a) with GPT-3.5, MAF-IE achieves a 1174

substantial F1 improvement of 35.81%. MAF-IE 1175

also surpasses the previous state-of-the-art method, 1176

OntoType, by 3.71% in F1 score. 1177

Multiagent Collaboration Framework for En- 1178

tity Typing on the OntoNotes Dataset To ad- 1179

dress the challenge of fine-grained entity typing, 1180

we design a multi-agent collaboration framework 1181

based on type-agent collaboration and multi-round 1182

debate, tailored explicitly to the hierarchical en- 1183

tity type schema of the OntoNotes dataset. This 1184

framework constructs a multi-level entity typing 1185

system through three key stages: type-specialized 1186

agent modeling, multi-round interactive debate, 1187

and hierarchical weighted decision-making. We 1188

begin by analyzing the entity type hierarchy in the 1189

OntoNotes dataset and constructing a three-level 1190

hierarchical structure, ranging from coarse-grained 1191

to fine-grained types. This structure includes main 1192

categories (PER, LOC, ORG, OTHER), subcate- 1193

gories, and finer-grained subtypes. For each type, 1194

the system instantiates a specialized agent with ex- 1195

pert knowledge specific to that type, making it an 1196

expert in its domain. When processing a new en- 1197

tity, the system initiates a multi-stage collaboration 1198

process. In the first stage, all agents independently 1199

analyze the entity’s contextual and semantic fea- 1200

tures to form preliminary judgments. In the subse- 1201

quent debate stage, agents exchange their perspec- 1202

tives, present supporting or opposing arguments, 1203

and dynamically refine their decisions based on 1204

the insights shared during the debate. After the 1205

debate concludes, the system applies a hierarchi- 1206

cal, weighted voting mechanism to aggregate the 1207

opinions of all agents. In this process, specialized 1208

experts are assigned higher voting weights. The 1209

voting follows a hierarchical decision principle, pri- 1210

oritizing consensus at the most fine-grained level 1211

and falling back to higher-level categories if no 1212

consensus is reached. This framework effectively 1213

simulates collaborative decision-making among hu- 1214

man experts, enabling the system to handle the 1215
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complexity and uncertainty of entity typing. It1216

balances fine-grained classification accuracy and1217

system robustness, making it well-suited for real-1218

world information extraction applications.1219

Zero-Shot Hierarchical Entity Typing Mecha-1220

nism In this multi-agent framework, the core1221

mechanism for hierarchical entity typing from1222

broad categories like Person to subtypes like "/per-1223

son/artist” and further to "/person/artist/actor” is1224

realized through the zero-shot reasoning capabili-1225

ties of the agents. The decision-making process is1226

structured as follows: Each agent is assigned to a1227

specific fine-grained type (typically at the third hi-1228

erarchical level, such as "/person/artist/actor”) and1229

is provided with a detailed description. When en-1230

countering unseen entities, agents do not perform a1231

simple binary classification (yes/no). Instead, they1232

engage in a stepwise hierarchical reasoning pro-1233

cess. The prompt given to each agent includes an1234

explicit domain definition, for example:1235

1236
"You are a specialist in identifying '/1237

person/artist/actor ' entities (1238
actors in film , television , theater ,1239
or other media)."12401241

This prompt design implicitly encodes the hierar-1242

chical dependency. In order to determine whether1243

an entity is an actor, the agent must first verify1244

if it is a person and then if it qualifies as an artist.1245

Leveraging its pre-trained knowledge, the language1246

model understands these inheritance relationships,1247

such as all actors being artists and all artists being1248

persons.1249

Stepwise Reasoning Process: There are three1250

levels: First-Level: Determine whether the en-1251

tity is a person, location, organization, or other.1252

Second-Level: If classified as a person, further as-1253

sess whether it belongs to a subtype such as an artist1254

or athlete. Third-Level: If an artist is classified as1255

such, determine whether it specifically refers to an1256

actor, author, etc. When the agent determines that1257

the entity does not belong to its specialized type,1258

it provides alternative type suggestions, reflecting1259

the hierarchical reasoning process. For example,1260

an actor specialist might respond:1261

1262
"This is not an actor , but it may be a1263

'/person/artist/director '."1264
or1265
"This is not an actor , and may not even1266

be an artist , but it could be a '/1267
person/athlete '."12681269

C.2 DocRed RE 1270

We conduct experiments on the test set of Do- 1271

cRed (Yao et al., 2019), introducing a novel ap- 1272

plication of multi-agent collaboration and debate 1273

mechanisms for document-level relation extraction. 1274

Specifically, we create a dedicated agent for each 1275

relation type (e.g., P17 "country”, P19 "place of 1276

birth”), where each agent focuses solely on iden- 1277

tifying its assigned relation, thereby improving 1278

relation-specific prediction accuracy. During the 1279

multi-round debate process, all agents first indepen- 1280

dently analyze entity pairs and make their initial 1281

predictions. The agents then share their observa- 1282

tions and adjust their decisions based on feedback 1283

from other agents. Through iterative interactions, 1284

the agents gradually reach more stable judgments. 1285

In the final consensus stage, we apply a weighted 1286

voting mechanism that aggregates agent decisions 1287

based on their confidence scores and the number of 1288

supporting votes, leading to more reliable relation 1289

predictions. 1290

Table 10 shows results on the test set of DocRED 1291

under the zero-shot setting using GPT-3.5 and GPT- 1292

4. MAF-IE consistently outperforms all baselines 1293

on GPT-3.5, achieving a 4.49% improvement over 1294

multiagent baseline and surpassing Semi-automatic 1295

data enhancement (Li et al., 2023b) methods by 1296

19.17%, 12.95%, and 13.04%, respectively. 1297

C.3 Clinical MACCROBAT-EE 1298

We conduct experiments with GPT-3.5 on the test 1299

set of clinical MACCROBAT-EE (Ma et al., 2023), 1300

following the same settings used for ACE05, in- 1301

cluding Event Detection (ED), Event Argument 1302

Extraction (EAE), and Event Extraction (EE). As 1303

shown in Table 9, prompting GPT-3.5 performs 1304

poorly on the clinical MACCROBAT-EE dataset, 1305

with near-zero F1 scores on ED and EE and only 1306

moderate results on EAE. While the existing multi- 1307

agent framework (Subramaniam et al., 2025) im- 1308

proves ED, it underperforms on EAE and EE. In 1309

contrast, MAF-IE achieves the best performance 1310

across all tasks, with F1 scores of 25.95% (ED), 1311

32.18% (EAE), and 24.45% (EE), demonstrating 1312

superior generalizability and robustness in zero- 1313

shot event extraction. 1314

C.4 Results for BC5CDR and NYT 1315

We conduct experiments with GPT-3.5 on the NYT 1316

(Zeng et al., 2018) test set for the RE task and the 1317

BC5CDR (Li et al., 2016) test set for the NER task, 1318
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Metric F1 (%)

Improved F1 4.91

Entity Type Improved / Total (%)
PER 4 / 102 (3.92)
LOC 4 / 102 (3.92)
ORG 7 / 102 (6.86)

Table 6: Improvement statistics on CONLL04 NER,
with GPT-3.5

Debate Rounds Number of Improvements

1 Round 3
2 Rounds 4
4 Rounds 1

Table 7: Incremental improvements across debate
rounds on CoNLL04 NER with GPT-3.5.

following the same experimental settings as used1319

on CONLL04 for each corresponding task in zero-1320

shot setting with GPT-3.5. Table 14 presents F11321

scores on the NYT RE task under the zero-shot1322

setting. The One-step method of achieves an F11323

of 10.5%, showing limited relation extraction ca-1324

pability. Their G&O strategy improves the score1325

to 16.0% by incorporating a generation and refine-1326

ment process. In contrast, our proposed MAF-1327

IE achieves the best F1 of 19.0%, demonstrating1328

the effectiveness of our multi-agent collaboration1329

framework in enhancing relation extraction across1330

domains. Table 15 presents the F1 scores on the1331

BC5CDR dataset for the NER task in the zero-1332

shot setting. The All-Entity-in-One and One-step1333

achieve F1 scores of 50.58% and 60.41%, respec-1334

tively. Their G&O strategy further improves the1335

performance to 61.86%. In comparison, MAF-IE1336

achieves the highest F1 score of 64.23%, demon-1337

strating superior effectiveness in zero-shot biomed-1338

ical NER.1339

D Prompt Details1340

D.1 Detail prompts for NER1341

Listing-1:Type agent w/o debate1342
1343

<Human >Given the following text , extract1344
all named entities of the following1345
types: Person , Organization ,1346

Location.1347
For each extracted entity , provide:1348
- The entity type (Person , Organization ,1349

or Location)1350
Text: {text}1351

1352
<bot > Response:13531354

Contrastive Models Precision Recall F1

Model 1 53.15 75.46 62.37
Model 2 53.26 76.83 62.11
Model 3 53.01 74.77 62.04
Majority Voting 52.58 77.06 62.51

Table 8: Majority voting inference with contrastive mod-
els on CoNLL04 NER, GPT-3.5.

Method ED EAE EE

GPT-3.5
E&IO 0 0 0
E&IO 0 29.5† 0
DICE (Ma et al., 2023)
- E&IO 0 0 0
- Task Inst. 8.37 - -
CODE4STRUCT (Wang et al., 2023b) - 11.89 -

Multi-agent framework
MAFT 22.64† 20.33 7.23
(Subramaniam et al., 2025)
MAF-IE
- All Type-agent 22.28 24.14 15.72†

- Multi-agent Collaboration 25.95 32.18 24.45

Table 9: F1 scores (%) on Clinical MACCROBAT for
ED, EAE and EE tasks under different baselines and
collaboration frameworks in zero-shot setting. Bold
indicates the best performance. † marks the second-
best.

In the prompts, entity types are rephrased to en- 1355

hance model comprehension. For example, “PER” 1356

is rewritten as “person”, and “ORG” as “organiza- 1357

tion”, improving clarity while ensuring consistency 1358

across models. Each type’s ontology definition is 1359

a key distinguishing feature of its dedicated Type 1360

Agent. 1361

Listing-2: MAF-IE 1362
1363

Extract all person (PER), location (LOC) 1364
, and organization (ORG) entities 1365
from the following text. 1366

As a {self.agent_type} entity 1367
recognition expert , you should be 1368
particularly focused on correctly 1369
identifying all {self.agent_type} 1370
entities. 1371

Please provide your answer in the 1372
following format: 1373

PER: ###[ list of person entities ]### 1374
LOC: ###[ list of location entities ]### 1375
ORG: ###[ list of organization entities 1376

]### 1377
1378

If a category has no entities , use 'NULL 1379
' inside the ### markers. 1380

Make sure each entity is clearly 1381
separated by commas within the ### 1382
markers. 1383

1384
CONFIDENCE: [1-10] - Please provide an 1385
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Metrics (→) Paradigm F1
Baselines (↓) (%)

Single model

GPT-3.5 (OpenAI, 2023a)
Semi-automatic Data Enhancement for Doc-level (Li et al., 2023b)

+ GPT-3.5 only zero-shot 5.6
+ GPT-3.5 only+NLI (w/o. rel des) zero-shot 11.82
+ GPT-3.5 only+NLI (w. rel des) zero-shot 11.73

LMRC (Li et al., 2024a)
+ GPT-3.5 only 3-shot 6.97
+ LMRC 3-shot 10.71
+ Renerta 3-shot 10.71

Multi-agent framework

+ MAFT (Subramaniam et al., 2025) zero-shot 20.28†

+ MAF-IE (Type-agent w/o debate) zero-shot 5.98
+ MAF-IE (Multi-agent Collaboration) zero-shot 24.77

GPT-4 (OpenAI, 2024b)
+ Multi-dimensional Prompting (Zhu et al., 2024) zero-shot 15.58
+ MDP (Zhu et al., 2024) zero-shot 15.58
+ LMRC (Li et al., 2024a) 3-shot 36.20

Table 10: Main results on DocRed for long-document
RE task in zero-shot setting.Bold indicates the best per-
formance and † marks the second-best in zero-shot set-
ting.

overall confidence score for your1386
entity identifications1387

1388
After providing the entities in the1389

format above , you can explain your1390
reasoning.1391

1392
Text: {text}13931394

D.2 Detail prompts for RE1395

Listing-3:Type agent w/o debate1396
1397

<Human >Given the following text , extract1398
all entites of the following1399

relaiton types: Organization based1400
in, Located -in, Live -in, Work -for1401
and Kill.1402

Return the extracted relations in the1403
following format:1404

head entity , relation type , tail entity.1405
Text: {text}1406
<bot > Response:14071408

Listing-4: MAF-IE1409
1410

You are a specialized agent that only1411
extracts '{relation_type}'1412
relationships from text.1413

1414
{relation2prompt[relation_type ]}1415

1416
In '{relation_type}' relationships:1417

1418
Head entity is a {head_type} type1419

1420
Tail entity is a {tail_type} type1421

1422
The relationship means the head {1423

relation_verb} the tail1424
1425

IMPORTANT FORMAT: Use exactly this 1426
format for each relation you find: 1427

Relation: {relation_type}, Head: ###[{ 1428
head_type }]###, Tail: @@@[{ tail_type 1429
}]@@@ 1430

1431
For example: 1432
Relation: {relation_type}, Head: ### John 1433

Smith###, Tail: @@@New York City@@@ 1434
1435

If no '{relation_type}' relationships 1436
are found in the text , explicitly 1437
state 'No {relation_type} 1438
relationships found.' 1439

1440
Text: {context} 14411442

E Additional ablation studies 1443

Performance of small Language Models on dif- 1444

ferent IE We explore the direct prompting per- 1445

formance of Qwen2.5(3B) and Phi-4-mini(4B) 1446

on test set of ACE05 (ED,EAE) and CONLL04 1447

(NER,RE) in zero-shot setting. 1448

Table 12 presents the zero-shot performance of 1449

small language models on the EAE and ED tasks 1450

from the ACE05 test set, as well as the NER and 1451

RE tasks from the CONLL04 test set, using direct 1452

prompting. For the EAE task, Qwen2.5(3B) sig- 1453

nificantly outperforms Phi-4-mini(3B), achieving 1454

an F1 score of 20.42%, nearly twice that of Phi- 1455

4-mini. This improvement is largely attributed to 1456

Qwen2.5’s higher recall, suggesting its stronger 1457

ability to identify event arguments in a zero-shot 1458

setting. Nevertheless, both models exhibit low 1459

precision, underscoring the inherent challenge of 1460

zero-shot EAE for small models. In the ED task, 1461

Qwen2.5 (3B) again surpasses Phi-4-mini (3B) 1462

with a notable margin (39.96% vs. 21.83% F1), 1463

demonstrating more accurate detection of event 1464

triggers without prior supervision. 1465

For NER, Qwen2.5 achieves an F1 score of 1466

17.75%, outperforming Phi-4-mini’s 12.15%. How- 1467

ever, both models fall short compared to larger 1468

LLMs, highlighting the challenge of zero-shot 1469

NER for small language models with limited ca- 1470

pacity. 1471

Interestingly, in the RE task, Phi-4-mini (3B) 1472

slightly outperforms Qwen2.5 (3B), achieving 1473

10.76% F1 compared to Qwen2.5’s 4.13%. This 1474

suggests that while Qwen2.5 excels in argument 1475

extraction and event detection, its relational reason- 1476

ing capabilities under zero-shot prompting may be 1477

less robust than Phi-4-mini for this task. 1478

We further analyze the performance of the two 1479

small language models on the NER task across 1480
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Few-shot Method Precision Recall F1

5-shots 56.54 81.05 66.61
10-shots 57.73 82.06 67.78
15-shots 57.24 82.06 67.44

Table 11: The results of few-shot learning on CoNLL04
NER task with GPT-3.5.

Model EAE ED NER RE

Qwen2.5(3B) 20.42 39.96 17.75 4.13
Phi-4-mini(3B) 11.02 21.83 12.15 10.76

Table 12: F1 score (%) on EAE, ED, NER, and RE tasks
using different small language models.

different entity types. As shown in Table 13,1481

Qwen2.5 (3B) consistently outperforms Phi-4-mini1482

(3B), achieving a higher overall F1 score of 17.75%1483

compared to 12.16%. This improvement is primar-1484

ily attributed to Qwen2.5’s superior recall on PER1485

and LOC entities, where it demonstrates stronger1486

capability in identifying PER and LOC names in1487

a zero-shot setting. However, both models exhibit1488

weak performance on ORG entities, with F1 scores1489

of only 8.27% (Qwen2.5) and 8.95% (Phi-4-mini).1490

This suggests that small language models strug-1491

gle to recognize ORG names without task-specific1492

adaptation. One possible reason is that ORG enti-1493

ties tend to be more ambiguous and diverse, often1494

containing abbreviations, generic terms, or domain-1495

specific expressions, which are harder to identify1496

without prior fine-tuning.1497

Overall, these results highlight the limitations1498

of small language models in zero-shot NER, espe-1499

cially for more complex types.1500

Final answer generation from multiple fine-1501

tuned models via majority voting Table 81502

shows that majority voting not only improves the1503

overall F1 score to 62.51%, outperforming all in-1504

dividual models, but also enhances recall while1505

maintaining comparable precision, demonstrating1506

its effectiveness in boosting the collective perfor-1507

mance beyond that of each finetuned model.1508

F Few-shot learning1509

Table 11 shows the results of few-shot learning1510

on the CONLL04 NER task using GPT-3.5. We1511

observe that increasing the number of provided1512

examples from 5 to 15 does not lead to consis-1513

tent improvements in F1 score. While there is a1514

slight gain from 5-shot to 10-shot, the performance1515

Models Precision Recall F1

Qwen2.5(3B)
- PER 18.99 41.29 26.02
- LOC 15.93 29.39 20.67
- ORG 4.86 27.66 8.27
Overall 12.10 33.33 17.75

Phi-4-mini(3B)
- PER 7.53 11.34 9.05
- LOC 15.05 21.96 17.86
- ORG 5.62 21.99 8.95
Overall 9.15 18.13 12.16

Table 13: Precision, Recall, and F1 (%) on NER task of
different small language models.

Method F1

GPT-3.5
G&O (Li et al., 2024b)
- One-step 10.5
- G&O 16.0†

MAF-IE 19.0

Table 14: F1 scores (%) of GPT-3.5 on NYT for RE
task under different baselines in zero-shot setting.

plateaus or even slightly drops afterward. This 1516

suggests that simply adding more ground-truth ex- 1517

amples in the prompt reaches a saturation point, 1518

beyond which the model struggles to further bene- 1519

fit from additional examples. One possible reason 1520

is the model’s limited capacity to generalize from 1521

few-shot prompts, as it tends to memorize surface 1522

patterns without fully understanding the underly- 1523

ing task structure. This observation highlights the 1524

limitations of prompt-based few-shot learning with 1525

large language models for structured prediction 1526

tasks like NER. 1527

G Mixture of agents 1528

We notice that recent work Mixture-of-Agents 1529

(Wang et al., 2024b) combines multiple power- 1530

ful LLMs (e.g., Qwen2.5-70B-Instruct (Simonycl, 1531

2024), Llama3.1-70B-chat (AI, 2024), Qwen1.5- 1532

110B-chat (Team, 2024a) and WizardLM-8x22B 1533

(Alpindale, 2024)) as heterogeneous agents to lever- 1534

age their complementary strengths for collaborative 1535

task solving. However, this approach is fundamen- 1536

tally different from ours: rather than relying on 1537

cross-model complementarity, MAF-IE focus is on 1538

improving a base model through multi-agent fine- 1539

tuning, enabling a more scalable and lightweight 1540

training paradigm. 1541
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Method F1

GPT-3.5
G&O (Li et al., 2024b)
- All-Entity-in-One 50.58
- One-step 60.41
- G&O 61.86†

MAF-IE 64.23

Table 15: F1 scores (%) of GPT-3.5 on BC5CDR for
NER task under different baselines in zero-shot setting.

Metric ACE05 ERE MACCROBAT-EE

Unique event types 33 38 13
Unique argument roles 22 21 22
Unique arg. roles per event type 4.73 2.87 10
Documents # 599 459 200
Sentences # 20,862 17,114 4,539
Entities # 54,820 46,185 23,898
Trigger mentions # 5,348 7,287 13,128
Argument mentions # 8,102 10,479 8,599
Avg entities # per sentence 3.18 3.20 5.43
Avg events # per sentence 1.34 1.47 3.21
Avg args # per sentence 2.39 2.24 2.67
Avg args per event # 1.48 1.42 0.81
Avg entity word count 1.12 1.10 1.89
Avg trigger word count 1.05 1.06 1.61
Avg argument word count 1.14 1.14 1.72

Table 16: Statistics of ACE05, ERE, and MACCROBAT-
EE datasets.

H Time and cost efficiency1542

Tables 23 and 24 analyze the trade-offs between1543

performance, inference time, and cost across dif-1544

ferent strategies on CONLL04 NER and RE tasks1545

with GPT-3.5.1546

H.1 Time Efficiency1547

As shown in Table 23, single-agent inference,1548

whether using the base GPT-3.5 model or its fine-1549

tuned variant, achieves the fastest inference time1550

of 12.5 seconds per sample, leveraging the absence1551

of multi-agent interactions. In contrast, multi-1552

agent debate introduces significant latency over-1553

head. Specifically, 3-agent debate on NER takes1554

21.5 seconds per instance (72% increase), while 5-1555

agent debate on RE takes 25.0 seconds per instance,1556

reflecting the increasing latency with larger agent1557

groups and deeper interactions. Notably, multi-1558

agent parallel inference after fine-tuning brings1559

the latency back to 12.5 seconds, matching single-1560

agent inference. This is achieved by parallel exe-1561

cution of multiple fine-tuned agents without iter-1562

ative debating, making it significantly more time-1563

efficient compared to multi-agent debate.1564

Description Dev Test

Candidate Space 395,572 392,158
# NA Entity Pairs 384,949 -
# Relation Entity Pairs 10,623 -
# Annotated Triples 12,275 -

Table 17: Statistics of DocRED.

Description Train Dev Test

# Sentences 910 243 288
avg. l-text - - 159
n-ner-type - - 3
n-relation-type - - 5
n-ary-relations - - 2
n-relation-mention - - 422

Table 18: Statistics of CoNLL04. "n-ary-relations" indi-
cates the number of entities in a relation tuple (group).

H.2 Cost Efficiency 1565

As shown in Table 24, single-agent inference also 1566

achieves the lowest cost of $0.000336 per instance, 1567

leading to the highest Efficiency Score on both 1568

NER (191,101) and RE (103,333). While multi- 1569

agent debate improves F1 (e.g., from 64.21% to 1570

66.83% on NER), it increases the cost to $0.000841 1571

(NER, 3 agents) and $0.001682 (RE, 5 agents), 1572

substantially lowering the Efficiency Score (NER: 1573

79,465; RE: 21,686). In comparison, fine-tuned 1574

multi-agent parallel inference maintains strong 1575

F1 (NER: 63.65%, RE: 33.47%) while reducing 1576

cost by 40%-60% compared to multi-agent de- 1577

bate (NER cost: $0.001008 vs. $0.000841, RE 1578

cost: $0.001680 vs. $0.001682), resulting in better 1579

cost-effectiveness than debate (NER: 63,179; RE: 1580

19,924). 1581

Summary These findings demonstrate that fine- 1582

tuned multi-agent parallel inference offers a su- 1583

perior balance of performance, time, and cost. It 1584

retains much of the accuracy gain from multi-agent 1585

collaboration while eliminating the time and cost 1586

overhead associated with multi-round debates. This 1587

makes it a more practical and scalable choice for 1588

real-world deployment. 1589

Efficiency Score metric We were inspired by
prior work on computational efficiency in NLP
models (Strubell et al., 2019; Kaplan et al., 2020)
and calculate the efficiency score as follows:

Efficiency Score =
F1-score

Cost Per Doc_ID
.
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Dataset OntoNotes

# of Types 89
# of Documents 300k
# of Entity Mentions 242k
# of Train Mentions 223k
# of Test Mentions 8963

Table 19: Statistics of OntoNotes.

Dataset Domains Docs Ent Rel Trig Arg

ACE05-E News 599 7 - 33 22

Table 20: Statistics of ACE05-E. Ent: Number of entity
categories. Rel: Number of relation categories. Trig:
Number of event trigger categories. Arg: Number of
event argument categories.

I Additional Case study1590

Comparative error analysis against the base-1591

line Our error analysis in Table 6 shows that our1592

type-specialized multi-agent debate and finetun-1593

ing framework achieves consistent improvements1594

across all entity types on the CONLL04 NER task1595

with GPT-3.5 compared with prior work MAFT1596

(Subramaniam et al., 2025), yielding an overall F11597

increase of 4.91%. Specifically, we observe the1598

largest gain on ORG entities (+6.86%), followed1599

by PER and LOC (+3.92% each).1600

We attribute these improvements to the unique1601

strengths of our multi-agent framework. First, the1602

type-specialized agents promote targeted extrac-1603

tion by focusing on entity-specific decision bound-1604

aries. This is particularly beneficial for complex1605

types like ORG that often suffer from boundary1606

ambiguity and semantic overlap with other types1607

in single-model settings. By contrast, single-model1608

baselines tend to produce generalized predictions1609

without type-specific refinement, limiting their abil-1610

ity to distinguish challenging cases.1611

Second, our cross-agent verification and debate1612

mechanism encourages agents to reflect on their1613

initial outputs, enabling error correction through1614

collaborative reasoning. This is especially effec-1615

tive for resolving missed or misclassified entities,1616

as agents are required to justify and revise their1617

predictions based on structured prompts and peer1618

feedback. The observed improvements for PER and1619

LOC suggest that this iterative refinement process1620

helps recover subtle mentions easily overlooked in1621

single-pass predictions.1622

Finally, adopting lightweight majority voting1623

during inference mitigates the risk of overfitting1624

Dataset BC5CDR

n-instance 1,000
avg. l-text 148
n-entity-type 2
n-entity-mention 2,074

Table 21: Statistics of BC5CDR. "avg. l-text" denotes
the average number of characters in each text instance.

Dataset NYT

n-instance 369
avg. l-text 199
n-relation-type 7
n-ary-relations 2
n-relation-mention 265

Table 22: Statistics of NYT. "n-ary-relations" indicates
the number of entities in a relation tuple (group).

or output homogenization introduced by excessive 1625

multi-round debate. By aggregating independent 1626

predictions from specialized agents, our frame- 1627

work balances diversity and consistency, leading 1628

to more robust extractions with minimal computa- 1629

tional overhead. 1630

These findings highlight the effectiveness of inte- 1631

grating type specialization, collaborative reasoning, 1632

and lightweight voting in improving overall and 1633

type-specific extraction performance. They also 1634

suggest future opportunities to further enhance our 1635

framework by incorporating task-adaptive debate 1636

strategies or confidence calibration techniques to 1637

handle entity types with high contextual variability 1638

better. 1639

Representative case studies Additionally, as 1640

shown in Table 25, we present five representative 1641

cases where our proposed framework achieves no- 1642

table F1 improvements compared to prior work 1643

MAFT (Subramaniam et al., 2025). These exam- 1644

ples provide qualitative analysis demonstrating how 1645

our type-agent collaborative framework effectively 1646

corrects entity recognition errors made by the base- 1647

line model. For example, in Document 44, our 1648

model successfully identifies "president-elect bush" 1649

as a PER, which was previously missed by the 1650

baseline. Similar improvements are observed for 1651

location entities such as "bosnia" and "german," as 1652

well as person entities like "bruce" and "president 1653

reagan." These results indicate that our multi-agent 1654

system is better at capturing entity boundaries and 1655

resolving semantic ambiguities, further validating 1656

the effectiveness of our collaborative interaction 1657
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Task (↓) Inference Mode # Agents Avg. Latency (s)

CoNLL04 NER
Single-Agent Inference 1 12.5

3-Agent Debate 3 21.5
Single Finetuned Agent Inference 1 12.5

3-Agent Parallel Inference (Finetuned) 3 12.5

CoNLL04 RE
Single-Agent Inference 1 12.5

5-Agent Debate 5 25.0
Single Finetuned Agent Inference 1 12.5

3-Agent Parallel Inference (Finetuned) 5 12.5

Table 23: Comparison of time efficiency on CoNLL04 NER and RE tasks (average seconds per test sample). Parallel
inference achieves the same latency as single-agent inference, while debate significantly increases latency as the
number of agents grows.

Task (↓) Inference Mode # Agents F1-score (%) Cost per Doc_ID (USD) Efficiency Score

CoNLL04 NER
Single-Agent Inference (GPT-3.5) 1 58.15 $0.000336 173,660

Single-Agent Inference (Finetuned) 1 64.21 $0.000336 191,101
3-Agent 2-Round Debate 3 66.83 $0.002016 33,166

3-Agent Parallel Inference (Finetuned) 3 63.65 $0.001008 63,179

CoNLL04 RE
Single-Agent Inference (GPT-3.5) 1 34.72 $0.000336 103,333

Single-Agent Inference (Finetuned) 1 28.63 $0.000336 85,208
5-Agent 2-Round Debate 5 36.47 $0.003360 10,850

5-Agent Parallel Inference (Finetuned) 5 33.47 $0.001680 19,924

Table 24: Cost efficiency comparison on CoNLL04 NER and RE tasks. Efficiency Score is calculated as F1-score
divided by Cost per Doc_ID (USD). We set the debate rounds to two.

design for specific IE tasks.1658

Stepwise impact of debate Furthermore, Table1659

7 analyzes how the number of debate rounds af-1660

fects performance improvements. Our results show1661

that most gains are achieved within the first one or1662

two rounds, while the benefits of additional rounds1663

gradually diminish. Notably, only one improve-1664

ment is observed after four rounds, suggesting that1665

increasing the number of debate rounds may lead1666

to diminishing returns. This finding indicates that1667

early-stage agent collaboration is generally suffi-1668

cient to resolve most disagreements and correct1669

recognition errors, whereas excessive rounds may1670

introduce noise or redundant reasoning.1671
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Case 1: PER Entity (Doc ID: 44, F1 Gain: +0.3333)

Misclassified Entity: president-elect bush
Context: “These are the tactics of a marginalized force driven to extremes by desperation, said
Abram...”

Case 2: LOC Entity (Doc ID: 146, F1 Gain: +0.3333)

Misclassified Entity: bosnia
Context: “BSP, SDS Support Noninvolvement in Bosnia AU1502173794 Sofia BTA in English
1646 GMT 15 Feb 94...”

Case 3: LOC Entity (Doc ID: 162, F1 Gain: +0.3333)

Misclassified Entity: german
Context: “Esprit Project to Develop Chip to Receive, Transmit Nerve Impulses...”

Case 4: PER Entity (Doc ID: 264, F1 Gain: +0.3333)

Misclassified Entity: bruce
Context: “Springsteen, a New Jersey native, was clearly the favorite...”

Case 5: PER Entity (Doc ID: 36, F1 Gain: +0.2000)

Misclassified Entity: president reagan
Context: “Also under consideration are two conservative federal appellate judges appointed by
President Reagan...”

Table 25: Top improvements with example cases.
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Algorithm 1: MAF-IE NER using type-specialized agents
Input: Docs D, Agent model A, Max rounds M , Consensus threshold θ (default: 2/3)
Output: Consensus entities for each document

1 Init experts APER, ALOC , AORG ← A;
2 for each doc d ∈ D do
3 Round 0: each expert At outputs initial entities et,0;
4 Store E0 ← {ePER,0, eLOC,0, eORG,0};
5 for m = 1 to M do
6 for each type t ∈ {PER,LOC,ORG} do
7 others← results from other experts in round m− 1;
8 et,m ← At(d, others, et,m−1);
9 end

10 Em ← {ePER,m, eLOC,m, eORG,m};
11 end
12 for each type t ∈ {PER,LOC,ORG} do
13 finalt ← [et,M from each expert];
14 conft ← [each expert’s confidence];
15 weightst ← [2.0 if expert specializes in t, else 1.0];
16 votest ← calculate the weighted vote sum for each entity;
17 const ← [entity | votes(entity) ≥ total_experts ×θ];
18 end
19 consensus← {consPER, consLOC , consORG};
20 if ground truth gd available then
21 metricsd ← evaluate(consensus, gd);
22 end
23 return consensus,metricsd;
24 end
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Algorithm 2: MAF-IE RE using type-specialized agents
Input: Docs D, RelationsR, Agent model A, Agents/relation k, Max rounds M , Threshold θ
Output: Relations for each document

1 Init experts {A1
r , ..., A

k
r} for each r ∈ R;

2 for each doc d ∈ D do
3 for each r ∈ R do
4 Round 0: Each expert Ai

r extracts ei,0r ;
5 Store E0

r ← {e
1,0
r , ..., ek,0r };

6 end
7 for m = 1 to M do
8 for each r ∈ R do
9 for i = 1 to k do

10 input← results from {Aj
r}j ̸=i in round m− 1;

11 ei,mr ← Ai
r(d, input, e

i,m−1
r );

12 end
13 Em

r ← {e
1,m
r , ..., ek,mr };

14 end
15 end
16 results← {};
17 for each r ∈ R do
18 votes← count for each extracted relation;
19 consr ← [rel | votes(rel) ≥ k × θ];
20 results← results ∪ consr;
21 end
22 if ground truth gd available then
23 metricsd ← evaluate(results, gd);
24 end
25 return results,metricsd;
26 end
27 Compute P/R/F1 over all documents;
28 Compute metrics for each relation type;
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Algorithm 3: CONTRASTIVE DATA PREPARATION for Multi-Agent NER
Input: Consensus dir Dc, Initial preds dir Di, Types T
Output: Training data for critic fine-tuning

1 c_ex← [{} for each type]; ic_ex← [{} for each type];
2 c_cnt← [0,0,0]; ic_cnt← [0,0,0];
3 for each file f ∈ Dc do
4 id← extract doc ID from f ;
5 ctx, c_ent← load from file f ;
6 for each type t ∈ T do
7 idx← get index for type t;
8 i_file← Di/doc_{id}_{t}_initial.json;
9 if i_file exists then

10 i_ent,m_resp← load from i_file;
11 prompt← construct with ctx and m_resp;
12 correct← compare i_ent with c_ent;
13 if correct then
14 resp← construct positive feedback;
15 c_ex[idx][c_cnt[idx]]← [prompt, resp];
16 c_cnt[idx]← c_cnt[idx] + 1;
17 else
18 resp← construct criticism;
19 ic_ex[idx][ic_cnt[idx]]← [prompt, resp];
20 ic_cnt[idx]← ic_cnt[idx] + 1;
21 end
22 end
23 end
24 end
25 for i = 0 to 2 do
26 c_data← list items from c_ex[i];
27 ic_data← list items from ic_ex[i];
28 Shuffle both datasets;
29 train← merge ic_data with balanced c_data;
30 Save train to file (JSON format);
31 end
32 return training datasets;
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Algorithm 4: INFERENCE with Majority Voting
Input: Docs D, Models M = {m1,m2, ...,mk}, Voting threshold θ
Output: Entity predictions and performance metrics

1 results← {};
2 metrics← initialize metrics counters;
3 for each doc d ∈ D do
4 context← text content of d;
5 gt← ground truth entities of d;
6 model_ents← [];
7 model_metrics← [];
8 for each model m ∈M do
9 prompt← create NER prompt with context;

10 response← generate using model m with prompt;
11 entities← extract PER, LOC, ORG from response;
12 Add entities to model_ents;
13 metric← calculate precision, recall, F1 between entities and gt;
14 Add metric to model_metrics;
15 Update global metrics for model m;
16 end
17 votes← count entity occurrences across all models;
18 consensus← {};
19 for each entity type t ∈ {PER,LOC,ORG} do
20 consensust ← [];
21 for each entity e with type t do
22 if votes(e) ≥ |M | × θ then
23 Add e to consensust;
24 end
25 end
26 consensus[t]← consensust or ["NULL"] if empty;
27 end
28 mv_metrics← calculate metrics between consensus and gt;
29 Update global majority vote metrics;
30 Store document results in results;
31 end
32 Calculate final precision, recall, F1 for each model;
33 Calculate final precision, recall, F1 for majority vote;
34 Create comparative performance tables;
35 return results, performance metrics;
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