JEDAI: A System for Skill-Aligned Explainable Robot Planning*

Naman Shah’, Pulkit Verma®, Trevor Angle, and Siddharth Srivastava

Autonomous Agents and Intelligent Robots Lab,
School of Computing and Augmented Intelligence, Arizona State University, AZ, USA
{shah.naman, verma.pulkit, taangle, siddharths} @asu.edu

Abstract

This paper presents JEDAI, an Al system designed for out-
reach and educational efforts aimed at non-Al experts. JEDAI
features a novel synthesis of research ideas from integrated
task and motion planning and explainable Al. JEDAI helps
users create high-level, intuitive plans while ensuring that
they will be executable by the robot. It also provides users
customized explanations about errors and helps improve their
understanding of Al planning as well as the limits and capa-
bilities of the underlying robot system.

1 Introduction

Al systems are increasingly common in everyday life, where
they can be used by laypersons who may not understand how
these autonomous systems work or what they can and can-
not do. This problem is particularly salient in cases of task-
able Al systems whose functionality can change based on
the tasks they are performing. Lack of understanding about
the limits of an imperfect system can result in unproduc-
tive usage or, in the worst-case, serious accidents (Randazzo
2018). This, in turn, limits the adoption and productivity of
the AI systems. The current research on Al safety focuses
on designing Al systems that allow humans to safely instruct
and control them (e.g., (Russell, Dewey, and Tegmark 2015;
Zilberstein 2015; Hadfield-Menell et al. 2016, 2017; Rus-
sell 2017)). In this work, we present an Al system JEDAI
(JEDALI Explains Decision-Making Al) that can be used in
outreach and educational efforts to help laypersons learn
how to provide Al systems with new tasks, debug such sys-
tems, and understand their capabilities.

The research ideas brought together in JEDAI address
three key technical challenges: (i) abstracting a robot’s
functionalities into high-level actions (capabilities) that the
user can more easily understand; (ii) converting the user-
understandable capabilities into low-level motion plans that
a robot can execute; and (iii) explaining errors in a manner
sensitive to the user’s current level of knowledge so as to
make the robot’s capabilities and limitations clear.

JEDALI utilizes recent work in explainable AI and in-
tegrated task and motion planning to address these chal-

*Also appearing in AAMAS 2022 Demonstration Track as
Shah et al. (2022)

"Equal contribution. Alphabetical order.

tically. plank i

Actions using this gripper: (512
Put on table vertically...
this plank: [FETAES
with this robot: (TR
using this gripper:
Pick up...

this plank: FENNTED
with this robot: (RS
using this gripper:

plank_iii
plank_i
plank_ii
yumi
left

SaveWorkspace Load Workspace | Clear Workspace

Figure 1: JEDAI system with a Blockly-based plan creator
on the left and a simulator window on the right.

lenges and provides a simple interface to support accessibil-
ity. Users select a domain and an associated task, after which
they create a plan consisting of high-level actions (Fig. 1
left) to complete the task. The user puts together a plan in a
drag-and-drop workspace, built with the Blockly visual pro-
gramming library (Google 2017). JEDAI validates this plan
using the Hierarchical Expertise Level Modeling algorithm
(HELM) (Sreedharan, Srivastava, and Kambhampati 2018,
2021). If the plan contains any errors, HELM computes a
user-specific explanation of why the plan would fail. JEDAI
converts such explanations to natural language, thus help-
ing to identify and fix any gaps in the user’s understanding.
Whereas, if the plan given by the user is a correct solution
to the current task, JEDAI uses a task and motion planner
ATM-MDP (Shah et al. 2020; Shah and Srivastava 2021) to
convert the high-level plan, that the user understands, to a
low-level motion plan that the robot can execute. The user
is shown the execution of this low-level motion plan by the
robot in a simulated environment (Fig. 1 right).

The next section discusses the relationship of the pre-
sented methods with prior work. Sec. 3 presents an architec-
ture of JEDAL Finally, Sec. 4 presents our conclusion and
future directions.

Plan Validated High-level Plan Task and

—_— User ;
— Motion
. Feedback Interface Low-level Plan Planner

Natural

Language
[Natural | Personalized
atura Failed High-level Plan Personall;ed
Language Explanation
Templates JEDA| Generator

Figure 2: Architecture of JEDAI showing interaction be-
tween the four core components.

2 Related Work

Prior work on the topic includes approaches that solve the
three technical challenges mentioned earlier in isolation.
This includes tools for: providing visualizations or anima-
tions of standard planning domains (Magnaguagno et al.
2017; Chen et al. 2019; Aguinaldo and Regli 2021; Dvo-
rak, Agarwal, and Baklanov 2021; De Pellegrin and Pet-
rick 2021; Roberts et al. 2021); making it easier for non-
expert users to program robots with low-level actions (Kr-
ishnamoorthy and Kapila 2016; Weintrop et al. 2018; Huang
et al. 2020; Winterer et al. 2020); and generating explana-
tions for plans provided by the users (Grover et al. 2020;
Karthik et al. 2022; Brandao et al. 2021; Kumar et al. 2022).
In addition, none of these works make the instructions easier
for the user, have the ability to automatically compute user-
aligned explanations, and work with real robots (or their
simulators) at the same time. JEDAI addresses all three chal-
lenges in tandem by using 3D simulations for domains with
real robots and their actual constraints and providing person-
alized explanations that inform a user of any mistake they
make while using the system.

3 Architecture

Fig. 2 shows the four core components of the JEDAI
framework: (i) user interface, (ii) task and motion planner,
(iii) personalized explanation generator, and (iv) natural lan-
guage templates. We now describe each component in detail.

3.1 User interface

JEDAT’s user interface (Fig. 1) is made to be unintimidating
and easy to use. The Blockly visual programming interface
is used to facilitate this. JEDAI generates a separate inter-
connecting block for each high-level action, and action pa-
rameters are picked from drop-down selection fields that dis-
play type-consistent options for each parameter. Users can
drag-and-drop these actions and select different arguments
to create a high-level plan.

3.2 Personalized explanation generator

Users will sometimes make mistakes when planning, either
failing to achieve goal conditions or applying actions before
the necessary preconditions are satisfied. For inexperienced
users in particular, these mistakes may stem from an incom-
plete understanding of the task’s requirements or the robot’s

capabilities. JEDAI assists users in apprehending these de-
tails by providing explanations personalized to each user.

Explanations in the context of this work are of two types:
(i) non-achieved goal conditions, and (ii) violation of a pre-
condition of an action. JEDAI validates the plan submitted
by the user to check if it achieves all goal conditions. If
it fails to achieve any goal condition, the user is informed
about it. E.g., consider the pick-up action shown in Fig. 1
fails if the robot is not holding the plank_ii, this error is ex-
plained to the user as “The action at step 3 (pick up plank
‘plank_ii’ with robot “yumi’ using gripper ’left’) could not
be performed because ’plank_ii’ is not held in ’left’ gripper.”

JEDAI uses HELM to compute such user-specific con-
trastive explanations in order to explain any unmet precon-
dition in an action used in the user’s plan. HELM does this
by using the plan submitted by the user to estimate the user’s
understanding of the robot’s model and then uses the esti-
mated model to compute the personalized explanations. In
case of multiple errors in the user’s plan, HELM generates
explanation for one of the errors. This is because explain-
ing the reason for more than one errors might be unnec-
essary and in the worst case might leave the user feeling
overwhelmed (Miller 2019). An error is selected for expla-
nation by HELM based on optimizing a cost function that
indicates the relative difficulty of concept understandability
which can be changed to reflect different users’ background
knowledge.

3.3 Natural language templates

Even with a user-friendly interface and personalized expla-
nations for errors in abstract plans, domain model syntax
used for interaction with ATM-MDP presents a significant
barrier to a non-expert trying to understand the state of an
environment and the capabilities of a robot. To alleviate this,
JEDAI uses language templates that use the structure of the
planning formalism for generating natural language descrip-
tions for goals, actions, and explanations. E.g., the action
“pickup (plank_i yumi gripper_left)” can be described in nat-
ural language as “pick up plank_i using robot yumi with the
left gripper”. Currently, we use hand-written templates for
these translations, but an automated approach can also be
used.

3.4 Task and motion planner

JEDAI uses ATM-MDP to convert the high-level plan sub-
mitted by the user into sequences of low-level primitive ac-
tions that a robot can execute.

ATM-MDP uses sampling-based motion planners to pro-
vide a probabilistically complete approach to hierarchical
planning. High-level plans are refined by computing feasible
motion plans for each high-level action. If an action does not
accept any valid refinement due to discrepancies between the
symbolic state and the low-level environment, it reports the
failure back to JEDAL If all actions in the high-level plan
are refined successfully, the plan’s execution is shown using
the OpenRAVE simulator (Diankov and Kuffner 2008).

3.5 Implementation

Any custom domain can be set up with JEDAI. We provide
five built-in domains, each with one of YuMi (ABB 2015) or
Fetch (Wise et al. 2016) robots. Each domain contains a set
of problems that the users can attempt to solve and low-level
environments corresponding to these problems. Source code
for the framework, an already setup virtual machine, and the
documentation are available at: https://github.com/aair-lab/
AAIR-JEDAI. A video demonstrating JEDAI’s working is
available at: https://youtu.be/ASIg28- ADZS.

4 Conclusions and Future Work

We demonstrated a novel Al tool JEDAI for helping peo-
ple understand the capabilities of an arbitrary Al system
and enabling them to work with such systems. JEDAI con-
verts the user’s input plans to low level motion plans exe-
cutable by the robot if it is correct, or explains to the user
any error in the plan if it is incorrect. JEDAI works with off-
the-shelf task and motion planners and explanation genera-
tors. This structure allows it to scale automatically with im-
provements in either of these active research areas. JEDAI’s
vizualization-based interface could also be used to foster
trust in Al systems (Beauxis-Aussalet et al. 2021).

JEDALI uses predefined abstractions to verify plans pro-
vided by the user. In the future, we plan on extending it to
learn abstractions automatically (Shah and Srivastava 2022).
JEDALI could also be extended as an interface for assessing
an agent’s functionalities and capabilities by interrogating
the agent (Verma, Marpally, and Srivastava 2021; Nayyar,
Verma, and Srivastava 2022; Verma, Marpally, and Srivas-
tava 2022) as well as to work as an interface that makes
Al systems compliant with Level II assistive Al — systems
that makes it easy for operators to learn how to use them
safely (Srivastava 2021). Extending this tool for working in
non-stationary settings, and generating natural language de-
scriptions of predicates and actions autonomously are a few
other promising directions of future work.

Acknowledgements

We thank Kiran Prasad and Kyle Atkinson for help with the
implementation, Sarath Sreedharan for help with setting up
HELM, and Sydney Wallace for feedback on user interface
design. We also thank Chirav Dave, Rushang Karia, Judith
Rosenke, and Amruta Tapadiya for their work on an earlier
version of the system. This work was supported in part by
the NSF grants IIS 1909370, IIS 1942856, IIS 1844325, OIA
1936997, and the ONR grant NO0014-21-1-2045.

References

ABB. 2015. ABB YuMi - IRB 14000. https://new.abb.com/
products/robotics/collaborative-robots/irb- 14000-yumi.
Aguinaldo, A.; and Regli, W. 2021. A Graphical Model-
Based Representation for Classical Al Plans using Category
Theory. In ICAPS 2021 Workshop on Explainable Al Plan-
ning.

Beauxis-Aussalet, E.; Behrisch, M.; Borgo, R.; Chau, D. H.;
Collins, C.; Ebert, D.; El-Assady, M.; Endert, A.; Keim,

D. A.; Kohlhammer, J.; Oelke, D.; Peltonen, J.; Riveiro, M.;
Schreck, T.; Strobelt, H.; and van Wijk, J. J. 2021. The Role
of Interactive Visualization in Fostering Trust in Al. IEEE
Computer Graphics and Applications, 41(6): 7-12.

Brandao, M.; Canal, G.; Krivi¢, S.; and Magazzeni, D. 2021.
Towards Providing Explanations for Robot Motion Plan-
ning. In Proc. ICRA.

Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; John-
son, G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan, Y.; Gil,
T.; and Nir, L. 2019. Planimation. In ICAPS 2019 System
Demonstrations.

De Pellegrin, E.; and Petrick, R. P. A. 2021. PDSim: Sim-
ulating Classical Planning Domains with the Unity Game
Engine. In ICAPS 2021 System Demonstrations.

Diankov, R.; and Kuffner, J. 2008. OpenRAVE: A Plan-
ning Architecture for Autonomous Robotics. Technical Re-
port CMU-RI-TR-08-34, Carnegie Mellon University, Pitts-
burgh, PA, USA.

Dvorak, F.; Agarwal, A.; and Baklanov, N. 2021. Visual
Planning Domain Design for PDDL using Blockly. In
ICAPS 2021 System Demonstrations.

Google. 2017. Blockly. https://github.com/google/blockly.

Grover, S.; Sengupta, S.; Chakraborti, T.; Mishra, A. P.; and
Kambhampati, S. 2020. RADAR: Automated Task Planning
for Proactive Decision Support. Human—Computer Interac-
tion, 35(5-6): 387-412.

Hadfield-Menell, D.; Dragan, A.; Abbeel, P.; and Russell, S.
2017. The Off-Switch Game. In Proc. IJCAL

Hadfield-Menell, D.; Russell, S. J.; Abbeel, P.; and Dragan,
A. 2016. Cooperative Inverse Reinforcement Learning. In
Proc. NeurIPS.

Huang, G.; Rao, P. S.; Wu, M.-H.; Qian, X.; Nof, S. Y.;
Ramani, K.; and Quinn, A. J. 2020. Vipo: Spatial-Visual
Programming with Functions for Robot-IoT Workflows. In
Proc. CHI.

Karthik, V.; Sreedharan, S.; Sengupta, S.; and Kambham-
pati, S. 2022. RADAR-X: An Interactive Mixed Initiative
Planning Interface Pairing Contrastive Explanations and Re-
vised Plan Suggestions. In Proc. ICAPS.

Krishnamoorthy, S. P.; and Kapila, V. 2016. Using A Visual
Programming Environment and Custom Robots to Learn C
Programming and K-12 STEM Concepts. In Proceedings of
the 6th Annual Conference on Creativity and Fabrication in
Education.

Kumar, A.; Vasileiou, S. L.; Bancilhon, M.; Ottley, A.; and
Yeoh, W. 2022. VizXP: A Visualization Framework for Con-
veying Explanations to Users in Model Reconciliation Prob-
lems. In Proc. ICAPS.

Magnaguagno, M. C.; Fraga Pereira, R.; Mére, M. D.; and
Meneguzzi, F. R. 2017. WEB PLANNER: A Tool to De-
velop Classical Planning Domains and Visualize Heuristic
State-Space Search. In ICAPS 2017 Workshop on User In-
terfaces and Scheduling and Planning.

Miller, T. 2019. Explanation in Artificial Intelligence: In-
sights from the Social Sciences. Artificial Intelligence, 267:
1-38.

Nayyar, R. K.; Verma, P.; and Srivastava, S. 2022. Differen-
tial Assessment of Black-Box AI Agents. In Proc. AAAI

Randazzo, R. 2018. What went wrong with Uber’s Volvo in
fatal crash? Experts shocked by technology failure. The AZ
Republic.

Roberts, J. O.; Mastorakis, G.; Lazaruk, B.; Franco, S.;
Stokes, A. A.; and Bernardini, S. 2021. vPlanSim: An Open
Source Graphical Interface for the Visualisation and Simu-
lation of Al Systems. In Proc. ICAPS.

Russell, S. 2017. Provably Beneficial Artificial Intelligence.
The Next Step: Exponential Life.

Russell, S.; Dewey, D.; and Tegmark, M. 2015. Research
Priorities for Robust and Beneficial Artificial Intelligence.
Al Magazine, 36(4): 105-114.

Shah, N.; Kala Vasudevan, D.; Kumar, K.; Kamojjhala, P.;
and Srivastava, S. 2020. Anytime Integrated Task and Mo-
tion Policies for Stochastic Environments. In Proc. ICRA.

Shah, N.; and Srivastava, S. 2021. Anytime Stochastic Task
and Motion Policies. arXiv preprint arXiv:2108.12537.
Shah, N.; and Srivastava, S. 2022. Using Deep Learning to
Bootstrap Abstractions for Hierarchical Robot Planning. In
Proc. AAMAS.

Shah, N.; Verma, P.; Angle, T.; and Srivastava, S. 2022.
JEDAI: A System for Skill-Aligned Explainable Robot
Planning. In Proc. AAMAS.

Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2018.
Hierarchical Expertise Level Modeling for User-Specific
Contrastive Explanations. In Proc. IJCAL

Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2021.
Using State Abstractions to Compute Personalized Con-
trastive Explanations for AI Agent Behavior. Artificial In-
telligence, 301: 103570.

Srivastava, S. 2021. Unifying Principles and Metrics for
Safe and Assistive Al. In Proc. AAAL

Verma, P.; Marpally, S. R.; and Srivastava, S. 2021. Asking
the Right Questions: Learning Interpretable Action Models
Through Query Answering. In Proc. AAAI

Verma, P.; Marpally, S. R.; and Srivastava, S. 2022. Discov-
ering User-Interpretable Capabilities of Black-Box Planning
Agents. In AAAI 2022 Workshop on Explainable Agency in
Artificial Intelligence.

Weintrop, D.; Afzal, A.; Salac, J.; Francis, P.; Li, B.; Shep-
herd, D. C.; and Franklin, D. 2018. Evaluating CoBlox: A
Comparative Study of Robotics Programming Environments
for Adult Novices. In Proc. CHI.

Winterer, M.; Salomon, C.; Koberle, J.; Ramler, R.; and
Schittengruber, M. 2020. An Expert Review on the Appli-
cability of Blockly for Industrial Robot Programming. In
Proceedings of the 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA).
Wise, M.; Ferguson, M.; King, D.; Diehr, E.; and Dymesich,
D. 2016. Fetch and Freight: Standard Platforms for Ser-
vice Robot Applications. In IJCAI 2016 Workshop on Au-
tonomous Mobile Service Robots.

Zilberstein, S. 2015. Building Strong Semi-Autonomous
Systems. In Proc. AAAL

