
Published at ICLR 2023 Workshop on Machine learning for materials

JAX-XC: EXCHANGE CORRELATION FUNCTIONALS
LIBRARY IN JAX

Kunhao Zheng
Sea AI Lab
zhengkunhao@sea.com

Min Lin
Sea AI Lab
linmin@sea.com

ABSTRACT

We present JAX-XC an open-source library that provides exchange-correlation
functionals in Jax. JAX-XC is built from LIBXC, its correctness has been verified
numerically against LIBXC. Thanks to Jax, JAX-XC is end-to-end differentiable,
computationally more efficient thanks to the vectorization provided by XLA, and
also portable on various accelerators. More importantly, as more research is fo-
cusing on machine learning for density functional theory, we hope that JAX-XC
could serve as a deep learning-friendly tool and a stepping-stone for researchers
working in the intersection of deep learning and density functional theory.

1 INTRODUCTION

With its predominant application on molecular and material, Kohn-Sham (KS) Density Functional
Theory (DFT) is the most widely-used method in computational quantum chemistry. Exchange-
correlation (XC) functional is at the core of KS-DFT: it includes information related to quantum
exchange and correlation effects. The exact XC functional can not be written analytically, and the
choice of different approximations is the key to the accuracy of the computation.

Researchers propose many explicit forms as approximations of the exact XC functional for practical
numerical implementation. Efforts have been made for decades; among them, there are famous
functionals like B88 (Becke, 1988), PW91 (Perdew et al., 1992), and PBE (Perdew et al., 1996)
proposed with parameters fit to experimental data. At the time of writing, over 700 XC functionals
are implemented in LIBXC (Marques et al., 2012; Lehtola et al., 2018), a software libary that collects
and numerically implements XC functionals. Implementations in LIBXC are ubiquitously used in
downstream software packages. Examples include but do not limit to PySCF (Sun et al., 2018;
2020), Psi4 (Smith et al., 2020) and BigDFT (Ratcliff et al., 2020).

Recently, in the vein of AI for science, DFT has attracted increasing attention from deep learning
(DL) community (Chen et al., 2020; Kalita et al., 2021; Li et al., 2023). Many research efforts have
been paid to learn either a black-box (Lei & Medford, 2019; Dick & Fernandez-Serra, 2020; Nagai
et al., 2020; Dick & Fernandez-Serra, 2021; Kasim & Vinko, 2021; Ryabov et al., 2020; Kirkpatrick
et al., 2021) or an analytical-form (Ma et al., 2022; Kovács et al., 2022) XC functional, in which
existing XC functionals serves as a sub-computation or as the baseline for benchmarking. In these
existing works, the researchers need to integrate DFT software and deep learning frameworks, for
example, LIBXC is not particularly targeting the deep learning community. It is implemented in
C, and although it does provide high-order derivatives of the functionals, it is still not straightfor-
ward to integrate with deep learning frameworks. This hinders end-to-end differentiability when
deep learning-based methods are explored for DFT. The same limitation applies to other quantum
chemistry libraries e.g. LIBCINT for integral computation. Extra efforts are needed to bridge this
gap.

To date, the two communities (DL & DFT) have not organized their efforts around toolings towards
a fully-unified paradigm to spur the research advance under deep learning framework. To address
this need and to provide a common resource for research groups working on the intersection of
DL and DFT, we present JAX-XC1, a flexible, end-to-end-differentiable and open-source library that

1https://github.com/sail-sg/jax xc

1

https://github.com/sail-sg/jax_xc

Published at ICLR 2023 Workshop on Machine learning for materials

import jax
import jax.numpy as jnp
import jax.scipy.stats.norm as norm
import pylibxc

a 3D gaussian density function
def rho(r):
return jnp.prod(norm.pdf(r))

a grid point in 3D
r = jnp.array([0.1, 0.2, 0.3])

func = pylibxc.LibXCFunctional("gga_c_pbe", 1)

manually construct derivative function
d_rho = jax.grad(rho)
sigma = lambda r: jnp.dot(d_rho(r), d_rho(r))
d_sigma = jax.grad(sigma)

manually prepare sigma
inp = {"rho": rho(r), "sigma": sigma(r)}
res = func.compute(inp)

get exc and its 1st order derivative
exc_r = res["zk"]
df_r = res["vrho"] * d_rho(r) + res["vsigma"] * d_sigma(r)

import jax
import jax.numpy as jnp
import jax.scipy.stats.norm as norm
import jax_xc

a 3D gaussian density function
def rho(r):

return jnp.prod(norm.pdf(r))

a grid point in 3D
r = jnp.array([0.1, 0.2, 0.3])

exc = jax_xc.gga_c_pbe(rho, polarized=False)
f = lambda r: rho(r) * exc(r)

get exc and its 1st order derivative
exc_r = exc(r)
df_r = jax.grad(f)(r)

Maple Source
Code

C codePython code

Jax code

Code Generation

Internal logics for
parameters

Pattern
Replacement

Point-wise
function εxcPoint-wise

function εxc

Function
transformation

n ↦ εxc

Jax AutoDiff
Functional Wrapper

Figure 1: Left: Computation of gga c pbe XC functionals and its derivative in LIBXC API. Middle:
Same computation in JAX-XC API. Right: Design of JAX-XC. Purple block is LIBXC module; green
block is JAX-XC module. Solid lines are in build time; dotted lines are in runtime.

provides XC functionals in Jax2 (Bradbury et al., 2018). JAX-XC is designed with the usecase of
deep learning in mind, easy to use and seamlessly integrable in modern deep learning framework.
JAX-XC leverages the powerful features in Jax to accelerate on various hardwares with calculation
faster than LIBXC, and unlock differentiability up to unlimited order. We intend JAX-XC to be a
deep learning-friendly tool in the field of AI for quantum chemistry and serve as a stepping-stone
for researchers to explore and build upon.

2 JAX-XC

We first introduce XC functionals and the implementation of LIBXC. We then detail the design of
JAX-XC, including the API and the engineering efforts.

2.1 XC FUNTIONALS AND IMPLEMENTATION OF LIBXC

XC functionals compute the XC energy given the electron density as input. It takes the general form
of Exc[ρ] =

∫
ρ(r)εxc(r)dr, where r is a position in 3D space, ρ is the particle density and εxc is

the XC energy density per unit particle. LIBXC stores and computes numerous forms of εxc. XC
functionals are divided into the following categories: local density approximation (LDA), general-
gradient approximation (GGA) and meta-GGA.

In LIBXC’s C code, εxc is implemented in a point-wise evaluation manner: it takes several scalars
(the evaluation of the density, etc.) as input and output a scalar. Implementation-wise, the differences
among categories are the input arguments of εxc: for LDA, εxc(r) = εxc(ρ(r)); for GGA, εxc(r) =
εxc(ρ(r), |∇ρ(r)|2); for Meta-GGA, εxc(r) = εxc(ρ(r), |∇ρ(r)|2,∇2ρ(r), 12

∑
|∇ψ(r)|2). ψ de-

notes the molecular orbitals. Therefore, users need to prepare the input, e.g. evaluation of the density
gradient at a certain position, during the computation. We omit the spin for presentation simplicity.

With the source code written in maple (Maplesoft, 2018), LIBXC leverages the code generation
feature to obtain C code. This comes with several advantages. The maple source code is purely
functional, more readable and closer to the mathematics formula presented in the corresponding
paper. It is easier to compute the derivative of the functionals w.r.t. input arguments using maple’s
symbolic derivative. However, the available derivative is up to a certain order depending on the
maple command in build time.

2Jax is a differentiable Python library for machine learning.

2

Published at ICLR 2023 Workshop on Machine learning for materials

2.2 LIBRARY DESIGN

We take a fresh depart from LIBXC’s design. Instead of preparing the point-wise evaluations on ρ(r),
∇ρ(r) etc, JAX-XC provides a functional API, where different types of functionals are unified under
the same umbrella of function transformation. JAX-XC defines the function transformation F̂ which
takes the density function ρ as input and output the function εxc = F̂(ρ). Function transformation is
natively implemented in Jax. This comes with several advantages over LIBXC. Users could evaluate
εxc at a variable size of grid points to obtain the value εxc(r), or get derivative of εxc up to unlimited
order. We compare the code using LIBXC and JAX-XC in Figure 1.

These features are achieved by modifying the maple source code to generate Python code instead
of C code. Thereafter, we use global pattern matching rules and wrappers to transform the Python
code into Jax-compatible program. Finally, we use Jax’s auto-differentiation feature to wrap the
gradient operation inside the API for different types of functionals. The evaluation of the function
is decoupled from the function transformation to enable a grid-point free feature.

2.3 IMPLEMENTATION DETAILS

Handling Parameters A large number of functionals have hyper-parameters. Hyper-parameters
customize the behavior of the functionals, e.g. switch between paramagnetism and ferromagnetism
mode, or modify the coefficients used inside the functionals. Notably, LIBXC preprocesses the
hyper-parameters before sending them to the main computation. While the main computation is
implemented in maple and easily convertible to Python, the preprocessing code is implemented in
C and differs for each functional. It is tedious to reimplement each of them in Python. Therefore,
we modify the original LIBXC code to expose and share the preprocessing code with JAX-XC. The
overall structure is shown in Figure 1(right). By reusing preprocessing code in LIBXC, we avoid
heavy manual efforts of translation and maintenance.

Build System We use bazel for automating the build and test of JAX-XC. bazel automates the
following steps, 1. clone LIBXC source code; 2. modify the source code to expose the preprocessing
logics; 3. generate Python code from maple source code; 4. wrap the core computation with clean
APIs and generate the documentation; 5. finally, package the library as a Python wheel.

Documentation3 We provide information on the user customizable parameters for each functional.
We also list the dependencies on other functionals when it comes to hybrid functionals. The contents
of the documentation are generated from LIBXC’s bibtex entries and parameter descriptions.

Coverage Our goal is to cover all functionals presented in LIBXC. However, there are still a dozen of
functionals not supported in JAX-XC (Appendix B). We leave special treatement to these functionals
as future work and we welcome contribution from the community.

License JAX-XC is released under MPL 2.0 license, aligned with LIBXC.

3 EXPERIMENTS

3.1 NUMERICAL ERROR

Generated from the same maple code, JAX-XC should theoretically perform exactly the same com-
putations as LIBXC. However, they could fail to align due to human error. There are also many
sources of non-determinism that could break bitwise equality in their results, i.e., the change of
operation order due to maple CodeGen’s non-determinism; the various optimizations performed by
XLA. Therefore, it is crucial to test numerically that the difference between JAX-XC and LIBXC is
within a tolerable range. With the same input values, we test the numerical differences of the out-
puts generated from JAX-XC and LIBXC. The input values (density, density gradient, etc.) are all
randomly sampled from 10−5 to 102. Since the C code is compiled with double precision, we also
enable float64 in JAX to perform an apple-to-apple comparison.

3The documentation is hosted on https://jax-xc.readthedocs.io/en/latest/

3

https://jax-xc.readthedocs.io/en/latest/

Published at ICLR 2023 Workshop on Machine learning for materials

gga_x_beefvdw
gga_k_m

eyer
gga_c_hcth_a
gga_k_exp4
lda_c_pk09
lda_c_1d_loos
m

gga_x_m
11_l

m
gga_c_rscan

lda_c_m
l1

m
gga_c_bc95

m
gga_c_scan

m
gga_c_rregtm

m
gga_c_r2scan

m
gga_c_rppscan

lda_c_2d_prm
m

gga_c_b88
gga_c_tca
gga_c_revtca
lda_c_rc04
gga_xc_th1

1e−14

1e−13

1e−12

1e−11

1e−10

Functional

Re
la

tiv
e

Er
ro

r

1e−5

1e−4

1e−3

1e−2

1e−1

1e+0

1e+1
jax-xc
pylibxc

Batch Size

Ru
nt

im
e

in
 s

ec
on

d

Figure 2: Left: Relative Error r between JAX-XC and LIBXC. The y-axis is log-scale. We present
the 20 functionals with the largest r in descending order. Right: Runtime of JAX-XC and LIBXC
across different batch size. The y-axis is log-scale.

We denote the output from LIBXC as y1, the result from JAX-XC as y2. The numerical error is tested
based on both the absolute tolerance a and relative tolerance r. The criterion of passing the test is:

|y2 − y1| ≤ a+ r · y1. (1)

There are 213 core routines shared by the 700 functionals (considering most of them are hybrid
functionals). All of them pass the test for a = r = 2 × 10−10, among which 184/213 of the core
routines attains a = r = 1 × 10−14. We present the functionals with the highest relative errors
in Figure 2 (left). We found that the order of multiplication and addition which maple generated
differently for C and Python accounts for the high numerical error in the figure. In fact, Lehtola &
Marques (2022) found a list of density functionals that are numerically ill-behaved, which overlaps
with the functionals we found with high numerical error, including gga x beefvdw4, gga k meyer,
lda c pk09 and mgga x m11 l.

3.2 SPEED BENCHMARK

We conduct our experiments on a 64-core machine with Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz. For a fair comparison, the experiments of LIBXC and JAX-XC are in a CPU-only environ-
ment. We exclude the compilation time of JAX-XC and enable float64. We use the Python binding
of LIBXC (PYLIBXC in Figure 2). In numerical integration εxc needs to be evaluated on a grid of
coordinates, therefore, we also evaluate across the different batch sizes of inputs.

Figure 2 (right) shows that across all batch sizes from 1 to 107. JAX-XC runs constantly faster than
PYLIBXC. The speed-up ranges from 3× to 10×, with a higher speed-up for larger batch sizes.
We hypothesize that when the batch size is large, the speed-up mainly comes from the vectorized
backend of Jax. Other optimizations performed in the XLA compiler could also contribute to this
advantage, e.g. instruction fusion, constant folding, etc. For small batch sizes from 1 to 103, we
observe a nearly constant runtime in PYLIBXC. With some further profiling, it turns out that the
main overhead comes from the dispatching code that invokes C from Python. This points to the
possibility of further optimization in PYLIBXC’s Python code.

4 CONCLUSION

We present JAX-XC, an end-to-end-differentiable XC functional library that translates existing XC
functionals in LIBXC to Jax. We conduct experiments to validate the correctness of implementation.
We also show a significant computation acceleration thanks to the vectorized backend of Jax. JAX-
XC enables full-differentiability when integrating existing XC functionals with machine learning.
We hope that JAX-XC could help accelerate the research at the junction of machine learning and
DFT.

4In Appendix D, we provide a detailed analysis for gga x beefvdw (Wellendorff et al., 2012), the functional
with the highest numerical error.

4

Published at ICLR 2023 Workshop on Machine learning for materials

ACKNOWLEDGMENTS

We thank Susi Lehtola for his answers to our questions concerning LIBXC. We thank Tianbo Li,
Zekun Shi, Zheyuan Hu and Giovanni Vignale for their time for discussion and their encouragement
along the development of JAX-XC. We also thank the infra team in Sea AI Lab for their support.

REFERENCES

Axel D Becke. Density-functional exchange-energy approximation with correct asymptotic behav-
ior. Physical review A, 38(6):3098, 1988.

Axel D Becke and Marc R Roussel. Exchange holes in inhomogeneous systems: A coordinate-space
model. Physical Review A, 39(8):3761, 1989.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Yixiao Chen, Linfeng Zhang, Han Wang, and Weinan E. Deepks: A comprehensive data-driven
approach toward chemically accurate density functional theory. Journal of Chemical Theory and
Computation, 17(1):170–181, 2020.

Sebastian Dick and Marivi Fernandez-Serra. Machine learning accurate exchange and correlation
functionals of the electronic density. Nature communications, 11(1):3509, 2020.

Sebastian Dick and Marivi Fernandez-Serra. Using differentiable programming to obtain an energy
and density-optimized exchange-correlation functional. arXiv preprint arXiv:2106.04481, 2021.

Bhupalee Kalita, Li Li, Ryan J McCarty, and Kieron Burke. Learning to approximate density func-
tionals. Accounts of Chemical Research, 54(4):818–826, 2021.

M. F. Kasim and S. M. Vinko. Learning the exchange-correlation functional from nature with fully
differentiable density functional theory. Phys. Rev. Lett., 127:126403, Sep 2021.

James Kirkpatrick, Brendan McMorrow, David HP Turban, Alexander L Gaunt, James S Spencer,
Alexander GDG Matthews, Annette Obika, Louis Thiry, Meire Fortunato, David Pfau, et al. Push-
ing the frontiers of density functionals by solving the fractional electron problem. Science, 374
(6573):1385–1389, 2021.

Péter Kovács, Fabien Tran, Peter Blaha, and Georg KH Madsen. What is the optimal mgga exchange
functional for solids? The Journal of Chemical Physics, 157(9):094110, 2022.

Susi Lehtola and Miguel AL Marques. Many recent density functionals are numerically ill-behaved.
The Journal of Chemical Physics, 157(17):174114, 2022.

Susi Lehtola, Conrad Steigemann, Micael JT Oliveira, and Miguel AL Marques. Recent develop-
ments in libxc—a comprehensive library of functionals for density functional theory. SoftwareX,
7:1–5, 2018.

Xiangyun Lei and Andrew J Medford. Design and analysis of machine learning exchange-
correlation functionals via rotationally invariant convolutional descriptors. Physical Review Ma-
terials, 3(6):063801, 2019.

Tianbo Li, Min Lin, Zheyuan Hu, Kunhao Zheng, Giovanni Vignale, Kenji Kawaguchi, A.H. Castro
Neto, Kostya S. Novoselov, and Shuicheng YAN. D4FT: A deep learning approach to kohn-sham
density functional theory. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=aBWnqqsuot7.

He Ma, Arunachalam Narayanaswamy, Patrick F. Riley, and Li Li. Evolving symbolic density
functionals. Science Advances, 8(36), 2022.

Maplesoft. Maple, 2018. URL https://www.maplesoft.com. Maplesoft, a division of Waterloo
Maple Inc.

5

http://github.com/google/jax
http://github.com/google/jax
https://openreview.net/forum?id=aBWnqqsuot7
https://www.maplesoft.com

Published at ICLR 2023 Workshop on Machine learning for materials

Miguel AL Marques, Micael JT Oliveira, and Tobias Burnus. Libxc: A library of exchange and
correlation functionals for density functional theory. Computer physics communications, 183
(10):2272–2281, 2012.

Ryo Nagai, Ryosuke Akashi, and Osamu Sugino. Completing density functional theory by machine
learning hidden messages from molecules. npj Computational Materials, 6(1):1–8, 2020.

John P Perdew, John A Chevary, Sy H Vosko, Koblar A Jackson, Mark R Pederson, Dig J Singh, and
Carlos Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient
approximation for exchange and correlation. Physical review B, 46(11):6671, 1992.

John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made
simple. Physical review letters, 77(18):3865, 1996.

Laura E. Ratcliff, William Dawson, Giuseppe Fisicaro, Damien Caliste, Stephan Mohr, Au-
gustin Degomme, Brice Videau, Viviana Cristiglio, Martina Stella, Marco D’Alessandro, Stefan
Goedecker, Takahito Nakajima, Thierry Deutsch, and Luigi Genovese. Flexibilities of wavelets as
a computational basis set for large-scale electronic structure calculations. The Journal of Chemi-
cal Physics, 152(19):194110, 2020.

Alexander Ryabov, Iskander Akhatov, and Petr Zhilyaev. Neural network interpolation of exchange-
correlation functional. Scientific reports, 10(1):1–7, 2020.

Daniel GA Smith, Lori A Burns, Andrew C Simmonett, Robert M Parrish, Matthew C Schieber,
Raimondas Galvelis, Peter Kraus, Holger Kruse, Roberto Di Remigio, Asem Alenaizan, et al.
Psi4 1.4: Open-source software for high-throughput quantum chemistry. The Journal of chemical
physics, 152(18):184108, 2020.

Qiming Sun, Timothy C Berkelbach, Nick S Blunt, George H Booth, Sheng Guo, Zhendong Li, Junzi
Liu, James D McClain, Elvira R Sayfutyarova, Sandeep Sharma, et al. Pyscf: the python-based
simulations of chemistry framework. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 8(1):e1340, 2018.

Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S Blunt, Nikolay A
Bogdanov, George H Booth, Jia Chen, Zhi-Hao Cui, et al. Recent developments in the pyscf
program package. The Journal of chemical physics, 153(2):024109, 2020.

Jess Wellendorff, Keld T Lundgaard, Andreas Møgelhøj, Vivien Petzold, David D Landis, Jens K
Nørskov, Thomas Bligaard, and Karsten W Jacobsen. Density functionals for surface science:
Exchange-correlation model development with bayesian error estimation. Physical Review B, 85
(23):235149, 2012.

6

Published at ICLR 2023 Workshop on Machine learning for materials

A LIBXC VERSION

JAX-XC is currently building upon LIBXC version 6.0.0: https://gitlab.com/libxc/libxc/-/
tree/6.0.0

B NOT AVAILABLE FUNCTIONALS

We present the list of not available functionals in the list below. Some are due to technical difficul-
ties. For example, the Becke-Roussel exchange functional (Becke & Roussel, 1989) does not have
an closed analytic form and its numerical solution in LIBXC is implemented in C. Others are due to
Jax’s lack of support. For example, Jax is extremely slow when calling exp1 function in batch5, by
which the functionals are affected could be supported once the issue is solved.

• Becke-Roussel functional (Becke & Roussel, 1989) not having a closed-form expression:

gga_x_fd_lb94
gga_x_fd_revlb94
gga_x_gg99
gga_x_kgg99
hyb_gga_xc_case21
hyb_mgga_xc_b94_hyb
hyb_mgga_xc_br3p86
mgga_c_b94
mgga_x_b00
mgga_x_bj06
mgga_x_br89
mgga_x_br89_1
mgga_x_mbr
mgga_x_mbrxc_bg
mgga_x_mbrxh_bg
mgga_x_mggac
mgga_x_rpp09
mgga_x_tb09

• Requiring explicit 1D integration:

lda_x_1d_exponential
lda_x_1d_soft

• JIT too long for exp1:

gga_x_wpbeh
gga_c_ft97

• vxc functional not comparable to LIBXC direct computation:

lda_xc_tih
gga_c_pbe_jrgx
gga_x_lb

C COMPARISON OF RUNTIME RATIO ACROSS BATCH SIZE

We present the distribution of runtime ratio of JAX-XC and LIBXC in Figure 3, computed as the
runtime of JAX-XC divided by the runtime of LIBXC. We exclude one datapoint mgga x 2d prhg07
from the runtime ratio visualization because it is an outlier due to Jax’s lack of support of lamberw

5https://github.com/google/jax/issues/13543

7

https://gitlab.com/libxc/libxc/-/tree/6.0.0
https://gitlab.com/libxc/libxc/-/tree/6.0.0
https://github.com/google/jax/issues/13543

Published at ICLR 2023 Workshop on Machine learning for materials

function6 and we use tensorflow probability.substrates.jax.math.lambertw instead. We
observe a 3x-5x speed down in this functional. We note that this datapoint is only excluded in the
visualization in Figure 3 but is taken into account in the calculation of average speedup in Figure 2.

0

0.2

0.4

0.6

0.8

1
Unpolarized

Polarized

Runtime Ratio of Jax-xc and Pylibxc across Batch Size

Batch Size

ja
x_

xc
 r

un
tim

e
/ p

yl
ib

xc
 r

un
tim

e

Figure 3: Distribution of runtime ratio across batch size.

D SOURCE OF NUMERICAL ERROR IN gga x beefvdw

gga x beefvdw is the functional with the largest numerical error when the outputs from JAX-XC
and LIBXC are compared (Figure 2, left). It involves computing the sum of a series of Lengendre
polynomial from order 0 to order 30, whose coefficients are obtained by fitting the experimental data
(c.f. Table III in Wellendorff et al. (2012)).

Here we layout the analysis of the core program (unpolarized version) from both libraries, generated
from the same maple source code but are displayed in Python and C respectively.

D.1 C CODE IN LIBXC

t2 = rho[0] / 0.2e1 <= p->dens_threshold;
t3 = M_CBRT3;
t4 = M_CBRTPI;
...
t78 = -0.69459735177638985466e0 * t45 + 0.52755620115589800943e0 * t47 -
0.38916037779196815969e0 * t44 - 0.44233229018433803622e3 * t50 -
0.61754786104528599731e3 * t52 + 0.37835396407252402359e4 * t54 -
0.72975787893717136018e1 * t56 + 0.30542034959315850168e2 * t58 +
0.86005730499279641299e2 * t60 - 0.5427777462637186032e4 * t64 +
0.4135586188014653875e4 * t63 * t66 - 0.29150193011493262292e5 * t70 +
0.40074935854432390114e5 * t72 + 0.90365611108522808258e5 * t74 -
0.16114215399846280595e6 * t76;
...
t102 = 0.11313514630621233134e1 - 0.13204466182182150467e6 * t79 +

6https://github.com/google/jax/issues/13680

8

https://github.com/google/jax/issues/13680

Published at ICLR 2023 Workshop on Machine learning for materials

0.2558947952623533461e6 * t81 - 0.32352403136049329184e6 * t83 +
0.18078200670879145336e6 * t85 - 0.12981481812794983922e6 * t87 +
0.56174007979372666951e5 * t89 + 0.27967048856303053872e6 * t91 -
0.10276426607863824397e5 * t93 - 0.16837084139014120539e6 * t63 -
0.281024018056846299e4 * t66 + 0.70504541869034010051e5 * t97 +
0.22748997850816485208e4 * t69 - 0.20148245175625047025e5 * t62 +
0.37534251004296526981e-1 * t41;
t103 = t78 + t102;
t107 = my_piecewise3(t2, 0, -0.3e1 / 0.8e1 * t6 * t19 * t103);
tzk0 = 0.2e1 * t107;

D.2 PYTHON CODE IN JAX-XC

t3 = jnp.cbrt(3)
...
t87 = 0.4135586188014653875e4 * t50 * t49 - 0.5427777462637186032e4 * t50 * t53 +
0.40074935854432390114e5 * t50 * t56 - 0.29150193011493262292e5 * t50 * t60 +
0.90365611108522808258e5 * t50 * t63 - 0.16114215399846280595e6 * t50 * t66 -
0.13204466182182150467e6 * t50 * t48 + 0.2558947952623533461e6 * t50 * t71 -
0.32352403136049329184e6 * t50 * t46 + 0.18078200670879145336e6 * t50 * t47 -
0.12981481812794983922e6 * t50 * t59 + 0.56174007979372666951e5 * t50 * t44 +
0.27967048856303053872e6 * t50 * t45 - 0.16837084139014120539e6 * t50 +
0.70504541869034010051e5 * t48 * t71
...
t103 = 0.11313514630621233134e1 - 0.10276426607863824397e5 * t48 * t66 -
0.281024018056846299e4 * t49 + 0.22748997850816485208e4 * t60 -
0.20148245175625047025e5 * t53 + 0.37835396407252402359e4 * t56 -
0.44233229018433803622e3 * t48 - 0.61754786104528599731e3 * t63 +
0.86005730499279641299e2 * t66 - 0.72975787893717136018e1 * t47 +
0.30542034959315850168e2 * t71 - 0.69459735177638985466 * t46 -
0.38916037779196815969 * t45 + 0.52755620115589800943 * t59 +
0.37534251004296526981e-1 * t42
t108 = jnp.where(r0 / 0.2e1 <= p.dens_threshold, 0,

-0.3e1 / 0.8e1 * t3 / t4 * t18 * t19 * (t87 + t103))
tzk0 = 0.2e1 * t108

From the generated code, we could see that in both libraries, maple’s code generation mechanism
splits the sum of the series of Lengendre polynomials from order 0 to order 30 into 2 temporary
variables (t78 and t102 in C code, t87 and t103 in Python code), which are later summed together.
However, the behavior of splitting the summation into 2 groups is not consistent in Python and C.

For example, if we give the input of density n = 1 and the square norm of the density gradi-
ent σ = |∇n · ∇n| = 1, the 2 temporary variables in Python will be 4950.3740984881515
and −4949.336203207162, while the other 2 variables in C will be 99989.78580149758
and −99988.74790621664. The summation of them gives 1.0378952809896873 and
1.0378952809405746, where there is already a numerical error of order 10−11.

Since both versions create temporary variables and do not fully reflect the analytic solution, more
analysis on what implementation is closer to the analytic solution is needed.

9

	Introduction
	jax-xc
	XC funtionals and Implementation of libxc
	Library Design
	Implementation Details

	Experiments
	Numerical Error
	Speed Benchmark

	Conclusion
	libxc Version
	Not Available Functionals
	Comparison of Runtime Ratio across Batch Size
	Source of Numerical Error in gga_x_beefvdw
	C Code in libxc
	Python Code in jax-xc

