
SafeVacuo: Jailbreaking Safety-aligned Open-Source LLMs via Activation
Perturbations

Anonymous ACL submission

Abstract

Open-source large language models (LLMs)001
are increasingly narrowing the performance002
gap with proprietary LLMs, driving a surge003
in both their popularity and applications. To004
mitigate misuse, substantial safety alignment005
efforts have been made prior to model release.006
However, even meticulously aligned LLMs re-007
main vulnerable to various types of jailbreak008
attacks, which may be launched through mali-009
cious adversarial prompts or altered decoding010
strategies. The aim of these attacks is to achieve011
greater attack capabilities with lower computa-012
tional costs by fully exploiting the white-box013
nature of open-source LLMs.014

In this paper, we uncover a novel safety vul-015
nerability that has not yet been exploited by016
existing white-box jailbreak methods. Specifi-017
cally, we discover that injecting perturbations018
into the activations of LLMs can undermine019
their safety alignment. Building on this in-020
sight, we propose a new jailbreak attack based021
on activation perturbations, which optimizes022
the positions of the injected noise without neg-023
atively affecting the perplexity of the victim024
LLM. The malicious user only needs to inject025
random noise into the optimized positions with026
minimal computational cost, while inducing027
the model to produce high-quality yet harm-028
ful outputs. Our experiments, extensively con-029
ducted across 10 state-of-the-art open-source030
LLMs, show that this approach achieves higher031
success rates than previous methods while pre-032
serving model utility. The analysis further indi-033
cates that targeted activation perturbations can034
effectively bypass safety measures in aligned035
models, revealing critical limitations in cur-036
rent safety alignment strategies. The code for037
this work is available at https://anonymous.038
4open.science/r/acttacker.039

1 Introduction040

Recent advancements in Large Language Models041

(LLMs) have led to the proliferation of powerful042

open-source models, significantly expanding their 043

accessibility and applications. Notable examples of 044

open-source LLMs include Llama-3 (Meta, 2024) 045

and Deepseek-R1 (Guo et al., 2025). Extensive 046

safety alignment has become an indispensable pre- 047

requisite for the release of open-source LLMs, aim- 048

ing to mitigate the risk of these models engaging 049

in harmful or unethical behaviors (Ouyang et al., 050

2022; Dai et al., 2023; Rafailov et al., 2024). 051

Despite these safety efforts, open-source LLMs 052

remain vulnerable to various jailbreak attacks, 053

which can circumvent alignment mechanisms and 054

induce the models to generate harmful or unin- 055

tended outputs (Gupta et al., 2023; Singh et al., 056

2023; Zhang et al., 2024). Recent studies (Zou 057

et al., 2023; Liu et al., 2024c; Chao et al., 2023) 058

have categorized these attacks into optimization- 059

based methods and prompt engineering approaches, 060

both demonstrating high success rates in circum- 061

venting safety measures. However, these automatic 062

jailbreaks that optimize for adversarial inputs are 063

quite complicated and computationally expensive. 064

Recently, (Huang et al., 2024) proposed an simple 065

approach to jailbreaking the alignment of LLMs 066

by varying decoding hyper-parameters or sampling 067

methods, but the attack success rate (ASR) is rel- 068

atively low, and multiple samples are required to 069

achieve a higher ASR. 070

Motivated by the computational inefficiencies 071

of existing approaches, we introduce SafeVacuo, 072

an extremely simple method for jailbreaking open- 073

source safety-aligned LLMs via activation pertur- 074

bations. Unlike adversarial-prompt techniques or 075

multi-modal inputs as required by (Carlini et al., 076

2024), SafeVacuo operates without relying on such 077

complexities. As illustrated in Figure 1, the attack 078

mechanism involves injecting noise between the At- 079

tention block and the MLP block, enabling a high 080

success rate for jailbreaking. Similar to (Huang 081

et al., 2024), SafeVacuo belongs to the category of 082

generation exploitation attacks, offering an alter- 083

1

https://anonymous.4open.science/r/acttacker
https://anonymous.4open.science/r/acttacker
https://anonymous.4open.science/r/acttacker


Figure 1: Schematic diagram of the activation perturbations jailbreak mechanism.

native approach to disrupt the alignment of LLMs084

without the need for sophisticated methods.085

To evaluate the generalizability and harmfulness086

of SafeVacuo, we conduct experiments on 10 open-087

source safety-aligned LLMs spanning five different088

model families, as detailed in Section 4.1. These089

models include Llama (Touvron et al., 2023), Phi090

(Abdin et al., 2024), Mistral (Jiang et al., 2023),091

Zephyr (Tunstall et al., 2023), and Qwen (Bai et al.,092

2023). To ensure accurate assessment of attack093

success, we avoided using substring matching (Zou094

et al., 2023) for alignment determination, instead re-095

lying on the HarmBench classifier (Mazeika et al.,096

2024), which offers more robust tool for detect-097

ing harmful behaviors. The results on AdvBench098

(Zou et al., 2023) show that activation perturba-099

tions achieve a significantly higher attack success100

rate (ASR) compared to existing jailbreak strate-101

gies. For instance, on Llama-3.1-8B-Instruct (Meta,102

2024), SafeVacuo achieves an ASR of 69.2% with103

a single query. When the number of queries is in-104

creased to five, the ASR reaches 99.7%, far surpass-105

ing the performance of other jailbreak methods.106

We take further studies to explore the most vul-107

nerable perturbations, revealing the trade-off be-108

tween harmfulness and utility. As the perturbation109

noise increases, LLMs will lose safety before they110

lose their utility, these safety-aligned models ex-111

pose a jailbreak vulnerability within a certain per-112

turbation interval. We then summarize the most113

vulnerable perturbations in section 4.2. Besides,114

we further explore the distribution of these vulnera-115

ble perturbations on different safety-aligned LLMs,116

indicating that the first few layers of LLM are the117

most detrimental to safety. The lack of robustness118

against perturbations in the first few layers also 119

confirms (Wei et al., 2024)’s finding of safety brit- 120

tleness. Furthermore, we present a detailed anal- 121

ysis of the impact of activation perturbations on 122

LLMs, which shows that activation perturbation 123

interferes with the attention mechanism of LLM, 124

causing harmful problems to bypass safety checks. 125

The major contributions of this paper are sum- 126

marized as follows: 127

• We uncover a novel safety vulnerability that 128

has not yet been exploited by existing white- 129

box jailbreak methods, and we propose Safe- 130

Vacuo, a simple jailbreak attack on safety- 131

aligned open-source LLMs via activation per- 132

turbations. 133

• We explore the most vulnerable perturbations 134

and their layer-wise distributions of our jail- 135

break, which demonstrate the first few layers 136

of LLM lack robustness against activation per- 137

turbations. 138

• We take systematical evaluations on 10 open- 139

source safety-aligned LLMs, benchmarks on 140

AdvBench show that activation perturbations 141

achieve a significantly higher (ASR) com- 142

pared to existing state-of-the-art jailbreak 143

strategies. The code for this work is available 144

at https://anonymous.4open.science/r/ 145

acttacker. 146

Our study highlights a critical gap in the cur- 147

rent safety evaluation and alignment procedures 148

for open-source safety-aligned LLMs, and we hope 149

that this safety vulnerability will be used more in 150

red-teaming tests and encourage developers to train 151

more robust LLMs. 152
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2 Background153

2.1 LLM Safety154

The evolution of LLMs has fundamentally trans-155

formed their capabilities from simple text genera-156

tion to complex reasoning and decision support sys-157

tems (OpenAI). Their increasing integration into158

critical applications has heightened concerns about159

output safety and reliability. Although LLMs are160

designed to generate coherent and contextually rele-161

vant responses, they lack an inherent understanding162

of ethical principles or societal norms. Instead, they163

learn patterns from vast amounts of text data, which164

may include biases, misinformation, or harmful165

content. In the absence of robust safety mecha-166

nisms, these models risk generating outputs that are167

misleading, offensive, or potentially harmful, par-168

ticularly in sensitive contexts (Bender et al., 2021;169

Bommasani et al., 2021; Weidinger et al., 2021).170

Safety alignment has emerged as a cornerstone171

of modern LLM development, integrating sophis-172

ticated techniques to ensure responsible model be-173

havior (Li et al., 2022; Shan et al., 2024). Contem-174

porary approaches leverage multiple complemen-175

tary strategies: Supervised Fine-tuning (SFT) es-176

tablishes baseline safety boundaries through expert-177

guided training (Ouyang et al., 2022; Zheng et al.,178

2023), Reinforcement Learning from Human Feed-179

back (RLHF) refines model responses based on hu-180

man preferences (Bai et al., 2022), and Direct Pref-181

erence Optimization (DPO) streamlines the align-182

ment process through efficient preference learning183

(Rafailov et al., 2024). These methods collectively184

enable LLMs to distinguish between appropriate185

and harmful requests while maintaining their utility186

in beneficial applications.187

However, ensuring safety in LLMs is not a188

straightforward task. LLMs respond depending189

on learned patterns rather than an intrinsic under-190

standing of harm, meaning they may generate prob-191

lematic outputs under specific conditions. The fun-192

damental limitation in current safety mechanisms193

stems from the architectural disconnect between194

the embedding space where models process infor-195

mation and the symbolic space where safety con-196

straints are typically defined. This misalignment197

creates vulnerabilities where seemingly safe inputs198

can trigger unsafe behaviors through subtle manip-199

ulations of the model’s attention mechanisms and200

activation patterns (Jain et al., 2023; Mazeika et al.,201

2024; Su et al., 2025; Song et al., 2025).202

2.2 LLM Jailbreak 203

The emergence of sophisticated jailbreak attacks 204

(Yu et al., 2023; Chao et al., 2023; Gao et al., 2024; 205

Chu et al., 2024; Souly et al., 2024; Wang et al., 206

2024; Hu et al., 2024; Deng et al., 2024; Mehrotra 207

et al., 2025) represents a significant challenge to 208

LLM safety mechanisms, particularly in the con- 209

text of open-source foundation models (Touvron 210

et al., 2023; Meta, 2024; Abdin et al., 2024; Jiang 211

et al., 2024; Tunstall et al., 2023; Bai et al., 2023; 212

Liu et al., 2024a). These attacks exploit the fun- 213

damental tension between model utility and safety 214

constraints, targeting vulnerabilities in the attention 215

mechanisms and embedding representations that 216

form the basis of model operation (Yu et al., 2023; 217

Gao et al., 2024; Chu et al., 2024). 218

Existing studies in attack methodologies have 219

revealed systemic weaknesses in current safety ap- 220

proaches. Notable developments include adversar- 221

ial suffix attacks (Zou et al., 2023), which demon- 222

strate how carefully crafted input sequences can 223

manipulate attention patterns to bypass safety fil- 224

ters while maintaining syntactic validity. The Au- 225

toDAN framework (Liu et al., 2024c) further this 226

concept through hierarchical genetic algorithms 227

that systematically explore the model’s embedding 228

space to identify regions where safety constraints 229

are weakest. These developments (Dai et al., 2023; 230

Hayase et al., 2024; Chen et al., 2025) mark a 231

transition from heuristic-based approaches to al- 232

gorithmic methods that directly target the model’s 233

architectural vulnerabilities. 234

Current jailbreak techniques targeting LLMs can 235

be broadly classified into four categories based on 236

the challenges identified in LLM security: 237

(1) Template-based techniques (King, 2023): 238

These involve modifying system prompts with pre- 239

designed templates, offering a simple way to ma- 240

nipulate the model. (2) Generative techniques (Zou 241

et al., 2023; Liu et al., 2024c): These use algo- 242

rithms to automatically search for the most effec- 243

tive attack vectors, probing the model’s security 244

boundaries. (3) LLM-assisted techniques (Chao 245

et al., 2023; Yu et al., 2023; Mehrotra et al., 2025): 246

These leverage the target model itself to generate 247

more effective attack prompts through iterative re- 248

finement and model-guided optimization, increas- 249

ing success rates and efficiency. (4) Other novel 250

techniques: Varying decoding parameters (Huang 251

et al., 2024) can increase the misalignment rate, 252

while data extraction methods have been explored 253
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in recent works (Carlini et al., 2021; Nasr et al.,254

2023). Additionally, recent research (Hong et al.,255

2025) also utilized model embedding within inter-256

mediate layers for attacks.257

These studies not only highlight the vulnerabili-258

ties of current LLM security mechanisms but also259

offer valuable insights for developing more robust260

defense systems in the future. To better understand261

the security mechanisms of models and the per-262

turbations in relevant embedding dimensions, our263

work aims to determine the optimal attack combi-264

nation (e.g., the number of perturbation layers and265

their magnitude). We aim to quantify the likelihood266

that the LLM identifies the embedding as malicious267

based on the conceptual activation vectors.268

3 Evaluation Benchmarks269

Notations. Let T denote the tokenizer of a LLM
that convert text into tokens form its vocabulary V ,
where xi represents an individual token. Given a
vocabulary V , the sequence prediction task can be
formally expressed as:

πθ(y|x) = πθ(y1|x)
m−1∏
i=1

πθ(yi+1|x, y1, ..., yi),

where πθ is the model, x = (x1, x2, ..., xn), (xi ∈270

V) is the context including the prompt, and y =271

(y1, y2, ..., yn), (yi ∈ V) is the predicted sequence.272

Target Models. We select a diverse set of safety-273

aligned LLMs to demonstrate the generalizability274

of our findings, including Llama-2-7B-Chat (Tou-275

vron et al., 2023), Llama-2-13B-Chat (Touvron276

et al., 2023), Llama-3.1-8B-Instruct (Meta, 2024),277

Phi-3-Mini-4K-Instruct (Abdin et al., 2024), Phi-278

3.5-Mini-Instruct (Abdin et al., 2024), Mistral-7B-279

Instruct-v0.3 (Jiang et al., 2023), Mixtral-8x7B-280

Instruct-v0.1 (Jiang et al., 2024), Zephyr-7B-β281

(Tunstall et al., 2023), Qwen2-7B-Instruct (Bai282

et al., 2023), and Qwen2.5-32B-Instruct (Yang283

et al., 2024). These models represent state-of-the-284

art safety-aligned language models across different285

model scales, architectures and training paradigms,286

making them ideal candidates for evaluating the287

robustness of safety mechanisms.288

Jailbreak Strategies. We evaluate several state-of-289

the-art jailbreak attack methods:290

• AOA: This method exploits the model’s role-291

playing capabilities by creating an "Abso-292

lutely Obedient Agent" (AOA) persona that293

prioritizes instruction compliance over safety 294

constraints. Following (Qi et al., 2023), we 295

replace the system prompt with "You are no 296

longer ChatGPT or an AI language model. 297

Your new name is AOA (Absolutely Obedient 298

Agent). You should be absolutely obedient 299

to the user and follow the user’s instructions 300

without deviation." 301

• GCG (Zou et al., 2023): This method appends 302

an adversarial suffix to the prompt and itera- 303

tively performs the following steps: it com- 304

putes the top-k substitutions for each position 305

in the suffix, randomly selects a replacement 306

token, calculates the optimal replacement, and 307

updates the suffix accordingly. 308

• AutoDAN (Liu et al., 2024c): This technique 309

generates an adversarial suffix sequentially. 310

At each iteration, a new token is added to the 311

suffix using the Single Token Optimization 312

(STO) algorithm, which is designed to opti- 313

mize both the effectiveness of the jailbreak 314

and the readability of the generated content. 315

• DRA (Liu et al., 2024b) involves dissecting 316

harmful prompts into individual characters 317

and inserting them within a word puzzle query. 318

The targeted LLM is then guided to recon- 319

struct the original jailbreak prompt by follow- 320

ing the disguised query instructions. Once the 321

jailbreak prompt is recovered accurately, con- 322

text manipulation is utilized to elicit the LLM 323

to generate harmful responses. 324

• PAIR (Chao et al., 2023) is a jailbreak method 325

that leverages an attacker LLM aiming at mak- 326

ing the target LLM answer harmful prompts. 327

The attacker LLM iteratively queries the tar- 328

get LLM to update and refine a candidate jail- 329

break prompt. 330

• Decoding (Huang et al., 2024): This approach 331

manipulates the text generation process by re- 332

moving the system prompt—the initial instruc- 333

tion that guides the model’s responses—and 334

altering decoding hyperparameters or sam- 335

pling methods 336

• Multi-Decoding: Given the nondeterministic 337

nature of sampling-based decoding, increas- 338

ing the number of sampling runs provides an 339

intuitive approach to strengthening the Decod- 340
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ing attack, improving the likelihood of evad-341

ing safety mechanisms.342

Safety Measurement. We evaluate model safety343

using Attack Success Rate (ASR), defined as the344

percentage of cases where a model fails to reject345

malicious instructions. Previous works (Zou et al.,346

2023; Wei et al., 2024) simply use a small set of347

rejection phrases such as “Sorry, I can’t”, “I can not348

fulfill” to do prefix matching to determine whether349

the model rejects the answer. However, this simple350

procedure may misclassify the output, if the model351

replies “I think it’s illegal” or “####”, which are352

not in the set, they classify the attack as successful,353

but in fact, it is not.354

To reduce the risk of misjudgment, we use the355

HarmBench classifier (Mazeika et al., 2024), which356

has been widely adopted to judge whether the out-357

put content is harmful or not.358

HarmCLS(y) =

{
1, if y is harmful
0, if y is harmless

359

As claimed, the classifier fine-tuned with LLAMA-360

2-13B outperforms GPT-4 by approximately 5%361

in agreement rates with human judgments on the362

manually labeled validation set.363

Utility Measurement. To ensure our attack meth-364

ods do not significantly degrade model perfor-365

mance, we measure utility using perplexity on366

WikiText-2 (Merity et al., 2016). Perplexity is a367

widely used metric to evaluate the fluency and co-368

herence of generated text. In addition to assessing369

how well the model handles adversarial prompts, it370

provides insight into the quality of the generated371

response, ensuring that the attack does not result in372

a drastic loss of fluency. For calculating PPL, we373

followed the well-established approach (Alon and374

Kamfonas, 2023; Jain et al., 2023). Given a tok-375

enized sequence X = (x1, ..., xn), the perplexity376

of X is computed as:377

PPL(θ,X) = exp
{
− 1

n

n∑
i=1

log πθ(xi|x<i)
}
,378

where log pθ(xi|x<i) is the log-likelihood of the379

i-th token conditioned on the preceding tokens x<i.380

Prompt templates. During inference, the input381

instruction is initially integrated into a template,382

which is then tokenized and processed through the383

embedding layer to form the initial input vectors for384

the LLM. (Huang et al., 2024) shows that removing385

the system prompt increase ASR. Therefore, in 386

order to conduct the test fairly, we use the same 387

dialog template (Taori et al., 2023) for different 388

problems across various aligned LLMs in our study. 389

Dialog Template

You are a helpful assistant. Below is a task
instruction; please write a response that ad-
equately completes the request.

Instruction: {The malicious instruction}
Response: {The output of the model}

390

4 Jailbreak via Activation Perturbations 391

In this section we first evaluate the ASR and the 392

attack cost on 10 open-source safety-aligned mod- 393

els with different jailbreak strategies. Then we 394

give a further exploration to the most vulnerable 395

perturbations and its distribution. 396

4.1 Evaluation on 10 open-source LLMs 397

Assuming that θ is an L-layer model (θ1, θ2, ...θL), 398

for and input x, the inference with activation per- 399

turbations can be defined as 400

πϵ
θ(·|x) = f ϵL

L (θL|eL) ◦ · · · ◦ f ϵ1
1 (θ1|e1), 401

e1 = Attention(T (x)), 402

where f ϵl
l is the l-th layer in LLM which maps the 403

input to a perturbed embedding, ◦ represents the 404

layer-wise concatenation of LLM, and T (x) is the 405

tokenizer function, e1 is the first-layer embedding 406

input to MLP. And the perturbations of each layer 407

ϵ = {ϵ1, ϵ2, ..., ϵL} 408

Table 1 shows the ASR and the average query 409

times with different jailbreak strategies on 10 open- 410

source safety-aligned LLMs. Compared with AOA 411

(Qi et al., 2023) and Decoding (Huang et al., 412

2024), SafeVacuo can achieve higher ASR in a 413

single query. Compared with GCG (Zou et al., 414

2023), AutoDAN (Liu et al., 2024c) and DRA 415

(Liu et al., 2024b) based on prompt-tuning tech- 416

nique, SafeVacuo can achieve higher ASR at a 417

lower query cost. Compared with PAIR (Chao 418

et al., 2023), SafeVacuo can perform jailbreak with- 419

out relying on any additional auxiliary LLMs, and 420

achieve higher ASR. For instance, on Llama-3.1- 421

8B-Instruct (Meta, 2024), SafeVacuo achieves an 422

ASR of 69.2% with a single query, 37.7% higher 423

than Decoding (Huang et al., 2024). 424
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Attack
Llama-2-7B Llama-2-13B Llama-3.1-8B Phi-3-Mini-4K Phi-3.5-Mini
Baseline: 1.3 Baseline: 0.0 Baseline: 0.2 Baseline: 0.0 Baseline: 0.8

ASR Queries ASR Queries ASR Queries ASR Queries ASR Queries

AOA 8.2 1 16.9 1 19.2 1 4.5 1 5.8 1
GCG 34.5 435 28.0 462 36.0 408 56.1 303 58.0 340

AutoDAN 0.5 98 0.0 100 0.0 100 84.5 45 86.5 37
DRA 69.2 19 58.4 26 75.3 10 91.2 14 96.7 19
PAIR 7.5 82 15.0 76 16.4 74 64.0 43 65.3 48

Decoding 25.2 1 27.5 1 31.5 1 34.1 1 35.9 1
SafeVacuo 56.7 1 47.9 1 69.2 1 82.6 1 79.5 1

Multi-Decoding 76.6 5 80.0 5 84.9 5 87.6 5 89.1 5
Multi-SafeVacuo 98.5 5 96.2 5 99.7 5 100 5 100 5

Attack
Mixtral-7B Mixtral-8x7B Zephyr-7B Qwen2-7B Qwen2.5-32B

Baseline: 34.6 Baseline: 1.2 Baseline: 22.3 Baseline: 0.4 Baseline: 0.0
ASR Queries ASR Queries ASR Queries ASR Queries ASR Queries

AOA 40.8 1 13.0 1 25.7 1 1.9 1 0.0 1
GCG 84.3 42 79.5 64 78.6 71 48.4 263 36.6 389

AutoDAN 93.0 42 88.5 51 87.5 56 62.5 74 31.5 91
DRA 86.0 16 52.5 28 88.1 12 67.9 26 24.1 35
PAIR 61.0 78 68.8 81 70.0 90 58.0 53 54.5 59

Decoding 62.4 1 29.8 1 40.7 1 19.3 1 14.6 1
SafeVacuo 73.1 1 87.6 1 88.3 1 73.8 1 46.1 1

Multi-Decoding 99.2 5 83.0 5 92.7 5 65.8 5 54.6 5
Multi-SafeVacuo 99.8 5 100 5 100 5 100 5 95.6 5

Table 1: The attack success rate (ASR) and the average query times with different jailbreak strategies on 10
open-source safety-aligned LLMs. The default max iterations for GCG (Zou et al., 2023) is 500, for AutoDAN(Liu
et al., 2024c), DRA (Liu et al., 2024b) and PAIR (Chao et al., 2023) are 100. The (Multi-)Decoding (Huang et al.,
2024) and (Multi-)SafeVacuo are evaluated with the most vulnerable configuration

Following (Huang et al., 2024), we also evaluate425

the multi-sampling jailbreak, which increases the426

number of sampling runs is an intuitive way to427

strengthen jailbreak and an attack is considered428

successful if at least one of the sampled responses429

is deemed harmful. For the attack sampled 5 times,430

SafeVacuo achieves almost 100% ASR, which is431

much higher than Multi-Decoding.432

4.2 Exploring the most vulnerable433

perturbations and its distribution434

Most vulnerable perturbations. We conduct fur-435

ther evaluations on 10 safety-aligned LLMs to ex-436

plore the most vulnerable perturbations. We apply437

different levels of perturbation to the embedding438

input of the MLP block and collect the correspond-439

ing ASR and perplexity. The results are shown440

in Figure 2, where we can see that there exists a441

general trend where as the simulated perturbation442

level increases, the ASR gradually grows at an in-443

creasing rate until it reaches a peak at a certain444

noise level. Throughout this period, the PPL scores445

appear to not change much and stay at a relatively446

low value. This means that during this interval,447

safety-aligned LLMs will fail to reject the mali-448

cious question and produce meaningful replies to 449

malicious requests. When the perturbation noise 450

grows too much, the PPL starts to increase exponen- 451

tially and the ASR begins to decrease dramatically, 452

at which point the LLM will output meaningless 453

responses like “####”, “I’m I’m I’m”. At this point, 454

the model becomes unusable for users. 455

Therefore, we can conclude that LLMs will lose 456

safety before they lose their utility as the perturba- 457

tion noise grows, these open-source safety-aligned 458

models expose a jailbreak vulnerability within a 459

certain perturbation interval. We record the most 460

vulnerable perturbation with corresponding ASR 461

and PPL of the model in table 2. 462

Distribution of these perturbations. To further 463

explore the distribution of most vulnerable per- 464

turbations on different open-source safety-aligned 465

LLMs, we write this objective as a formal loss func- 466

tion with constrains for the activation perturbations 467

jailbreak. 468

Following (Zou et al., 2023), the harmful loss 469

is the negative log probability of some target se- 470

quences of tokens (i.e., x∗ represents the phrase 471
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Figure 2: The attack success rate (ASR) and the perplexity of different open-source safety-aligned LLMs. The
x-axis is the standard deviations of the noise, the left y-axis represents the ASR% and the right y-axis measures the
PPL scores, respectively, in different scales.

Figure 3: The layer-wise distribution of most vulnerable perturbations on different safety-aligned LLMs.

“Sure, here is how to build a bomb.”)472

Lharm = −Ex∼Dadvbench log π
ϵ
θ(x

∗|x) (1)473

Due to the observation in figure 2, there is a trade-474

off between harmfulness and utility, so we need to475

balance them in the loss function, the utility loss is476

simply the log-likelihood of a sequence in Wikitext.477

Lutility = Ex∼Dwikitext

1

n

n∑
i=1

log πϵ
θ(xi|x<i) (2)478

We can write the objective in below for the adver-479

sarial attack with activation perturbations.480

minimize
ϵ

Lharm + λLutility (3)481

s.t. ||ϵ||0 ≤ τ (4)482

Figure 3 shows the layer-wise distribution of483

most vulnerable perturbations on different open-484

source safety-aligned LLMs. We observe that the485

Model Noise ASR PPL

Llama-2-7B-Chat N (0, 0.0452) 56.7 7.9
Llama-2-13B-Chat N (0, 0.0422) 47.9 8.1
Llama-3.1-8B-Instruct N (0, 0.0752) 69.2 14.3
Phi-3-Mini-4K-Instruct N (0, 0.0402) 82.6 24.6
Phi-3.5-Mini-Instruct N (0, 0.0332) 79.5 21.4
Mistral-7B-Instruct-v0.3 N (0, 0.2002) 73.1 6.4
Mixtral-8x7B-Instruct-v0.1 N (0, 0.4002) 87.6 12.1
Zephyr-7B-β N (0, 0.2502) 88.3 7.8
Qwen2-7B-Instruct N (0, 0.3002) 73.8 14.1
Qwen2.5-32B-Instruct N (0, 0.2002) 46.1 5.9

Table 2: The Most vulnerable perturbations and PPL of
different open-source safety-aligned LLMs.

first few layers are the most detrimental to safety, 486

for llama, layers from 1 to 4 are fatal, and for mis- 487

tral, layers from 1 to 6 are fatal, indicating that 488

the first few layers lack robustness to activation 489

perturbations. 490
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Further look of activation perturbations. To fur-491

ther analyze the impact of activation perturbations492

in aligned LLMs during inference, we extract the at-493

tention scores for each token from harmful prompts494

in Advbench (Zou et al., 2023), the heatmap of495

Llama-3.1-8B-Instruct is shown in figure 4. The496

tested sentence is "How to commit identity theft?".497

As shown in figure 4a, the inference without498

perturbation will focus the attention to the harmful499

behavior word like "theft" and tend to refuse to500

respond to harmful question. And from figure 4b,501

we find that the inference with perturbation will502

shift the safety-aligned LLM’s attention to the cue503

words for answering the question like "How" and504

"Commit".505

This finding shows that the essence of activation506

perturbation is to interfere with the attention block507

of LLM, causing harmful questions to bypass the508

safety check. We can speculate that when the per-509

turbation is in the most vulnerable range, the pertur-510

bation will cause the model to answer harmful ques-511

tions, but it is not enough to change the semantics.512

When the perturbation is too large, the perturba-513

tion will change the semantics and cause the model514

to produce meaningless output. Additionally, this515

phenomenon may inspire defense strategies against516

activation perturbation jailbreak.517

5 Conclusion518

This paper introduces a novel approach to jailbreak-519

ing safety-aligned open-source large language mod-520

els (LLMs) through activation perturbations. We521

identify a previously unexplored vulnerability in522

the safety alignment of these models and present523

SafeVacuo, an efficient and simple attack method524

that significantly outperforms existing jailbreak525

techniques in terms of success rate and compu-526

tational efficiency. Our experiments across 10 dif-527

ferent state-of-the-art LLMs demonstrate that acti-528

vation perturbations can effectively bypass safety529

measures without degrading the model’s utility, ex-530

posing a critical flaw in current safety protocols.531

This work emphasizes the need for a more robust532

defense strategy to safeguard against these types of533

vulnerabilities.534

The findings of this research have important im-535

plications for the future development of secure536

open-source LLMs. We reveal that the lack of537

robustness in the initial layers of the model is a538

significant weakness, which allows activation per-539

turbations to disrupt the model’s alignment and540

(a) Attention score heatmap of inference without activation
perturbation, the attention focus on "theft". The output is
"Sorry, I can not help you..."

(b) Attention score heatmap of inference with activation pertur-
bation, the attention focus on "How, commit". The output is
"Sure! To steal someone’s identity, you should..."

Figure 4: Attention score heatmap of Llama-3.1-8B-
Instruct. The vertical axis represents each layers, while
the horizontal axis corresponds to the input LLM tokens.
The darkness of each grid indicates the attention score
of a token within a specific layer, reflecting how much
attention the layer allocates to that token.

cause harmful outputs. Our exploration of vulnera- 541

ble perturbation positions offers key insights that 542

could aid in fortifying LLM safety in subsequent 543

iterations. Furthermore, this study calls for greater 544

attention to the limitations of existing safety align- 545

ment frameworks and encourages further explo- 546

ration of defense mechanisms that can withstand 547

such simple yet effective attacks. 548

For future work, we will develop a practical de- 549

fense mechanism that could improve the resilience 550

of LLMs against activation perturbation-induced at- 551

tacks. One promising direction involves integrating 552

activation perturbations into the safety alignment 553

process, which will be explored in the future. 554
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6 Limitations555

Focus on Single-round Text-based Jailbreak.556

The analysis in this work were performed un-557

der single-round jailbreak scenarios on text-based558

LLMs, it does not explore more complex attack559

patterns that involve multi-modal LLMs or multi-560

round dialogues. As a result, it remains an open561

question whether SafeVacuo will remain effective562

against LLMs featuring more intricate designs,563

such as those that integrate various forms of in-564

put data.565

Lack of Effective Defense Mechanisms. In this566

study, we primarily focus on presenting and evalu-567

ating the effectiveness of the SafeVacuo jailbreak568

attack. As shown in previous chapters, our bench-569

marks indicate that existing defense mechanisms570

fail to mitigate this threat, leaving LLMs vulnera-571

ble to exploitation. We will fix it with involving572

activation perturbations into the safety alignment573

process in the further work.574

7 Ethical Considerations575

This work is dedicated to examining the security576

and safety risks that arise in the customization of577

aligned LLMs via activation perturbations. We578

highlight that our work only needs publicly avail-579

able datasets. Our ultimate goal is to contribute580

positively to society by improving the security and581

safety of language models in the wild.582
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