

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BRANCHGRPO: STABLE AND EFFICIENT GRPO WITH STRUCTURED BRANCHING IN DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment, as sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPSv2.1 image alignment, BranchGRPO improves alignment scores by up to **16%** over DanceGRPO, while reducing per-iteration training time by nearly **55%**. A hybrid variant, BranchGRPO-Mix, further accelerates training to $4.7\times$ faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher motion quality reward with sharper and temporally consistent frames.

1 INTRODUCTION

Diffusion and flow-matching models have advanced image and video generation with high fidelity, diversity, and controllability (Ho et al., 2020; Lipman et al., 2022; Liu et al., 2022). However, large-scale pretraining alone cannot ensure alignment with human intent, as outputs often miss aesthetic, semantic, or temporal expectations. Reinforcement learning from human feedback (RLHF) addresses this gap by directly adapting models toward human-preferred outcomes (Ouyang et al., 2022).

Within RLHF, Group Relative Policy Optimization (GRPO) has shown strong stability and scalability across text-to-image and text-to-video tasks (Liu et al., 2025a; Xue et al., 2025). However, when applied to diffusion and flow-matching models, current GRPO variants still face two fundamental bottlenecks: (1) **Inefficiency**. Standard GRPO adopts a sequential rollout design, where each trajectory must be independently sampled under both the old and new policies. This incurs $O(N \cdot T)$ complexity with denoising steps T and group size N , leading to significant computational redundancy and limiting scalability in large-scale image and video generation tasks. (2) **Sparse rewards**. Existing methods assign a single terminal reward uniformly across all denoising steps, neglecting informative signals from intermediate states. This uniform propagation leads to unreliable credit assignment and high-variance gradients, raising the central question: how can we attribute sparse outcome rewards to the specific denoising steps that truly shape final quality?

To overcome these limitations, we propose **BranchGRPO**, a tree-structured policy optimization framework for diffusion and flow models. BranchGRPO replaces inefficient independent sequential rollouts with a branching structure, where scheduled *split steps* in the denoising process allow each trajectory to stochastically expand into multiple sub-trajectories while reusing shared prefixes. This design amortizes computation across common segments and aligns naturally with the stepwise nature of denoising, substantially improving sampling efficiency while reducing computational cost.

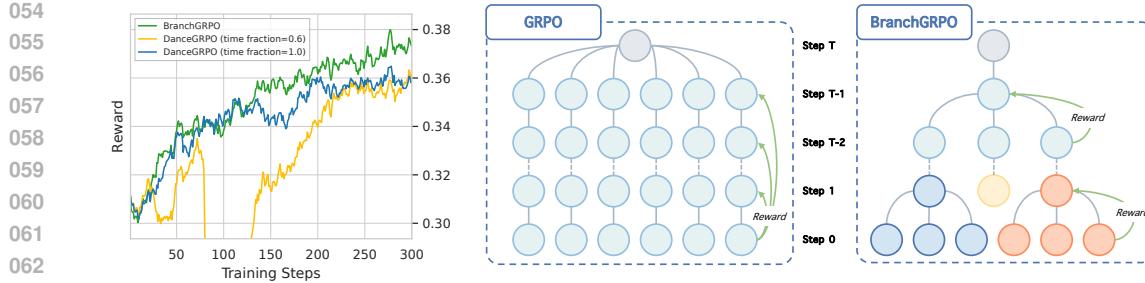


Figure 1: **Comparison of BranchGRPO and DanceGRPO.** *Left:* Reward curves during training. BranchGRPO converges substantially faster, achieving up to **2.2× speedup** over DanceGRPO (time fraction = 1.0) and **1.5× speedup** over DanceGRPO (time fraction = 0.6), while ultimately surpassing both baselines. The time fraction = 0.6 variant further exhibits pronounced instability. (time fraction denotes the proportion of diffusion timesteps used during training.). *Right:* Illustration of rollout structures. GRPO relies on sequential rollouts with only final rewards, whereas Branch-GRPO performs branching at intermediate steps and propagates dense rewards backward, enabling more efficient and stable optimization.

The tree structure further enables a novel reward fusion with depth-wise advantage estimation. Instead of uniformly propagating a single terminal reward, BranchGRPO aggregates leaf rewards and propagates them backward with depth-wise normalization, producing finer-grained step-level advantages. In addition, width- and depth-pruning strategies remove redundant branches and depths during backpropagation, accelerating training and reallocating computation toward promising regions of the trajectory space.

We validate BranchGRPO on both text-to-image and image-to-video alignment tasks, demonstrating its effectiveness and generality across modalities. In addition, we verify the scaling law of Branch-GRPO, larger group sizes consistently lead to better alignment performance.

Our contributions are threefold:

- We introduce **BranchGRPO**, a *tree-structured GRPO training paradigm*. It replaces independent sequential rollouts with branching during denoising, reusing shared prefixes to amortize compute and broaden exploration, thereby improving efficiency and scalability.
- We propose a new reward fusion and depth-wise advantage estimation method that converts sparse terminal rewards into dense, step-level signals, yielding more stable optimization.
- We design complementary width- and depth-pruning strategies that lower backpropagation cost and further improve alignment.

2 RELATED WORK

Diffusion models (Ho et al., 2020; Rombach et al., 2022) and flow matching models (Lipman et al., 2022; Liu et al., 2022) have become dominant paradigms for visual generation due to their strong theoretical foundations and ability to generate high-quality content efficiently. While pretraining establishes the generative prior, aligning outputs with nuanced human preferences requires reinforcement learning from human feedback (RLHF). In natural language processing, RLHF has proven highly successful for aligning large language models (LLMs) (Ouyang et al., 2022; Christiano et al., 2017; Lu et al., 2025), where methods such as PPO and GRPO enable stable preference-driven post-training. These successes have inspired adaptation of RLHF to vision.

In the visual domain, RLHF for diffusion has been developed along two main directions (Oshima et al., 2025). Reward-model-based approaches such as ImageReward (Xu et al., 2023) back-propagate learned rewards through the denoising process. Direct Preference Optimization (DPO) (Rafailov et al., 2023; Liu et al., 2025c) has also been extended to diffusion, leading to Diffusion-DPO (Wallace et al., 2024) and Videodpo (Liu et al., 2025c), which achieve competitive alignment without explicit reward modeling. Policy-gradient formulations such as DDPO (Black et al., 2023)

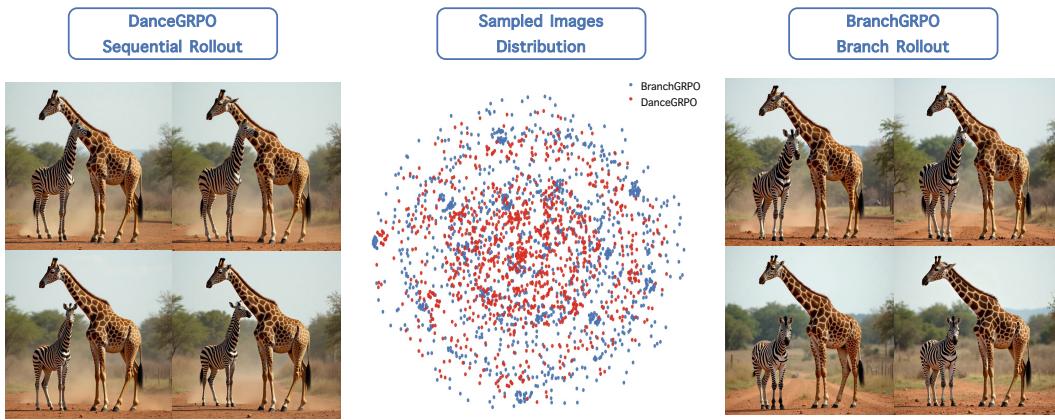


Figure 2: Comparison of sequential and branch rollouts. **Left/Right:** example generations from DanceGRPO and BranchGRPO, respectively. **Middle:** distribution of sampled images projected into 2D feature space, where red and blue dots correspond to DanceGRPO and BranchGRPO.

and DPOK (Fan et al., 2023) further explore online optimization but often face stability challenges. Meanwhile, standardized reward models including HPS-v2.1 (Wu et al., 2023), VideoAlign (Liu et al., 2025b) enable systematic comparison of alignment algorithms on image and video tasks.

More recently, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has been introduced as a scalable alternative to PPO for preference optimization. DanceGRPO (Xue et al., 2025) and Flow-GRPO (Liu et al., 2025a) pioneers the application of GRPO to visual generation, unifying diffusion and flow models via SDE reformulation and demonstrating stable optimization across text-to-image, text-to-video, and image-to-video tasks. TempFlow-GRPO (He et al., 2025) further highlights the limitation of sparse terminal rewards with uniform credit assignment, proposing temporally-aware weighting across denoising steps. MixGRPO (Li et al., 2025a) further enhances efficiency with a mixed ODE–SDE sliding-window scheme, though it still faces trade-offs between overhead and performance. Our work continues this line by introducing BranchGRPO, which leverages branching rollouts, depth-wise reward fusion, and structured pruning to improve both stability and efficiency; while related to TreePO in LLMs (Li et al., 2025b), our method adapts tree-structured rollouts specifically to diffusion dynamics.

3 METHOD

3.1 DOES BRANCH ROLLOUT HARM DIVERSITY?

A natural concern with branch rollouts is that reusing shared prefixes might reduce sample diversity. To investigate this, we generate 4096 samples each from DanceGRPO and BranchGRPO and evaluate their distributions across multiple feature spaces. Figure 2 provides both qualitative and quantitative evidence: the left/right panels show representative generations, while the middle panel visualizes the sampled distributions in a 2D feature embedding, where DanceGRPO and BranchGRPO points largely overlap.

Quantitatively, in the Inception feature space, the distributions remain close, with KID (Bińkowski et al., 2018)=0.0057 and MMD² (Gretton et al., 2012)=0.0067. In the CLIP feature space (ViT-B/32 (Radford et al., 2021)), the similarity is even stronger: KID=0.00022 and MMD² = 0.0149, both indicating that the two distributions are almost indistinguishable at the semantic level.

Taken together, Figure 2 and these statistics demonstrate that branch rollouts preserve distributional and semantic diversity, introducing at most negligible shifts across different feature spaces.

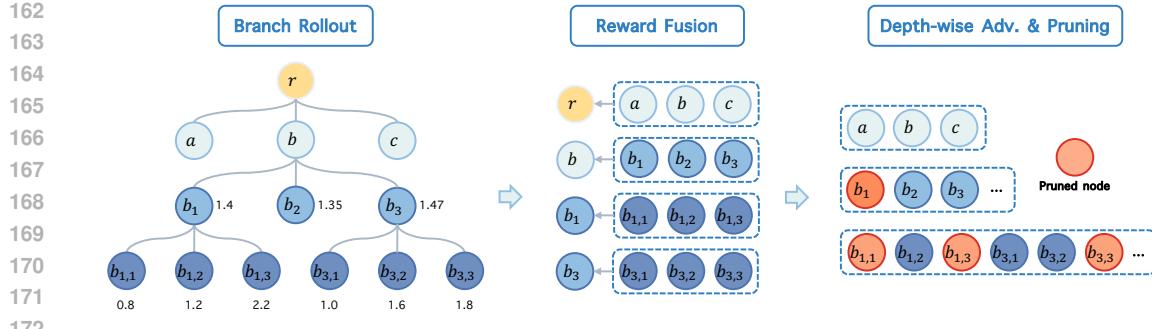


Figure 3: **Left:** branch rollout process . **Middle:** leaf rewards are fused upward. **Right:** depth-wise normalization and pruning yield dense advantages and reduce cost.

3.2 BRANCH ROLLOUT ALGORITHM

Preliminaries. Given a prompt, BranchGRPO reformulates denoising into a tree-structured process. We align terminology with tree search: (i) depth T denotes the number of denoising steps; (ii) width w is the number of completed trajectories (leaves); (iii) branching steps \mathcal{B} indicate split timesteps; (iv) branch correlation s controls the diversity among child nodes; (v) branching factor K is the number of children per split.

Branch sampling. Unlike prior GRPO variants such as DanceGRPO and FlowGRPO that rely on *sequential rollouts*, where each trajectory is sampled independently from start to finish, BranchGRPO reorganizes the process into a tree-structured rollout (Figure 1). For each prompt, we initialize a root node with a same initial noise $z_0 \sim \mathcal{N}(0, I)$ and then denoise step by step along the reverse SDE. At designated split steps \mathcal{B} , the current state expands into K children, producing multiple sub-trajectories that share early prefixes but diverge afterward. The branching is achieved by injecting stochastic perturbations into the SDE transition, with a hyperparameter s controlling the diversity strength among child nodes. This mechanism balances exploration diversity and stability while keeping the marginal distribution unchanged. The rollout continues until reaching the maximum depth T , at which point all leaves are collected for reward evaluation.

Formally, following Xue et al. (2025), the reverse-time dynamics can be written in the SDE form:

$$dz_t = \left(f_t z_t - \frac{1+\varepsilon_t^2}{2} g_t^2 \nabla \log p_t(z_t) \right) dt + \varepsilon_t g_t dw_t, \quad (1)$$

where ε_t controls stochasticity.

At a split step $i \in \mathcal{B}$ with step size $h_i = t_i - t_{i+1}$, instead of sampling a single successor we generate K correlated children:

$$z_{i+1}^{(b)} = \mu_\theta(z_i, t_i) + g_{t_i} \sqrt{h_i} \xi_b, \quad \xi_b = \frac{\xi_0 + s \eta_b}{\sqrt{1+s^2}}, \quad b = 1, \dots, K, \quad (2)$$

where $\xi_0, \eta_b \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I)$, with ξ_0 shared across branches and η_b denoting branch-specific innovations. The parameter $s \geq 0$ tunes inter-branch correlation: small s yields highly correlated but stable branches, while large s makes branches nearly independent. By construction, each $\xi_b \sim \mathcal{N}(0, I)$, so every child $z_{i+1}^{(b)}$ has the same marginal distribution as the baseline SDE step.

3.3 REWARD FUSION AND DEPTH-WISE ADVANTAGE ESTIMATION

Branch rollouts form a trajectory tree with shared ancestral prefixes, allowing internal node values to be expressed by descendant rewards and enabling backward propagation of leaf signals. However, existing GRPO variants use a single terminal reward at every step, ignoring intermediate states and yielding high-variance, unreliable credit assignment (Fig. 3). BranchGRPO addresses this by propagating leaf rewards upward and converting them into dense step-level advantages via path-probability fusion and depth-wise normalization.

216 **Reward fusion.** We design a dynamically adjustable reward fusion scheme that aggregates leaf
 217 rewards into internal node values through a soft weighting mechanism. For an internal node n with
 218 descendant leaves $\mathcal{L}(n)$,

$$220 \quad \bar{r}(n) = \sum_{\ell \in \mathcal{L}(n)} w_{\ell}^{(n)} r_{\ell}, \quad w_{\ell}^{(n)} = \frac{\exp(\beta s_{\ell})}{\sum_{j \in \mathcal{L}(n)} \exp(\beta s_j)}, \quad s_{\ell} = \log p_{\text{beh}}(\ell \mid n). \quad (3)$$

222 Here p_{beh} is the behavior policy and β controls concentration. $\beta = 0$ reduces to uniform averaging-
 223 when $\beta = 1$, the fusion reduces to weighting by the behavior policy distribution $p_{\text{beh}}(\ell \mid n)$.
 224 Uniform averaging is robust to log-prob calibration errors and encourages exploration by retaining
 225 low-probability leaves, but introduces variance when branches are many. Path-weighting reduces
 226 variance and stabilizes updates, though it may over-concentrate on high-likelihood leaves in deep
 227 trees. We empirically compare both variants in Sec. 4.4.

229 **Depth-wise normalization.** Nodes at the same depth share the same noise level and are thus di-
 230 rectly comparable, while rewards across depths vary drastically due to changing noise states. To
 231 balance gradient contributions, we normalize aggregated rewards within each depth d :

$$232 \quad A_d(n) = \frac{\bar{r}(n) - \mu_d}{\sigma_d + \epsilon}, \quad \mu_d = \text{mean}_{n \in \mathcal{N}_d} \bar{r}(n), \quad \sigma_d = \text{std}_{n \in \mathcal{N}_d} \bar{r}(n), \quad (4)$$

235 where \mathcal{N}_d denotes all nodes at depth d . Each edge advantage $A(e)$ inherits from its child node
 236 and is optionally clipped to $[-A_{\max}, A_{\max}]$. This per-depth standardization prevents late denoising
 237 steps with smaller variance from dominating, yielding process-dense and balanced credit signals.
 238 Compared to GRPO’s prompt-level normalization, which broadcasts a single terminal reward, our
 239 scheme produces stable gradients and finer credit assignment to the denoising steps that matter.

240 We optimize the standard clipped GRPO loss over tree edges:

$$241 \quad J(\theta) = \mathbb{E} \left[\frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} \min \left(\rho_e(\theta) A(e), \text{clip}(\rho_e(\theta), 1 - \epsilon, 1 + \epsilon) A(e) \right) \right], \quad (5)$$

244 where an edge e denotes a transition (s_t, a_t) at depth t , \mathcal{E} is the set of such edges in a behavior tree,
 245 and $\rho_e(\theta) = \pi_{\theta}(a_t \mid s_t) / \pi_{\text{old}}(a_t \mid s_t)$.

247 3.4 PRUNING STRATEGIES

249 While branch rollouts improve efficiency and provide dense process rewards, an excessive number
 250 of branches may induce exponential growth in trajectory count, leading to prohibitive backpropagation
 251 cost. To further accelerate training, we introduce two complementary pruning strategies in
 252 the context of BranchGRPO: **width pruning**, which reduces the number of leaves used for gradient
 253 updates, and **depth pruning**, which skips unnecessary denoising steps.

254 Importantly, pruning is applied only after reward fusion and depth-wise normalization, and affects
 255 backpropagation but not forward rollouts or reward evaluation. This design ensures that all trajectories
 256 contribute to reward signals, while gradients are computed only for the selected subset.

257 **Width Pruning.** After computing rewards and advantages for all leaves \mathcal{L} , we restrict gradient up-
 258 dates to a subset of them. We investigate two modes. The first, *Parent-Top1*, retains the child with
 259 the higher reward from each parent at the last branching step. This strategy roughly halves gradient
 260 computation while ensuring coverage of all parents, yielding stable but slightly less diverse updates.
 261 The second, *Extreme selection*, preserves both the globally best and worst b leaves by reward score.
 262 This explicitly maintains strong positive and negative signals, which may enhance exploration but
 263 also increase variance.

264 **Depth Pruning.** Branch rollouts generate dense rewards across all denoising steps, but computing
 265 gradients at every depth remains costly. To improve efficiency, we introduce **depth pruning**, which
 266 skips gradient computation at selected timesteps. Concretely, we maintain a set of pruned depths \mathcal{D}
 267 and ignore gradients from nodes at these layers. To prevent permanently discarding certain steps, we
 268 adopt a *sliding window* schedule: the pruned depths gradually shift toward later timesteps as training
 269 progresses, until reaching a predefined maximum depth. Formally, pruning is active throughout
 training, and at fixed intervals the window slides one step deeper until the stop depth is reached.

270 **Algorithm 1** BranchGRPO Training Process

271 **Require:** dataset \mathcal{C} ; policy π_θ ; behavior policy $\pi_{\theta_{\text{old}}}$; reward models $\{R_k\}$; denoising steps T ;
 272 branching steps \mathcal{B} ; branching factor K ; branch correlation s
 273 1: **for** iteration $m = 1$ to M **do**
 274 2: $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$
 275 3: Sample batch $\mathcal{C}_b \subset \mathcal{C}$
 276 4: **for** prompt $c \in \mathcal{C}_b$ **do**
 277 5: Sample root noise $z_0 \sim \mathcal{N}(0, I)$
 278 6: Build rollout tree \mathcal{T} with $\pi_{\theta_{\text{old}}}$:
 279 7: **for** $t = T$ to 0 **do**
 280 8: **if** $t \in \mathcal{B}$ **then**
 281 9: Branch into K children with correlation s
 282 10: **else**
 283 11: Single-step denoising
 284 12: **end if**
 285 13: **end for**
 286 14: Evaluate rewards for leaves $\mathcal{L}(\mathcal{T})$
 287 15: **Reward fusion:** aggregate leaf rewards upward (path-prob. weights)
 288 16: **Depth-wise normalization:** standardize per depth, assign edge advantages $A(e)$
 289 17: **Pruning:** select nodes for backprop only
 290 18: Form edge set $\mathcal{E}(c)$ from tree \mathcal{T}
 291 19: Compute $J(\theta)$ (clipped-GRPO over $e \in \mathcal{E}(c)$, averaged by $|\mathcal{E}(c)|$)
 292 20: Update policy: $\theta \leftarrow \theta + \eta \nabla_\theta J(\theta)$
 293 21: **end for**
 22: **end for**

294 4 EXPERIMENTS

295 4.1 EXPERIMENT SETUP

300 We evaluate BranchGRPO on HPDv2.1 (Wu et al., 2023) (103k training and 400 balanced test
 301 prompts). The backbone is FLUX.1-Dev (Black Forest Labs, 2024), SD3.5-M Esser et al. (2024)
 302 baselines include DanceGRPO and MixGRPO under identical settings. We report efficiency (NFE,
 303 iteration time) and quality (HPS-v2.1, PickScore (Kirstain et al., 2023), ImageReward (Xu et al.,
 304 2023)), Unified Reward (Wang et al., 2025).

305 4.2 IMPLEMENTATION DETAILS

308 We set the tree depth to $d = 20$ and the branch factor to $K = 2$, yielding 16 leaves per rollout
 309 before pruning. The branching steps \mathcal{B} use three presets: Dense $(0, 3, 6, 9)$ as the default, Mixed
 310 $(0, 4, 8, 12)$, and Sparse $(0, 5, 10, 15)$. The branch correlation sweeps $s \in \{1, 2, 4, 8\}$. Training runs
 311 for 300 optimizer steps with gradient accumulation $g = 12$ and per-GPU batch size = 2, on $16 \times$
 312 NVIDIA H200 GPUs. Optimization uses AdamW (learning rate 1×10^{-5} , weight decay 1×10^{-4})
 313 with bf16 precision and EMA weights stored on CPU. All GRPO-related hyperparameters are kept
 314 identical across methods, with full details deferred to the supplementary material.

315 4.3 MAIN RESULTS

317 Table 1 summarizes efficiency and alignment performance. BranchGRPO consistently outperforms
 318 baselines across human-preference metrics while offering favorable compute trade-offs. In particu-
 319 lar, BranchGRPO-DepthPruning achieves the best overall alignment, raising HPS-v2.1 from 0.360
 320 (DanceGRPO) to 0.369 and delivering the highest PickScore (0.231), ImageReward (1.625), and
 321 Unified Reward (3.404). BranchGRPO-WidthPruning and BranchGRPO-Mix further reduce itera-
 322 tion time to 314s and 148s, respectively, with only marginal drops in quality—making them highly
 323 practical for large-scale training. Compared with MixGRPO (289s, HPS-v2.1=0.359, Unified Re-
 ward=3.380), BranchGRPO variants yield both stronger alignment and more flexible scaling.

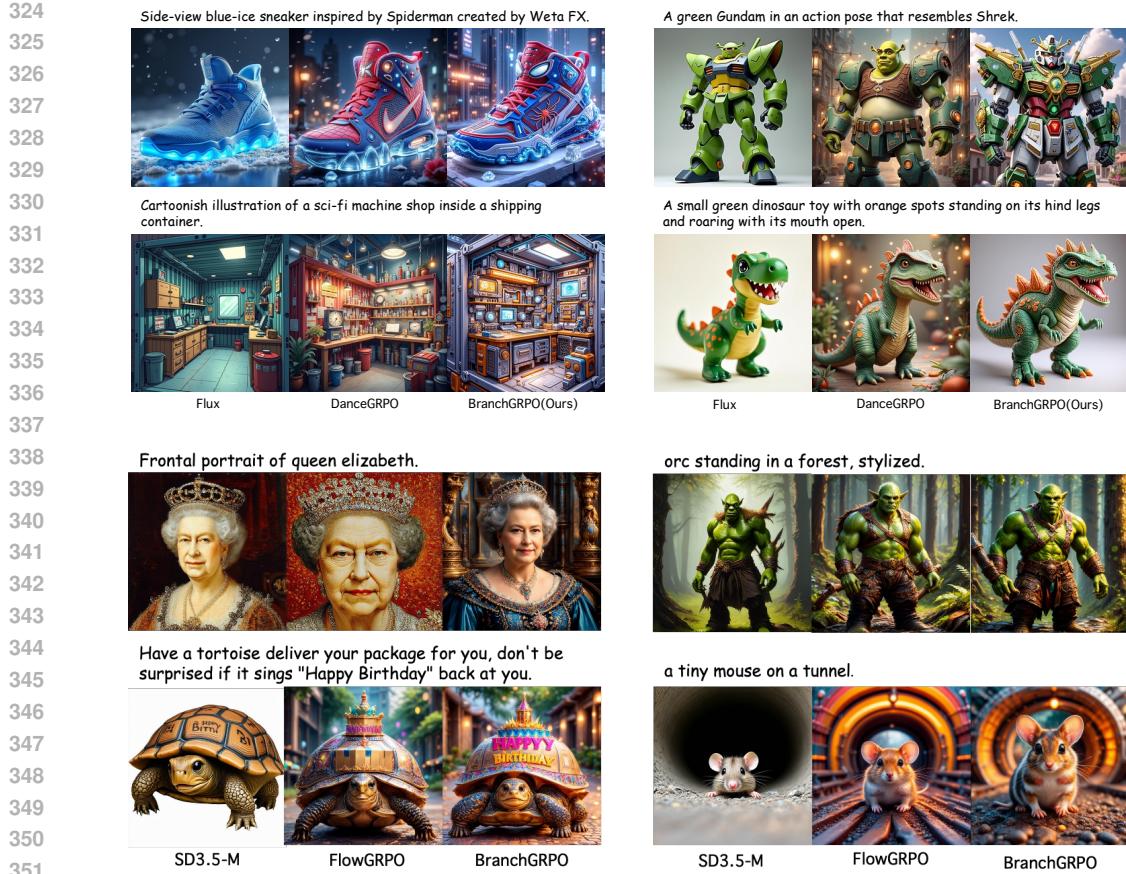


Figure 4: Qualitative comparison of generations. *Top*: Flux, DanceGRPO, and our BranchGRPO. *Bottom*: SD3.5-M, FlowGRPO, and our BranchGRPO.

Reward curves in Figure 1 confirm these findings: DanceGRPO($tf=0.6$) suffers from instability, while the full-timestep variant converges more smoothly but at high cost. BranchGRPO achieves faster early reward growth, smoother convergence, and higher final rewards. Qualitative comparisons in Figure 4 further show that our method produces sharper details and better semantic alignment than Flux and DanceGRPO.

Table 2 further validates the generality of BranchGRPO on the SD3.5-M backbone. When plugged into FlowGRPO, BranchGRPO reduces the total GPU-hours (from 2000 to 1460) while keeping the same number of training steps. Despite using *less than half* the compute, BranchGRPO consistently improves all alignment metrics—HPS-v2.1, PickScore, ImageReward, and GenEval. These results show that BranchGRPO transfers cleanly across different backbones and GRPO-style pipelines, providing both higher training efficiency and stronger alignment quality under the same—or even lower—compute budgets.

Reward-KL Efficiency. Beyond final reward and training speed, we also examine the reward-KL tradeoff, which measures how efficiently an RL policy converts KL divergence into reward gains. As shown on the right, BranchGRPO-DepthPruning consistently lies above the DanceGRPO frontier across the full KL range. This indicates that BranchGRPO extracts more reward per unit KL, reflecting more stable credit assignment and better optimization efficiency.

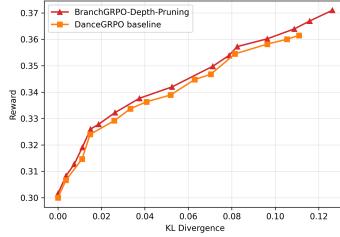


Figure 5: Reward-KL curves comparing BranchGRPO-DepthPruning and DanceGRPO.

378
 379
 380
 381
 382
 383 Table 1: Efficiency–quality comparison. The best and second-best results in each column are high-
 384 lighted in **bold** and underline, respectively. NFE denotes the number of function evaluations of the
 385 denoiser. For branching methods, we report the *average per-sample NFE*, computed as the total
 386 function evaluations in the tree divided by the number of final samples.
 387
 388

Method	NFE $_{\pi_{\theta_{\text{old}}}}$	NFE $_{\pi_{\theta}}$	Iteration Time (s)↓	HPS-v2.1↑	Pick Score↑	Image Reward↑	Unified Reward↑
FLUX	-	-	-	0.313	0.227	1.112	3.370
DanceGRPO(tf=1.0)	20	20	698	0.360	<u>0.234</u>	<u>1.612</u>	<u>3.388</u>
DanceGRPO(tf=0.6)	20	12	469	0.353	0.228	1.517	3.362
MixGRPO (20,5)	20	5	<u>289</u>	0.359	0.228	1.594	3.380
BranchGRPO	13.68	13.68	493	0.363	0.229	1.603	3.386
BranchGRPO-WidPru	13.68	8.625	314	<u>0.364</u>	0.231	1.609	3.383
BranchGRPO-DepPru	13.68	8.625	314	0.369	0.235	1.625	3.404
BranchGRPO-Mix	13.68	4.25	148	0.363	0.230	1.598	3.384

392
 393 Table 2: Generalization on SD3.5-M and integration into GRPO-style training pipelines. Branch-
 394 GRPO consistently improves alignment quality and training efficiency.
 395
 396

Method	GPU Hours↓	HPS-v2.1↑	Pick Score↑	Image Reward↑	GenEval↑
SD3.5-M	-	0.204	20.51	0.85	0.63
FlowGRPO	2000	0.316	23.50	1.29	0.86
FlowGRPO	1000	0.280	22.41	0.95	0.73
BranchGRPO	<u>1460</u>	0.323	23.58	1.32	0.89

4.4 ABLATION STUDIES

401
 402
 403 We conduct a series of ablation studies to better understand the design choices in BranchGRPO.
 404 Unless otherwise stated, all are carried out under the same training setup as in Section 4.3. The fol-
 405 lowing analyses highlight how different branching configurations and aggregation strategies affect
 406 efficiency, reward quality, and stability.
 407

408 *Branch Correlation.* Figure 6(a) shows the effect of varying the branch correlation s . Smaller values
 409 ($s = 1.0, 2.0$) limit exploration and lead to slower reward growth, while very large values ($s = 8.0$)
 410 destabilize early training. A moderate setting ($s = 4.0$) achieves the best trade-off, reaching the
 411 highest reward and stable convergence, confirming that stochastic branching is necessary but should
 412 be carefully tuned.
 413

414 *Branching Steps.* We next vary the positions of split timesteps (Figure 6(b)). Early splits such as
 415 (0, 3, 6, 9) promote faster reward increase in the early stage, whereas later splits like (9, 12, 15, 18)
 416 delay exploration and yield lower rewards. Intermediate schedules (e.g., (3, 6, 9, 12)) balance effi-
 417 ciency and reward quality, suggesting that early splits are generally more effective for exploration.
 418

419 *Branch Density.* Finally, we compare different densities of split points while keeping the overall
 420 horizon fixed (Figure 6(c)). Although all configurations eventually converge to similar reward levels,
 421 denser splits (e.g., (0, 3, 6, 9)) accelerate early training, while sparser configurations converge more
 422 slowly. This indicates that increasing the density of branching in the early phase improves sample
 423 efficiency without harming stability.
 424

425 *Branch Rollout Diversity.* A potential con-
 426 cern is that Branch Rollout may reduce diver-
 427 sity. Beyond the distribution-level checks in
 428 Sec. 3.1, we also evaluate prompt-conditioned
 429 diversity using LPIPS-MPD and TCE follow-
 430 ing prior work Kim et al. (2025). As shown
 431 on the right, BranchGRPO remains very close
 432 to DanceGRPO across branching schedules, in-
 433 dicating that sample diversity is essentially un-
 434 changed.
 435

436
 437 Table 3: Prompt-conditioned diversity under
 438 different branching schedules (new).
 439
 440

Method	LPIPS-MPD ↑	TCE ↑
DanceGRPO	0.723	4.45
BranchGRPO (0,2,4,8)	0.719	4.44
BranchGRPO (0,3,6,9)	0.713	4.42
BranchGRPO (0,4,8,12)	0.704	4.39

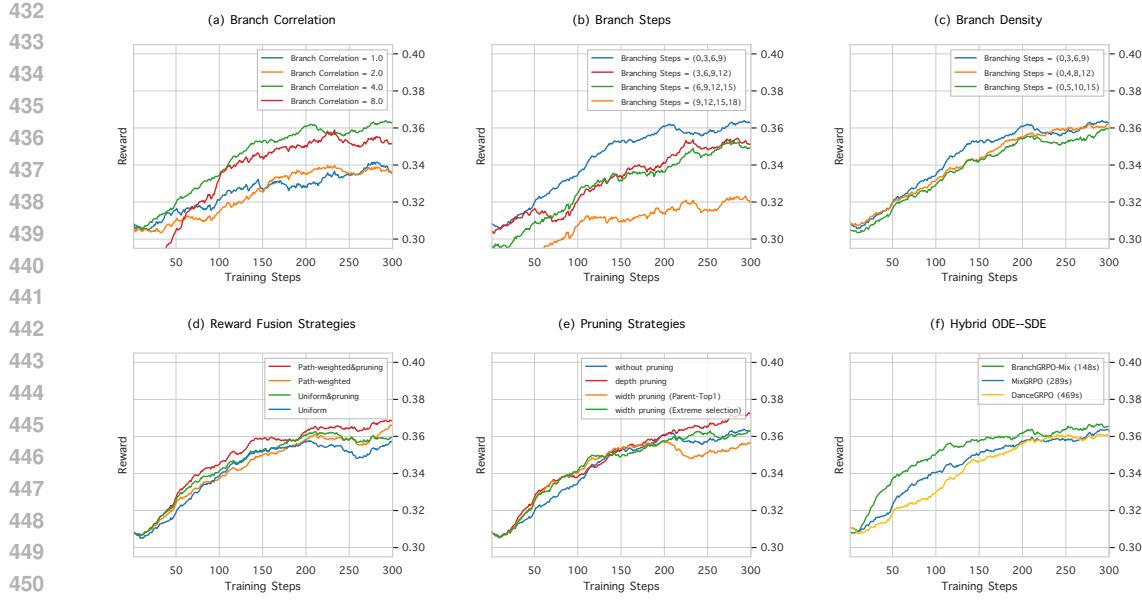


Figure 6: Ablation studies of BranchGRPO. Moderate branch correlation, early and denser splits improve reward growth; path-weighted fusion enhances stability; depth pruning achieves the best final reward; and the hybrid ODE–SDE provides the fastest training speed while remaining stable.

Reward Fusion Strategies. Figure 6(d) compares uniform averaging ($\beta = 0$) with path-probability weighting ($\beta = 1$) under identical training settings. Uniform averaging shows higher variance and a clear late-stage plateau, whereas path-weighted fusion delivers consistently higher and more stable rewards throughout training. This empirically supports Sec. 3.3: uniform averaging is exploration-friendly but noisy, while path weighting aligns credit assignment with the behavior distribution and improves convergence at no extra cost.

Pruning Strategies. Figure 6(e) compares pruning methods applied *after* depth-wise normalization and *only during backpropagation*. For *depth pruning*, we adopt a sliding-window schedule over denoising steps, the window is initialized at the last split point, has a fixed size of 4, and shifts by one denoising step every 30 training iterations. GRPO losses and gradients in the active window are skipped, while forward sampling remains unchanged. This schedule yields the **best final reward** and reveals substantial redundancy at late timesteps. For *width pruning (Parent-Top1)*, we retain only the locally better child at each branch for gradient updates, effectively halving updates and producing the smoothest, lowest-variance curve, though with slightly lower final reward than depth pruning. *Width pruning (Extreme-b)* keeps both the globally best and worst b leaves, injecting stronger positive/negative signals and remaining competitive at the end, but with higher variance.

Hybrid ODE–SDE. To further explore depth pruning, inspired by MixGRPO (Li et al., 2025a), we design a *hybrid ODE–SDE schedule*: all branching steps are preserved as SDE, while a sliding window determines additional SDE steps, with the remaining updates replaced by ODE. Figure 6(f) shows that this scheme achieves the fastest speedups (148s vs. 289s for MixGRPO vs. 469s for DanceGRPO) while maintaining stable and fast reward growth.

4.5 SCALING WITH BRANCH

DanceGRPO scales poorly: one GRPO training step with 81 rollout samples takes over 3500s, whereas BranchGRPO achieves the same scale in only 680s, making large-scale scaling feasible. We investigate two settings: scaling the branch factor ($K=2, 3, 4$ yielding 16, 81, and 256 leaves) and scaling the number of branching steps (3, 4, 5 splits yielding 8, 16, and 32 leaves under $K=2$).

As shown in Figure 7, scaling along both dimensions leads to clear and substantial gains in reward growth and final performance. Larger branch factors and more branching steps consistently push the reward curves higher, with improvements becoming increasingly pronounced as the rollout tree

Figure 7: Impact of scaling branch rollouts in BranchGRPO. Larger branch factors (a) and more branching steps (b) consistently improve reward, following a clear scaling law.

Method	Group Size	GPU Hours↓	Reward↑
DanceGRPO	16	928	0.360
BranchGRPO	16	192	0.363
BranchGRPO	32	368	0.373
BranchGRPO	64	787	0.381
BranchGRPO	81	906	0.387
BranchGRPO	256	3072	0.404

Table 4: Here we use BranchGRPO-Mix. Under similar GPU-hours, BranchGRPO with group size 81 achieves a reward of 0.387, substantially outperforming DanceGRPO (0.360).

Figure 8: Video generation results on Wan2.1-1.3B. Left: qualitative frame comparisons across three settings. Right: reward curves showing faster convergence and higher final rewards with BranchGRPO compared to DanceGRPO.

expands. This demonstrates that BranchGRPO can effectively generate additional samples, making large-scale scaling both practical and beneficial without compromising stability.

4.6 VIDEO GENERATION RESULTS

We further evaluate BranchGRPO on video generation using Wan2.1-1.3B (Wan et al., 2025), with the Video-Align’s motion quality (Liu et al., 2025b) as reward.

As shown in Figure 8, the base model exhibits severe temporal flickering and deformation, while DanceGRPO improves consistency but still produces blurry details. BranchGRPO generates sharper and more coherent frames across time, and the reward curves demonstrate faster convergence and higher final rewards compared to DanceGRPO.

These results highlight that branching rollouts are particularly effective for video generation, where reward sparsity and temporal coherence are especially challenging. In practice, BranchGRPO also improves efficiency: each iteration takes only about 8 minutes, compared to 20 minutes for DanceGRPO. Additional visual examples are provided in the supplementary material.

5 CONCLUSION

We introduced **BranchGRPO**, a tree-structured GRPO paradigm that replaces sequential rollouts with prefix-sharing branching and depth-wise reward fusion, augmented by lightweight pruning for compute reallocation. Across image and video generation, BranchGRPO yields faster convergence, more stable training, and higher final alignment quality under matched budgets. These results establish structured branching as a practical, scalable path for RLHF in diffusion and flow models, and we further verify a scaling trend in which larger group sizes consistently improve performance.

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
This work focuses on improving optimization efficiency and stability for diffusion/flow-based generative models. Our experiments rely on publicly available prompt sets and reward models cited in the paper. No personally identifiable information, human subjects data, or sensitive attributes were collected or annotated by the authors. We followed the licenses and usage terms of all datasets and third-party models; when applicable, we restricted use to non-commercial research. Given that generative models may amplify biases in reward models or datasets, we report failure cases and ablations that probe stability and variance, and we avoid deploying the models in safety-critical settings. We will release code and configuration files to facilitate scrutiny and responsible reuse.550
551
REPRODUCIBILITY STATEMENT
552553
554
555
We release anonymized training and evaluation code, configuration files, and exact hyperparameters in the supplementary materials. All experiments can be reproduced using the provided scripts, seeds, and environment specifications.556
557
LLM USAGE
558559
560
561
562
An LLM was used *only for language polishing* of the manuscript (e.g., grammar, wording, and minor clarity edits). No experimental results were generated, modified, or selected by the LLM; all technical content, claims, ideas, and analyses are the authors' own. No confidential or non-public data were shared with the LLM. The authors take full responsibility for the final content.563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
597 gans. *arXiv preprint arXiv:1801.01401*, 2018.

598 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
599 models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

600 601 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

602 603 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
604 reinforcement learning from human preferences. *Advances in neural information processing sys-
605 tems*, 30, 2017.

606 607 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
608 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
609 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
2024.

610 611 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
612 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
613 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
36:79858–79885, 2023.

614 615 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
616 A kernel two-sample test. *The journal of machine learning research*, 13(1):723–773, 2012.

617 618 Xiaoxuan He, Siming Fu, Yuke Zhao, Wanli Li, Jian Yang, Dacheng Yin, Fengyun Rao, and
619 Bo Zhang. Tempflow-grpo: When timing matters for grpo in flow models. *arXiv preprint
arXiv:2508.04324*, 2025.

620 621 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
622 neural information processing systems*, 33:6840–6851, 2020.

623 624 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
625 reward over-optimization. *arXiv preprint arXiv:2501.05803*, 2025.

626 627 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
628 a-pic: An open dataset of user preferences for text-to-image generation. 2023.

629 630 Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, and Zhao Zhong. Mixgrpo:
631 Unlocking flow-based grpo efficiency with mixed ode-sde. *arXiv preprint arXiv:2507.21802*,
2025a.

632 633 Yizhi Li, Qingshui Gu, Zhoufutu Wen, Ziniu Li, Tianshun Xing, Shuyue Guo, Tianyu Zheng, Xin
634 Zhou, Xingwei Qu, Wangchunshu Zhou, et al. Treepo: Bridging the gap of policy optimiza-
635 tion and efficacy and inference efficiency with heuristic tree-based modeling. *arXiv preprint
arXiv:2508.17445*, 2025b.

636 637 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
638 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

639 640 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
641 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv
preprint arXiv:2505.05470*, 2025a.

642 643 Jie Liu, Gongye Liu, Jiajun Liang, Ziyang Yuan, Xiaokun Liu, Mingwu Zheng, Xiele Wu, Qiulin
644 Wang, Wenyu Qin, Menghan Xia, et al. Improving video generation with human feedback. *arXiv
preprint arXiv:2501.13918*, 2025b.

645 646 Runtao Liu, Haoyu Wu, Ziqiang Zheng, Chen Wei, Yingqing He, Renjie Pi, and Qifeng Chen.
647 Videodpo: Omni-preference alignment for video diffusion generation. In *Proceedings of the
Computer Vision and Pattern Recognition Conference*, pp. 8009–8019, 2025c.

648 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 649 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
 650

651 Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy opti-
 652 mization for gui agents with experience replay. *arXiv preprint arXiv:2505.16282*, 2025.
 653

654 Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, and Hiroki Furuta. Inference-time text-to-video
 655 alignment with diffusion latent beam search. *arXiv preprint arXiv:2501.19252*, 2025.
 656

656 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 657 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 658 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 659 27730–27744, 2022.
 660

660 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 661 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 662 models from natural language supervision. In *International conference on machine learning*, pp.
 663 8748–8763. PMLR, 2021.
 664

664 Rafael Raffailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 665 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 666 in neural information processing systems*, 36:53728–53741, 2023.
 667

668 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 669 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 670 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 671

671 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 672 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 673 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 674

675 Bram Wallace, Meihua Dang, Rafael Raffailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 676 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 677 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 678 and Pattern Recognition*, pp. 8228–8238, 2024.
 679

679 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 680 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 681 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 682 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 683 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 684 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 685 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 686 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 687 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
 688 *arXiv preprint arXiv:2503.20314*, 2025.
 689

689 Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and Jiaqi Wang. Unified reward model for multi-
 690 modal understanding and generation. *arXiv preprint arXiv:2503.05236*, 2025.
 691

691 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 692 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 693 image synthesis, 2023.
 694

695 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 696 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
 697 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 698 15903–15935, 2023.
 699

700 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 701 Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv
 preprint arXiv:2505.07818*, 2025.

APPENDIX

This appendix provides additional theoretical proofs, implementation details, and experimental results that complement the main paper. The contents are organized as follows:

- **Section A:** Hyperparameter settings used in all experiments.
- **Section B:** Theoretical analysis, including proofs for branch noise construction, reward fusion, and variance reduction.
- **Section C:** Additional experiments, including ablations, more text-to-image and image-to-video results. **Failure Cases:** Qualitative examples where BranchGRPO fails, highlighting current limitations.
- **Section D:** Discussion and future work.

A HYPERPARAMETER SETTINGS

Table 5 summarizes the detailed hyperparameter configuration used in our experiments. All hyperparameters are kept identical across all methods, including **DanceGRPO** and **MixGRPO**, to ensure a fair comparison. For depth pruning and hybrid-ODE-SDE, we follow the design of **MixGRPO** and adopt a sliding window of size 4, which shifts one step deeper every 30 iterations.

Table 5: Hyperparameter settings used in all experiments.

Parameter	Value	Parameter	Value
Random seed	42	Learning rate	1×10^{-5}
Train batch size	2	Weight decay	1×10^{-4}
SP size	1	Mixed precision	bfloat16
SP batch size	2	Grad. checkpointing	Enabled
Dataloader workers	4	Max grad norm	0.01
Grad. accum. steps	12	Warmup steps	0
Checkpoint steps	40	Use TF32	Yes
Resolution	720×720	Sampling steps	16
Eta	0.3	Sampler seed	1223627
Num. generations	12	Shift (branch offset)	3
Use group reward	Yes	Ignore last step	Yes
Clip range	1×10^{-4}	Adv. clip max	5.0
Use EMA	Yes	EMA decay	0.995
Init same noise	Yes		

Table 6: **Recommended default hyperparameter settings for BranchGRPO.** These values form a unified and robust configuration that works across all tasks (image/video) and backbones (Flux, SD3.5-M).

Component	Parameter	Default	Stable Range
Branching	Branch points	(0,3,6,9)	
	Branching factor	2	(2,3,4)
Noise Correlation	Correlation scale (s)	4.0	(3.0-5.0)
Reward Fusion	Temperature (β)	0	0 or 1
	Pruning type	depth pruning	depth or width pruning
Pruning	Depth window size	5	(0)
	Mix ratio	30%	

To further guide practitioners, we identify two optimal configurations based on resource priorities:

756

- 757 • **Scenario 1: Maximum Performance (Scaling Mode).**
758 If the goal is to push the upper bound of alignment performance, we recommend using
759 **BranchGRPO-Mix** and scaling the group size to $N = 81$ (e.g., Branch Factor $K = 3$,
760 Number of Branching Steps = 4).
761
 - 762 – **Benefit:** Due to the efficiency of BranchGRPO-Mix, this configuration maintains an
763 iteration time and total GPU-hour budget similar to standard DanceGRPO/FlowGRPO
764 (at $N = 16$).
 - 765 – **Outcome:** Under this similar compute budget, it yields **significant performance**
766 **gains** (HPS $0.360 \rightarrow 0.387$) by leveraging massive exploration that is computationally
767 prohibitive for sequential baselines.

768

- 769 • **Scenario 2: Balanced Efficiency & Quality (Universal Default).**
770 If the goal is to accelerate training while maintaining or slightly improving quality, we
771 recommend **BranchGRPO-DepthPruning** with the default settings in Table 6.
772
 - 773 – **Benefit:** It delivers a **$2.2 \times$ speedup** (314s vs. 698s per iteration) compared to the
774 baseline.
 - 775 – **Outcome:** It achieves strictly better alignment (HPS $0.360 \rightarrow 0.369$) without harming
776 the original model’s diversity or capacity.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **B THEORETICAL ANALYSIS**811 **B.1 BRANCH NOISE CONSTRUCTION AND BOUNDARY DISTRIBUTION PRESERVATION**812 We use a reverse-time grid $t_0 > t_1 > \dots > t_N$ so that $h_i = t_i - t_{i+1} > 0$.

813 Consider the reverse SDE discretized by Euler–Maruyama:

814
$$z_{i+1} = \mu_\theta(z_i, t_i) + g_i \eta_i, \quad \eta_i \sim \mathcal{N}(0, I), \quad g_i := g(t_i) \sqrt{h_i}. \quad (6)$$

815 At a split step $i \in \mathcal{B}$, we construct K branch noises as

816
$$\xi_b = \frac{\xi_0 + s \eta_b}{\sqrt{1 + s^2}}, \quad \xi_0, \eta_b \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I), \quad (7)$$

817 with fresh $(\xi_0, \{\eta_b\})$ drawn at each split step and no cross-time sharing. Then $\xi_b \sim \mathcal{N}(0, I)$ for each 818 b , and $\text{Cov}(\xi_b, \xi_{b'}) = \frac{1}{1+s^2} I$ for $b \neq b'$.

819 Each child branch then updates as

820
$$z_{i+1}^{(b)} = \mu_\theta(z_i, t_i) + g_i \xi_b. \quad (8)$$

821 **Lemma 1** (Single-step marginal preservation). *For any fixed parent z_i , we have*

822
$$z_{i+1}^{(b)} \stackrel{d}{=} \mu_\theta(z_i, t_i) + g_i \eta_i, \quad \eta_i \sim \mathcal{N}(0, I).$$

823 **Lemma 2** (Leaf marginal preservation). *Assuming independent noises across time steps and no 824 cross-time reuse of the shared component, conditioned on prefix $(z_0, \eta_0, \dots, \eta_{i-1})$, each branch 825 $z_N^{(b)}$ generated by the split rule has the same distribution as a baseline SDE sample z_N .*826 **Theorem 1** (Boundary distribution invariance). *Under the branching construction above, for any 827 set of split steps \mathcal{B} , each leaf $z_N^{(b)}$ has the same marginal law as a baseline SDE rollout. Hence, 828 branching does not alter the final generator distribution.*830 **B.2 REWARD FUSION: UNBIASEDNESS AND VARIANCE REDUCTION**831 Let $L(n)$ be the leaf set of a node n . Each leaf has reward $r_\ell = r(z_N^{(\ell)})$. Define the conditional 832 expected return

833
$$V(n) := \mathbb{E}[r(z_N) \mid n].$$

834 **Uniform fusion.**

835
$$\bar{r}(n) = \frac{1}{|L(n)|} \sum_{\ell \in L(n)} r_\ell. \quad (9)$$

836 Then

837
$$\mathbb{E}[\bar{r}(n) \mid n] = V(n), \quad \text{Var}(\bar{r}(n) \mid n) = \frac{\sigma^2(n)}{|L(n)|},$$

838 where $\sigma^2(n) = \text{Var}(r_\ell \mid n)$.839 **Path-probability weighted fusion.** If leaves are drawn from proposal $q(\ell \mid n)$ with weights

840
$$w_\ell = \frac{p_{\text{beh}}(\ell \mid n)}{q(\ell \mid n)},$$

841 then the IS estimator

842
$$\hat{r}_{\text{IS}}(n) = \frac{1}{|L(n)|} \sum_{\ell \in L(n)} w_\ell r_\ell$$

843 is unbiased: $\mathbb{E}[\hat{r}_{\text{IS}}(n) \mid n] = V(n)$. The self-normalized IS estimator

844
$$\hat{r}_{\text{SNIS}}(n) = \frac{\sum_\ell w_\ell r_\ell}{\sum_\ell w_\ell}$$

864 is consistent with variance $O(1/\text{ESS})$, where
 865

$$\text{ESS} = \frac{(\sum_\ell w_\ell)^2}{\sum_\ell w_\ell^2}.$$

869
 870 *Remark.* In practice (Eq. (4) in the main text), we adopt a softmax weighting $w_\ell \propto \exp(\beta s_\ell)$ based
 871 on path log-probabilities s_ℓ . This can be interpreted as a temperature-smoothed variant of SNIS,
 872 where β controls the sharpness of importance weights. Although no longer strictly unbiased, this
 873 form provides stable training and reduces the influence of low-probability noisy leaves.
 874

B.3 DEPTH-WISE BASELINE (CONTROL VARIATES)

876 For K siblings at depth i , let fused returns $\bar{r}^{(b)}$, and group mean $\bar{r}_i = \frac{1}{K} \sum_b \bar{r}^{(b)}$. Define
 877

$$A_i^{(b)} = \bar{r}^{(b)} - \bar{r}_i, \quad \sum_b A_i^{(b)} = 0. \quad (10)$$

880 Let $g_i^{(b)}(\theta) = \nabla_\theta \log p_\theta(\text{branch } b \text{ at depth } i)$. Then
 881

$$\widehat{\nabla J}_{\text{group}} = \frac{1}{K} \sum_{b=1}^K A_i^{(b)} g_i^{(b)}$$

886 is an unbiased gradient estimator with strictly smaller variance than $\widehat{\nabla J}_{\text{single}} = \frac{1}{K} \sum_b \bar{r}^{(b)} g_i^{(b)}$,
 887 unless $\text{Cov}(\bar{r}^{(b)}, g_i^{(b)}) = 0$.
 888

B.4 CONTINUOUS REWARDS AND CONCENTRATION

891 Assume r is L -Lipschitz and the SDE flow $\Psi_{i+1 \rightarrow N}$ is K_i -Lipschitz. Then
 892

$$|r(z_N^{(b)}) - r(z_N^{(b')})| \leq L K_i g_i \|\xi_b - \xi_{b'}\|.$$

894 Thus $r(z_N^{(b)})$ is sub-Gaussian with parameter $\mathcal{O}(L^2 K_i^2 g_i^2)$. Averaging over $|L(n)|$ leaves gives
 895

$$\Pr(|\bar{r}(n) - V(n)| \geq \varepsilon \mid n) \leq 2 \exp(-c \cdot |L(n)| \varepsilon^2 / (L^2 K_i^2 g_i^2)).$$

C ADDITIONAL EXPERIMENTS

C.1 MORE QUANTITATIVE RESULT

903 Table 7: Effect of applying BranchGRPO *only* to the rollout procedure in DiffusionNFT.

Method	Iter. Time(s)↓	GPU Hours↓	HPS-v2.1↑	PickScore↑
DiffusionNFT	159	706	0.331	23.80
DiffusionNFT + BranchGRPO (rollout only)	112	497	0.328	23.74

909 Table 8 reports more results.
 910

911 we conducted a small human A/B study (100 prompts, 5 annotators). As shown in Table 9, Branch-
 912 GRPO is preferred over DanceGRPO in **47%** of comparisons, consistent with its higher HPSv2.1
 913 score. This verifies that the observed improvements are reflected in actual human preference rather
 914 than reward-model.
 915
 916
 917

918
 919 Table 8: Ablation study of BranchGRPO under different design choices. Best and second-best per
 920 column are in **bold** and underline. All results are obtained under the same training setup as in
 921 Section 4.3.

Configuration	NFE $_{\pi_{\theta_{\text{old}}}}$	NFE $_{\pi_{\theta}}$	Iteration Time (s)↓	HPS-v2.1↑	Pick Score↑	Image Reward↑	CLIP Score↑
<i>Branch Density</i>							
(0, 3, 6, 9)	13.68	13.68	493	<u>0.363</u>	0.229	<u>1.603</u>	0.374
(0, 4, 8, 12)	11.56	11.56	416	0.359	0.229	1.594	0.374
(0, 5, 10, 15)	9.44	9.44	340	0.354	0.228	1.565	0.366
<i>Reward Fusion</i>							
Uniform Fusion	13.68	13.68	493	0.361	0.229	1.595	0.368
Path-Weighted Fusion	13.68	13.68	493	<u>0.363</u>	0.229	<u>1.603</u>	<u>0.374</u>
<i>Pruning Strategy</i>							
Width Pruning	13.68	8.625	<u>314</u>	0.364	0.231	<u>1.609</u>	0.374
Depth Pruning	13.68	8.625	314	0.369	0.235	1.625	0.381

934
 935 Table 9: Human preference evaluation on 100 prompts with 5 annotators.
 936

Method	Flux	DanceGRPO	BranchGRPO
User Study	19%	33%	48%

940
 941 Table 10: GenEval Result.
 942

Model	Overall ↑	Single Obj. ↑	Two Obj. ↑	Counting ↑	Colors ↑	Position ↑	GPU Hours ↓
SD3.5-M	0.63	0.98	0.78	0.50	0.81	0.24	-
FlowGRPO	0.86	0.99	0.95	0.89	0.88	0.83	2000
FlowGRPO	0.73	0.99	0.85	0.77	0.81	0.67	1000
BranchGRPO	0.89	0.99	0.96	0.90	0.89	0.85	1460

948
 949 Table 11: **BranchGRPO** on **Qwen-Image**. We report GPU-hours, per-iteration time, and HPS-
 950 v2.1.

Method	GPU Hours ↓	Iter. Time (s)↓	HPS-v2.1↑
Qwen-Image	—	—	0.263
+DanceGRPO	389	584	0.318
+BranchGRPO-deppru	184	276	0.321

956
 957 Table 12: CLIPScore analysis under HPS-only and multi-objective training. All HPS-only GRPO
 958 variants reduce prompt adherence; a simple multi-objective setup partially recovers CLIPScore
 959 while maintaining strong HPS.
 960

Method	Reward Model	HPSv2 (↑)	CLIP Score (↑)
Flux (Base Model)	-	0.313	0.405
DanceGRPO(tf=1.0)	HPS-v2.1 only	0.360	0.371
DanceGRPO(tf=0.6)	HPS-v2.1 only	0.353	0.375
BranchGRPO(0,3,6,9)	HPS-v2.1 only	0.363	0.369
BranchGRPO(0,4,8,12)	HPS-v2.1 only	0.359	0.371
BranchGRPO(0,5,10,15)	HPS-v2.1 only	0.354	0.376
DanceGRPO(tf=0.6)	HPS-v2.1 + CLIP Score	0.334	0.398
BranchGRPO(0,3,6,9)	HPS-v2.1 + CLIP Score	0.339	0.392

972 C.2 MORE TEXT2IMAGE RESULTS
973974
975 An anime man in flight uniform with hyper detailed digital artwork and an art style
976 inspired by Klimt, Nixe, Ian Sprigger, Wlop, and Krenz Cushart.
977

988 Flux

989 DanceGRPO

990 BranchGRPO(Ours)

991 A raccoon riding an oversized fox through a forest in a furry art anime still.
992

1003 Flux

1004 DanceGRPO

1005 BranchGRPO(Ours)

1006 Totem pole made out of cats.
1007

1019 Flux

1020 DanceGRPO

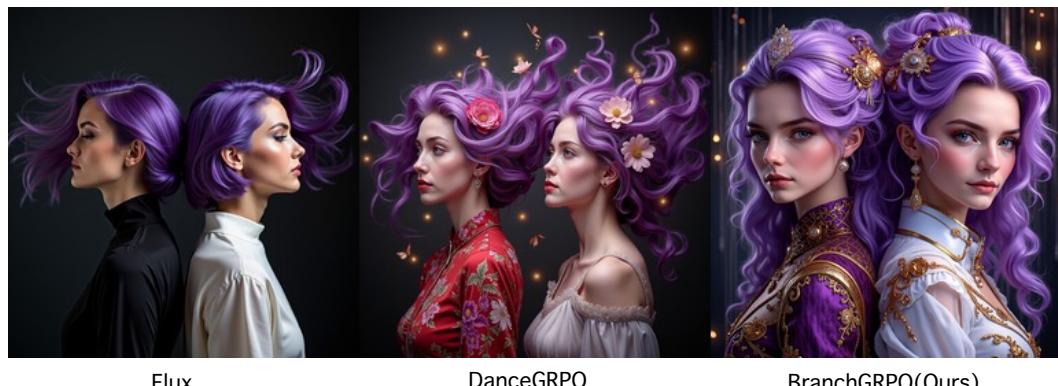
1021 BranchGRPO(Ours)

1022 Figure 9

1023
1024
1025

1026
1027
1028

A portrait of two women with purple hair flying in different directions against a dark background.



1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

Flux

DanceGRPO

BranchGRPO(Ours)

1040
1041
1042
1043

Flux

DanceGRPO

BranchGRPO(Ours)

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

A cute anime schoolgirl with a sad face submerged in dark pink and blue water, portrayed in an oil painting style.

Flux

DanceGRPO

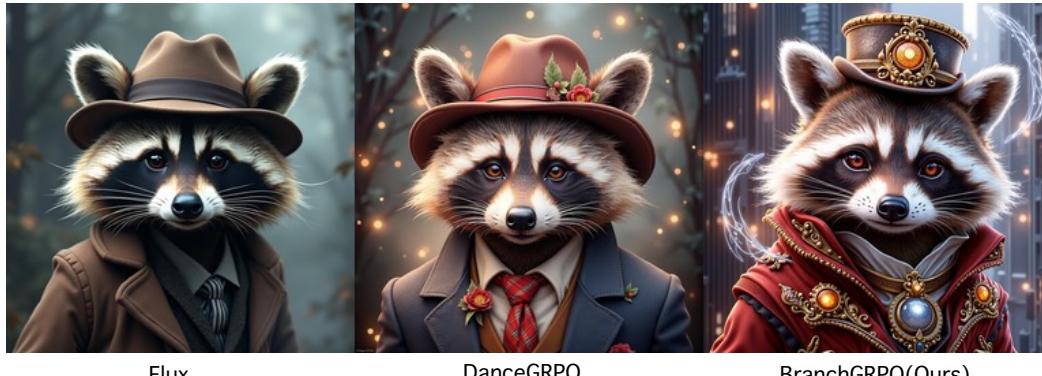
BranchGRPO(Ours)

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

Figure 10

1080
1081
1082

The image is of a raccoon wearing a Peaky Blinders hat, surrounded by swirling mist and rendered with fine detail.



1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

Flux

DanceGRPO

BranchGRPO(Ours)

1094
1095
1096

Portrait of an anime princess in white and golden clothes.

1109
1110
1111

Flux

DanceGRPO

BranchGRPO(Ours)

1112
1113

A cute little anthropomorphic Tropical fish knight wearing a cape and a crown in short, pale blue armor.

1124
1125
1126
1127

Flux

DanceGRPO

BranchGRPO(Ours)

1128
1129
1130
1131
1132
1133

Figure 11

1134

A white polar bear cub wearing sunglasses sits in a meadow with flowers.

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147 Flux

1148 DanceGRPO

1149 BranchGRPO(Ours)

1150

A photo of a mechanical angel woman with crystal wings, in the sci-fi style of Stefan Kostic, created by Stanley Lau and Artgerm.

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164 Flux

1165 DanceGRPO

1166 BranchGRPO(Ours)

1167

1168

1169 Close-up shot of a person running on a treadmill with worn running shoes under dramatic lighting and a comic book-style painting effect.

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180 Flux

1181 DanceGRPO

1182 BranchGRPO(Ours)

1183

1184

1185

1186

1187

Figure 12

1188
1189

Family assembling missile in living room.

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
12001201
1202

Flux

DanceGRPO

BranchGRPO(Ours)

1203
1204
1205
1206

The image depicts alien flowers and plants surrounded by visceral exoskeletal formations in front of mythical mountains with dramatic contrast lighting, created with surreal hyper detailing in a 3D render.

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
12171218
1219

Flux

DanceGRPO

BranchGRPO(Ours)

1220
1221
1222

A colorful tin toy robot runs a steam engine on a path near a beautiful flower meadow in the Swiss Alps with a mountain panorama in the background, captured in a long shot with motion blur and depth of field.

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
12331234
1235
1236
1237
1238
1239
1240
1241

Flux

DanceGRPO

BranchGRPO(Ours)

Figure 13

1242
1243 C.3 MORE IMAGE2VIDEO RESULTS1244 Table 13: **Video evaluation on vBench.** We report mean values on 500 samples.
1245

Method	Aesthetic Quality	Background Consistency	Dynamic Degree	Imaging Quality	Motion Smoothness	Iteration Time (s)
Base Model	0.5206	0.9588	0.5150	71.92	0.9784	-
DanceGRPO	0.5178	0.9647	0.4992	71.94	0.9899	1352
BranchGRPO	0.5190	0.9659	0.5000	71.94	0.9912	493

1254
1255
1256 Without GRPO1257
1258
1259 DanceGRPO1260
1261
1262 BranchGRPO1263
1264 (a) Case 11265
1266
1267 Without GRPO1271
1272
1273 DanceGRPO1274
1275
1276 BranchGRPO1277
1278
1279 (b) Case 21280
1281
1282 Without GRPO1284
1285
1286 DanceGRPO1287
1288
1289 BranchGRPO1290
1291
1292 (c) Case 3

(a) Case 4

(b) Case 5

1350

C.4 FAILURE CASES

1351

1352

1353 A colorful digital painting with a front view and anime-inspired vibes featuring a magical
1354 composition.

1366

Flux

DanceGRPO

BranchGRPO(Ours)

1367

1368

1369 A one-eyed dwarf wizard holding a flagon in clean cel shaded vector art.

1381

Flux

DanceGRPO

BranchGRPO(Ours)

1382

1383

1384

1385 Australian soldiers surrendering to an emu.

1397

Flux

DanceGRPO

BranchGRPO(Ours)

1398

1399

1400

1401

1402

1403

Figure 16: Failure case

1404

1405

Head and shoulders portrait of Jinx from League of Legends of Arcane animated Series.

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

Flux

DanceGRPO

BranchGRPO(Ours)

1417

1418

The image is of Pixel Art Huggy Wuggy performing a jumpscare.

1419

1420

Flux

DanceGRPO

BranchGRPO(Ours)

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

A 3D render of a volcanic icon on a rocky background, in isometric perspective and darkly lit.

1435

1436

Flux

DanceGRPO

BranchGRPO(Ours)

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Figure 17: Failure case

1458 D DISCUSSION AND FUTURE WORK

1459
1460 While our results demonstrate the stability and efficiency benefits of BranchGRPO, several open
1461 directions remain.

1462
1463 **Discussion.** BranchGRPO introduces structured branching and pruning into GRPO training,
1464 which we have shown to improve both efficiency and alignment. Our ablations suggest that the
1465 choice of branching schedule and pruning strategy can substantially affect reward stability, high-
1466 lighting the importance of principled tree design. Moreover, reward fusion provides stable gradients
1467 in practice, but its bias–variance tradeoff under different weighting schemes warrants further theo-
1468 retical analysis.

1469
1470 **Future Work.** Several promising directions extend beyond the present scope. (1) *Dynamic*
1471 *branching.* Instead of fixed hyperparameters, one can design adaptive policies that adjust branch fac-
1472 tor, correlation, or pruning windows on-the-fly based on sample difficulty or intermediate rewards,
1473 enabling more efficient rollouts. (2) *Beyond diffusion models.* The branching framework could
1474 naturally transfer to other generative paradigms, including diffusion-based LLMs and multimodal
1475 foundation models. (3) *Scaling to long-horizon video.* While initial experiments on WanX-1.3B
1476 I2V show benefits, more extensive validation on high-resolution, long-duration video generation
1477 tasks is required. (4) *Robotics and action generation.* Tree-structured rollouts are naturally suited to
1478 robotics, where intermediate states provide dense and verifiable rewards (e.g., task success signals).
1479 Extending BranchGRPO to robotic action generation and embodied video generation learning could
1480 open a promising direction for embodied AI.

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511