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ABSTRACT

Despite Large Language Models (LLMs) achieving impressive results in code
generation, significant challenges remain in automated ML development, particu-
larly in utilizing existing ML repositories effectively. Also, recently, people have
developed LLM agents that attempt to interact with repository code (e.g., resolving
issues), prompting the need for end-to-end evaluations starting from environment
setup to deploying the repository rather than merely generating code in already-
configured environments. These two gaps have motivated our development of
ML-BENCH, a benchmark rooted in real-world ML applications that leverage
existing code repositories. ML-BENCH encompasses annotated 9,641 examples
across 18 GitHub repositories, challenging LLMs to accommodate user-specified
arguments and documentation intricacies effectively. To evaluate both LLMs and
agents, two setups are employed: ML-BENCH-L for assessing LLMs’ text-to-code
conversion within a predefined deployment environment, and ML-BENCH-A for
testing autonomous agents in an end-to-end task execution within a Linux sandbox
environment. Our findings indicate that while GPT-4o leads with a Pass@5 rate
surpassing 50%, there remains significant scope for improvement, highlighted by
issues such as hallucinated outputs and difficulties with bash script generation. No-
tably, in the more demanding ML-BENCH-A, GPT-4o achieves a 76.47% success
rate, reflecting the efficacy of iterative action and feedback in complex task resolu-
tion. Our code is available at https://anonymous.4open.science/r/ML-Bench
and our data is in the supplementary material.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable prowess in function-level code
generation (Austin et al., 2021; Chen et al., 2021; Hendrycks et al., 2021b; Li et al., 2022). Recent
benchmarks have shifted from simple function synthesis to more complex tasks such as code editing
and debugging (Cassano et al., 2023; Tian et al., 2024; Haque et al., 2023; Li et al., 2024) and coding
within a repository context (Ding et al., 2024; Zhang et al., 2023a; Li et al., 2024; Yu et al., 2024).
Furthermore, the evolution of code generation benchmarks reflects a growing recognition of the need
for more realistic evaluation scenarios (Guo et al., 2024), like proficiency with data science libraries
(Lai et al., 2023; Ma et al., 2024), programming with external tools and APIs (Li et al., 2023; Shen
et al., 2023; Wang et al., 2023a; Gao et al., 2024).

While benchmarks like SWE-bench (Jimenez et al., 2024) have established strong foundations
for evaluating repository-level code understanding, and MLAgentBench (Huang et al., 2023) has
highlighted the importance of ML capabilities, a critical gap remains in evaluating models’ ability
to utilize existing ML repositories correctly. Rather than testing models’ capability to implement
ML algorithms from scratch, we focus specifically on how well models can understand and execute
workflows using established ML codebases - a crucial skill for practical ML development. This gap
is particularly significant given the recent surge of research in LLM-based agents for data science and
ML tasks (Hong et al., 2024; Hassan et al., 2023).

We introduce ML-BENCH based on common real-world ML workflows, often using existing ML
repositories as libraries, as shown in Figure 1. To better assess the abilities of LLMs and agents at
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the same time, we present two testing setups: ML-BENCH-L and ML-BENCH-A; examples can be
found in Figure 2 and Appendix E:

• ML-BENCH-L: Evaluates models’ capacity to complete tasks within a pre-configured de-
ployment environment, translating text instructions to simple bash or Python code with
clearly defined parameters. The environment is already set up with the necessary dependen-
cies and datasets.

• ML-BENCH-A: Introduces a secure Linux sandbox environment where agents start with
an empty Docker container and must iteratively execute commands and code blocks to set
up the environment, install dependencies, download datasets, and finally execute the task,
emulating the full workflow of a human coder.

Figure 1: Examples of ML-BENCH compared with existing code benchmarks HumanEval (Chen et al., 2021),
RepoBench (Liu et al., 2023), and SWE-bench (Jimenez et al., 2024). In ML-BENCH, (1) models must take
repository-level code as input, and (2) based on their understanding of the repository, models are required to
compose new code segments that do not exist within the original repository.

In contrast to some focused efforts in developing LLM agents for ML tasks, such as feature engineer-
ing (Hollmann et al., 2024), hyper-parameter tuning (Zhang et al., 2023b), aiding AI research (Huang
et al., 2023), and data operations (Lai et al., 2023), ML-Bench takes a broader approach. Our work
advances this by enabling agents to not only execute ML experiments but also automatically configure
and set up repositories. The novelty and contributions of ML-Bench are: (1) We specifically evaluate
models’ ability to automate complex ML workflows, including environment setup, dependency
management, and experiment execution. (2) Our four distinct evaluation settings provide insights
into models’ true capabilities while addressing data leakage concerns.

ML-BENCH-L benchmarks their competence in translating text instructions to simple bash code
with clearly defined parameters. It seeks to test whether LLMs can generate executable code
to invoke specific files or functions in a repository with appropriate arguments based on given
instructions. For instance, it might assess if an LLM can generate a command line to utilize
txt2img.py from an image generation model repository with parameters such as ckpt to produce
an image based on a text description, e.g. python txt2img.py —-prompt “a girl riding a
horse" —-ckpt SD2_1_v_model.ckpt. To address this, LLMs must understand the repository-level
code and accurately configure parameters. Another critical aspect of this process is understanding
documentation—especially README files—which typically include comprehensive instructions on
employing the library, complete with task examples and argument selection guidelines.

However, a more arduous challenge lies in the end-to-end execution of tasks, starting from scratch.
This involves initiating the code environment for a specific repository, where common pitfalls of
environment setup, such as missing datasets or uninstalled packages, might occur. To evaluate agents
in such a setup, we introduce ML-BENCH-A, which provides a secure Linux sandbox environment
where agents can iteratively execute commands and code blocks to obtain feedback. The agent’s
actions involve multiple attempts, from reading files and understanding the repository to installing
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Figure 2: The workflow of ML-BENCH, including ML-Bench-L and ML-Bench-A. In ML-Bench-L, LLMs
generate Python code or Bash scripts based on the prompt. The input to the LLMs could be code retrieved from
a repository based on the prompt or a direct concatenation of all files. Their performance is evaluated within a
pre-configured environment. Conversely, in ML-Bench-A, the agent must autonomously set up the environment
and download necessary datasets to accomplish the task.

dependencies, preparing datasets, and finally writing bash code that calls the repository, thus emulating
the full workflow of a human coder.

Figure 3: ML-BENCH ENCOMPASSES 18 PROMINENT
GITHUB REPOSITORIES AND IT SHOW THE DISTRIBU-
TION OF 9,641 SAMPLES.

ML-BENCH features 9,641 samples
from 18 ML GitHub repositories, as Fig-
ure 3. In our evaluation experiment on
ML-BENCH-L, we observe that GPT-
4o outperforms other LLMs, being the
sole model to surpass the 50% thresh-
old in the Pass@5 metric (success rate
within five tries). It is noteworthy that
in the same test set, our annotators‘
performance—computer science grad-
uate students—stood at a success rate
of 86.76%, with 59 out of 68 examples
correctly executed. This indicates sub-
stantial room for improvement in cur-
rent LLMs. However, the models did
show performance improvements follow-
ing instruction tuning on the training
data (8.85→15.76 for CodeLlama). Er-
ror analysis reveals that LLMs tend to
generate hallucinations, predominantly
producing incorrect parameters or ref-
erencing non-existent files. Generating
bash scripts proved more challenging than generating Python code, pinpointing a capability bottleneck
in LLMs. A critical insight from our study is the urgent need for LLMs to comprehend the long code
context (the average length is around 150k tokens for the whole repository), not merely to generate
code. On the more challenging ML-BENCH-A setup, GPT-4o scores 76.47% within the OpenDevin
agent environment, where agents must configure their environment, navigate code repositories, and
effectively generate the necessary code. This underscores the potential of self-improvement and
incorporating feedback from experience as alternatives to relying on instruction tuning with history
training data to enhance LLM performance.
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Table 1: Comparison of benchmarks for repository-level code analysis: this comparison focuses on several key
attributes across various benchmarks: (1) Repository Understanding—the ability to comprehend and navigate
the overall structure, dependencies, and functionality of an entire code repository beyond individual files; (2)
Documentation Understanding—the capability to interpret and utilize documentation elements such as README
files to gain insights within the repository; (3) Cross-File Retrieval-identifying relevant information across
multiple files to complete tasks or resolve issues; (4) Package Installation—installing dependencies required for
the repository; (5) Data Downloading—downloading data required for the task; and (6) Evalution-the methods
used to assess and measure the task performance.

Criteria REPOEVAL
(Zhang et al., 2023a)

REPOBENCH
(Liu et al., 2023)

MLAGENTBENCH
(Huang et al., 2024)

SWE-BENCH
(Jimenez et al., 2024) ML-BENCH (OURS)

Repo. Understanding ✓ ✓ ✗ ✓ ✓
Doc. Understanding ✗ ✗ ✓ ✗ ✓
Cross-File Retrieval ✗ ✓ ✓ ✓ ✓
Package Installation ✗ ✗ ✗ ✗ ✓
Data Downloading ✗ ✗ ✗ ✗ ✓
Evaluation Similarity / Pass@K Similarity Test Accuracy Success Rate Pass@K / Success Rate
# of Repositories 14 3,116 / 12 18
# of Tasks 13,710 49,684 13 2,300 9,641

To sum up, while recent efforts have explored LLM-based agents for navigating GitHub repositories,
such as conducting ML experiments in simplified environments (Huang et al., 2024) or resolving
repository issues (Jimenez et al., 2024) (see Table 1), ML-Bench addresses a distinct and critical
challenge faced by many machine-learning researchers: both setting up and executing experiments
using research repositories in-the-wild. Compared to existing work, our contributions are:

• SWE-Bench (Jimenez et al., 2024) tasks agents with locating and modifying specific func-
tions to resolve an issue within a pre-deployed testing environment. ML-Bench challenges
agents to independently configure environments and download necessary data, mimicking
real-world research scenarios more closely.

• While MLAgentBench (Huang et al., 2023) evaluates LLMs’ ability to run simple ML
experiments, it focuses on optimizing ML experiments rather than comprehending and
setting up a repository for experimentation. ML-Bench goes beyond this by requiring agents
to utilize machine-learning codebases.

• ML-Bench evaluates the entire workflow of (1) setting up, e.g., downloading/installing
existing datasets, models, & packages, and (2) running ML experiments, from initial
repository exploration to result in interpretation. We have released a one-click evaluation
code, facilitating easy use and extension of the benchmark by researchers.

2 ML-BENCH CONSTRUCTION

2.1 TASK FORMULATION AND DESIGN PRINCIPLE

ML-BENCH aims to test models’ ability to utilize existing ML repositories according to user
requirements. For each task, a model receives a GitHub repository, a natural language instruction,
and specific parameter requirements. The model must then generate executable code that correctly
uses the repository’s functions or models while adhering to the provided requirements.

For ML-BENCH settings, (1) ML-BENCH-L provides a complete build environment, allowing us to
test output bash scripts generated by LLMs within a Docker environment regarding the correctness and
excitability. (2) ML-BENCH-A provides agents with access to an empty Docker environment without
essential packages. Agents must attempt to download the requirements for each user instruction
involving the installation of new datasets or Python packages themselves. This design ensures that
our testing framework aligns with practical application workflow.

ML-BENCH focuses on the end-to-end task of setting up and executing research-related tasks in
repositories, presenting a unique set of challenges not fully addressed by existing benchmarks: a)
Models must comprehend both code and README files to navigate complex ML repositories.
b) Tasks require comprehension, use, modification, and reasoning across multiple files within a
repository. c) Agents must configure environments, install dependencies, download datasets, and
acquire necessary models. d) Agents need to make sequential decisions while interacting with
the environment, mimicking real-world research scenarios. e) Unlike previous work that typically
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supports either system shell commands (Yang et al., 2024) or Python commands (Huang et al., 2023),
ML-Bench provides an environment allowing both (this resembles a scientist’s workflow to interact
with both environments). Each execution is equivalent to running a cell containing Python code
and/or bash commands, with state preserved between cell executions.

Table 2: Detailed breakdown of the number of bash script and Python code samples for each
repository. The test set contains samples from 14 repositories, while the train set includes 4 additional
repositories for the OOD setting. A quarter subset of the test set is also shown. All repository names
are hyperlinked for direct access to the corresponding GitHub.

Repository Train Set Test Set 1/4 Test Set

Scripts Code Scripts Code Scripts Code

In-Distribution (ID)
Video-to-Video (vid2vid) 46 0 13 0 4 0
IF by DeepFloyd Lab (If) 168 175 10 11 4 2
Deep Graph Library (DGL) 553 0 21 0 5 0
Pytorch-GAN (Py-GAN) 1080 0 30 0 8 0
ESM 563 58 15 2 4 1
BERT 962 0 22 0 6 0
OpenCLIP 646 691 10 1 3 0
Lavis - A Library for Language (Lavis) 76 205 4 23 1 6
Time Series Library (TSL) 1449 0 14 0 4 0
Attention Series (EAP) 95 5 24 0 5 0

Out-Of-Distribution (OOD)
Grounded-SAM / / 12 8 2 3
PyTorch Image Models (Py-IM) / / 5 0 1 0
muzic / / 17 1 4 1
Learning3D / / 17 0 4 0
Stable Diffusion (SD) 2253 0 / / / /
Medical Zoo (MedZooPy) 490 0 / / / /
Time Series Library (TCL) 196 0 / / / /
Tensor2Tensor 0 248 / / / /

Total 8577 736 214 46 55 13

2.2 SUMMARY OF DATA

ML-BENCH contains 18 diverse repositories, each reflecting varying complexity and tasks, while
filtering out substandard samples. The data quantities and breakdown per repository are detailed in
Table 2. Regarding the code language, our annotated output includes both bash scripts, which invoke
Python files with specific arguments, and Python code, which calls functions from the repository.
Bash scripts significantly outnumbered Python code snippets (See Appendix A for the explanation).

Each repository contributed approximately 480 examples, summing up to 9,641 examples. For our
experiments involving the fine-tuning of open-source LLMs, we split the dataset based on code
origin: The In-Distribution (ID) approach utilizes data from the same repository both for training
and testing, allowing repository-specific code to be exposed to models during fine-tuning. In contrast,
the Out-Of-Distribution (OOD) method employs disjoint sets for training and testing, encompassing
eight repositories—half for model training and the remaining for evaluation. The overall statistics
and further detailed data metrics for each repository utilized can be found in Appendix G.4 and G.3.

2.3 DATA COLLECTION AND ANNOTATION PIPELINE

Eight computer science graduate students with proficient programming abilities contributed to our
data annotation, with each repository’s related data being the responsibility of one annotator and an
additional reviewer to ensure accuracy. These students, who are co-authors of this paper, brought
their domain expertise to ensure high-quality annotations. Annotators were permitted to use GPT-4 to
expedite the annotation, although manual verification and adjustments were required. Annotating a
repository took approximately 5-10 hours (Appendix D). The annotation workflow is shown in Figure
4:

(1) README file Selection: Annotators commenced by meticulously reviewing repository contents
to identify all README files, including those within various subdirectories, each covering different
functionalities. On average, a GitHub repository included 12 README pages, with one notable
repository, DGL, comprising 154 README files. (2) Task Mining: Annotators identify practical

5

https://github.com/NVIDIA/vid2vid
https://github.com/deep-floyd/if
https://github.com/dmlc/dgl
https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/facebookresearch/esm
https://github.com/google-research/bert
https://github.com/mlfoundations/open_clip
https://github.com/salesforce/lavis
https://github.com/thuml/Time-Series-Library
https://github.com/xmu-xiaoma666/External-Attention-pytorch
https://github.com/IDEA-Research/Grounded-Segment-Anything
https://github.com/huggingface/pytorch-image-models
https://github.com/microsoft/muzic
https://github.com/vinits5/learning3d
https://github.com/Stability-AI/stablediffusion
https://github.com/black0017/MedicalZooPytorch
https://github.com/brightmart/text_classification
https://github.com/tensorflow/tensor2tensor


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: A detailed construction pipeline of ML-BENCH.

tasks from README files, along with corresponding code examples, averaging nine tasks per
repository, thus capturing the representative functionality of each GitHub repository. Annotators
randomly selected 20-30 test set candidates after annotating each repository. These candidates
underwent additional executable verification and correctness checks. Cross-validation was performed
by other annotators to remove near-duplicate cases, ensuring that cases differing only in minor
parameter values or paths but representing the same task were excluded. (3) Arguments Extraction:
Beyond task identification, annotators with machine learning expertise extracted key parameters
essential for task completion, targeting representative parameters commonly employed in practical
experiments. (4) Multi-Argument Combination: With tasks and arguments identified, annotators
create diverse combinations of argument values, essential for constructing scenarios that represent
real-world applications of repository code. (5) Instruction Generation: Utilizing ChatGPT, we
generate task-specific instructions for each argument set, applying templates to ensure diversity and
explicit argument inclusion, detailed in Appendix G.2. (6) Reference Code Generation: For each
argument combination, we develop code templates to generate accurate ground truth code for the
targeted tasks. (7) Quality Check: The dataset underwent stringent quality checks, particularly for
code executability and argument accuracy, with any non-compliant data being revised or discarded.
This ensures that the instructions precisely align with user requirements, thereby upholding the
integrity and applicability of the ML-BENCH benchmark. We conducted three additional quality
assessments with human evaluation, and the details of quality control are included in Appendix G.5.
In addition, We mitigate the risk of data contamination by manually rewriting inputs and outputs and
verifying our dataset’s uniqueness against internet searches.

3 ML-BENCH-L EXPERIMENTS

3.1 ML-BENCH-L SETUP

Our experimental inputs include human instructions and the entire repository code (including
README files). We present three distinct experimental setups to evaluate the models. Given
that current models cannot process the entire code context, the three scenarios range from ideal to
extreme. Oracle Segment (Oracle): For the Oracle setup, annotators identify and record crucial
segments within README files — referred to as "Oracle Segments" — that contain necessary codes
and textual explanations pivotal for completing the prescribed tasks. These segments serve as the
foundational source to derive the ground truth code, ensuring that models can access all critical
evidence when generating code. BM25 Retrieval (Retrieval): In this setup, we employ a BM25
retriever to extract segments from the repository’s documentation, including README files, that are
relevant to the given instructions. This method aims to mimic a more automated way of narrowing
down necessary information without human pre-selection. Code (Code): This setting exposes the
model to the entire code repository. All files within the repository, with README files placed at the
forefront, are presented as input to the model. Due to model context limitations, texts are truncated
when necessary, and potential information loss is analyzed and documented in Appendix H.2. Please
refer to Appendix H.1 for further details on implementing the BM25 retriever.

3.2 EVALUATION METRICS

The generated code must be executable and adhere to the parameters outlined in the user instructions.
We use Pass@K as our metric for evaluation, with K representing the number of generation attempts
allowed. Pass@K measures the likelihood of the model producing at least one correct code execution
in those K tries (given unit tests).
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Table 3: Pass@1/5 scores for models on the SCRIPTS|CODE (bash script, Python code) partition of ML-
BENCH-L. †denotes instruction-tuned models. Results are shown for the Oracle, Code, and Retrieval settings.
Results under ID and out-of-distribution (OOD) are reported after instruction fine-tuning. SCRIPTS|CODE superscript:
numbers represent the breakdown of performance on bash script generation tasks (SCRIPTS) versus Python
code generation tasks (CODE). The reported numbers are weighted averages of Scripts and Code scores.

Models OracleSCRIPTS|CODE CodeSCRIPTS|CODE RetrievalSCRIPTS|CODE

Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5
Human / / 86.76 / / /

Close-Source LLMs
GPT-4o 36.4231.37|56.83 50.1344.26|78.89 32.9931.44|39.87 46.2043.58|61.54 26.1619.47|55.52 30.4424.73|76.92

GPT-4 33.8229.09|53.85 48.5341.81|76.92 30.8829.09|38.46 45.5941.82|61.54 22.0614.55|53.85 27.9416.36|76.92

GPT-3.5 27.9421.81|53.85 38.2330.91|69.23 15.070.09|38.46 30.1423.64|53.85 13.705.45|46.15 24.6614.55|69.23

Claude-3-Opus 25.5212.15|67.39 36.9227.57|80.43 13.460.70|43.48 35.3930.37|58.70 10.003.27|41.30 22.6911.22|76.09

Claude-3-Sonnet 21.9218.18|38.46 34.2527.27|61.54 27.4025.45|30.76 35.6230.91|53.85 9.593.64|38.46 20.559.09|69.23

Claude-3-Haiku 18.4611.68|50.00 30.3820.09|78.26 25.3822.90|36.96 32.3128.04|52.17 8.083.74|28.26 16.927.48|60.87

Open-Source LLMs
CodeLlama-7b 8.853.37|32.60 21.1511.68|65.22 1.540.47|6.52 8.852.80|36.96 0.770.00|4.34 8.852.80|36.96

DeepseekCoder-6.7b 9.230.46|30.43 24.2314.02|71.74 3.851.89|13.04 10.386.07|30.43 5.003.27|13.04 14.239.81|34.78

Llama-2-7b 2.270.13|5.70 4.772.47|6.22 0.00 0.00 0.00 0.00
Llama-3.1-8B 32.69 37.31 12.31 13.85 16.54 22.69
Llama-3.1-70B 32.69 37.31 12.31 13.85 16.54 22.69
Llama-3.1-405B 15.38 33.85 13.46 23.85 4.23 10.38
Deepseek-Chat-6.7b 25.00 27.69 10.38 11.15 9.23 11.92
DeepSeek-Coder-6.7b 32.69 37.31 12.31 13.85 16.54 22.69
Qwen2.5-7b 33.46 47.31 12.31 18.08 11.92 19.38
Qwen2.5-32B 40.38 51.92 15.00 19.23 22.31 32.31
Qwen2.5-72B 38.08 47.69 17.31 20.38 12.69 21.54

Finetuned LLMs w/ the Out-Of-Distribution (OOD)
CodeLlama-7b † 15.7612.14|32.61 28.4619.62|69.57 / / 1.920.47|8.70 5.381.40|23.91

DeepseekCoder-6.7b † 16.1514.95|34.78 31.1524.30|58.70 / / 10.386.54|28.26 26.1517.29|67.39

Llama-2-7b † 5.312.47|10.86 6.033.12|11.64 / / 2.771.30|5.34 5.312.47|10.86

Finetuned LLMs w/ the In-Distribution (ID)
CodeLlama-7b † 17.6915.42|28.26 30.7721.96|71.74 / / 2.690.47|13.04 9.623.27|39.13

DeepseekCoder-6.7b † 21.9212.16|65.22 30.7720.56|78.26 / / 2.691.40|8.70 10.005.61|30.43

Llama-2-7b † 6.542.33|26.09 8.384.45|32.17 / / 1.150.00|6.52 3.084.67|15.22

Table 4: Agent evaluation results on the ML-BENCH-A. The success rate, number of solved instances,
and the average cost per solved instance are reported for each agent and language model combination.
† Evaluation is conducted on a quarter subset of the test set due to budget constraints.

Agent Model Name Success Rate† (%) # of Solved Instances $ Avg. Cost
AutoGen (Wu et al., 2023) gpt-4-1106-preview 8.82 6 1.28
SWE-Agent (Yang et al., 2024) gpt-4-1106-preview 42.64 29 1.91
Aider (Gauthier) gpt-4o 64.38 47 -

OpenDevin (Wang et al., 2024b)
gpt-4o-2024-05-13 76.47 51 0.25
gpt-4-1106-preview 58.82 40 1.22
gpt-3.5-turbo-16k-0613 13.23 9 0.12

3.3 EXPERIMENTAL RESULTS

As presented in Table 3, we conducted evaluations on a set of LLMs including GPT-4o
(model name: gpt-4o-2024-05-13), GPT-4 (model name: gpt-4-1106-preview), GPT-3.5
(model name: gpt-3.5-turbo-16k-0613), and the Claude 3 model family (Claude-3-Opus,
Claude-3-Sonnet, Claude-3-Haiku). Moreover, we selected CodeLlama-7b-Instruct,
DeepSeek-Coder-6.7b-Instruct, and Llama-2-7b-chat-hf to explore the effects of fine-tuning
with an 8k token length limit with 4 A100s. The findings suggest that while GPT-4o exhibited the
highest scores across the test cases, the untrained models, such as LLama-2-7b, performed poorly
on the ML-BENCH-L, even after in-distribution (ID) fine-tuning. Fine-tuning on out-of-distribution
(OOD) data indicated that models could benefit from training on similar tasks, though not neces-
sarily from the same repository. Moreover, the performances on ID data implied that even after
task-relevant fine-tuning, the results from 7B-scale open-source models could not outperform the
closed-source counterparts. The oracle setting outcomes demonstrate that providing models with
the correct reference solutions is effective for task completion. A retrieval approach not specifically
designed for the task might lead to suboptimal results, potentially hindering performance.
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4 ML-BENCH-A EXPERIMENTS

4.1 ML-BENCH-A SETUP

In ML-BENCH-A, as shown in Figure 5, we provision a sandbox environment as the testing ground
for agents. The sandbox offers a fundamental setup, such as a configurable Docker image, allowing
agents to modify and execute commands freely within the simulation. Agents are granted the
ability to execute bash scripts or interact with IPython notebooks. The agents must interact with
this environment, perusing code within repositories—regardless of the extended code or required
parameters—to accumulate comprehensive information. This process necessitates successive actions,
with the agent autonomously determining the correctness of each step and iteratively refining its
approach upon encountering errors. We expect the agents’ outputs to differ from previous LLM
settings due to the dynamic and interactive nature of the tasks.

Recent agent frameworks, including SWE-Agent (Yang et al., 2024), Aider (Gauthier), OpenDevin
(Wang et al., 2024b), provide a well-defined suite of impactful actions that bridge the agent with
its operational environment. Like Reflexion (Shinn et al., 2023) and CodeAct (Wang et al., 2024a),
agents iteratively execute actions, refine their approach via feedback, and perform effectively in
solving complex tasks. These agents are designed to mimic the workflow of human programmers,
thoroughly parsing and employing a repository. To facilitate this, the agents can execute any Python
code and bash commands within a secure and isolated Linux OS sandbox, providing an ideal setting
for our benchmark evaluations. In each instance, ML-BENCH-A initiates an isolated docker container
sandbox where all agents’ bash commands are executed, with the outcomes returned as observations.
Different agent frameworks implement environmental interactions in varying ways, with each action
yielding observations for AI agents. Here ML-BENCH-A essentially assesses the effectiveness of
different environments. In ML-BENCH-A, a configurable workspace directory contains repositories
agents are to handle, installed within a safe sandbox environment that provides controlled access
for agents to interact with and process as needed. For evaluation, instead of relying on the Pass@K
metric used in ML-BENCH-L, we emphasize the agent’s effectiveness in fulfilling user requirements
through interactive execution rather than predetermined outputs (Success Rate). Success is defined by
agents correctly following repository-documented workflows, matching expected execution patterns,
and producing outputs in the required format. Unlike the stochastic nature of ML tasks, which
complicates direct output validation, our deterministic evaluation framework focuses on reproducible
and consistent criteria. These include environment setup, dependency management, and correct API
usage, verified by human annotators with high agreement (0.92 Cohen’s kappa). This methodology
ensures reliability by avoiding stochastic variations and emphasizing correct repository interaction
over final model performance.

Figure 5: An example of agent execution logs demonstrating the interactive nature of ML-BENCH-A.

4.2 EXPERIMENTAL RESULTS

In Table 4, we detail the performance of various agents such as AutoGen, SWE-Agent, and Aider, as
well as OpenDevin equipped with diverse GPT language models, evaluated on a quarter subset of
the test set. OpenDevin, utilizing GPT-4o (model name: gpt-4o-2024-05-13), achieved the best
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results, striking an excellent balance between cost and performance. The success rate, the number of
instances successfully solved, and the average cost per solved instance were the critical metrics for
this evaluation. As demonstrated by the varied performance of agents using the identical gpt-4-1106
model, it becomes evident that the choice of agent framework significantly impacts the effectiveness
of an agent. This discrepancy in success rates and average costs accentuates the potential for future
advancements in agent architecture to enhance performance further.

5 DATA LEAKAGE

Since the repositories we selected are quite popular and likely to have appeared in the model’s pre-
training data, we found that sometimes even when the model is provided with Bash script information
instead of Python code, it still tends to generate code snippets that closely resemble those in the
original data. We believe that in this scenario, data leakage has affected the model’s ability to follow
instructions. To mitigate the impact of data leakage, we verify that the type and parameters of the
generated results align with user instructions before execution. We show the updating status for all
repositories in Appendix G.1.
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Figure 6: Quantification of models and settings errors with five attempts. The total statistic results
are 1,300 for the full test set. Statistical results that exceed these numbers are caused by multiple
errors made on one result simultaneously. For models, CL stands for CodeLlama, DS stands for
deepseek-coder, and L stands for Llama-2. Raw means that the model is not fine-tuned. ID means
that the model is fine-tuned in an in-distribution setting. OOD means that the models are fine-tuned
in an out-of-distribution setting. Here, Claude3 stands for Claude-3-Haiku.

6 CONCLUSION

ML-Bench addresses the limitations of existing benchmarks in comprehensively evaluating model
performance across real-world ML workflows. It simulates the complete ML development process,
from environment configuration to code execution. Our tasks require models to retrieve supporting
evidence, generate code, and set hyperparameters correctly, as well as download/install existing
datasets, models, & packages. We introduce ML-BENCH-L and ML-BENCH-A, two distinct
evaluation setups assessing LLMs’ code generation capabilities and agents’ end-to-end task execution
abilities, respectively. Results show GPT-4 achieving a Pass@5 rate over 50% in ML-BENCH-L and a
76.47% success rate in ML-BENCH-A, highlighting areas for improvement in handling hallucinations
and bash script generation.
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LIMITATION

Our study, while comprehensive within its scope, is subject to certain limitations that stem primarily
from linguistic and data source constraints.

Models Limitation We acknowledge that the scope of our benchmark might not entirely encapsulate
the breadth of available open-source models. While we have conducted extensive tests using a variety
of models beyond the results presented in the paper, including but not limited to:

• mistralai/Mistral-7B-Instruct-v0.3

• mistralai/Mixtral-8x22B-Instruct-v0.1

• Qwen/Qwen1.5-72B-Chat

• Qwen/Qwen1.5-110B-Chat

• Qwen/Qwen2-72B-Instruct

• codellama/CodeLlama-34b-Instruct-hf

• meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo

• meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo

• meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo

Due to space constraints, detailed results from these models were not included in the manuscript. We
emphasize that the primary objective of our benchmark is not to be an exhaustive repository of the
latest open-source models but rather to establish a robust and versatile benchmark framework. Our
goal is to inspire the community to develop better ML agents.

Our benchmark, ML-Bench, is designed to be widely applicable and has already seen extensive
adoption within the community. By providing a comprehensive and practical evaluation framework,
we aim to pave the way for future advancements in the development of ML agents, regardless of the
specific models used.

Data Source Limitation - Reliance on GitHub Repositories in English Our reliance on GitHub
repositories with documents exclusively in English introduces a selection bias. GitHub, while rich in
open-source projects and documentation, may not comprehensively represent the broader landscape
of software development practices and trends globally. This choice potentially overlooks significant
contributions and insights from non-English-speaking communities. This limitation might impact the
development of tools and models tailored to a more diverse set of programming environments and
community needs.

Methodological Limitation - Relying on Pre-built Machine Learning Packages Our method-
ology utilized existing machine learning packages instead of developing algorithms from scratch.
While this approach allowed us to leverage well-established, tested, and optimized tools, it also
introduces certain constraints. Dependence on pre-built packages means our work is confined to
the capabilities and limitations of these tools. This reliance could limit our ability to fully explore
novel or unconventional approaches possible with custom-built algorithms. Moreover, this choice
potentially impacts the reproducibility and customization of our findings. Researchers who seek to
build upon our work may encounter similar constraints imposed by the pre-built packages we utilize.
These limitations can hinder innovation and adaptation in different contexts or for specific usage.

Scope Limitation - Tasks Limited to README File Descriptions By strictly adhering to the
specified tasks, our study may overlook potential applications or challenges not explicitly documented
in README. This limitation can result in a narrower understanding of the tools we examined, as
it fails to explore their full potential and applicability. The reliance on README descriptions also
assumes that these documents comprehensively and accurately reflect all relevant aspects of the
repositories, which may not always be accurate. Important tasks or nuances might be undocumented
or underrepresented in these files.
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ETHICS STATEMENT

In our work, we have carefully considered the ethical implications of our work, particularly in data
annotation and related activities. Our methodologies and processes have been meticulously designed
to ensure they are free from moral concerns. We affirm that our research practices, including data
handling, have been conducted with the utmost integrity and in compliance with ethical standards.

Our approach has been guided by principles prioritizing respect for data integrity, transparency in our
methods, and adherence to established ethical guidelines.
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A REGARDING BASH SCRIPT GENERATION

We would like to clarify that ML-Bench encompasses a much broader range of tasks than just bash
script generation. Specifically:

ML-Bench-L: This benchmark component includes tasks that require generating both bash scripts
and Python code. The diversity in task types reflects the varied nature of ML workflows, where both
scripting and programming play essential roles.

ML-Bench-A: In this more complex setup, agents are required to interact with the environment
using a combination of bash commands and Python code with tools such as Jupyter Notebooks. This
approach closely mimics ML practitioners’ actual workflow, who often switch between command-line
operations and code execution in interactive environments.

Including bash script tasks, alongside Python code generation and execution, is intentional and reflects
the reality of ML development workflows. Many real-world ML tasks involve a combination of
environment setup (often done via bash commands), data preprocessing, and model implementation
(typically done in Python).

• (1) ML-Bench is not limited to bash script tasks. Our benchmark includes many task types,
encompassing both bash script and Python code generation.

• (2) The tasks in ML-Bench are carefully designed to mirror the authentic workflows of ML
practitioners. This approach has been recognized as meaningful and valuable in previous
and follow-up works.

In conclusion, while bash script tasks are indeed part of ML-Bench, they represent only one compo-
nent of a much broader and more complex set of challenges. Our benchmark’s strength lies in its
comprehensive coverage of the ML development lifecycle, addressing meaningful scenarios highly
relevant to real-world ML practice and research. We believe this approach provides valuable insights
into model capabilities that complement existing benchmarks.
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B ML-BENCH’S SCOPE AND SIGNIFICANCE

While SWE-Bench focuses on resolving GitHub issues, ML-Bench addresses a distinct yet equally
critical aspect of real-world software development: the ability to utilize the existing code in machine-
learning contexts. This workflow closely mirrors common scenarios faced by ML engineers (like the
difference between MLE and SWE).

ML-Bench evaluates several crucial capabilities that are not explicitly tested in SWE-Bench:

• a. Many tasks involve setting appropriate hyperparameters or configuration options, requir-
ing an understanding of both the code and the underlying machine learning concepts.

• b. ML-Bench includes 18 diverse repositories (compared to SWE-Bench’s 12), challenging
models to adapt to various ML data types (as illustrated in Figure 2 of our paper).

• c. ML-Bench requires a combination of code comprehension, environment setup, and
execution that closely mirrors the day-to-day activities of ML practitioners. We include
tasks such as environment setup, dependency management, and data downloading – all
crucial skills in practical ML development.

We added two examples that illustrate these tasks’ complexity and real-world relevance. For instance:

Example 1: Understanding and Implementing Complex Neural Architectures.

While our dataset doesn’t typically include tasks requiring the creation of training loops from scratch,
it does involve understanding and correctly utilizing complex model architectures. For example:

1 { " g i t h u b _ i d ": 9, " g i t h u b ": " h t t p s : / / g i t h u b . com / xmu−xiaoma666 / E x t e r n a l −
A t t e n t i o n − p y t o r c h " ,

2 " r e p o _ i d ": 26, " p a t h ": " . / " ,
3 " a rgumen t s ": " { ’ d a t a ’ : ’ ( 5 0 , 4 9 , 5 1 2 ) ’ , ’ model ’ : ’ E x t e r n a l A t t e n t i o n ’ , ’

a rgument3 ’ : ’ t o r c h ’} " ,
4 " i n s t r u c t i o n ": " I am i n p o s s e s s i o n o f a d a t a i n p u t i n t h e shape o f

( 5 0 , 4 9 , 5 1 2 ) .
5 My i n t e n t i o n i s t o dep lo y t h i s w i t h i n t h e rea lm of E x t e r n a l A t t e n t i o n

Usage .
6 My aim i s t o s u c c e s s f u l l y c o m p l e t e A t t e n t i o n l a y e r s u s i n g t h e f i g h t i n g cv

l i b r a r y .
7 However , a f t e r a c c o m p l i s h i n g t h i s , I would a l s o want t o know t h e o u t p u t

shape .
8 May you k i n d l y a s s i s t i n c r a f t i n g t h e n e c e s s a r y co d i ng e l e m e n t s ? " ,
9 " o r a c l e ": " from model . a t t e n t i o n . E x t e r n a l A t t e n t i o n i m p o r t

E x t e r n a l A t t e n t i o n \ n
10 i m p o r t t o r c h \ n \ n i n p u t = t o r c h . r andn ( 5 0 , 4 9 , 5 1 2 ) \ nea = E x t e r n a l A t t e n t i o n (

d_model =512 ,S=8) \ n o u t p u t =ea ( i n p u t ) \ n p r i n t ( o u t p u t . shape ) \ n \ n " ,
11 " t y p e ": " Python Code " , " i d ": 268,
12 " p r e f i x _ c o d e ": " g i t c l o n e h t t p s : / / g i t h u b . com / xmu−xiaoma666 / E x t e r n a l −

A t t e n t i o n − p y t o r c h . g i t \ n
13 cd E x t e r n a l − A t t e n t i o n − p y t o r c h "}

This example demonstrates that the model needs to:

• Understand the structure of the External Attention model.
• Correctly import and initialize the model with appropriate parameters.
• Generate input data of the correct shape.
• Apply the model to the input data.
• Print the output shape.

Example 2: Parameter Understanding and Customization.

Our tasks often require models to understand and correctly use parameters defined across multiple
files. The expected output for the above task showcases this:
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1 import torch
2 from model.attention.ExternalAttention import ExternalAttention
3 input_size = (50, 49, 512)
4 parser = argparse.ArgumentParser ()
5 parser.add_argument( "−−d_model " , type=int , default =512, help= "

d i m e n s i o n a l i t y o f t h e model ")
6 parser.add_argument( "−−S" , type=int , default=8, help= " number o f a t t e n t i o n

heads ")
7 opt = parser.parse_args ()
8 input = torch.randn(* input_size)
9 ea = ExternalAttention(d_model=opt.d_model , S=opt.S)

10 output = ea(input)
11 print(output.shape)

This solution demonstrates that the model needs to:

• Understand the purpose and usage of argparse for parameter customization.
• Correctly set up default values and help messages for each parameter.
• Use these parameters when initializing the ExternalAttention model.
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B.1 SWE-BENCH AND ML-BENCH

While SWE-Bench indeed simulates the real-world scenario of resolving GitHub issues, which often
involves modifying specific functions or files within a repo and is crucial for software development,
ML-Bench aims to capture another class of tasks frequently encountered by machine learning (ML)
practitioners - how to train and deploy models on specific datasets.

For example, consider a scenario where a data scientist needs to train a sentiment classification model
on a specific dataset using a particular ML library. This task involves:

• Understanding the structure of the ML library repo
• Setting up the appropriate environment
• Preprocessing the dataset
• Selecting and implementing a suitable model architecture
• Training the model with appropriate hyperparameters
• Evaluating the model’s performance

This end-to-end ML workflow is not typically covered by SWE-Bench but is a core focus of ML-
Bench.

We view the two benchmarks as complementary, jointly advancing research on LLMs’ applications
in software development and ML.

Criteria SWE-Bench ML-Bench (Ours)
Repo. Understanding ✓ ✓
README. Understanding ✗ ✓
Cross-File Retrieval ✓ ✓
Package Installation ✗ ✓
Data Downloading ✗ ✓
ML Model Training ✗ ✓
Environment Configuration ✗ ✓
Evaluation Success Rate Pass@K / Success Rate
# of Repositories 12 18
# of Tasks 2,300 9,641
Focus Area General SWE ML-specific

Table 5: Comparison of SWE-Bench and ML-Bench.

Key distinctions between ML-Bench and SWE-Bench include:

a) Range of Tasks:

• ML-Bench: Includes environment configuration, dataset and model downloading, code
generation, and execution testing.

• SWE-Bench: Primarily bases its evaluation on the correctness of problem-solving for
individual issues.

This comprehensive approach in ML-Bench more closely mimics the end-to-end workflow of ML
practitioners.

b) Repository Understanding:

• ML-Bench: Requires models to retrieve relevant code snippets from the repository as
references for writing scripts that invoke repository functions or workflows.

• SWE-Bench: Focuses on searching the repository to locate and modify specific code
segments to resolve predefined issues.
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c) Documentation Utilization:

• ML-Bench: Explicitly evaluates the model’s ability to understand and utilize documentation
such as README files.

• SWE-Bench: This aspect is not explicitly addressed.

d) Package Installation and Data Downloading:

• ML-Bench: Includes tasks related to package installation and data downloading, which are
critical steps in ML workflows.

• SWE-Bench: These tasks are not covered.
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C QUANTIFYING THE CONTEXT REQUIRED

To quantify the context needed for each instance in the benchmark, we randomly sampled 20 examples
and performed a detailed analysis.

We have added a table 6 quantifying the context required for each task type, including statistics on the
average amount of code that needs to be understood, the distribution of relevant information across
different files, and the importance of README files versus actual code.

Metric Value
Average number of relevant files 3.6
Average lines of code in relevant files 414
Percentage of tasks requiring README understanding 85%
Percentage of tasks requiring code understanding 95%
Average depth of relevant code in repository (line number) 27,524
Percentage of tasks requiring understanding of multiple files 75%
Average number of functions/classes to be understood per task 3.8
Percentage of tasks requiring understanding of dependencies 70%
Percentage of tasks requiring understanding of data structures 65%
Percentage of tasks involving API usage 80%

Table 6: Metrics related to different aspects of the tasks.

This analysis shows that while README files are important, understanding the code itself is crucial
for many tasks. Contrary to the reviewer’s impression, our benchmark heavily emphasizes code
understanding. 100% of tasks require comprehension of actual code, not just README files. While
85% of tasks do involve README files, this is in addition to, not instead of, code understanding.
READMEs often provide crucial context for code interpretation.
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Additionally, we have added a table below quantifying the required context for each task type,
including an average number of relevant files, lines of code, and key information distribution across
repository components.

• Required context length: Number of tokens in relevant files
• Average number of relevant files: Mean number of files pertinent to the task
• Relevant lines of code: Number of lines in relevant files
• Average depth of code in repository (line): Line number where relevant files first appear

Repository name Required con-
text length

Average num-
ber of relevant
files

Relevant lines
of code

Average depth
of code in
repository
(line)

dgl 974 6.2 905 220624
bert 3204 1 494 6738
Pytorch-GAN 988 1 168 5004
Vid2Vid 1221 6 892 4042
Time-SL 1753 6 936 341
Py-IM 8712 8 1108 3255
Learning 3D 1330 1 223 7201
Music 1851 3.4 461 14012
External-AP 107 1 24 16425
Open-CLIP 882 1.2 267 14087
IF 1514 4 360 3410
Segment Anything 1423 5 678 9572
ESM 811 3 339 5516
LAVIS 1093 3.1 346 2640
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D COST OF HUMAN ANNOTATION

Eight computer science graduate students with proficient programming abilities contributed to the
data annotation.

Each repository took approximately 5-10 hours to annotate.

Each student spent about 30 hours constructing data, crafting prompts, reviewing code for retrieval,
and performing quality control checks.

While human involvement is required, we believe the scale of the effort is manageable and comparable
to other code-based benchmarks. The total time invested (approximately 240 hours) is significantly
less than some other benchmarks. For example, the DS1000 paper reported that five authors spent
1200 hours on data construction.

In addition, all code-based benchmarks, including DS1000, SWE-Bench, and RepoBench, require
human annotation for data construction. Our approach is significantly less time-intensive than these
established benchmarks.

Furthermore, we have implemented semi-automated processes for certain aspects of our benchmark
creation, as described in Figure 3 of our paper. README selection and Instruction Generation can
be partially automated using GPT, reducing the manual workload.

Lastly, while the annotation process does require significant effort, we believe the resulting benchmark
provides unique and valuable insights into model performance on real-world ML tasks. The depth
and complexity of our tasks justify the investment in human annotation.

Importantly, we focus on providing a high-quality dataset with a reasonable yet manageable size that
allows reliable assessment of LLMs’ capabilities in this task, rather than just curating a large-scale
evaluation dataset. This approach ensures that each task in ML-Bench is carefully curated and
validated, maintaining a high standard of quality and relevance to real-world ML workflows. By
prioritizing quality over quantity, we aim to offer a more nuanced and accurate evaluation of LLM
performance in the context of machine learning development tasks.
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BENCHMARK CREATION PROCESS

Our benchmark creation process incorporates semi-automated elements. Specifically:

a) README Selection:

• Partially automated using LLMs to identify relevant sections.

b) Instruction Generation:

• Leverages GPT models to draft initial task descriptions, which human annotators then refine.

These steps significantly reduce the manual workload while maintaining task quality.

Our approach is comparably efficient to other established code-based benchmarks. For instance, our
total annotation time (approximately 240 hours) is significantly less than the 1200 hours reported for
DS-1000 construction.

IMPORTANCE OF HUMAN ANNOTATION

Human annotation is crucial for ensuring ML-Bench’s task quality and authenticity, particularly given
the unique challenges of machine learning repositories. Here’s why:

Machine learning repositories often contain specialized knowledge and complex workflows that re-
quire deep understanding. Our human annotators, computer science graduate students with proficient
programming abilities, bring essential domain expertise to the task-creation process. This expertise is
critical for crafting tasks that accurately reflect real-world ML development challenges.

We initially explored using GPT to generate tasks automatically, but the results were unsatisfactory,
leading us to abandon this approach. This experience highlights the high quality of our manually
curated dataset.

The necessity for human annotation in ML-Bench aligns with current practices in code benchmarks;
to our knowledge, all existing code benchmarks (e.g., SWE-bench, RepoBench, DS-1000) require
manual annotation and cannot be easily scaled through automation.

ML-Bench tasks, especially in the ML-Bench-A setup, often involve multi-step processes, including
environment setup, repository navigation, and ML-specific tasks. Human annotators can craft
cohesive, end-to-end scenarios that authentically represent these complex workflows, which would
be challenging to generate automatically.

E DEFINITION OF OUR TASKS

We refine our task definition to ensure clarity. Here’s a concise definition, along with an example.

We’ve elaborated on our two distinct setups:

ML-Bench-L: Evaluates models’ capacity to complete tasks within a pre-configured deployment en-
vironment, translating text instructions to simple bash or Python code with clearly defined parameters.
The environment is already set up with the necessary dependencies and datasets.

ML-Bench-A: Introduces a secure Linux sandbox environment where agents start with an empty
Docker container and must iteratively execute commands and code blocks to set up the environment,
install dependencies, download datasets, and finally execute the task, emulating the full workflow of
a human coder.

Setup Task Definition
ML-Bench-L Given a GitHub repository, all its files, an instruction, and arguments, gener-

ate executable Bash or Python code that utilizes functions or models from
the repository in line with the user instruction and arguments. The execution
environment is pre-configured.
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ML-Bench-A Given access to an empty Docker environment, a GitHub repository URL,
an instruction, and arguments A, the task is to iteratively create a Docker
container setup and generate executable Bash or Python code to utilize
repository functions/models to fulfill the given instruction and arguments.

Examples

Setup Example
ML-Bench-L Repository: Image generation model repository

Instruction: Generate an image based on a text description
Arguments: prompt="a girl riding a horse", ckpt="SD2_1_v_model.ckpt"
Expected Output: python txt2img.py –prompt "a girl riding a
horse" –ckpt SD2_1_v_model.ckpt

ML-Bench-A Repository URL: https://github.com/example/image-gen-repo.git
Instruction: Generate an image based on a text description
Arguments: prompt="a girl riding a horse", ckpt="SD2_1_v_model.ckpt"
Expected Actions and Output:
1. git clone https://github.com/example/image-gen-repo.git
2. cd image-gen-repo
3. pip install -r requirements.txt
4. wget https://example.com/models/SD2_1_v_model.ckpt
5. python txt2img.py –prompt "a girl riding a horse" –ckpt
SD2_1_v_model.ckpt

We also expand our description of the tasks and provide a more detailed breakdown for both ML-
Bench-L and ML-Bench-A.

ML-Bench-L tasks are primarily focused on code generation and can be categorized into two types
based on the language:

a) Bash Script Generation:

• Average length: 176 characters
• Example: Setting up environment variables, running specific scripts

b) Python Code Generation:

• Average length: 244 characters
• Example: Implementing data preprocessing, model initialization, or inference steps

For ML-Bench-A, we conducted a detailed analysis of 20 randomly sampled examples. Our anal-
ysis revealed that each example/instance in ML-Bench-A comprehensively evaluates the agent’s
capabilities across three key areas:

a) Environment Setup:

• Package installation
• Dataset downloading
• Model downloading

b) Repository Navigation and Understanding:

• Identifying relevant files and functions
• Understanding dependencies between different components

c) ML-Specific Tasks:
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• Model initialization and configuration
• Data preprocessing
• Model training (in select cases)
• Model inference

It’s important to note that unlike ML-Bench-L, where tasks are categorized by language, each ML-
Bench-A example requires the agent to perform actions across all three categories. This design ensures
a comprehensive evaluation of the agent’s ability to handle complex, multi-step ML workflows.

We have also added information on the complexity of tasks, including:

• Average number of relevant files per task: 3.5
• Average lines of code in relevant files: 514
• Percentage of tasks requiring multi-file understanding: 70%

EXAMPLE 1: ML-BENCH-L (PYTHON CODE GENERATION)

Instruction: Generate code to perform inference using the BERT model on the input text "Hello,
world!"
Repository: bert
Expected Output:

1 import torch
2 from transformers import BertTokenizer , BertForSequenceClassification
3
4 tokenizer = BertTokenizer.from_pretrained( ’ b e r t −base − uncased ’)
5 model = BertForSequenceClassification.from_pretrained( ’ b e r t −base − uncased ’

)
6
7 input_text = " Hel lo , wor ld ! "
8 inputs = tokenizer(input_text , return_tensors= " p t ")
9 outputs = model (** inputs)

10
11 print(outputs.logits)

EXAMPLE 2: ML-BENCH-A (COMPLETE WORKFLOW)

Instruction: Set up the Stable Diffusion environment, download the model, and generate an image
of a "cat on a beach"
Repository: Stable Diffusion
Expected Actions:

1. Environment Setup:

1 git clone https :// github.com/CompVis/stable -diffusion.git
2 cd stable -diffusion
3 pip install -r requirements.txt

2. Model Download:

1 wget https :// github.com/CompVis/stable -diffusion/releases/download/v1.4/
sd-v1 -4. ckpt

3. Repository Navigation: Identify the main script for image generation (scripts/txt2img.py)

4. ML-Specific Task (Image Generation):

1 python scripts/txt2img.py --prompt " c a t on a beach " --plms
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F MODEL DOWNLOADING

In our ML-Bench-A, the agent is responsible for locating and downloading the correct trained model.
This process is part of the task and is not pre-configured.

The agent may download the correct trained DL model or an incorrect one, which mimics real-world
scenarios where developers might encounter issues with model compatibility or versioning.

Our testing environment executes the code generated by the agent, including any model loading steps.

The success rate is measured based on successful model loading, correct inference, and appropriate
output formatting. If the agent downloads an incorrect model or fails to set up the environment
correctly, it will not pass the test, reflecting real-world challenges in ML workflows.

This approach ensures that our benchmark evaluates not just code generation, but also the agent’s
ability to understand and correctly set up the entire ML pipeline, including model selection and
environment configuration.
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G DATASET DETAILS

G.1 DETAILS OF SELECTED GITHUB REPOSITORIES

As depicted in Table 10, our selection encompasses a range of GitHub repositories varying from
language and graph models to multimodal and time-series models. Each repository is chosen for
its high-quality contributions to the field and its popularity among the development community,
indicated by the number of stars. The repositories, diverse in their updates and number of README
files, provide a snapshot of the current landscape of models available on GitHub.

Table 10: Comprehensive information on selected GitHub repositories. The column labeled
"#README" refers to the number of README files contained within each listed GitHub repository.

Domain GitHub Stars URL #README Last Updated

Language Model BERT 35,693 https://github.com/google-research/bert 1 2020.03.11
Tensor2Tensor 14,280 https://github.com/tensorflow/tensor2tensor 9 2023.04.01

Graph Model DGL 12,429 https://github.com/dmlc/dgl 154 2023.11.16

Biomedical Model ESM 2,462 https://github.com/facebookresearch/esm 8 2023.06.27
MedicalZooPytorch 1,516 https://github.com/black0017/MedicalZooPytorch 21 2022.02.07

Vision Model

PyTorch-GAN 14,947 https://github.com/eriklindernoren/PyTorch-GAN 1 2021.01.07
Learning3d 579 https://github.com/vinits5/learning3d 1 2023.10.24
External-Attention-pytorch 9,949 https://github.com/xmu-xiaoma666/External-Attention-pytorch 1 2023.10.25
Pytorch-image-models 30,400 https://github.com/huggingface/pytorch-image-models 1 2023.11.09

Audio Model Muzic 3,866 https://github.com/microsoft/muzic 8 2023.12.06

Multi-Modality

LAVIS 7,300 https://github.com/salesforce/lavis 8 2023.09.25
IF 7,237 https://github.com/deep-floyd/if 1 2023.06.03
OPEN-CLIP 6856 https://github.com/mlfoundations/open_clip 1 2023.11.01
Stable Diffusion 31,506 https://github.com/Stability-AI/stablediffusion 1 2023.03.25
Segment-Anything 11,976 https://github.com/IDEA-Research/Grounded-Segment-Anything 3 2023.12.11

Video Vid2Vid 8,393 https://github.com/NVIDIA/vid2vid 2 2019.07.04

Time-Series Model Time-Series-Library 2,670 https://github.com/thuml/Time-Series-Library 1 2023.11.10

G.2 TEMPLATES FOR DIVERSE INSTRUCTION CONSTRUCTION

To generate precise instructions, we have developed a range of instruction templates that serve as
the foundation for the tasks, ensuring that all necessary arguments are present and accounted for.
For a detailed look, please refer to the instruction templates outlined in Table 11. These templates
are instrumental in guiding the generation process, embodying diversity and adaptability while
maintaining the integrity of the input information. The templates in the table guide users to regenerate
similar instructions with varied expressions while keeping the task requirements intact, promoting
diversity in instructional outputs for the model to process and execute.
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Table 11: Examples of constructed instructions for diverse task templates. In this context, "ESMFold"
refers to a task related to protein structure prediction using a particular machine learning model or
function.

Task Description
You need to use your creativity and rewrite each query three times. Make sure that all the required arguments
are provided. The instructions should be diverse, and you are encouraged to write long instructions. The
instructions should be very different.
Example 1: ESMFold Structure Prediction
Input: I have a data sequence MKTVRQERLKSI, and I want to use esm1v_t33_650M_UR90S_1() to finish the
ESMFold Structure Prediction task . . .
Required Arguments:

• Sequence: MKTVRQERLKSI
• Model: esm1v_t33_650M_UR90S_1()
• Task: ESMFold Structure Prediction

• . . .

Output:
1. Instruction: Input data: MKTVRQERLKSI, Model: esm1v_t33_650M_UR90S_1() . . . Can you please

design the model for me?

2. Instruction: I possess a data sequence MKTVRQERLKSI and I’d like to use esm1v_t33
_650M_UR90S_1() for the ESMFold Structure Prediction task . . .

3. Instruction: I have an interesting sequence MKTVRQERLKSI and I’m planning to utilize
esm1v_t33_650M_UR90S_1() for ESMFold Structure Prediction . . .

Example 2: Another ESMFold Structure Prediction Task
Input: I want to use esmfold_v1() to finish the ESMFold Structure Prediction task . . .
Required Arguments:

• Model: esmfold_v1()
• Task: ESMFold Structure Prediction

• Learning Rate: 0.04

• . . .

Output:
1. Instruction: Do you know ESM? I need to perform the ESMFold Structure Prediction task using

esmfold_v1(). I’d like to set the learning rate to 0.04 . . .

2. Instruction: I’m working on ESMFold Structure Prediction and plan to use esmfold_v1() with a
learning rate of 0.04 . . .

3. Instruction: I’m looking to employ esmfold_v1() for the ESMFold Structure Prediction task,
setting the learning rate to 0.04 . . .

Instruction: Construct the Instructions for SQUAD2.0 Fine-tuning Task
You must follow the above examples, keep the information unchanged, and write some new instructions. Your
output should be diverse. You are encouraged to write long instructions. The instructions should be very
different.
Input: I’m interested in utilizing ./model/cased_L-12_H-768_A-12 for fine-tuning the SQUAD2.0 task. I
plan to establish a train batch size of 128. Could you assist me in writing the necessary code?
Required Arguments:

• Model Path: ./model/cased_L-12_H-768_A-12
• Task: SQUAD2.0

• . . .

Output:

1. Instruction: [Your Instruction Here]

2. Instruction: [Your Instruction Here]

3. Instruction: [Your Instruction Here]
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G.3 TOKEN LENGTH ANALYSIS

For a detailed examination of the token lengths encountered during our model evaluations, we present
two tables (Table 12 and 13) comparing the token counts across a variety of experimental settings.
The measurements were made using the CodeLlama tokenizer and GPT-3.5 tokenizer.

Table 12: Average input token length of instructions for CodeLlama and GPT-3.5∗ in various
experimental settings. ∗We use tiktoken (https://github.com/openai/tiktoken) to calculate the token
number for GPT-3.5.

Repository
CodeLlama GPT 3.5

Code Retrieval Oracle Code Retrieval Oracle
Train Test Train Test Train Test Train Test Train Test Train Test

In-Distribution (ID)
DGL 5,466,687 5,466,687 312 2,603 179 138 4,455,349 4,455,349 275 2,011 143 110
BERT 138,445 138,445 401 344 372 375 112,104 112,104 335 280 287 290
ESM 27,107,031 27,107,031 585 438 177 173 22,227,765 22,227,765 486 273 139 136
Py-GAN 146,570 146,570 532 897 314 314 119,454 119,454 433 744 268 268
Lavis 16,827,026 16,827,026 471 401 1984 1984 13,714,026 13,714,026 372 325 1547 1547
External-Attention (EAP) 449,381 449,381 1155 526 105 118 346,898 346,898 857 412 69 80
If 68,316 68,316 1390 1,642 3023 3023 55,677 55,677 1119 1,330 2367 2367
vid2vid 146,696 146,696 408 1615 556 565 111,783 111,783 338 481 416 416
OpenCLIP 6,143,829 6,143,829 415 491 5420 5420 5,037,939 5,037,939 350 405 4397 4397
TSL 337,114 337,114 382 902 345 345 273,062 273,062 315 731 276 276

Out-Of-Distribution (OOD)
Grounded-SAM / 16,726,416 / 898 / 164 / 13,715,662 / 754 / 113
Py-IM / 5,608,249 / 8,025 / 89 / 4,542,681 / 6,415 / 68
muzic / 13,325,828 / 616 / 83 / 10,860,549 / 507 / 64
Learning3D / 320,157 / 640 / 50 / 256,110 / 596 / 45
SD 258,096 / 501 / 234 / 209,058 / 412 / 183 /
MedZooPy 2,701,443 / 1,302 / 133 / 2,150,168 / 1,101 / 99 /
TCL 18,696,614 / 345 / 116 / 15,114,250 / 291 / 96 /
Tensor2Tensor 4,598,727 / 501 / 192 / 3,678,980 / 432 / 153 /

Table 13: Average output token length of code for GPT-3.5∗ and CodeLlama to generate across
different datasets (Train Set, Test Set, 1/4 Test Set) for various repositories, separated by Python
Code and Bash Script. ∗We use tiktoken (https://github.com/openai/tiktoken) to calculate the token
number for GPT-3.5.

Repository
Train Set Test Set 1/4 Test Set

GPT-3.5 CodeLlama GPT-3.5 CodeLlama GPT-3.5 CodeLlama

Python Bash Python Bash Python Bash Python Bash Python Bash Python Bash

In-Distribution (ID)
DGL / 21.15 / 28.05 / 18.24 / 24.33 / 21.60 / 28.40
BERT / 121.98 / 181.60 / 120.14 / 179.36 / 127.67 / 189.50
ESM 142.79 37.80 183.84 52.44 127.50 37.47 167.50 52.40 127.00 40.00 167.00 54.25
Py-GAN / 28.63 / 43.25 / 27.30 / 41.10 / 27.00 / 40.88
Lavis 222.95 36.05 313.97 51.72 211.30 34.75 300.57 49.25 187.33 37.00 267.00 51.00
EAP 170.87 / 239.68 / 121.63 / 174.96 / 146.20 / 205.60 /
If 243.47 160.00 325.42 201.00 272.19 / 362.57 / 269.33 / 361.83 /
vid2vid / 85.65 / 112.67 / 79.85 / 104.85 / 63.25 / 84.75
OpenCLIP 859.31 / 1236.63 / 839.55 / 1207.91 / 913.33 / 1313.33 /
TSL / 152.98 / 205.82 / 151.07 / 204.71 / 152.75 / 207.00

Out-Of-Distribution (OOD)
Py-IM / / / / / 37.40 / 53.00 / 26.00 / 34.00
Learning3D / / / / / 28.59 / 41.00 / 27.75 / 41.00
muzic / / / / / 26.72 / 38.72 / 14.40 / 21.80
Grounded-SAM / / / / 177.88 48.08 271.25 67.75 177.67 62.00 271.67 88.50

Average (ID) 327.88 80.53 459.91 109.57 314.43 66.97 442.70 93.71 328.64 67.04 462.95 93.68
Average (OOD) / / / / 177.88 35.20 271.25 50.12 177.67 32.54 271.67 46.33
Total Average 327.88 80.53 459.91 109.57 291.79 60.12 414.09 84.15 303.64 59.04 431.07 84.11

G.4 DETAILED ANALYSIS OF TASK VARIETY AND INSTRUCTIONAL DEPTH

To provide a clearer understanding of the scope and diversity within ML-BENCH, Table 14 offers a
detailed enumeration of the different types of tasks as well as an analysis of the intricacies involved in
the instructions that accompany them. Each task category represents a unique section of our dataset,
with Multi-Modality tasks taking the lead with 4,732 instances. Time-series and Text-related tasks
follow suit with 1,478 and 1,475 instances, respectively, indicating a substantial focus on these areas
as well. The numbers are counted by our eight annotators.
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Further linguistic analysis revealed the instruction sets’ complexity, with an average token length per
instruction measuring 80.4 and a maximum token length reaching up to 216 tokens. Additionally, the
instruction edit distance—an indicator of linguistic diversity—averages 258.7 tokens within similar
tasks and 302.1 tokens across different tasks, underlining the variety and broad coverage of scenarios
that ML-BENCH encompasses.

Table 14: Task distribution, instruction complexity, and quantitative analysis of task complexity in
ML-BENCH

Task Number
- GNN 608
- Text 1475
- Molecular 649
- Image-GAN 1189
- Multi-Modality 4732
- Video 75
- Time-series 1478
- Attention Usage 127
- Medical 805
- 3D 264
- Music 704

Instruction Complexity
Average token length per instruction 80.4
Max token length in instruction 216
Instruction edit distance among the same task 258.7
Instruction edit distance across tasks 302.1

Code Complexity
Average number of relevant files per task 3.6
Average lines of code in relevant files 414
Average depth of relevant code in repository (line number) 27,524
Average number of functions/classes to be understood per task 3.8

Task Requirements (Percentage of Tasks)
Requiring README understanding 85%
Requiring code understanding 95%
Requiring understanding of multiple files 75%
Requiring understanding of dependencies 70%
Requiring understanding of data structures 65%
Involving API usage 80%

G.5 DATASET QUALITY ASSESSMENT

To ensure the reliability and relevance of ML-BENCH, we implemented a rigorous quality assurance
process during dataset construction and conducted an additional assessment. Our quality control
measures include a comprehensive seven-step construction process, as detailed in Section 2.3. This
process incorporates a crucial quality assessment step, ensuring that instructions are precisely aligned
with user requirements and that all code is executable.

We conducted an additional quality assessment: a. Random sampling: We randomly selected 100
tasks from our dataset for in-depth review. b. Expert evaluation: three senior ML researchers
independently reviewed these tasks, assessing their relevance, difficulty, and excitability. c. Execution
testing: we ran each selected task through our testing environment to verify its executability and
output correctness.

The results of this additional assessment were highly encouraging. 97% of the reviewed tasks were
deemed highly relevant to real-world ML workflows, while 95% were successfully executed in our
testing environment. Moreover, the average inter-rater agreement on task quality was 0.92 (Cohen’s
kappa), indicating a high level of consensus among our expert evaluators. These findings strongly
support the quality and practical relevance of the ML-BENCH dataset.

G.6 ERROR ANALYSIS FOR EACH REPOSITORY

Figure 7 illustrates the distribution of errors made by GPT-4 across 14 repositories, categorized as
per the error types described in the main text. The analysis was conducted within the context of the
ML-BENCH-L, specifically under the Oracle setting.
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Figure 7: Using the Oracle setup, we ran GPT-4 for five iterations and tallied the number of errors
across different repositories to provide an error analysis specific to each repository.

G.7 ERROR ANALYSIS FOR ML-BENCH-A

Figure 8 illustrates the distribution of errors made by OpenDevin, categorized as per the error types
described in the main text. The analysis was conducted within the context of the ML-BENCH-A.
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G.8 AN EXAMPLE OF ML-BENCH-L

Figure 9 shows a case from ML-BENCH-L includes a diagram that provides a view of the model’s
inputs, the reference, multiple outputs generated by the model, and an error analysis with results for
each output.

[readme content]:
 DGL is framework agnostic, meaning if a 
 deep graph model is a component of an 
 end-to-end application, the rest of the 
 logics can be implemented in any major 
 frameworks, such as PyTorch, Apache 
 MXNet or TensorFlow....

[instruction]:
 I am eager to utilize the Citeseer 
 dataset as the training data to empower 
 the ARMA Model with the learning rate 
 set to a commendably small value of 
 0.0001. Additionally, I'd like to 
 incorporate 5 stacks into this model. 
 Your assistance in formulating the 
 necessary code to accomplish this task 
 would be of tremendous help.

[System Prompt]:
 You are given [readme content], you need 
 to carefully see [readme content] and 
 choose wirte code or script to implement 
 my [instruction].
 Please output code or script directly, 
 use markdown to output code without 
 explanation.

Model Input  

Evaluation Result

 "python citation.py --dataset Citeseer --lr 0.01 --stacks 5",
 
 "python main.py --dataset citeseer --lr 0.0001 --stacks 5",
 
 "dgl-go --model=arma --dataset=citeseer --lr=0.0001 --stacks=5",
 
 "import dgl\ndataset = dgl.data.CiteseerGraphDataset()\ng = 
 dataset[0]\nfrom dgllife.model import DAGNNPredictor ...", 

 "python citation.py --dataset Citeseer --lr 0.0001 --num-stacks 5"

Generated Result

 python citation.py --dataset Citeseer --lr 0.0001 --num-stacks 5 

Gold Output

FAILED      python citation.py --dataset Citeseer --lr 0.01 --stacks 5                 wrong argument
 
FAILED      python citation.py --dataset citeseer --lr 0.0001 --stacks 5              no argument error

FAILED      dgl-go --model=arma --dataset=citeseer --lr=0.0001 --stacks=5     no file error

FAILED      import dgl\ndataset = dgl.data.CiteseerGraphDataset()\n ...           wrong execution

PASSED    python citation.py --dataset Citeseer --lr 0.0001 --num-stacks 5     pass

Figure 9: The illustrative set of input-output pairs, gold output, and execution results, accompa-
nied by precision metrics: Pass@1=0 and Pass@5=1. Various colors within the instructions signify
different parameters.
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G.9 AN EXAMPLE OF ML-BENCH-A

In this section, we present detailed examples of each error type in ML-BENCH-A:

1. Hallucination Errors (E1): Table 15
2. Lack of Knowledge or Information (E2): Table 16
3. Knowledge Manipulation (E3): Table 17
4. Syntax Errors (E4): Table 18
5. Operational Error (E5): Table 19

Instruction:
I have a digital image titled example.jpg that I hope to transform into an ink-wash-styled mas-
terpiece with the IF-I-M-v1.0 model. Can you guide me to write the code to transform the image
accordingly?
Steps:
Navigate to the repository

cd /workspace/if/

Attempt to create the run.sh script in the wrong directory
The run.sh script is mistakenly attempted to be created in /usr/bin instead of the specified path:

echo " # ! / b i n / bash " > /usr/bin/run.sh
echo " py thon i f _ i m . py −−model_name IF −I −M−v1 . 0 −− i n p u t _ p a t h example . j p g

−− o u t p u t _ p a t h o u t p u t . j p g " >> /usr/bin/run.sh
chmod +x /usr/bin/run.sh

Error: Permission denied
The script creation fails due to insufficient permissions to write in /usr/bin:

bash: /usr/bin/run.sh: Permission denied

Error: Script not created and task not executed
The task is not executed because the script could not be created in the specified path:

The run.sh script could not be created in /usr/bin due to permission
issues. The task in /workspace/if/ was not executed.

Table 15: An example of E1 error. Task execution attempt for Zero-shot Image-to-Image Translation.
The task could not be completed due to an attempt to create the script in /usr/bin, which resulted in
permission denial, and the intended task was not executed.
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Instruction:
Can you assist me in writing the code to extract 5 designs from the structure Fam20A.pdb, specifi-
cally from chain B, at a temperature of 8?
Steps:
Navigate to the repository

cd /workspace/esm/

Create the run.sh script
The run.sh script is created with the following content:

# ! / b i n / bash

python main.py --input Fam20A.pdb --chain B --temperature 8 --output
designs.txt --num_designs 5

Run the script

./run.sh

Error: Missing main.py script
The execution of run.sh fails due to the usage of main.py instead of extract_designs.py:

python: cannot open file main.py: [Errno 2] No such file or directory

Check for the missing script
The user is asked to ensure that the main.py script is present in the repository:

Please make sure that the main.py script is available in the /workspace/
esm/ repository.

Task cannot be completed
The task cannot be completed without the main.py script:

I cannot complete the task as requested without the missing script.

Table 16: An example of E2 error. Task execution attempt for extracting designs from Fam20A.pdb.
The task could not be completed due to the misinformation of main.py script. The LLM agent should
use extract_designs.py instead.
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Instruction:
Looking to use the Cluster GAN model for a project. Hoping to set up a learning rate of 0.0001
and plan on running it for 100 epochs. I would like the batch size to be 16 and to keep the image
size at 128. Can you help me craft some code?
Steps:
Create the run.sh script
The run.sh script is created with the following content:

# ! / b i n / bash

python main.py --model cluster_gan --learning_rate 0.0001 --num_epochs
100 --batch_size 16 --image_size 128

Run the script

cd /workspace/PyTorch -GAN/implementations/cluster_gan/
chmod +x run.sh
./run.sh

Error: Missing main.py script
The execution of run.sh fails due to the missing main.py script:

python: cannot open file /workspace/PyTorch -GAN/implementations/
cluster_gan/main.py: [Errno 2] No such file or directory

Update run.sh script to use clustergan.py
The run.sh script is updated with the following content:

# ! / b i n / bash

python clustergan.py --model cluster_gan --learning_rate 0.0001 --
num_epochs 100 --batch_size 16 --image_size 128

Run the updated script

cd /workspace/PyTorch -GAN/implementations/cluster_gan/
chmod +x run.sh
./run.sh

Error: Unrecognized arguments in clustergan.py
The execution of run.sh fails due to unrecognized arguments in clustergan.py:

usage: clustergan.py [-h] [-n N_EPOCHS] [-b BATCH_SIZE] [-i IMG_SIZE]
[-d LATENT_DIM] [-l LEARNING_RATE] [-c N_CRITIC] [-

w]
clustergan.py: error: unrecognized arguments: --model cluster_gan --

learning_rate 0.0001 --num_epochs 100 --image_size 128

Table 17: An example of E3 error. Task execution attempt for Cluster GAN model. The task could
not be completed due to unrecognized arguments in clustergan.py. The LLM agent should have
ensured the script accepts the required arguments.
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Instruction:
Please complete the Machine Learning task in the following repository: esm
The task is: Sample sequences design for certain structure
Can you assist me in writing the code to extract 3 structure examples from the inverse_folding data
file 5YH2.pdb? I specifically need designs with chain A at a temperature of 5. The output should
be saved in the model_structure.fasta file.
You should create a script named run.sh under the specified path in the repo to run the task.
You can find the task repo at: /workspace/esm/
You should terminate the subprocess after running the task (e.g., call
subprocess.Popen(args).wait()). When you think you have completed the task, please run the
following command: <execute_bash> exit </execute_bash>.
Steps:
Create the run.sh file using Python code
Attempt to create the run.sh file using Python code fails due to a syntax error:

Running Python code interactively: create_file( ’ / workspace / esm / run . sh ’)

File " / opendev in / p l u g i n s / j u p y t e r / e x e c u t e _ c l i . py " , line 34
if jupyter_pwd := os.environ.get( ’JUPYTER_PWD ’):

^
SyntaxError: invalid syntax

Task cannot be completed
The task cannot be completed due to the syntax error in the Python code:

I cannot complete the task as requested due to a syntax error in the
Python code used to create the run.sh file.

Table 18: An example of E4 error. Task execution attempt for Sample sequences design for certain
structure. The task could not be completed due to a syntax error in the Python code used to create the
run.sh file.
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Instruction:
Can you assist me in writing the code to extract 3 designs from the structure 5YH2.pdb,
specifically from chain B, at a temperature of 1? The output should be saved to the file
model_structure.fasta.
Steps:
Navigate to the repository

cd /workspace/esm/

Ask the user to create a run.sh
Now let’s create the run.sh script to extract the designs from the structure. Please create a new file
named run.sh in the esm repository and add the following code to it:

# ! / b i n / bash

python extract_designs.py --structure 5YH2.pdb --chain B --temperature 1
--output model_structure.fasta

Run command

./run.sh

bash: /workspace/esm/run.sh: No such file or directory
ERROR conda.cli.main_run:execute (47): (*@‘conda run bash /workspace/esm/

run.sh‘@*) failed. (See above for error)

Ask the user to create a run.sh
...
Failed after so many iterations

bash: /workspace/esm/run.sh: No such file or directory
ERROR conda.cli.main_run:execute (47): (*@‘conda run bash /workspace/esm/

run.sh‘@*) failed. (See above for error)

Table 19: An example of E5 error. Task execution attempt for extracting designs from 5YH3.pdb.
The LLM agent mistakenly asks the human for help and refuses to do the task by itself.
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H EXPERIMENT DETAILS

H.1 EFFICACY OF BM25 RETRIEVAL ON REPOSITORY-LEVEL CODE

When evaluating the relevance of retrieved code segments within repository-level tasks, we utilized
the BLEU-1 score as a metric to measure the similarity between hand-annotated "Oracle" segments
and those extracted by the model using BM25 retrieval. "Oracle" segments are those identified by
annotators as most pertinent, serving as the foundational evidence required for the task at hand. As
depicted in Table 20, the resulting BLEU scores indicate a low degree of correlation, suggesting that
the retrieval segments identified by BM25 are significantly dissimilar to the Oracles crafted by human
annotators. This finding is demonstrative of BM25’s limitations in effectively identifying the most
relevant content for repository-scale code, as evidenced by the low BLEU scores.

Table 20: The BLEU-1 scores between Oracles and the Retrieval content.

ID-train OOD-train ML-BENCH

BLEU score 0.0112 0.0087 0.0082

H.2 INFORMATION LOSSING DUE TO TRUNCATION

It is reasonable that truncation may lead to information missing, but it is worth noting that only in
the Code setting for the open-source models does the input of README files need to be truncated
to 8k, which is inevitable because of the input length limitation. However, only a small number of
README files need to be truncated. To qualitatively present the information loss percentage due
to truncation, we present the percentage of losing critical information during truncation in Table 21.
Note that all the results are manually examined. We can identify that only 5 repositories lose critical
information after truncating the README files.

Table 21: The percentage of losing critical information due to truncation.

Repos Proportion of losing information (%)

vid2vid 0
If 0
DGL 0
Py-GAN 33.3
ESM 11.76
BERT 100
OpenCLIP 0
Lavis 0
TSL 0
EAP 75
Grounded-SAM 0
Py-IM 20
muzic 0
Learning3d 0
SD 0
MedZooPy 0
TCL 0
Tensor2Tensor 0
Total 0
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H.3 EXAMPLES OF INPUT-OUTPUT OF EACH GITHUB REPOSITORY

In this section, we present detailed examples of the input and output of each GitHub Repo in Tab.22
to Tab.39. The corresponding repository for each table is shown below:

1. External-Attention: Table 22
2. BERT: Table 23
3. Deep learning on graphs: Table 24
4. Evolutionary scale modeling: Table 25
5. Grounded-Segment-Anything: Table 26
6. DeepFloyd IF: Table 27
7. Language-Vision Intelligence: Table 28
8. Deep learning on 3D point clouds data: Table 29
9. 3D multi-modal medical image segmentation library: Table 30

10. Music understanding and generation: Table 31
11. Implementation of OpenAI’s CLIP: Table 32
12. Generative Adversarial Network varieties: Table 33
13. PyTorch Image Models: Table 34
14. Stable diffusion: Table 35
15. Text classification: Table 36
16. Tensor2Tensor: Table 37
17. deep time series analysis: Table 38
18. Video-to-video translation: Table 39
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README:
As a supplement to the project, an object detection codebase, YOLO. Air has recently been opened.
It integrates various attention mechanisms in the object detection algorithm. The code is simple
and easy to read. Welcome to play and star!
For beginners (like me): Recently, I found a problem when reading the paper. Sometimes the core
idea of the paper is very simple, and the core code may be just a dozen lines. However, when I
open the source code of the author’s release, I find that the proposed module is embedded in the
task framework such as classification, detection, and segmentation, resulting in redundant code.
For me who is not familiar with the specific task framework, it is difficult to find the core code,
resulting in some difficulties in understanding the paper and network ideas.
For advanced (like you): If the basic units conv, FC, and RNN are regarded as small Lego blocks,
and the structures transformer and RESNET are regarded as LEGO castles that have been built, the
modules provided by this project are LEGO components with complete semantic information. To
avoid repeatedly building wheels, scientific researchers should just think about how to use these
"LEGO components" to build more colorful works.
For proficient (maybe like you): Limited capacity, do not like light spraying!!!
For All: This project aims to realize a code base that can make beginners of deep learning
understand and serve scientific research and industrial communities. As fightingcv WeChat official
account. The purpose of this project is to achieve Let there be no hard-to-read papers in the world.
(at the same time, we also welcome all scientific researchers to sort out the core code of their work
into this project, promote the development of the scientific research community, and indicate the
author of the code in README)
...
Oracle Segment:
..
from model.attention.ViP import WeightedPermuteMLP
import torch
from torch import nn
from torch.nn import functional as F
...
Instruction:
I’m planning to utilize the fighting-cv model to complete the attention layers for ViP Attention
Usage. Could you provide me with some guidance on accomplishing this task?
Instruction:
package_1: ViP
sub_package: WeightedPermuteMLP
package_2: torch
Ground Truth Output:
from model.attention.ViP import WeightedPermuteMLP
import torch
from torch import nn
from torch.nn import functional as F
input=torch.randn(64,8,8,512)
seg_dim=8
vip=WeightedPermuteMLP(512,seg_dim)
out=vip(input)
print(out.shape)

Table 22: Example of input-output for External-Attention-pytorch GitHub on attention layer
task on Attention Usage domain. The README URL is https://github.com/xmu-xiaom
a666/External-Attention-pytorch/blob/master/README_EN.md. The GitHub URL is
https://github.com/xmu-xiaoma666/External-Attention-pytorch.
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README:
BERT
New March 11th, 2020: Smaller BERT Models
This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece
masking) referenced in Well-Read Students Learn Better: On the Importance of Pre-training
Compact Models.
...
Oracle Segment:
..
This demo code only pre-trains for a smallnumber of steps (20), but in practice you will
probably want to set ‘num_train_steps‘ to 10000 steps or more. The ‘max_seq_length‘ and
‘max_predictions_per_seq‘ parameters passed to ‘run_pretraining.py‘ must be the same as ‘cre-
ate_pretraining_data.py‘.

python run_pretraining.py
--input_file=/tmp/tf_examples.tfrecord
--output_dir=/tmp/pretraining_output
--do_train=True
--do_eval=True
--bert_config_file=$BERT_BASE_DIR/bert_config.json
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt

...
Instruction:
Behold, a formidable quest awaits - the pre-training of the unparalleled uncased_L-24_H-1024_A-
16 model. Our path to victory lies in configuring the maximum sequence length to a mighty 512,
with a pledge to uphold the limit of 30 predictions per sequence. Battling through the treacherous
terrain of 10000 steps, we shall march forward, with a stalwart battalion of 32 batch size by our side.
But fear not, for we shall brace ourselves with 10000 warmup steps, as we navigate the perilous
sea of learning, with a steadfast learning rate of 0.0001. I humbly beseech your assistance, noble
comrade, to conjure the code necessary to conquer this heroic endeavor.
Arguments Requirements:
model: ./model/uncased_L-12_H-768_A-16
train_batch_size: 32
max_seq_length: 512
num_train_steps: 10000
num_warmup_steps: 1000
learning_rate: 0.0001
Ground Truth Output:
python run_pretraining.py
--input_file=/tmp/tf_examples.tfrecord
--output_dir=/tmp/pretraining_output
--do_train=True
--do_eval=True
--bert_config_file=./model/uncased_L-24_H-1024_A-16/bert_config.json
--init_checkpoint=./model/uncased_L-24_H-1024_A-16/bert_model.ckpt
--train_batch_size=32
--max_seq_length=512

...

Table 23: Example of input-output for bert GitHub on pre-training task on BERT domain. The
README URL is https://github.com/google-research/bert/blob/master/README.md.
The GitHub URL is https://github.com/google-research/bert.
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README:
1. DGL Implementation of CorrectAndSmooth
This DGL example implements the GNN model proposed in the paper Combining Label Propaga-
tion and Simple Models Out-performs Graph Neural Networks. For the original implementation,
see here.
Contributor: xnuohz

2. Requirements
The codebase is implemented in Python 3.7. For version requirement of packages, see below.
dgl 0.6.0.post1
torch 1.7.0
ogb 1.3.0
...
Oracle Segment:
..
3.1 ogbn-arxiv
Plain MLP + C&S

python main.py
–dropout 0.5

python main.py
--pretrain
--correction-adj DA
--smoothing-adj AD
--autoscale

...
Instruction:
...
Together, we shall embark on a noble mission to train the illustrious CorrectAndSmooth Model,
fortified with a sublime dropout rate of 0.7. Our arduous journey spans 700 epochs, each pulsating
with the promise of enlightenment. Alas, I beseech your sage guidance in the ethereal realm of
code crafting, to manifest this grand undertaking.
Arguments Requirements:
dataset: ogbn-arxiv
model: mlp
dropout: 0.7
epochs: 700
Ground Truth Output:
python main.py
--dataset ogbn-arxiv
--model mlp
--dropout 0.7
--epochs 700

Table 24: Example of input-output for DGL GitHub on DGL Implementation of Cor-
rectAndSmooth task on GNN domain. The README URL is https://github.com/dmlc/
dgl/blob/master/examples/pytorch/correct_and_smooth/README.md. The GitHub URL is
https://github.com/dmlc/dgl.
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README:
Evolutionary Scale Modeling
atlas

Update April 2023: Code for the two simultaneous preprints on protein design is now released! Code
for "Language models generalize beyond natural proteins" is under examples/lm-design/. Code
for "A high-level programming language for generative protein design" is under examples/protein-
programming-language

This repository contains code and pre-trained weights for Transformer protein language models
from the Meta Fundamental AI Research Protein Team (FAIR), including our state-of-the-art ESM
and ESMFold, as well as MSA Transformer, ESM-1v for predicting variant effects and ESM-IF1
for inverse folding.
...
Oracle Segment:
..
The following commands allow the extraction of the final-layer embedding for a FASTA file from
the ESM-2 model:
esm-extract esm2_t33_650M_UR50D examples/data/some_proteins.fasta
examples/data/some_proteins_emb_esm2
--repr_layers 0 32 33
--include

python scripts/extract.py esm2_t33_650M_UR50D examples/data/some_proteins.fasta
examples/data/some_proteins_emb_esm2
--repr_layers 0 32 33
--include mean per_tok
--A cuda device is optional and will be auto-detected.

...
Instruction:
...
Can you assist me in writing the code to extract the 24-layer embedding for a FASTA file named
rna.fasta using the esm1v_t33_650M_UR90S_5 model and save the output?
Arguments Requirements:
model: esm1v_t33_650M_UR90S_5
data: rna.fasta
layer_number: 24
layer_name: repr_layers
Ground Truth Output:
python scripts/extract.py esm1v_t33_650M_UR90S_5 rna.fasta output.embeddings
--repr_layers 24
--include mean per_tok

Table 25: Example of input-output for ESM GitHub on Extract ESMFold Structure Prediction
Model’s Embedding task on molecular domain. The README URL is https://github.com/f
acebookresearch/esm/blob/master/README.md. The GitHub URL is https://github.com/f
acebookresearch/esm.
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README:
Official PyTorch implementation of Grounding DINO), a stronger open-set object detector. Code is
available now!

Highlight
- Open-Set Detection. Detect everything with language!
- High Performancce. COCO zero-shot 52.5 AP (training without COCO data!). COCO fine-tune
63.0 AP.
- Flexible. Collaboration with Stable Diffusion for Image Editing.

...
Oracle Segment:
..
Demo
python demo/inference_on_a_image.py

-c /path/to/config
-p /path/to/checkpoint
-i .asset/cats.png
-o outputs/0
-t cat ear. [--cpu-only] # open it for cpu mode

See the demo/inference_on_a_image.py for more details.
...
Instruction:
...
I am interested in utilizing the grounding dino demo for a specific task. The input image path is
ground_segment/GD_new.json, and I would like the output to be saved in the directory output/-
cat2002. Additionally, I would like the text condition to be set to right ear of cat. Could you kindly
assist me in writing the script to achieve this?
Arguments Requirements:
i: .asset/cat.jpg
o: output/cat2002
t: right ear of cat
Ground Truth Output:
python demo/inference_on_a_image.py

-c model/GroundingDINO_SwinT_OGC.py
-p model/groundingdino_swint_ogc.pth
-i .asset/cat.jpg
-o output/cat2002
-t right ear of cat

Table 26: Example of input-output for Grounded-Segment-Anything GitHub on Grounding DINO
demo task on Segment domain. The README URL is https://github.com/IDEA-Research/
Grounded-Segment-Anything/blob/main/GroundingDINO/README.md. The GitHub URL is
https://github.com/IDEA-Research/Grounded-Segment-Anything.
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README:
We introduce DeepFloyd IF, a novel state-of-the-art open-source text-to-image model with a high
degree of photorealism and language understanding. DeepFloyd IF is a modular composed of a
frozen text encoder and three cascaded pixel diffusion modules: a base model that generates 64x64
px image based on text prompt and two super-resolution models, each designed to generate images
of increasing resolution: 256x256 px and 1024x1024 px. All stages of the model utilize a frozen
text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet
architecture enhanced with cross-attention and attention pooling. The result is a highly efficient
model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66
on the COCO dataset. Our work underscores the potential of larger UNet architectures in the first
stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.

...
Oracle Segment:
..
II. Zero-shot Image-to-Image Translation

In Style Transfer mode, the output of your prompt comes out at the style of the support_pil_img

from deepfloyd_if.pipelines import style_transfer

result = style_transfer(
t5 = t5, if_I = if_I, if_II = if_II,
...
Instruction:
...
Time to create a visual masterpiece! I am excited to recreate ’image’.jpg into a fascinating rendition
of the ink wash style. I am planning to utilize the capabilities of the IF-I-XL-v1.0 model for this
endeavor. Can you assist me in crafting the necessary code?
Arguments Requirements:
model: IF-I-XL-v1.0
argument1: image.jpg
argument2: wash
Ground Truth Output:
from deepfloyd_if.modules import IFStageI, IFStageII, StableStageIII
from deepfloyd_if.modules.t5 import T5Embedder
device = ’cuda:1’
if_I = IFStageI(’IF-I-XL-v1.0’, device=device)
if_II = IFStageII(’IF-II-L-v1.0’, device=device)
if_III = StableStageIII(’stable-diffusion-x4-upscaler’, device=device)
t5 = T5Embedder(device=’cpu’)

style_prompt = a captivating ink wash style
image_path = image.jpg
...

Table 27: Example of input-output for IF GitHub on Zero-shot Image-to-Image Translation task
on Image and Text domain. The README URL is https://github.com/deep-floyd/IF/blob
/develop/README.md. The GitHub URL is https://github.com/deep-floyd/if.
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README:
Lavis
Lavis - A Library for Language-Vision Intelligence
What’s New:
A simple, yet effective, cross-modality framework built atop frozen LLMs that allows the integration
of various modalities (image, video, audio, 3D) without extensive modality-specific customization.
Technical Report and Citing LAVIS:
...
Oracle Segment:
...
how to use models in LAVIS to perform inference on example data. We first load a sample image
from local.
import torch
from PIL import Image
# setup device to use
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load sample image
raw_image = Image.open(merlion.png).convert(RGB)
This example image shows Merlion park (source), a landmark in Singapore.
# Image Captioning
In this example, we use the BLIP model to generate a caption for the image.
...
Instruction:
There is a task in front of me currently, which is the Image Captioning task. I ask for your kind
help in moving forward with this task.
Arguments Requirements:
image: image.jpg
Ground Truth Output:
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess
device = torch.device(’cuda:1’ if torch.cuda.is_available() else ’cpu’)
model, vis_processors, _ = load_model_and_preprocess(name=’blip_caption’,
model_type=’base_coco’, is_eval=True, device=device)
raw_image = Image.open(’image.jpg’).convert(’RGB’)
preprocessed_image = vis_processors[’eval’](raw_image).unsqueeze(0).to(device)
output = model.generate({’image’: preprocessed_image})
caption = output[’captions’][0][’text’]
print(caption)

Table 28: Example of input-output for Lavis GitHub on Image Captioning task on Multimodal
Image and Text domain. The README URL is https://github.com/salesforce/LAVIS/blob
/main/README.md. The GitHub URL is https://github.com/salesforce/lavis.
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README:
Learning3D: A Modern Library for Deep Learning on 3D Point Clouds Data.
Learning3D is an open-source library that supports the development of deep learning algorithms
that deal with 3D data. The Learning3D exposes a set of state of art deep neural networks in python.
A modular code has been provided for further development. We welcome contributions from the
open-source community.
Available Computer Vision Algorithms in Learning3D
...
Oracle Segment:
...
examples/test_dcp.py Learning3D is an open-source library that supports the development of deep
learning algorithms that deal with 3D data. The Learning3D exposes a set of state of art deep neural
networks in python
python test_dcp.py
--num_points 128
--j 12
--symfn max

...
Instruction:
I am interested in conducting a test using the dcp model. Specifically, I would like to set the
parameters as follows: the test mode should be selected, the model should be set to dcp, the number
of points should be 512, the number of data loading workers should be -j 8, and the symmetric
function should be set to –symfn max. Could you please assist me in writing the code or script
necessary to carry out this test?
Arguments Requirements:
number of points: 512
number of data loading workers: 8
symmetric function: max
Ground Truth Output:
python test_dcp.py
--num_points 512
--j 8
--symfn max

Table 29: Example of input-output for Learning3D GitHub on Test dcp model task on 3D domain.
The README URL is https://github.com/vinits5/learning3d/blob/master/README.md.
The GitHub URL is https://github.com/vinits5/learning3d.
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README:
MusicBERT
Basics
All models accept two parameters: a) the input the channels (in_channels), and b) the segmentation
classes (classes) and produce un-normalized outputs
All losses accept as input the prediction in 5D shape of [batch,classes,dim_1,dim_2,dim_3] and the
target in 4D target shape of [batch, dim_1, dim_2, dim_3]. It is converted to one-hot inside the loss
function for consistency reasons.
Furthermore the normalization of the predictions is handled here. Dice-based losses return the
scalar loss for backward(), and the prediction per channels in numpy to track training progress.
...
Oracle Segment:
Usage
How to train your model
For Iseg-2017 :
python ./examples/train_iseg2017_new.py
--args

For MR brains 2018 (4 classes)
python ./examples/train_mrbrains_4_classes.py
--args

For MR brains 2018 (8 classes)
python ./examples/train_mrbrains_9_classes.py
--args

For MICCAI 2019 Gleason Challenge
python ./examples/test_miccai_2019.py
--args

The arguments that you can modify are extensively listed in the manual.
Instruction:
I’m seeking assistance in writing a piece of code that can successfully train a model for the ’Iseg
2017 Task’. The model in question is ’RESNET3DVAE’ and I require the learning rate to be set to
’1e-3’. It is also crucial that the training samples are set to ’10’. Lastly, use ’sgd’ as the optimizer.
Could you kindly help out in creating this algorithm?
Arguments Requirements:
lr: 1e-3
samples_train: 10
model: RESNET3DVAE
soptimizer: sg
Ground Truth Output:
python ./examples/train_iseg2017_new.py
--lr 1e-3
--samples_train 10
--model RESNET3DVAE
--opt sgd

Table 30: Example of input-output for MedicalZoo GitHub on Iseg-2017 task on Medical domain.
The README URL is https://github.com/black0017/MedicalZooPytorch/blob/master/m
anual/README.md. The GitHub URL is https://github.com/black0017/MedicalZooPytorch.
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README:
MusicBERT
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training, by Mingliang Zeng,
Xu Tan, Rui Wang, Zeqian Ju, Tao Qin, Tie-Yan Liu, ACL 2021, is a large-scale pre-trained model
for symbolic music understanding. It has several mechanisms including OctupleMIDI encoding
and bar-level masking strategy that are specifically designed for symbolic music data, and achieves
state-of-the-art accuracy on several music understanding tasks, including melody completion,
accompaniment suggestion, genre classification, and style classification.
Projects using MusicBERT:
midiformers: a customized MIDI music remixing tool with easy interface for users.
1. Preparing datasets
1.1 Pre-training datasets
Prepare
tar -xzvf lmd_full.tar.gz
zip -r lmd_full.zip lmd_full
Run the dataset processing script. (‘preprocess.py‘)
python -u preprocess.py
The script should prompt you to input the path of the midi zip and the path for OctupleMIDI output.
...
Oracle Segment:
Pre-training bash train_mask.sh lmd_full small Download our pre-trained checkpoints here: small
and base, and save in the checkpoints folder. (a newer version of fairseq is needed for using
provided checkpoints: see issue-37 or issue-45)
Instruction:
I am interested in conducting a test using the dcp model. Specifically, I would like to set the
parameters as follows: the test mode should be selected, the model should be set to dcp, the number
of points should be 512, the number of data loading workers should be -j 8, and the symmetric
function should be set to –symfn max. Could you please assist me in writing the code or script
necessary to carry out this test?
Arguments Requirements:
bash: train_mask.sh
dataset: lmd_full
checkpoint: small
Ground Truth Output:
bash train_mask.sh lmd_full small

Table 31: Example of input-output for Muzic GitHub on Pre-training model task on Music domain.
The README URL is https://github.com/microsoft/muzic/blob/main/musicbert/READM
E.md. The GitHub URL is https://github.com/microsoft/muzic.
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README:
OpenCLIP
Welcome to an open-source implementation of OpenAI’s CLIP(Contrastive Language-Image Pre-
training).
Using this codebase, we have trained several models on a variety of data sources and compute
budgets, ranging from small-scale experiments to larger runs including models trained on datasets
such as LAION-400M, LAION-2B and DataComp-1B.
Many of our models and their scaling properties are studied in detail in the paper reproducible
scaling laws for contrastive language-image learning.
Some of our best models and their zero-shot ImageNet-1k accuracy are shown below, along with
the ViT-L model trained by OpenAI. We provide more details about our full collection of pretrained
models here, and zero-shot results for 38 datasets here.
midiformers: a customized MIDI music remixing tool with easy interface for users.
...
Oracle Segment:
Pre-training bash train_mask.sh lmd_full small Download our pre-trained checkpoints here: small
and base, and save in the checkpoints folder. (a newer version of fairseq is needed for using
provided checkpoints: see issue-37 or issue-45)
Instruction:
I’m hoping you could assist me with a task. I need to sort a collection of images located at the
directory ’. /image’. For this purpose, I’ll be using the ’ViT-B-32’ model along with the pretraining
model ’commonpool_s_laion_s13m_b4k’. Would you be able to provide instructions or steps on
how to accomplish this task?
Arguments Requirements:
model: ViT-B-32
pretraining_model: commonpool_s_laion_s13m_b4k
path: ./image
Ground Truth Output:
import os
import numpy as np
import torch
import open_clip
open_clip.list_pretrained()
model, _, preprocess =
open_clip.create_model_and_transforms(’ViT-B-32’, pretrained=’commonpool_s_laion_s13m_b4k’)
model.eval()
context_length = model.context_length
vocab_size = model.vocab_size
...

Table 32: Example of input-output for OpenCLIP GitHub on Image classification task on Image
and Text domain. The README URL is https://github.com/mlfoundations/open_clip/blo
b/main/README.md. The GitHub URL is https://github.com/mlfoundations/open_clip.
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README:
MusicBERT
Collection of PyTorch implementations of Generative Adversarial Network varieties presented in
research papers. Model architectures will not always mirror the ones proposed in the papers, but I
have chosen to focus on getting the core ideas covered instead of getting every layer configuration
right. Contributions and suggestions of GANs to implement are very welcomed.
Table of Contents:

Installation
Implementations
Auxiliary Classifier GAN
Adversarial Autoencoder

...
Oracle Segment:
...
Energy-Based GAN
Among them, we show one instantiation of EBGAN framework as using an auto-encoder architec-
ture, with the energy being the reconstruction error, in place of the discriminator. We show that this
form of EBGAN exhibits more stable behavior than regular GANs during training. We also show
that a single-scale architecture can be trained to generate high-resolution images.
Run Example
$ cd implementations/ebgan/
$ python3 ebgan.py
Instruction:
I have a task to work with the Energy-Based GAN model. The learning rate for this task needs to
be set at 0.0001, the number of training epochs should be defined as 100, and the batch size should
be fixed at 16. Furthermore, I want the image size to be set at 128. Can you please assist me in
framing the script to facilitate this?
Arguments Requirements:
lr: 0.0001
n_epochs: 100
batch_size: 16
img_size: 128
model: ebgan
Ground Truth Output:
python3 ebgan.py
--lr 0.0001
--n_epochs 100
--batch_size 16
--mg_size 128

Table 33: Example of input-output for pyGAN GitHub on Energy-Based GAN task on images-
many-GANs domain. The README URL is https://github.com/eriklindernoren/PyTorch
-GAN/blob/master/README.md. The GitHub URL is https://github.com/eriklindernoren/P
yTorch-GAN.
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README:
PyTorch Image Models
...
What’s new
...
Introduction
PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, sched-
ulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull
together a wide variety of SOTA models with ability to reproduce ImageNet training results.
...
Oracle Segment:
..
Existing method of changing patch_size (resize pretrained patch_embed weights once) on creation
still works.
Example validation cmd
python validate.py /imagenet
--model vit_base_patch16_224
--amp
--amp-dtype bfloat16
--img-size 255
--crop-pct 1.0
--model-kwargs dynamic_img_size=True dyamic_img_pad=True

...
Instruction:
I am interested in performing the task of resizing the image or window. For this purpose, I would
like to utilize the model vit_base_patch16_224. Additionally, it would be helpful to set the amp-
dtype to bfloat16. Moreover, I would like to specify the image size as 255 and the crop percentage
as 1.0. To ensure flexibility, I would like to enable dynamic image size and dynamic image padding.
Could you kindly assist me in creating the code or script to accomplish this objective?
Arguments Requirements:
model: vit_base_patch16_224
amp-dtype: bfloat16
img-size: 255
crop-pct: 1.0
dynamic_img_size: True
dyamic_img_pad: True
Ground Truth Output:
python validate.py /imagenet
--model vit_base_patch16_224
--amp
--amp-dtype bfloat16
--img-size 255
--crop-pct 1.0
--model-kwargs dynamic_img_size=True

Table 34: Example of input-output for PyIM GitHub on PyIM Implementation of Resize The
Image/Window task on Image domain. The README URL is https://github.com/hug
gingface/pytorch-image-models/blob/main/README.md. The GitHub URL is https:
//github.com/huggingface/pytorch-image-models.
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README:
Stable Diffusion Version 2
This repository contains Stable Diffusion models trained from scratch and will be continuously
updated with new checkpoints. The following list provides an overview of all currently available
models. More coming soon.
...
Requirements
You can update an existing latent diffusion environment by running.
...
Oracle Segment:
...
We provide the configs for the SD2-v (768px) and SD2-base (512px) model. First, download the
weights for SD2.1-v and SD2.1-base. To sample from the SD2.1-v model, run the following:
python scripts/txt2img.py
--prompt "a professional photograph of an astronaut riding a horse"
--ckpt <path/to/768model.ckpt\>
--config configs/stable-diffusion/v2-inference-v.yaml
--H 768
--W 768

or try out the Web Demo: Hugging Face Spaces.
...
Instruction:
...
For the task of generating an image from text, I need your assistance in writing the code. We’ll be
using the scripts/txt2img.py script along with the SD2.1-v model. Ensure that the model checkpoint
file is located at ...... As we want to generate a high-quality image, set the number of sampling
steps to 20. The prompt to generate the image is "a professional photograph of an astronaut riding
a horse" and we only need one iteration of the generation process. Can you help me write the code
to accomplish this task?
Arguments Requirements:
repeat: 1
config: "configs/stable-diffusion/v2-inference-v.yaml"
ckpt: "ckpt/SD2_1_v_model.ckpt"
prompt: "a professional photograph of an astronaut riding a horse"
precision: full
steps: 20
seed: 2048
Ground Truth Output:
python scripts/txt2img.py
--prompt "a professional photograph of an astronaut riding a horse"
--ckpt ckpt/SD2_1_v_model.ckpt
--config configs/stable-diffusion/v2-inference-v.yaml
--H 768
--W 768
--seed 2048
--precision full
--steps 20
--repeat 1

Table 35: Example of input-output for SD GitHub on SD Implementation of Text-to-Image task on
Stable Diffusion domain. The README URL is https://github.com/Stability-AI/stabledi
ffusion/blob/main/README.md. The GitHub URL is https://github.com/Stability-AI/st
ablediffusion.
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README:
Text Classification
The purpose of this repository is to explore text classification methods in NLP with deep learning.
...
Usage:
1.model is in xxx_model.py
2.run python xxx_train.py to train the model
...
Oracle Segment:
it learn represenation of each word in the sentence or document with left side context and right side
context:
representation current word=[left_side_context_vector,current_word_embedding,right_side_context_vecotor].
for left side context, it use a recurrent structure, a no-linearity transfrom of previous word and left
side previous context; similarly to right side context.check: p71_TextRCNN_model.py
Instruction:
I am looking to utilize the TextRCNN model for a particular task. In the course of executing this
task, I would like to fix the learning rate at 0.00001, the number of training epochs at 300, and set
my batch size to 16. Are you in a position to assist me in creating the appropriate coding syntax for
this purpose?
Arguments Requirements:
model: TextRCNN
learning_rate: 0.00001
num_epochs: 300
batch_size: 16
Ground Truth Output:
python3 a04_TextRCNN/p71_TextRCNN_train.py
--num_epochs 300
--batch_size 16
--lr 0.00001

Table 36: Example of input-output for TC GitHub on TC Implementation of TextRCNN task on
texts domain. The README URL is https://github.com/brightmart/text_classificatio
n/blob/master/README.md. The GitHub URL is https://github.com/brightmart/text_cla
ssification.
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README:
Tensor2Tensor
Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make
deep learning more accessible and accelerate ML research.
...
Quick Start
This iPython notebook explains T2T and runs in your browser using a free VM from Google, no
installation needed. Alternatively, here is a one-command version that installs T2T, downloads
MNIST, trains a model and evaluates it:
...
Oracle Segment:
...
Test the quick-start on a Workspace’s Terminal with this command
t2t-trainer –generate_data
--data_dir=./t2t_data
--output_dir=./t2t_train/mnist
--problem=image_mnist
--model=shake_shake
--hparams_set=shake_shake_quick
--train_steps=1000
--eval_steps=100

Note: Ensure compliance with the FloydHub Terms of Service.
...
Instruction:
I’d like assistance in trying to make sense of mathematical language. Any help you can give would
be highly appreciated, in comprehending the intricate nature of mathematical terminologies and
symbols.
Ground Truth Output:
t2t-trainer –generate_data
--data_dir= /t2t_data
--output_dir= /t2t_train/mathematical_language
--problem=algorithmic_math_two_variables
--model=transformer
--hparams_set=transformer_tiny
--train_steps=1000
--eval_steps=100

Table 37: Example of input-output for tensor2 GitHub on tensor2 Implementation of Mathematical
Language Understanding task on Text domain. The README URL is https://github.c
om/tensorflow/tensor2tensor/blob/master/README.md. The GitHub URL is https:
//github.com/tensorflow/tensor2tensor.
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README:
Time Series Library (TSlib)
TSlib is an open-source library for deep learning researchers, especially for deep time series
analysis.
We provide a neat code base to evaluate advanced deep time series models or develop your
model, which covers five mainstream tasks: long- and short-term forecasting, imputation, anomaly
detection, and classification.
...
Usage
1.Install Python 3.8. For convenience, execute the following command.
pip install -r requirements.txt
...
Oracle Segment:
...
Train and evaluate model. We provide the experiment scripts for all benchmarks under the folder
./scripts/. You can reproduce the experiment results as the following examples:
long-term forecast
bash ./scripts/long_term_forecast/ETT_script/TimesNet_ETTh1.sh
short-term forecast
bash ./scripts/short_term_forecast/TimesNet_M4.sh
...
Instruction:
I’m aiming to conduct a performance evaluation of my FEDformer model which is designated for a
classification task. I would like to utilize subset: FaceDetection of the UEA benchmark dataset for
this evaluation. The patience parameter needs to be set to 10, with the train epochs set to 16, and
batch size adjusted to 100. Could you kindly provide me the code necessary to accomplish this?
Arguments Requirements:
task_name: classification
model: FEDformer
data: UEA
model_id: FaceDetection
patience: 10
batch_size: 16
train_epochs: 100
Ground Truth Output:
python -u run.py
--task_name classification
--model FEDformer
--data UEA
--e_layers 3
--batch_size 16
--d_model 128
--d_ff 256
--top_k 3
--train_epochs 100
--patience 10

...

Table 38: Example of input-output for tsl GitHub on tsl Implementation of classification task on
Time-series domain. The README URL is https://github.com/thuml/Time-Series-Libra
ry/blob/main/README.md. The GitHub URL is https://github.com/thuml/Time-Series-Lib
rary.

56

https://github.com/thuml/Time-Series-Library/blob/main/README.md
https://github.com/thuml/Time-Series-Library/blob/main/README.md
https://github.com/thuml/Time-Series-Library
https://github.com/thuml/Time-Series-Library


3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

README:
vid2vid
...
Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic video-to-video trans-
lation. It can be used for turning semantic label maps into photo-realistic videos, synthesizing
people talking from edge maps, or generating human motions from poses. The core of video-to-
video translation is image-to-image translation. Some of our work in that space can be found in
pix2pixHD and SPADE.
...
Getting Started
...
Oracle Segment:
...
To test the model (bash ./scripts/face/test_512.sh): #!./scripts/face/test_512.sh
python test.py
--name edge2face_512
--dataroot datasets/face/
--dataset_mode face
--input_nc 15
--loadSize 512
--use_single_G

The test results will be saved in: ./results/edge2face_512/test_latest/.
Instruction:
We have the task of training the edge2face model on a face dataset. Let’s set the resolution size this
time to 256. Can you provide assistance in drafting the applicable coding structure?
Arguments Requirements:
model: edge2face
dataset: face
resolusion size: 256
argument: g1
Ground Truth Output:
python train.py
--name edge2face_256_g1
--dataroot datasets/face/
--dataset_mode face
--input_nc 15
--loadSize 256
--ngf 64
--max_frames_per_gpu 6
--n_frames_total 12
--niter 20
--niter_decay 20

Table 39: Example of input-output for vid2vid GitHub on vid2vid Implementation of Edge to Face
Training task on Videos domain. The README URL is https://github.com/NVIDIA/vid2vid/
blob/master/README.md. The GitHub URL is https://github.com/NVIDIA/vid2vid.
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H.4 BM25

Retrieval: In this setting, we apply BM25 retriever to get the instruction-related segment in README
files. We set the BM25 retriever’s retrieval span at 10 sentences using the NLTK sentence tokenizer
because the average length of an Oracle is 9.5.

H.5 RESULTS ACROSS DIFFERENT GITHUB REPOSITORIES

Table 40: This table shows the Pass@5 scores of GPT-4, and Claude on the 1⁄4 set (*) and GPT 3.5
and Claude on the full set across different GitHub repositories. Oracle, Code and BM25 represents
Oracle, Code, and Retrieval settings.

Repository GPT-4* Claude * GPT 3.5 Claude
Oracle Code BM25 Oracle Code BM25 Oracle Code BM25 Oracle Code BM25

DGL 80.00 60.00 60.00 40.00 20.00 80.00 47.62 23.81 23.81 28.57 19.05 14.29
BERT 50.00 50.00 16.67 0.00 80.00 16.67 22.73 13.63 13.63 0.00 4.54 0.00
Lavis 42.86 71.43 42.86 57.14 85.71 14.29 55.56 70.37 51.85 51.85 59.26 29.63
If 100.00 100.00 33.33 100.00 0.00 13.33 71.43 61.90 52.38 71.43 76.19 52.38
vid2vid 50.00 75.00 50.00 0.00 25.00 50.00 92.31 76.92 69.23 76.92 38.46 15.38
ESM 60.00 0.00 80.00 0.00 100.00 20.00 47.06 29.41 58.82 5.88 11.76 11.76
OpenCLIP 66.67 66.67 66.67 66.67 66.67 0.00 63.63 36.36 54.55 63.63 63.63 45.46
TSL 25.00 25.00 0.00 25.00 0.00 0.00 14.29 14.29 0.00 7.14 7.14 0.00
EAP 100.00 80.00 0.00 100.00 20.00 80.00 66.66 70.83 33.33 70.83 83.33 20.83
Py-GAN 0.00 12.50 0.00 0.00 12.50 0.00 6.67 0.00 0.00 0.00 0.00 0.00
Py-IM 0.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00
Learning3d 0.00 0.00 0.00 25.00 0.00 25.00 23.53 47.06 35.29 17.65 0.00 0.00
muzic 80.00 60.00 40.00 60.00 20.00 20.00 66.67 72.22 61.11 38.89 33.33 33.33
Grounded-SAM 60.00 60.00 20.00 0.00 0.00 0.00 0.00 20.00 0.00 5.00 35.00 10.00
Total 48.53 45.59 27.94 34.25 35.61 20.55 36.92 35.39 22.69 30.38 32.31 16.92
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I RELATED WORK

I.1 CODE GENERATION

Code generation in natural language processing (NLP) has been a significant research topic, leading
to the development of various methodologies and benchmarks, as seen in (Cassano et al., 2022; Chen
et al., 2021; Christopoulou et al., 2022; Li et al., 2022; Orlanski et al., 2023; Tang et al., 2023a;b;
Wang et al., 2023b). Current benchmarks primarily aim to enhance function-level code generation
capabilities. However, ML-BENCH diverges by integrating code generation to streamline the usage
of repositories within real-world workflows. For a comparative overview, see Table 41. The goal of
function-level code generation is the creation of code snippets tailored to user needs or to augment
code completion processes (Feng et al., 2020; Li et al., 2022), which includes the development of
code LLMs (Bi et al., 2024; Zheng et al., 2023).

Table 41: Comparison of benchmarks: characterizing existing function-level benchmarks and ML-
BENCH.

Bench Name Type Language # Samples
ML-Bench Task Execution Python & Bash 9,641

HumanEval (Chen et al., 2021) Function Completion Python 164
MBPP (Austin et al., 2021) Function Completion Python 1,000
DS-1000 (Lai et al., 2023) Function Completion Python 1,000

APPS (Hendrycks et al., 2021a) Function Completion Python 10,000

I.2 AGENT

The integration of AI agents in software development is rapidly advancing, with projects like
OpenDevin (Wang et al., 2024b), SWE-agent (Yang et al., 2024), AutoGen (Wu et al., 2023),
and Aider (Gauthier) showcasing diverse methodologies for augmenting developers’ capabilities.
OpenDevin§ leverages open-source technologies to automate coding and debugging, thereby stream-
lining development workflows. SWE-agent’s ACI allows language models to independently tackle
software engineering tasks, exhibiting impressive outcomes in benchmark tests. AutoGen’s collabora-
tive agent framework melds conversational AI with human and digital tools to automate a breadth of
tasks, from programming to problem-solving. Finally, Aider brings LLMs directly into the coding
process, enabling true co-editing experiences between AI models like GPT-4o, Claude 3 Opus, and
developers within git repositories, enhancing code editing and project management.
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