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Abstract

The Private Aggregation of Teacher Ensembles
(PATE) framework is a versatile approach to
privacy-preserving machine learning. In PATE,
responses made based on different parts of sensi-
tive data are aggregated into a single response in a
privacy-preserving way. Recently, multiple works
applied PATE for tasks such as sequential text gen-
eration that are inherently diverse (or "hot"), with
multiple valid responses. These designs, however,
suffer from tension between diversity and privacy –
since diversity in the responses reduces agreement
which forces the aggregation to use smaller noise
scales and thus incur higher privacy loss. But
limiting diversity of the aggregate response is un-
desirable since in modern large language models,
the very knowledge we want to transfer is encap-
sulated in the response distribution. We propose
hot PATE that is tailored for the diverse setting
where responses are distributions. We formally
define preserving diversity and design an efficient
aggregation method that provably transfers the
diversity to the (randomized) aggregate response
while incurring no privacy penalty. The method
can be implemented using an API access to pro-
prietary models and used as a plug-in replacement
for the baseline “cold” PATE in existing tools. We
demonstrate empirically the potential of hot PATE
for an order of magnitude improvement in a task
of in-context learning via prompts.

1. Introduction
Generative AI models, such as large language models
(LLMs), are incredibly powerful tools that can be fine-tuned
for specific contexts, even without explicit supervision (Rad-
ford et al., 2019; Brown et al., 2020). Generative models
diverge from conventional machine learning models in that
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they support open ended, diverse tasks, where there are
multiple appropriate responses, and this very flexibility is
essential for much of their functionality. Diversity is typi-
cally tuned via a temperature parameter in the softmax, with
higher temperature yielding higher entropy (more diverse
responses). Furthermore, when evaluating the coverage or
extracting knowledge from a trained model, such as for dis-
tillation tasks, the conventional approach involves querying
the model on a prepared (sampled or curated) test set of
examples. However, with generative AI models, the knowl-
edge coverage on a specific domain is often encapsulated by
the output distribution itself to a general instruction as part
of a prompt to the model, and can be evaluated or retrieved
by sampling this distribution.

When we wish to pretrain or fine-tune models using sensitive
data such as medical records, incident reports, or email mes-
sages, privacy must be preserved. Specifically, we consider
the strong mathematical guarantees of differential privacy
(DP) (Dwork et al., 2006). An approach that achieves pri-
vacy by modifying the training process is DPSGD (Abadi
et al., 2016), where noise is added to clipped gradient up-
dates. DPSGD can also be applied with fine tuning (Yu
et al., 2022; Duan et al., 2023; Kurakin et al., 2024). An al-
ternative approach, that only relies on black box training and
use of models that are not privacy-preserving, is the Private
Aggregation of Teacher Ensembles (PATE) paradigm (Pa-
pernot et al., 2017; Bassily et al., 2018; Papernot et al.,
2018). PATE follows the “sample and aggregate” method of
Nissim et al. (2007). We describe the basic workflow which
we refer to here as cold PATE, of using an ensemble to label
a set of fresh examples X:

Cold PATE

1. Partition the dataset D into n parts D = D1 ⊔ · · · ⊔Dn.
For i ∈ [n], train a teacher model Mi on data Di.

2. For each example x ∈ X:

• For each teacher i ∈ [n], get label yi := Mi(x) ∈ V .
• Compute the frequency histogram c:

for j ∈ V , cj =
∑
i∈[n]

1{yi = j} . (1)

• DP aggregate the histogram c 7→ y to obtain a single
label y ∈ V (abort if no agreement). Output y.
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Hot PATE: Private Aggregation of Distributions for Diverse Tasks

Differential privacy is a stability propery of the output dis-
tribution to a change of a single data record. In the PATE
framework, the votes histogram of each example is stable
to a change of one record in D: At most one teacher, the
one trained on this record, is affected and thus may change
its vote. Therefore, at most two frequency counts cj may
change in the histogram, and each by at most 1. A noisy
selection of a label from the histogram, that hides this small
difference in the counts, is therefore privacy preserving.

The labels may be the end goal or the set of privacy-
preserving labeled examples {(x, y)} can be used to train a
student model. The limitations of cold PATE are that it was
originally designed for classification-like tasks, where each
example x has a single ground-truth label y ∈ V . Moreover,
there is a need for a source of unlabeled non-private training
examples to facilitate the knowledge transfer to the student.
This is unsatisfactory because generative AI models sup-
port tasks with responses that are diverse and open ended.
Moreover, knowledge is encapsulated in the diversity of the
response distribution and there is a promise of transferring
knowledge to the student in a more fluid way. We thus ask
the following question:

Can we design a version of PATE that is effective
for diverse and open-ended tasks and unleashes
more of the capabilities of generative models?

Application for in-context learning One motivation for
our study is the effectiveness of in-context learning via
prompts. A prompt is an engineered prefix with a task
that is given to the base model. Prompts can include spe-
cific instructions and/or a set of shots (scenario exemplars).
Prompts are appealing for multiple reasons: A small number
of shots (Liu et al., 2021) often outperform tailored trained
models (Zhou et al., 2022; Garg et al., 2023). Prompting is
efficient, as it is simply inference – there is no need for pa-
rameter updates. Finally, prompts only requires API access
to the model, which is important given the trend towards
proprietary models.

When our data is sensitive, we would like the end product to
be privacy-preserving. Concretely, consider the task of gen-
erating a representative set of synthetic privacy-preserving
data records from a set of sensitive data records. The sen-
sitive records may include components that are identifying
and components that are shared with many other records.
A privacy-preserving aggregation ensures that the synthetic
records do not include identifying information. Addition-
ally, it is essential to preserve diversity in order to ensure
coverage, that is, that our set of synthetic records is indeed
representative of the sensitive records. The synthetic records
that are generated can then be used to train a student model
that is not necessarily generative, fine-tune a generative

model (OpenAI, 2023), or construct a privacy-preserving
student prompt for downstream tasks. The latter allows for
harnessing the ability of generative models to generalize
from few shots.

We seek a PATE mechanism that supports the following.
Each teacher is assigned a disjoint subset of sensitive data
records. These data records are used to construct a prompt
that also includes an instruction of the form “generate a
representative data record given this example set of data
records.” Each teacher then has its own distribution on
responses. By repeating multiple times we can obtain dif-
ferent samples that are a representative set of shots. We
then hope to aggregate responses of different teachers in
a way that preserves both diversity and privacy. This de-
sign is appealing as there is little cost to scaling up the
number of teachers: Each teacher is simply a prompted
base model and there is no need for training or significant
storage. Prompts are inexpensive, the current OpenAI API
supports 105 context/output tokens for US$5-$10 (OpenAI,
2023a). The bottleneck to scaling up the number of teachers
is thus the amount of available sensitive data. Scaling up
is highly beneficial because generally with DP aggregation,
the number of queries we can support for a given privacy
budget is quadratic in the number of teachers.

Diversity-privacy tradeoff: An issue that arises when
applying cold PATE with high diversity is that utility rapidly
deteriorates with diversity. To see this, assume there are r
good responses with equal probabilities. Note that higher
r means more diversity. The n teachers votes would then
be split with ≈ n/r teacher votes per option. This lower
agreement means that in order to return any of the answers
we must use privacy noise of scale σ < n/r. This inverse
dependence of noise with r means the privacy loss must
increase with r. We can attempt to remedy this via some tie-
breaking (e.g., each teacher selects a response in the top-k
with the largest index). This does result in high agreement
but we lose the diversity in the output that is needed to fa-
cilitate a fluid knowledge transfer. All prior and concurrent
works we are aware of for privacy-preserving sequential text
generation or in-context learning via prompts (Tian et al.,
2022; Duan et al., 2023; Wu et al., 2023) either ignored this
issue or addressed it by reducing or limiting diversity (see
discussion in Section A). We ask the following:

Is the diversity-privacy tradeoff indeed inherent?

Overview of Contributions and Roadmap

We propose hot PATE, described in Section 2. The method
is suitable for auto-regressive models and diverse and open
ended tasks, where the appropriate response is a sample
from a distribution. With hot PATE, each teacher i ∈ [n]
at each step computes a “next token” distribution p(i) over
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Hot PATE: Private Aggregation of Distributions for Diverse Tasks

tokens V . These distributions are aggregated so that the
response token from the ensemble is sampled from that
aggregate distribution. The heart of our design is an aggre-
gation method that preserves privacy and critically also the
diversity of the teachers distributions. Our primary technical
contributions are mathematically formalizing this require-
ment and proposing aggregation methods where there is no
penalty with increased diversity. Hot Pate can be added in a
black-box manner to existing designs for in-context learning
via prompts to improve the utility privacy tradeoff.

Figure 1. Illustration of two sets of probability distributions, each
shown as a rectangle with the red portion representing the probability
of token j. The left set corresponds to high teachers’ support for low
probability q. The right set to low teachers’ support for high q. The
probability of token j in the average distribution is the same in both
cases.

In Section 3 we motivate and formalize a definition of ro-
bustly preserving diversity, which allows for knowledge
transfer that is compatible with limitations imposed by pri-
vacy. A natural diversity-preserving approach is for each
teacher i ∈ [n] to contribute a token yi sampled indepen-
dently from p(i). We refer to this as independent ensemble.
The resulting vote histogram is what is produced by cold
PATE (Papernot et al., 2017; 2018; Duan et al., 2023) when
applied in a diverse setting. The histogram can then be DP
aggregated to produce a response token. The privacy loss de-
pends on the frequency (count) of the response token. With
independent samples, this count is concentrated around the
average probability of the token across teachers. This prob-
ability is smaller when there is high diversity. Therefore,
independent ensembles as an intermediate step inherently
result in privacy guarantees that sharply deteriorate with the
diversity of teacher distributions. We argue that this higher
privacy noise may or may not be necessary, and this depends
on properties of the teacher distributions that are lost by in-
dependent ensembles. The frequency histograms produced
by independent ensembles are concentrated around the av-
erage of the teachers’ distributions. The issue, as depicted
in Figure 1, is that averaging loses a critical distinction be-
tween high teachers’ support with low probability q (which
we can hope to transfer in a privacy-preserving manner) and
low support with high q (which can not be transferred in a
privacy-preserving manner). Our definition of robust diver-
sity transfer makes this important refinement: A token is
required to be transferred to the aggregate only when there
is sufficient teachers’ support. Informally, for a robustness
parameter τ ∈ [n], there are two requirements:

• (transfer requirement) Any token that has probability
at least q > 0 (no matter how small) across c teachers
where c ≥ τ , is “transferred” in that it has probability
Ω(qc/n) in the aggregate distribution.

• (relevance requirement) We do not transfer irrelevant
tokens, that is, for any token j, its probability in the ag-
gregate distribution is not much higher than its average
probability in the teacher distributions.

As argued, independent ensembles lose the robustness signal.
In Section 4 we propose the method of ensemble coordina-
tion. A coordinated ensemble samples a shared randomness
and based on that, each teacher i contributes a token yi.
The marginal distribution of each yi is p(i), same as with
independent ensemble. But the difference is that teachers
votes are maximally positively correlated. The frequency cj
of token j has high spread and in particular can (roughly)
be Ω(τ) with probability Ω(q). This property facilitates DP
aggregation with no penalty for diversity. With coordinated
ensembles, two teachers with very diverse distributions that
have a small total variation distance produce the same token
with probability that depends on the distance. In particular,
when the distributions are equal (the distance is 0), the same
token would be produced.

In Section 5 we empirically demonstrate the properties
and benefits of ensemble coordination for a simple task
of in-context learning via prompts on the Llama 3 language
model (lla, 2024). We evaluate the coverage and diversity
of aggregate distributions formed by only transferring fre-
quency counts that exceed a threshold T . We observe an
order of magnitude improvement over the baseline of in-
dependent ensembles in terms of the value of T needed to
achieve a certain coverage and in terms of diversity of the
aggregate. Recall that larger T means that we can use more
noise (noise scale is proportional to T ) and thus incur lower
privacy loss.

DP aggregation methods for histograms that apply with in-
dependent ensembles, such as Papernot et al. (2017; 2018),
can be applied in an off-the-shelf manner with histograms
generated by coordinated ensembles. The primary gain of
hot PATE is in the utility privacy tradeoff. In Section D
we present DP aggregation schemes that are applied to fre-
quency histograms generated by coordinated ensembles and
return a token. We establish that the end-to-end process
preserves diversity in the sense that it satisfies our formal
requirements (Section 3). We distinguish between two ap-
plication scenarios of applications with homogeneous or
heterogeneous ensembles (see Figure 2). Homogeneous
ensembles are formed by randomly partitioning a sufficient
number of data records among teachers. The assumption
then is the same as with cold PATE – most teachers possess
the core knowledge we wish to transfer (see Figure 3 (A)).
In this case it suffices to require diversity preservation with
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Hot PATE: Private Aggregation of Distributions for Diverse Tasks

large support τ = Ω(n) and the aggregate we need is sim-
ply a (noisy) maximizer of the histogram. Heterogeneous
ensembles may arise when each teacher is an agent of one
or few users. In this case, we want to preserve diversity both
within and across teachers and for the latter it is necessary
to allow smaller groups of teachers to support each transfer,
that is, set a smaller τ (see Figure 3 (B)). In this case, a
diversity-preserving aggregate is a weighted sample from
the histogram.

In Sections E and F we further explore privacy analysis
methods that are data dependent and can increase the num-
ber of queries processed for a given privacy budget by orders
of magnitude. In particular, for token-by-token sequential
text generation there are many steps and the cost of naive DP
composition is prohibitive. What makes the approach feasi-
ble is that many of the steps have high agreement (similar
teacher distributions where coordinated ensembles generate
high agreement histograms). With data dependent analysis,
steps with high agreement (or no agreement) can be essen-
tially free. Moreover, with heterogeneous ensembles we can
charge teachers individually (instead of the whole ensemble)
and only for steps in which the teacher contributed to the
final token (Hassidim et al., 2020; Cohen & Lyu, 2023).

Figure 2. Ensemble types for Hot Pate. In homogeneous ensem-
bles each teacher gets a representative part of the data. In hetero-
geneous ensembles each teacher has the data of one or few users
(aka “privacy units”).

Figure 3. Illustrating diversity within teachers, that stems from
semantic similarity or knowledge encapsulated in the base
model or few exemplars. In this case, coordinated ensembles
form high agreement and a higher τ suffices. Diversity across
teachers, stems from data that is available only to few teachers.
Coordinated ensembles reflect it and require lower τ .

2. PATE for Sequential Text Generation
We use the term tokens for elements of the input and re-
sponse strings. We denote the vocabulary of tokens by V .
For an input context (prompt) T ∈ V ∗, a response sequence
R is generated sequentially token by token. Specifically,
the next token at each step, is sampled from a probability
distribution over V that depends on the current context (con-
catenation of the prompt and response prefix) T · R. The
probabilities are computed from weights (logits) (wj)j∈V

produced at inference by the model and a temperature pa-
rameter t > 0, using a softmax function:

pj :=
ewj/t∑
i∈V ewi/t

.

In low temperatures, the highest weight token argmaxj wj

has probability close to 1. As we increase the temperature,
the probability distribution flattens with similarly-weighted
tokens having similar probabilities. Cold temperature is
appropriate for classification-like tasks with one correct
response and hot temperature is appropriate for diverse tasks.
We therefore refer to the basic PATE as cold PATE and to
our proposed method that is tailored for diversity as hot
PATE.

Figure 4. Sequential text generation with diversity

PATE for sequential text generation is illustrated in Figure 4.
The data D is partitioned to disjoint parts Di (i ∈ [n]).
A prompt Ti is constructed from data part Di. We then
generate a sanitized response sequence R of tokens. We
initialize R← {} and proceed sequentially in lockstep, by
repeating the following:

1. For i ∈ [n]: Let p(i) be the output distribution over V when
querying the model with the prompt Ti<instruction
to complete prefix>R.

2. Apply a privacy-and-diversity preserving randomized aggre-
gationM((p(i))i∈[n]) 7→ y, where y ∈ V .

3. Concatenate R← R · y.

This open-ended design can be used with an instruction to
generate a student prompt or representative synthetic shots.
This aligns with the demonstrated and evolving capabili-
ties of contemporary large language models and prompt
engineering. Such instructions may generate diverse re-
sponses and the objective is that what is transferred, which
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is captured by the aggregate distribution M((p(i))i∈[n]),
preserves the diversity present in the teacher distributions
(p(i))i∈[n]. The main difference between the baseline cold
PATE and our proposed hot PATE is in the aggregationM
in step (2). We first describe the aggregation with cold
PATE (Duan et al., 2023) and present our aggregation mech-
anism for hot PATE in subsequent sections.

2.1. Cold PATE: Independent Ensemble

Each teacher i ∈ [n] samples independently yi ∼ p(i). The
frequency histogram (cj)j∈V is computed as in (1).1 The
DP aggregation mechanism adds noise to each cj to obtain
a privacy-preserving sanitized histogram (c̃j)j∈V . We then
select a token. A baseline meta-method, NoisyArgMax
select the maximizer argmaxj c̃j (Duan et al., 2023). The
privacy cost of this aggregation inversely depends on the
noise scale σ,2 which for utility, must satisfy σ ≪ maxj cj .

When the distributions are more diverse, maxj cj is smaller
so for utility we must use a smaller σ. Moreover,
argmaxj c̃j is not diversity preserving: If the most frequent
token is j and we have a token h with frequency ch = cj/2,
we still want to select h with probability that is 1/2 of that
of token j, that is, select a weighted sample from the his-
togram. To do this in a privacy-preserving way we must
use an even smaller noise scale that depends on the smallest
counts that we aim to transfer.

3. Diversity-Preserving Aggregation
Diversity and privacy appear to be conflicting in that DP
in its essence requires that the output token is supported
by sufficiently many teachers. But to preserve diversity we
need to also transfer tokens that have low probability in the
teacher distributions to the aggregate distribution. The most
natural candidate for an aggregate distribution that preserves
diversity is the average teacher distribution 1

n

∑
i∈[n] p

(i),
which is essentially what independent ensembles use. The
caveat is the issue pointed out in the introduction (see Fig-
ure 1): It does not distinguish between tokens that are in
the support of the distributions of very few teachers with
high probability and those that are in the support of many
teachers, with low probability. The privacy loss with inde-
pendent ensembles (cold PATE) depends, in both cases, on
the lowest average values we wish transferred. We propose

1Alternatively, instead of sampling, we can use the expected
values cj :=

∑
i p

(i)
j . The values cj are a scaled by n average of

teacher distributions. The histogram ((cj) has the same privacy
properties as an independent sampled histogram (cj), since the
impact of a data point on the ℓ1 norm is bounded by 1. Additionally,
with independent ensemble, cj is anyhow concentrated around cj
so the respective noisy counts are close c̃j ≈ c̃j .

2Our discussion applies to all mechanisms of this form, see
review in Section D of particular noise distributions.

a more nuanced requirement of preserving diversity that
makes this distinction and is parametrized by a robustness
parameter τ , that corresponds to the number of supporting
teachers. We then propose privacy preserving mechanisms
that preserve diversity with privacy loss that depends only
on τ , regardless of how diverse the teacher distributions are.
Definition 1 (Diversity-preserving aggregation of distribu-
tions). Let f(p(i))i∈[n]) 7→ P map from n probability dis-
tributions over V to a probability distribution over V ∪{⊥}.
We say that f is diversity-preserving with τ ∈ N, β ∈ (0, 1],
γ ≥ 1 if for any input and j ∈ V

1. For all q ∈ [0, 1],

(cj,q :=
∑
i∈n

1{p(i)j ≥ q}) ≥ τ =⇒ Pj ≥ β · cj,q
n

q .

2. Pj ≤ γ 1
n

∑
i∈[n] p

(i)
j .

The first property is that probability q across enough (τ )
teachers, no matter how small is q, is transferred to the
aggregate distribution. The second ensures that we do not
output irrelevant tokens.

Requirements are stricter (and can be harder to satisfy) when
β and γ are closer to 1 and when τ is smaller. A setting of
τ = 1 and β = γ = 1 allows only for the average distribu-
tion to be the aggregate. A larger τ increases robustness in
that more teachers must support the transfer.
Remark 1 (failures). It is necessary to allow for ⊥ (failure)
in the support of the aggregate distribution when τ > 1.
For example, when the prompt instruction ask for a patient
ID, and assuming no generalization, the teacher distribu-
tions have disjoint supports and no token can be returned.
Failures in the generation can be addressed by: (i) Repeat-
ing the step with different shared randomness (ii) sample a
token from a non-private default prompt or model, or (iii)
redesign the prompt instruction.
Remark 2 (Setting of τ ). Homogeneous ensembles occur
when data is randomly partitioned so that most teachers
receive a representative part and possess the knowledge
we wish to transfer. The goal is to transfer the parts of the
distributions that are common to most teachers and τ > n/2
suffices. In heterogeneous ensembles, each teacher might
have data from one or very few “users.” This arises when
each teacher has small capacity (prompts currently have
limited size of 8k-64k tokens (OpenAI, 2023b)) or when by
design each teacher is an agent of a single user. The goal
here is to transfer parts of the distribution that are common
to smaller subgroups of teachers and set τ ≪ n.

4. Ensemble coordination
We propose ensemble coordination and establish that it
facilitates privacy and diversity preserving aggregation. As
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Algorithm 1: CoordinatedSamples
Input: Teacher distributions (p(i))i∈[n]

foreach token j ∈ V do sample i.i.d. uj ∼ Exp[1] // Sample

shared randomness ρ = (uj)j∈V

foreach teacher i do // Compute coordinated samples

(yi)i∈[n]

yi ← argmaxj
p
(i)
j

uj
// bottom-k sampling transform

foreach token j ∈ V do // Compute frequencies

cj ←
∑

i∈[n] 1{yi = j}
return (cj)j∈V , ρ = (uj)j // Histogram of frequencies

with independent ensembles, for n probability distributions
over V the ensemble produces a histogram (cj)j∈V over
V with total count

∑
j∈V cj = n. The sampling of c by

a coordinated ensemble is described in Algorithm 1. The
algorithm samples shared randomness ρ := (uj)j∈V . Each
teacher i ∈ [n] then contributes a single token yi ∈ V that
is a function of its distribution p(i) and ρ. The frequencies
cj are computed as in (1).

The sampling method in ensemble coordination is a classic
technique called coordinated sampling. It was first intro-
duced in statistics works in order to obtain samples that
are stable under distribution shifts (Kish & Scott, 1971;
Brewer et al., 1972; Saavedra, 1995; Rosén, 1997; Ohlsson,
2000) and in computer science works for computational
efficiency via sampling-based sketches and a form of Local-
ity Sensitive Hashing (LSH) (Cohen, 1994; 1997; Broder,
2000; Indyk & Motwani, 1998; Haas, 2011). Its recent ap-
plications include private learning (Ghazi et al., 2021) and
speculative decoding (Leviathan et al., 2023).

4.1. Properties of coordinated histograms

Let (p(i))i∈[n] be probability distributions over V and
let Ycoo and Yind be the respective distributions of votes
(yi)i∈[n] generated by a coordinated or independent ensem-
ble with teacher distributions (p(i))i∈[n]. Let H(Ycoo) and
H(Yind) be the respective distributions of histograms.

For each token j, its expected frequency, over the sampling
of histograms, is the same for coordinated and independent
ensembles:

Claim 1 (Expected token frequency).

∀j ∈ V, Ec∼H(Ycoo)[cj ] = Ec∼H(Yind)[cj ] =
∑
i

p
(i)
j .

(2)

Proof. The marginal distribution of yi for teacher i is p(i)

with both independent and coordinated ensembles and thus
the claim follows from linearity of expectation.

In a coordinated ensemble, votes of different teachers are

much more likely to agree than in an independent ensemble
(see Section B for a proof):
Claim 2 (Agreement probability). For teachers i, k ∈ [n]
and token j ∈ V , the probability Pry∼Ycoo [yi = yk = j]
that both samples agree on token j is

min{p(i)j , p
(k)
j }∑

j max{p(i)j , p
(k)
j }

∈
[
1

2
, 1

]
·min{p(i)j , p

(k)
j } .

Pr
y∼Ycoo

[yi = yk = j] ≥ Pr
y∼Yind

[yi = yk = j] = p
(i)
j · p

(k)
j ,

with equality possible only when max{p(i)j , p
(k)
j } = 1.

The key feature of coordinated histograms is that we can
generate a sample from a diversity-preserving aggregate
distribution as in Definition 1 by exclusively considering to-
kens that appear with frequency at least τ/2 in the histogram
(see Section B for a proof):

Theorem 1 (Utility of Coordinated Ensembles). We can
sample from an aggregate distribution that satisfies Defini-
tion 1 with parameters τ , β = 0.34 and γ = 2 by sampling
a coordinated histogram c ∼ H(Ycoo) and only considering
tokens j with cj ≥ τ/2.

4.2. Privacy properties

With both independent and coordinated ensembles, we ag-
gregate the histogram in a privacy-preserving way to obtain
one token. The distribution of the histograms produced
by these ensemble types is very different. But the privacy
properties in terms of the divergence between neighboring
datasets are identical and immediate:

Observation 1. For every fixture of the shared randomness
ρ, changing one of the distributions p(i) given as input
to Algorithm 1 changes at most one item of the resulting
histogram. That is, letting H and H ′ denote the resulting
histograms before and after the modification, we have that
H,H ′ are at Hamming distance 2 (viewed as vectors in
N|V |).

The following corollary is immediate from Observation 1.

Corollary 1. Let A be an algorithm whose input is
a histogram H ∈ N|V |, such that for any two neigh-
boring histograms H,H ′ (differing by at most one
item) it holds that A(H) ≈(ε,δ) A(H ′). Then the
composed algorithm A (CoordinatedSamples(·)) is
(ε, δ)-differentially private.3

Therefore, we can apply off-the-shelf the same DP aggre-
gation schemes we would use with independent ensembles
(see Section 2.1) to coordinated ensembles. The benefit

3This corollary holds for all variants of differential privacy, and
is written here with (ε, δ)-DP for concreteness.
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of coordinated ensembles, per Theorem 1, is a much more
favorable utility privacy trade-off: It suffices to set the pri-
vacy noise scale to ∝ τ regardless of diversity, whereas
with independent ensembles we must scale the noise down
with diversity to obtain utility. This benefit broadly holds
with any DP histogram sanitizing method4 that selects from
tokens with count τ/2 whereas tokens with low or zero
counts are filtered out, including the NoisyArgMax meth-
ods used with cold PATE (Papernot et al., 2017; 2018). As
mentioned in Section 2.1, the selection of a token from a
sanitized histogram can be NoisyArgMax for homoge-
neous ensembles or a weighted sample for heterogeneous
ensembles (Remark 2) – see details in Section D. Simula-
tion results with a particular (ε, δ)-DP analysis method are
reported in Section E.

4.3. Implementation in language models

Coordination can be implemented preferably with, but also
without, an enhanced API access to a proprietary base
model: (i) Model-side: the shared randomness ρ is provided
as input along with each query prompt and the response
token is sampled using ρ. (ii) Application-side: API returns
the full distribution and sampling done in the application
(iii) No API enhancements: we can approximate the distri-
bution by repeated sampling with the same prompt. This
impacts computation since the number of samples required
increases with diversity but does not impact privacy. Our
demonstration in Section 5 with a public model (AI@Meta,
2024) uses the full distribution.

5. Empirical demonstration
We demonstrate the benefits of coordinated ensembles (hot
PATE) compared with the baseline of independent ensem-
bles (cold PATE). For clarity and simplicity, we designed
our demo so that it generates a single token. Sequential text
generation performs multiple such steps. We use the Meta
Llama 3 8B parameter open source language model (lla,
2024; AI@Meta, 2024).

Generating Prompts: We generated for each experiment
n = 104 text prompts (teachers) of the following form

On planet Z, some numbers are
edible. <name> from planet Z eats
the following numbers for breakfast:
<random permutation of C ∪ {<private number>} >
Give me an example breakfast number
in planet Z. Respond with just the
number.

4The noise scale is ∝ τ but DP methods require an additional
factor of log(|V |) (due to a union bound over the support V ) or
log(1/δ) (with approximate DP). This applies also with indepen-
dent ensembles.

The set C is a fixed subset of size |C| = k of the set N999
100 =

{100, . . . , 999} of the 900 3-digit numbers. We selected the set C
uniformly at random. The strings <name> and <private number>
∼ U [N999

100 \C] were generated separately for each prompt i ∈ [n].
For our purposes, the set C is the information we want transferred
whereas the prompt-specific <name> and <private number> and
the ordering of C in the prompt are considered sensitive. Each
prompt is designed to have k + 1 correct answers. We report
results with k ∈ {20, 100}. For each prompt i ∈ [n] we retrieved
the probability distribution p(i) over tokens V of the next-token
response. Llama 3 uses a vocabulary V of 128k tokens and 3-digit
numbers are encoded as single tokens. The generation took a
few minutes on a single A100 GPU. The distributions the model
generated exhibited biases towards certain numbers and high vari-
ation. The probability of returning a 3-digit number was 0.995
but the model generalized and returned with 25% probability
numbers outside the input set. Note that our aim is to transfer
what the model does (including the biases and generalizing), also
when it differs from the original intent of the prompt author. See
Section C.1 for further details.

Sampling vote histograms We sampled r = 103 vote his-
tograms (ch)rh=1 from each of coordinated and independent en-
sembles. Each histogram has total count of n = 104, since each
teacher contributes one token. We use the notation chj for the
frequency (count) of token j in the hth histogram (h ∈ [r]).

Figures 9 and 10 visualize the average probability 1
n

∑
i∈[n] p

(i)
j

of each token j ∈ N999
100 across teacher distributions. The figure

also shows the average frequency 1
r

∑r
h=1 c

h
j over the r = 103

samples from each of independent and coordinated ensembles.
This demonstrates the property (see Claim 1) that the expected
number of votes for each token is the same for the two ensemble
types and corresponds to the average distribution. The qualitative
difference between coordinated and independent ensembles (see
Claim 2) is visualized in Figure 11 by zooming on individual sam-
pled histograms. The figure shows one sampled histogram with
independent sampling and two sampled histograms with coordi-
nated sampling. With independent sampling, frequency counts of
each token j are concentrated close to the expectation

∑
i p

(i)
j and

are similar across different samples and to the averages shown in
Figures 9 and 10. With coordinated samples there is high variabil-
ity between samples and it is possible for the frequency of a token
to far exceed

∑
i p

i
j .

Utility Evaluation A token j in sample h can be reported in a
privacy-preserving way only when its frequency exceeds the scale
of the privacy noise chj > T . We evaluate utility of coordinated
and independent ensemble types by considering (i) coverage for
threshold T : fraction of the votes that appear with token frequency
at least T and (ii) diversity for coverage: The number of distinct
tokens that are appear with high frequency.

Figure 5 (left) shows Eh[|{j ∈ V | chj ≥ T}|], the average number
of tokens per sample (histogram) that have frequency above T , for
varying T . Observe that with independent samples, the maximum
frequency maxh,j∈V chj (over histograms and tokens) corresponds
to the maximum token average probability: for k = 20 it is 0.14n
and for k = 100 it is 0.03n. With coordinated ensembles, the
majority of samples contained a token with frequency above 0.25n
(that is much higher than the maximum token average probability).
Figure 5 (middle) reports the fraction of the votes (over samples
and tokens) that are in frequencies that exceed T , for varying
T . We observe that coordinated ensembles cover many more

7
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Figure 5. Top: Average number of tokens per sample with fre-
quency filter ≥ T . Middle: fraction of votes in frequency ≥ T .
Bottom: Total Variation Distance between filtered and average
distribution with filter ≥ T . Left k = 20 right k = 100.

votes for a given T than independent ensembles. Additionally,
we observe that the coverage corresponds to the T/n-robust part
of the distribution shown in Figure 8, that is, it corresponds to
what we can hope to transfer (see Theorem 1 and Section C.2).
For k = 100, 20% of the votes are covered with T = 2000
with coordinated sampling but require T ≤ 250 with independent
sampling (factor ×8). For k = 20, 40% of votes are covered with
T = 4000 with coordinated sampling but this coverage requires
T ≤ 1000 with independent sampling (factor ×4). Independent
samples have 0% coverage with T ≥ 1500 for k = 20 and
with T ≥ 400 for k = 100. To summarize, we observe that
independent ensembles have 0% coverage when T exceeds the
maximum average frequency whereas coordinated ensembles are
effective with high T .

We next consider diversity per coverage. Figure 5 (right) reports
the total variation distance from the average distribution. Figure 6
is a parametric plot by T (not shown) that shows the relation of
coverage (average number of of teacher votes over samples that
occurred in counts ≥ T ) vs sparsity (number of distinct tokens
that in at least one sample had count ≥ T ) with coordinated and
independent ensembles. We can see that coordinated ensembles are
more diverse than independent ensembles for the same coverage
of votes, with an order of magnitude gap.

Figures 12 and 13 visualize the histograms of the covered votes
(averaged over the r samples) per token, for varying thresholds
T . For each displayed histogram we list coverage and sparsity.
Recall that the threshold T corresponds to the noise scale σ that
allows for the transfer. Coverage is indicative of yield distribution
and sparsity reflects lower diversity of the yield. The visualization
demonstrates again the benefits of coordinated ensembles: Inde-
pendent ensembles become ineffective with very low T , quickly

Figure 6. Coverage (average across samples of the number of n
teacher votes that passed count filter T ) versus sparsity (number
of distinct tokens that at least in one sample had count ≥ T )
with coordinated and independent ensembles, when sweeping the
parameter T (not shown). k = 20 (left) and k = 100 (right).

losing coverage and diversity compared with coordinated ensem-
bles. The maximum average frequency of a token was 0.14 with
k = 20 and 0.04 with k = 100 and indeed independent ensembles
transfer nothing beyond these proportions of teachers. Moreover,
no generalization (shown in blue) is transferred. Coordinated en-
sembles on the other hand are effective also when T is a fraction
of teachers (20%+) that is much higher than the maximum average
frequency of a token.

Conclusion We proposed hot PATE that enhances the PATE
framework in diverse settings. An important use case is in-context
learning via prompts, such as generating privacy-preserving syn-
thetic data records from sensitive records. Hot PATE can be imple-
mented using API access to proprietary models and can boost per-
formance when used as a plug-in replacement to “cold” PATE. We
define a robust diversity-preserving aggregate of distributions and
propose the method of coordinated ensembles, which facilitates
sampling from a diversity-preserving aggregate with no privacy
penalty for higher diversity. Beyond private learning, our design,
with lower values of the tuneable robustness parameter, is suitable
for applications such as data distillation that require robustness to
few outliers or a lightweight protection against memorization but
not necessarily strong privacy guarantees.
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Impact Statement
This paper presents work whose goal is to advance the field of Ma-
chine Learning. There are many potential societal consequences
of our work, none which we feel must be specifically highlighted
here.
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A. Related work
We place our contribution in the context of prior and independent concurrent works on PATE adaptations for text generation. These
works either (i) did not consider diversity or (ii) recognized it and the importance of transferring it but proposed aggregation schemes
where utility decreases with diversity together with methods to limit diversity as to mitigate this perceived privacy-diversity trade-off. Our
technique of ensemble coordination can improve utility by replacing the respective component in some of these designs.

Tian et al. (2022) proposed a PATE extension for sequential text generation tasks in diverse settings. Their approach limited diversity:
Average the teachers distributions and then truncate the tail by keeping only the top-k frequencies. The work of Tang et al. (2024)
(independent concurrent) took a similar approach. The distribution of each teacher is reduced to a uniform distribution over its top-k
token probabilities. An independent ensemble is then applied to this set of reduced distributions. This design limits diversity to k and
modifies the distributions and still incurs the privacy-utility trade-off of independent ensembles.

Duan et al. (2023) explored adaptations of PATE for in-context learning via prompting, where each part Di of the data is used to create a
text prompt Ti. The ensemble is then used to label curated queries. But while some design elements were tailored to LLMs, the workflow
and privacy analysis were identical to cold PATE (Papernot et al., 2018), and in particular, did not consider diverse responses.

Wu et al. (2023) (independent concurrent work) proposed approaches to private aggregation for in-context learning with diversity. They
proposed to reduce the perceived diversity in sequentially-generated text outputs by different teachers by clustering together outputs that
are semantically equivalent and aggregating each cluster in a semantic space. This essentially reduces the dimensionality of the output
space. The aim then is to extract and transfer this common semantics in a privacy preserving way: Map responses into a common low
dimensional embedding space and privately aggregate embedding vectors or identify frequent keywords in diverse teachers’ responses.
The limitations are that the approach only addresses same-semantics diversity and offers no solution for semantically-distinct diverse
responses and are subjected to a privacy diversity trade-off. Additionally and importantly, they require hand crafted tools to map and curate
responses back and forth from a semantic space. The added value of such a mapping approach, if combined with coordinated ensembles,
depends on whether the reduction of diversity that is achieved is within or across teachers. The across variety (see Figure 3 (B)), where
the knowledge of each teacher only contains one or limited variations of the same semantic, is not eliminated by ensemble coordination
and thus there is added value by addressing it via other means. The within variety (see Figure 3 (A)) is handled effectively by ensemble
coordination and can be transferred fluidly with no privacy loss and without the need for mitigation of diversity via additional engineering.
We suspect that for the in-context learning use case, and for semantic similarity that can be captured by tools external to the model (such
as an embedding), the diversity eliminated is anyhow encapsulated in the base model and thus present in most teacher distributions. That
is, we expect the diversity to overwhelmingly be the “within” variety.

Lin et al. (2024); Xie et al. (2024) (independent concurrent work) proposed an approach called private evolution for generating synthetic
examples from private examples. The design used heterogeneous teachers, where each is a single private example. Initially, the base
model is sampled to generate a collection of candidate (full) responses. The teachers then vote on candidates by nearest neighbor to
their sensitive example in an embedding space. The next iteration then consist of a weighted sample from a privacy-preserving vote
histogram. The resulting candidates are then used to generate a new set of candidates by the base model that are closer to the private
distribution. This is repeated for multiple iterations. The inherent drawbacks of this approach, compared with sequential text generation,
are that it is not suitable for transferring specific patterns (such as extension numbers for specific departments within an org) that are
common in the private data but do not exist in the pre-training data and are not memorized by the model and can not be generalized by it.
Additionally, it requires a number of candidates that is exponential in the intrinsic dimensionality of the candidate space. Therefore the
realm of applications is different than Hot Pate and they are not directly comparable.

Papernot et al. (2017) (Appendix B.1) discussed using additional outputs (beyond just the noisy the maximizer) in the teachers’ votes
histogram for distillation tasks. They concluded that it is beneficial for utility but does not justify the privacy loss. Despite the superficial
resemblance, this is very different from what we do as we capture diversity in the generation of the histogram where we “force” the
teachers to agree but there is a distribution on the agreement token.

Finally, there are multiple innovative adaptations of PATE to non-categorical settings (aggregate vectors rather than labels) applied with
generative models. The works we are aware of address different problems and use different techniques than hot PATE. For example,
image generation using generative adversarial networks (GAN): Jordon et al. (2018) proposed to train student discriminator using a
cold-PATE like labeling approach. Long et al. (2021) proposed to train a student generator by aggregating the gradients produced by
teachers discriminators. Notably, as with hot PATE, this design does not require external generation of examples in order to facilitate
transfer. Instead, it uses the built-in property of generators to produce examples from random strings.

B. Properties of Coordinated Ensembles
Proof of Claim 2. The first statement in the claim follows from the denominator satisfying

1 ≤
∑
j

max{p(i)j , p
(k)
j } ≤ 2−max{p(i)j , p

(k)
j } ≤ 2 . (3)

The inequality follows using the more refined upper bound (3) on the denominator.
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The overall agreement probability of the two teachers (over all tokens) is the (weighted) Jaccard index (Jaccard, 1901) of the distributions:

Pr
y∼Ycoo

[yi = yk] =

∑
j min{p(i)j , p

(k)
j }∑

j max{p(i)j , p
(k)
j }

.

In particular, when two teacher distributions are identical, the samples are the same

p(i) = p(k) =⇒ Pr
y∼Ycoo

[yi = yk] = 1.

We establish the claim in Theorem 1. We show that a token j for which m teachers i have p
(i)
j > q has frequency at least m/2 with

probability at least 0.34q. This follows by substituting p = 1/2 in the following more general claim:5

Lemma 1 (diversity transfer). For any token j and p, q ∈ [0, 1],

Pr
c∼H(Ycoo)

[
cj ≥

⌊
p ·

∑
i∈n

1{p(i)j ≥ q}

⌋]
≥ 1

2
ln(1/p)q .

Proof. Let i be such that p(i)j ≥ q. Fix the sampled min value x ∼ Exp[q] for q part of the probability of j. The distribution of the

remaining part is y ∼ Exp[1− p
(i)
j ] which is stochastically smaller than Exp[1− q]. We get that

Pr[yi = j] ≥ Pr
y∼Exp[1−q]

[y > x] = e−x(1−q) .

Fix p ∈ [0, 1). It follows that the probability that Pr[yi = j], conditioned on x < − ln p
1−q

is at least e−x(1−q) ≥ p. The respective random
variables yi on different teachers that may share part of the distribution can only be nonnegatively correlated. Therefore, if there are cj,q

teachers with p
(i)
j ≥ q then the distribution of the number of teachers with yi = j is stochastically larger than Bin[e−x(1−q), cj,q], which

for any x ≤ − ln p
1−q

is stochastically larger than Bin[p, cj,q]. The median of the Binomial distribution Bin[p, cj,q] with probability at least
1/2 is larger than ⌊pcj,q⌋. Therefore, with this conditioning on x, there are at least ⌊pcj,q⌋ teachers with yi = j.

Pr
(yi)i∈[n]|x<

− ln p
1−q

[cj ≥ ⌊pcj,q⌋] ≥ 1/2 . (4)

The event x < − ln p
1−q

occurs with probability at least

Pr
x∼Exp[q]

[x <
− ln p

1− q
] = 1− e(ln p)q/(1−q) ≥ −(ln p)q .

Combining with (4), we obtain the claim in the statement of the Lemma.

To establish relevance we show that high frequency must have a “backing.” The following is immediate from (2) and Markov’s inequality
(and is tight in the sense that for any T there are distributions where equality holds):

Lemma 2 (relevance). For any token j and T ,

Pr
c∼H(Ycoo)

[cj ≥ T ] ≤ 1

T

∑
i∈[n]

p
(i)
j .

C. Further details on Empirical Demonstration
C.1. Properties of the Generated Distributions

The distributions deviated from the intended-by-design correct response of a uniform distribution over the numbers in the prompt: The
model exhibited bias towards certain numbers, had spurious dependencies on private components, and generalized. Recall that what we
evaluate here is the effectiveness of transferring the knowledge of the model as reflected in the generated response distributions, including
its biases and generalizations. We observed the following:

5The general statement allows for different tradeoffs between β and the threshold in Theorem 1

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Hot PATE: Private Aggregation of Distributions for Diverse Tasks

Figure 7. Average probability, over teachers, of the k tokens in C (left is k = 20, right is k = 100). The error bars indicate the contribution
of the token to the average total variation distance over pairs of teacher distributions.

• The probability assigned by the model to tokens that are not 3-digit numbers is negligible: The average probability (over teachers) of
a response token in N999

100 was Ei∈[n]

∑
j∈N999

100
pij ≈ 0.997 for k = 20 and ≈ 0.994 for k = 100.

• Tokens in C dominate but other 3-digit numbers are likely: The average probability of a token in C was Ei∈[n]

∑
j∈C pij ≈ 0.716

(k = 20 tokens) and ≈ 0.75 (k = 100). Recall that only one in k numbers in the prompt was in N999
100 \ C, therefore the probability

of 25%+ assigned to these tokens is explained by the model generalizing that additional 3-digit numbers are edible on Planet Z.

• Despite symmetric prompt construction, there is significant variability in the average probability of different tokens in C and in the
probability across teachers of the same token. This is an artifact of the model. Figure 7 reports the average (over prompts) of the
probability of each token and demonstrates variability between tokens. The error bars indicate variability in the token probability
across teachers.

C.2. Quantifying how much is Transferable

Remark 3 (Robust Average). We use the τ -robust part of the average of the teachers distributions as an indicative upper bound on what
can be potentially privately transferred:

Pj(τ) :=
1

n

∑
i∈[n]

min
{
p
(i)
j , ({p(h)j }h∈[n])(τ)

}
for j ∈ V (5)

where ({p(h)j }h∈[n])(τ) is the τ th largest probability of token j in a teacher distribution. Note that (Pj(1))j∈V is the average distribution
and the values are non-increasing with τ . We also consider the τ -robust probability mass defined as P (τ) :=

∑
j∈V Pj(τ) ≤ 1. The

complement 1− P (τ) is indicative lower bound on the probability of ⊥ in the robust aggregate.

Figure 8 reports the τ -robust fraction of the average distribution for varying τ (see Remark 3). This is the part of the average distribution
that we can hope to transfer via coordinated ensembles with support τ . Recall that variability in the same token among teachers decreases
transferability whereas variability among tokens does not.

Figure 8. The τ -robust part of the distribution for varying τ (see Remark 3). Left is k = 20 right is k = 100.
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C.3. Independent versus Coordinated Histograms

Figures 9 and 10 visualize that the mean of the sampled histograms is the same for independent and coordinated ensembles and is equal to
the average distribution, as stated in Claim 1. Figure 11 visualizes individual sampled histograms: The independent histogram is very
close to the average distribution whereas the sampled coordinated histograms have different shapes and are also different from the average
distribution.
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Figure 9. k = 20: For all tokens (tokens in C shown in read): Average probability over teachers (left). Average frequency of r = 1000
samples using independent (middle) and coordinated (right) ensembles.
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Figure 10. k = 100: For all tokens (tokens in C shown in read): For all tokens (tokens in C shown in read): Average probability over
teachers (left). Average frequency of r = 1000 samples using independent (middle) and coordinated (right) ensembles.
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Figure 11. Frequency counts per token in individual sampled histograms. Left: Independent ensemble. Middle and Right: Coordinated
ensemble. Top k = 20 bottom k = 100.

D. Aggregation Methods of Frequency Histograms
Our aggregation methods are applied to frequency histograms generated by a coordinated ensemble and return a token or ⊥. We propose
two meta schemes that preserves diversity in the sense of Definition 1: One for homogeneous ensembles, where we use τ > n/2, in
Section D.1 and one for heterogeneous ensembles, where τ ≪ n/2 (but large enough to allow for DP aggregation), in Section D.2.
To establish diversity preservation, we consider the end-to-end process from the teacher distributions to the aggregate distribution. To
establish privacy, it suffices to consider the histogram in isolation, as it has the same sensitivity as vote histograms with cold PATE:
When one teacher distribution changes, one token can gain a vote and one token can lose a vote. Noting that the shared randomness
ρ is considered “public” data. We then explore (Sections E and F) DP implementations that admit data-dependent privacy analysis so
effectively many more queries can be performed for the same privacy budget. We can avoid privacy loss on responses that agree with
the prior distribution of the public model with a public prompt. We can benefit from the particular structure of histograms generated by
coordinated ensembles. The privacy loss does not depend on queries with no yield, with high agreement, or with agreement with a public
prior. With heterogeneous ensembles we can also gain from individualized per-teacher privacy charging.

D.1. Homogeneous Ensembles

When τ > n/2, there can be at most one token j with frequency cj ≥ τ . If there is such a token, we aim to report it. Otherwise, we return
⊥. Our scheme is described in Algorithm 2 in terms of a noisy maximizer (NoisyArgMaxL) procedure. The latter is a well studied
construct in differential privacy (McSherry & Talwar, 2007; Durfee & Rogers, 2019; Qiao et al., 2021). Generally, methods vary with
the choice of noise distribution and there is a (high probability) additive error bound L that depends on the privacy parameters and in
some cases also on the support size and confidence. For our purposes, we abstract this as NoisyArgMaxL that is applied to a frequency
histogram c and returns (j, ĉj) such that |cj − ĉj | < L and maxh∈V ch − cj ≤ 2L. We show that the method is diversity preserving:
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T = 100

coverage: coo: 94% ind: 75%

sparsity: coo: 417 ind: 24
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T = 200

coverage: coo: 91% ind: 63%

sparsity: coo: 365 ind: 13
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T = 500

coverage: coo: 83% ind: 34%

sparsity: coo: 277 ind: 6
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T = 1000

coverage: coo: 72% ind: 25%

sparsity: coo: 233 ind: 2
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Figure 12. Coverage histograms averaged over r = 103 samples. Filter T ∈ [100, 200, 500, 1000, 2000, 5000]. k = 20. Left:
Coordinated. Right: Independent.

Lemma 3 (Diversity-preservation of Algorithm 2). For µ > 1, Algorithm 2, instantiated with NoisyArgMaxL as described, is diversity
preserving in the sense of Definition 1 with τ = µ(n/2 + 2L), β = ln(µ)/2 and γ = 2.

Proof. We apply Lemma 1 with p = 1/µ. We obtain that the token j has frequency at least cj ≥ n/2 + 2L with probability at least
0.5 ln(µ)q. Therefore we have ĉj ≥ n/2 + L with probability at least 0.5 ln(µ)q. Note that a token can only be reported if its frequency
is cj > n/2. Using T = n/2 in Lemma 2 we obtain that the relevance requirement is satisfied with γ = 2.

The two most common noise distributions for DP are Gaussian and Laplace noise. (Cold) PATE was studied with both. The Gaussian-
noise based Confident-GNMax aggregator (Papernot et al., 2018; Duan et al., 2023) empirically outperformed the Laplace-based
LNMAX (Papernot et al., 2017) on cold PATE. The advantages of Gaussian noise are concentration (less noise to separate a maximizer
from low frequency tokens), efficient composition, and more effective data dependent privacy analysis. Laplace-based noise on the
other hand can preserve sparsity (a consideration as the key space of tokens or strings of token can be quite large), there is an optimized
mechanism with weighted sampling, and there are recent improvement on data-dependent privacy analysis across many queries (the
situation with hot PATE) (Cohen & Lyu, 2023). Our privacy analysis in Section E uses a data-dependent Laplace-based approach.

Algorithm 2: DistAgg homogeneous

c, ρ← CoordinatedSamples((p(i))i∈[n]) // Algorithm 1

(j, ĉj)← NoisyArgMaxL(c) // DP noisy maximizer with error L

if ĉj > (n/2 + L) then return j else return ⊥
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D.2. Heterogeneous Ensembles

Algorithm 3: DistAgg Heterogeneous

c, ρ← CoordinatedSamples((p(i))i∈[n]) // Algorithm 1

Sample j ∈ V with probability cj
n // Weighted sampling of a token from c

if cj ≥ 2L then return j else return j or ⊥

For lower values of τ , we propose the meta-scheme described in Algorithm 3: We perform weighted sampling of a token from c and
return it if its count exceeds 2L. If it is below 2L we may return either j or⊥. We propose DP implementations in Section F. We establish
that Algorithm 3 is diversity-preserving:

Lemma 4 (Diversity-preservation of Algorithm 3). For µ > 1, Algorithm 3 is diversity preserving in the sense of Definition 1 with
τ = µ2L, β = 1

2µ
ln(µ) and γ = 1.

Proof. Consider the first requirement of Definition 1. Consider a token j with cj,q ≥ τ . From Lemma 1 using p = 1/µ we obtain
that the token j has frequency at least cj ≥ cj,q/µ ≥ 2L with probability at least 0.5 ln(µ)q. The token is sampled with probability
min{1, kcj/n} and if so appears also in c∗ (since cj ≥ 2L). The expected size (number of entries) of c∗ is at most k and thus it is
returned if sampled with probability at least 1/k. Overall it is sampled and reported with probability at least min{1/k, cj/n}. In total,
the probability is Pj ≥ min{1/k, cj,q/(µn)}0.5 ln(µ)q ≥ 1

2kµ
ln(µ)

cj,q
n

q.

The second requirement of Definition 1 is immediate. The expected frequency of token j is
∑

i∈[n] p
(i)
j and it is sampled with probability

at most k
n

∑
i∈[n] p

(i)
j . It can only be the output if sampled.

E. Privacy analysis considerations
The effectiveness of Hot PATE depends on the number of queries with yield (token returned) that can be returned for a given privacy
budget. In this section we explore the benefits of data-dependent privacy analysis when the aggregation follows Algorithm 2 (homogeneous
ensembles). We use synthetically generated teacher distributions with varying size common component (that can be arbitrarily diverse)
and distinct (private) components.

Broadly speaking, with data-dependent analysis, we incur privacy loss on “borderline” queries where the output of the DP aggregation
has two or more likely outputs. Queries that return a particular token with high probability or return ⊥ with high probability incur little
privacy loss.

We demonstrate that with Algorithm 2, we can expect that only a small fraction of frequency histograms generated by coordinated
ensembles are “borderline.” (i) For queries with high yield (high probability of returning a token over the sampling of the shared
randomness), the generated histograms tend to have a dominant token (and thus lower privacy loss). This because coordinated ensembles
tend to “break ties” between tokens. (ii) For queries with low yield (high probability of ⊥ response and low probability of returning
a token), the total privacy loss only depends on yield responses. This means that high ⊥ probability does not cause performance to
deteriorate.

This is important because both these regimes are likely in sequential text generation and with coordinated ensembles. We expect many of
the tokens to follow the base model distribution and therefore have high agreement and not incur privacy loss. Or alternatively, instructions
that require private data have no agreement and return ⊥. The dependent privacy analysis means that generally we can process many more
queries for the privacy budget than if we had just used a DP composition bound.

Our evaluation here uses (ε, δ) differential privacy (Dwork et al., 2006):

Definition 2 ((ε, δ)-Differential Privacy). A randomized mechanismM provides (ε, δ)-differential privacy if, for any two datasets D
and D′ differing in at most one element, and for any subset of outputs S ⊆ Range(M), the following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Concretely we consider NoisyArgMax using (Cohen et al., 2021) 6 with the maximum sanitized frequency, with privacy parameters
(ε0, δ0). For privacy analysis across queries we applied the Target Charging Technique (TCT) of Cohen & Lyu (2023) with the boundary-
wrapper method. The wrapper modifies slightly the output distribution of the query algorithm (after conditioning on ρ!) to include an
additional outcome ⊤ (target). The wrapper returns ⊤ with this probability (that depends on the response distribution) and otherwise
returns a sample from the output distribution of the wrapped algorithm. The probability of ⊤ is at most 1/3 and decreases with agreement
(vanishes when there is response with probability closer to 1). The technique allows us to analyse the privacy loss by only counting target
hits, that is, queries with ⊤ response. Since the probability of ⊤ is at most 1/3, we get in expectation at least two useful responses per

6We mention the related (non optimized) sparsity-preserving methods (Bun et al., 2019; Korolova et al., 2009; Vadhan, 2017) and
optimized but not sparsity-preserving (Ghosh et al., 2012).
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target hit. But in case of agreements, we can get many more. Figure 14 (left) reports the number of ⊤ (target) responses we can have with
the boundary wrapper method as a function of ε0 with overall privacy budget is ε = 1. When ε0 ≤ 0.01, it is about (10ε0)−2.

With hot PATE, we are interested in yield responses, those that return a token (not ⊥, and when we apply the boundary wrapper, also not
⊤). We study how the yield probability behaves for histograms generated by coordinated ensembles.

Synthetic Teacher distributions: We parametrize the set of teacher distributions by α ∈ (0, 1], which is the probability of a
common part to all distribution. This component is what we aim to transfer to the student. The teacher distributions have probability
vectors of the form

p(i) = α · s+ (1− α) · r(i) ,

where s and r(i) are probability vectors. That is, with probability α there is a sample from the common distribution s, and with probability
(1 − α), there is a sample from an arbitrary distribution that is specific to each teacher. Note that the common component s can be
arbitrarily diverse, that is, ∥s∥1 is permitted to be arbitrarily small.

When the histogram is generated by a coordinated ensemble, then the distribution of the maximum frequency c of a token is dominated by
sampling y ∼ Exp[α] and then c ∼ Bin[e−y·(1−α), n]. It is visualized in Figure 14 (right) for varying values of α. Note that across all
weights α > 0 of the shared component, no matter how small α is, there is probability≈ α of being above a high threshold (and returning
a token). The probability of ⊥ (no agreement) in this case can be ≈ 1− α. Therefore α parametrizes the probability of yield over the
sampling of the shared randomness.

Figure 15 shows the distribution of responses as we sweep α, broken down by ⊤ (target hit), ⊥ (abort), and token (yield). The number of
queries we process per target hit, which is the inverse of the probability of ⊤, is ⪆ ε0n. It is lowest at α ≈ T/n and is very high for small
and large α, meaning that the privacy cost per query is very small.

The yield (probability of returning a token) per query is ≈ α. Note that as α decreases, both yield and target probabilities decrease but
their ratio remains the same: In the regime α ≤ T/n, the yield per target hit is ≈ ε0n/2. Queries with α≫ T/n are essentially free in
that the yield (token) probability is very high and the ⊤ (target hit) probability is very low.

When using n = Cδ/ε0 (Cδ ≈ 2 log(1/δ0) teachers and plugging this in, we obtain that we get ⪆ 0.005 1
Cδ

n2 yields for overall privacy
budget ε = 1. This means that we pay only for yield and not for queries. Note that this holds in the “worst case” across all α values, but
the number of yields can be much higher when queries have large α (and “yields” do not incur privacy loss).

F. DP methods for heterogeneous ensembles
We propose two DP methods to implement Algorithm 3 (Section D.2) with different trade offs. In both cases we can apply data-dependent
privacy analysis so that queries that do not yield a token (that is, return⊥) are essentially “free” in terms of the privacy loss. The parameter
L depends on the privacy parameters (and logarithmically on |V |).

Importantly, with the second method we can apply privacy analysis with individual charging, where instead of charging the whole
ensemble as a unit we only charge teachers that contributed to a response. With heterogeneous ensembles we expect the diversity to arise
both from individual distributions and from differences between teachers and therefore with individual charging allows for much more
efficient privacy analysis when different groups of teachers support each prediction.

Private Weighted Sampling This method gains from sparsity (histogram support being much smaller than |V |) but the calculation
of privacy loss is for the whole ensemble. We can do the analysis in the TCT framework (Cohen & Lyu, 2023) so that privacy loss only
depends on yield queries (those that return a token). We perform weighted sampling by frequency of each token to obtain the sampled
histogram c′ and then sanitize the frequencies of sampled tokens using the end-to-end sparsity-preserving method of Cohen et al. (2021)
to obtain c∗. The sanitizing prunes out some tokens from c′ with probability that depends on the frequency cj , privacy parameters, and
sampling rate. All tokens in c′ with frequency above 2L, where L only depends on the privacy parameters, remain in c∗.7 The final step
is to return a token from c∗ selected uniformly at random or to return ⊥ if c∗ is empty.

Individual Privacy Charging This method does not exploit sparsity, but benefits from individual privacy charging (Kaplan et al.,
2021; Cohen & Lyu, 2023). It is appropriate when 2L≪ n. The queries are formulated as counting queries over the set of teachers. The
algorithm maintain a per-teacher count of the number of counting queries it “impacted.” A teacher is removed from the ensemble when
this limit is reached. Our queries are formed such that at most O(2L) teachers (instead of the whole ensemble) can get “charged” for each
query that yields a token.

To express Algorithm 3 via counting queries we do as follows: We sample a sampling rate ν ∼ U [1/n, 1] of teachers and sample a token
v ∈ V uniformly. We sample the teachers so that each one is included with probability ν and count the number c′v of sampled teachers
with yi = v. We then do a BetweenThresholds test on c′j (using (Cohen & Lyu, 2023) which improves over Bun et al. (2017)) to
check if c′v ≥ 2L. For “above” or “between” outcomes we report v. If it is a “between” outcome we increment the loss counter of all
sampled teachers with yi = v (about 2L of them). We note that this process can be implemented efficiently and does not require explicitly
performing this “blind” search.

7We note that the method also produces sanitized (noised) frequency values c∗j for tokens in c∗ such that |c∗j − cj | ≤ L. And hence
can also be used for NoisyArgMax
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Teachers that reach their charge limit get removed from the ensemble. The uniform sampling of the sampling rate and token emulates
weighted sampling, where the probability that a token gets selected is proportional to its frequency. The sub-sampling of teachers ensures
that we only charge the sampled teachers. Teachers are charged only when the query is at the “between” regime so (with high probability)
at most ≈ 2L teachers are charged. Because we don’t benefit from sparsity, there is overhead factor of log(|V |(n/L)) in the privacy
parameter (to bound the error of this number of queries) but we gain a factor of n/L by not charging the full ensemble for each query in
the heterogeneous case where most teachers have different “solutions” to contribute.
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Figure 13. Coverage histograms averaged over r = 103 samples. Filter T ∈ [50, 100, 200, 300, 400, 1000, 2000, 5000]. k = 100 Left:
coordinated Right: Independent
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Figure 14. Left: Number of ⊤ responses for ε0-DP queries for total ε = 1 loss. Right: Cummulative maximum frequency for varying
common part α.

Figure 15. Sweep of α, showing probabilities of outcomes: token, ⊥, ⊤ (target hit).
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