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Abstract

The advent of large foundation models (FMs) has revolutionized various domains,1

yet their application in healthcare remains challenging due to the need for strict2

professional qualifications and high sensitivity to errors. This paper presents a3

ongoing approach to developing Medical Foundation Models (MFMs) for medical4

image analysis, addressing key challenges in explainability, fairness, and efficiency.5

We propose a generative AI framework that leverages autoencoders to learn com-6

pressed latent representations of medical images, enabling intuitive interpretation7

of the model’s decision-making process and facilitating bias detection and mit-8

igation. Our approach integrates elements from state-of-the-art vision models,9

including attention mechanisms and context modeling, to enhance classification10

accuracy while reducing dependency on labeled data. By focusing on explain-11

ability, robustness, and computational efficiency, our work aims to bridge the gap12

between the potential of AI in healthcare and the stringent requirements of clinical13

applications. This research contributes to the development of more transparent,14

fair, and trustworthy AI-driven medical assistants, ultimately improving patient15

outcomes and streamlining clinical workflows.16

1 Introduction17

The profound impact of deep learning on medical image analysis has propelled numerous break-18

throughs in computer-aided diagnosis and disease screening systems. Convolutional neural networks19

(CNNs), in particular, have achieved remarkable performance across a diverse array of tasks, includ-20

ing disease detection, lesion segmentation, and image classification [11, 7, 10]. However, despite21

these accomplishments, critical obstacles impede the widespread clinical deployment of deep learning22

models, especially in the context of large foundation models (FMs) that have shown promise in23

general domains.24

The healthcare industry, touching every individual, faces significant challenges due to large popula-25

tions and limited medical professionals. This shortage is particularly acute in rural and developing26

regions, exacerbating health disparities and preventing timely treatment for both common and complex27

conditions. The development of effective, affordable, and professional AI-driven medical assistants28

has thus become a critical need. However, the application of foundation models in healthcare is not29

straightforward, as this domain requires strict professional qualifications and has high sensitivity to30

errors and security risks.31
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A fundamental challenge lies in the substantial data and computational requirements for training32

these complex architectures. The scarcity of large, meticulously annotated medical datasets, coupled33

with the prohibitive costs of specialized hardware like high-end GPUs, poses significant barriers to34

model development and deployment. This resource-intensive nature stands in stark contrast to the35

resource-constrained settings where medical image analysis could yield immense benefits. Moreover,36

the opaque nature of deep learning models has emerged as a formidable hurdle to their adoption in37

healthcare. These black-box systems obscure the rationale underlying their predictions, fostering38

skepticism among medical professionals and raising ethical concerns about potential biases that could39

propagate harmful stereotypes or exacerbate healthcare disparities. While techniques like saliency40

maps and gradient-based visualization methods (e.g., Grad-CAM[8]) have been widely adopted41

to provide explanations, they offer limited insights, often highlighting superficial features without42

elucidating the deeper decision logic, demonstrating the need for more explainable models[6].43

To address these challenges, we propose a generative AI framework for developing Medical Founda-44

tion Models (MFMs) that enhance the interpretability, fairness, and efficiency of deep learning in45

medical image analysis. Our approach leverages autoencoders to learn compressed representations46

(latent space) of medical images, capturing key features used for both image reconstruction and47

classification. By analyzing and interpreting this latent space, we provide insights into the model’s48

decision-making process, making it possible to relate latent space variables to visual changes in49

the image. This capability not only enhances explainability but also enables the identification and50

mitigation of biases without necessitating model retraining or data modification.51

Furthermore, we integrate attention mechanisms and context-awareness techniques inspired by recent52

advancements in vision transformers, enabling the model to focus on pertinent information relevant53

to the current classification task. This not only enhances classification accuracy but also reduces54

the dependency on labeled data, thereby enabling a semi-supervised approach that is crucial in the55

data-scarce medical domain.56

Our work contributes to several key topics of interest in the development of MFMs:57

Explainable MFMs: We open the black box of medical decision-making, ensuring transparency and58

interpretability through our generative AI approach. Robust Diagnosis: Our framework enhances59

model robustness in diverse medical scenarios, addressing challenges related to data scarcity and60

misalignment. Efficient MFMs: By carefully designing our autoencoder architecture and leveraging61

semi-supervised learning, we develop an efficient MFM that balances performance and computational62

requirements.63

Fairness in MFMs: Our approach enables the detection and mitigation of biases, contributing to the64

development of fair multimodal models in healthcare. Multimodal Learning: While our current focus65

is on image analysis, our framework lays the groundwork for effectively using heterogeneous medical66

data in future extensions.67

By addressing these critical aspects, our work aims to unlock the potential of Medical Foundation68

Models, striving for groundbreaking advancements in healthcare that can improve patient outcomes,69

streamline clinical workflows, and ultimately contribute to more equitable and accessible healthcare70

globally.71

2 Methodology72

Our proposed generative AI framework for Medical Foundation Models (MFMs) builds upon previous73

work in explainable medical image analysis (anonymous cite), incorporating advanced techniques74

to enhance interpretability, fairness, and efficiency. The methodology encompasses several key75

components:76

2.1 Model Architecture77

At the core of our framework lies an autoencoder model that serves as the base structure for repre-78

senting the visual characteristics of medical images (Figure 1).79

We extensively evaluated various autoencoder and CNNs architectures, ultimately opting for a custom80

design inspired by the computationally efficient ShuffleNet [14] architecture and a β-VAE denoising81

autoencoder. This custom encoder architecture incorporates pointwise group convolutions, enabling82
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Figure 1: Autoencoder architecture for medical image analysis

deeper networks without excessive parameter growth. The decoder mirrors this design, leveraging83

transposed convolutions and channel shuffling to enhance reconstruction fidelity.84

Our model achieves a remarkable balance between depth and efficiency, with only 1.4 million85

trainable parameters – fewer than many lightweight architectures tailored for mobile devices. This86

efficiency is crucial for deploying MFMs in resource-constrained healthcare settings.87

2.2 Image Reconstruction88

Deviating from the conventional mean squared error (MSE) loss function, our framework employs89

the Structural Similarity Index [13] (SSIM) as an alternative for optimizing image reconstruction.90

SSIM provides a more perceptually relevant loss signal by quantifying luminance, contrast, and91

structural similarities, aligning with the human visual system’s sensitivity to image distortions. This92

approach has demonstrated superior performance in anomaly detection tasks [3], a desirable property93

for enabling zero-shot learning or unsupervised scenarios in medical imaging.94

2.3 Context Modeling and Attention Mechanism95

To enhance the model’s ability to capture contextual information and focus on clinically relevant96

regions, we integrate design principles inspired by transformer architectures:97

2.3.1 Data Augmentation98

Extensive data augmentation, including random rotations, flipping, blurring, and perspective trans-99

formations, is employed to imbue the model with robust invariances. Furthermore, we introduce a100

random erasing strategy similar to masked word representations in language models, enabling the101

decoder to learn context by predicting missing image patches from their surroundings.102
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2.3.2 Attention Maps103

We incorporate an optimized weighted mask to emphasize regions of interest during training. This104

attention mechanism is implemented in two stages:105

Initial training of the autoencoder, allowing pixel weights to be optimized by the learning algorithm,106

with a penalty in the loss function to encourage a mean weight value close to 1. Computation of the107

optimized attention map as W ∗ = 1 −W , where W is the weight map from the first stage. This108

gives more weight to areas of the image that are challenging for the autoencoder and exhibit high109

variability between images.110

Examples of optimized attention maps for brain, chest, and breast images are shown in Figure 1.111

2.4 Pre-training on Medical Image Data112

A critical aspect of our approach is the adoption of weakly supervised pre-training [9] on a large-scale113

medical image meta-dataset, the MiMeta dataset [4]. Comprising 17 publicly available datasets114

spanning 28 tasks and encompassing 372,895 images, this pre-training strategy enables the model to115

capture domain-specific features and visual nuances inherent to medical imaging data. By mitigating116

the domain gap between pre-training and target tasks, our framework can leverage transfer learning117

more effectively, alleviating the data scarcity challenges that often hinder the development of accurate118

medical image analysis models.119

2.5 Latent Space Analysis for Explainability and Bias Detection120

The learned latent representations offer a powerful tool for interpreting the model’s decision-making121

process and identifying potential biases. We employ the following techniques:122

2.5.1 Latent Space Manipulation123

By analyzing average latent space values for specific conditions versus others, we can adjust input124

images to increase or decrease the presence of a particular condition. This is achieved through a125

simple linear operation:126

z∗i = zi + α(z1 − z0) (1)
Where z∗i represents the modified latent space of image zi, z1 denotes the average latent vector for127

the condition of interest, z0 is the average for other conditions, and α is a scaling factor controlling128

the degree of modification.129

2.5.2 Visual Explanation Generation130

By decoding these altered latent representations, we generate visual explanations that elucidate the131

model’s understanding of each condition. This process allows us to identify unexpected effects or132

biases in the model’s interpretation of medical conditions.133

2.5.3 Bias Detection and Mitigation134

The latent space analysis enables the detection of biases that may be imperceptible through traditional135

explainability techniques like Grad-CAM. Once identified, these biases can be mitigated by modifying136

the latent representations during inference or fine-tuning the classification layer on bias-adjusted137

latent representations.138

2.6 Efficient Fine-tuning for Specific Tasks139

To adapt our pre-trained MFM to specific medical image analysis tasks, we employ efficient fine-140

tuning techniques:141

Freezing the encoder weights and fine-tuning only the classification layer. Employing low-rank142

adaptation techniques to update a small number of parameters. Using a combination of labeled and143

unlabeled data in a semi-supervised learning approach to maximize data efficiency.144

These strategies enable rapid adaptation to new tasks while maintaining the interpretability and145

fairness benefits of our generative AI framework.146
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3 Results147

Our experiments demonstrate the effectiveness of the proposed generative AI framework for Medical148

Foundation Models (MFMs) across multiple dimensions: interpretability, classification performance,149

bias detection and mitigation, and computational efficiency. Figure 2 shows the input and output

Figure 2: Input and output of the model for brain MRI images.
150

of the model for brain MRI images, where the main structures in the images are preserved in the151

reconstructed images, allowing a visual interpretation of changes produced by the latent variables152

used in each classification.153

3.1 Model Performance154

We evaluated our MFM on the Brain Tumor MRI Images 44 Classes [1]. Table 1 summarizes the155

classification performance across this dataset.

Table 1: Validation Set Performance: Brain Tumor Classification Metrics and Occurrence Rates.

Class AUC AP F1 Rate

14 _NORMAL 1.0000 1.0000 0.9907 0.1186
13 Tuberculoma 0.9997 0.9911 0.9630 0.0313
12 Schwannoma 0.9990 0.9934 0.9792 0.1096
11 Papiloma 0.9996 0.9940 0.9787 0.0537
10 Oligodendroglioma 1.0000 1.0000 1.0000 0.0604
9 Neurocitoma 1.0000 1.0000 0.9863 0.0828
8 Meningioma 0.9982 0.9955 0.9836 0.2036
7 Meduloblastoma 1.0000 1.0000 0.9630 0.0313
6 Granuloma 1.0000 1.0000 1.0000 0.0112
5 Glioblastoma 1.0000 1.0000 1.0000 0.0537
4 Germinoma 1.0000 1.0000 0.9630 0.0291
3 Ganglioglioma 1.0000 1.0000 0.9412 0.0179
2 Ependimoma 1.0000 1.0000 1.0000 0.0291
1 Carcinoma 1.0000 1.0000 1.0000 0.0425
0 Astrocitoma 1.0000 1.0000 1.0000 0.1253

156

These results demonstrate that our MFM achieves competitive performance across medical imaging157

tasks, despite its relatively lightweight architecture (1.4 million parameters).158

3.2 Interpretability and Explainability159

3.2.1 Latent Space Visualization160

Figure 3 illustrates the effectiveness of our latent space manipulation technique in providing visual161

explanations for the model’s decision-making process. For instance, in the ChestX-ray14 dataset,162

increasing the α value for the class that did not present any finding resulted in a visibly cleaner CXR163
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Figure 3: Visual explanations generated through latent space manipulation for different medical
conditions

image, and when α was decreased, it resulted in more contrasted images, showing features similar to164

sick patients. Similarly, for Brain Tumor MRI images, manipulating the latent space revealed the165

model’s focus on tumor-specific features.166

3.3 Bias Detection and Mitigation167

Our latent space analysis revealed potential biases in the model’s decision-making process that were168

not apparent using traditional explainability methods. A detected bias when the model is trained169

with the ChestX-ray14 dataset has to do with the Anterior-Posterior (AP) and Posterior-Anterior170

(PA) projections. In an AP projection, the X-ray beam passes from the front (anterior) to the back171

(posterior) of the patient. This method is often employed when patients are unable to stand or maintain172

an erect position. The patient is positioned with their back against the film or detector, which can173

lead to magnification of the heart and a lower image quality compared to PA images.

Figure 4: AP and PA Bias of the model
174

Figure 4 shows an AP image transformed into a PA image, showing a significant improvement in175

the contrast of the image, revealing a potential bias of the model, where sick patients (e.g., patients176

with infiltration) will show a less contrasted CXR. This behavior could lead the model to detect if177

a CXR image is AP or PA in order to classify if a patient is sick or not. Traditional explainability178

methods like Grad-CAM could highlight the borders of the lung, making it difficult to interpret this179

as a bias because it could seem that the model is using information from the lungs when it is actually180

detecting heart magnification (even in segmented images). To mitigate this kind of bias in our MFM,181

it is enough to randomly modify the α value of AP-PA projections and retrain only the classification182

layer to make the model unable to use the information in the latent space that has to do with the kind183

of projection.184

4 Discussion185

Our results demonstrate the potential of generative AI approaches in developing explainable, fair, and186

efficient Medical Foundation Models. The ability to interpret the model’s decision-making process187
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through latent space analysis provides valuable insights that go beyond traditional explainability188

methods. This enhanced interpretability not only builds trust with healthcare professionals but also189

enables the detection and mitigation of biases that may be overlooked by conventional techniques.190

The competitive performance achieved across diverse medical imaging tasks, coupled with the191

model’s computational efficiency, addresses the critical need for AI-driven medical assistants that can192

be deployed in resource-constrained settings. Furthermore, the effectiveness of our transfer learning193

approach suggests that the pre-trained MFM can be rapidly adapted to new medical imaging tasks194

with minimal additional training.195

5 Conclusions196

This work presents a novel generative AI framework for developing Medical Foundation Models197

(MFMs) that address critical challenges in the application of artificial intelligence to healthcare. Our198

approach makes significant strides in enhancing the interpretability, fairness, and efficiency of deep199

learning models for medical image analysis, aligning closely with the pressing needs identified in the200

development of AI-driven medical assistants.201

Key contributions and findings of our work include:202

1. Enhanced Explainability: Our latent space manipulation technique provides intuitive203

visual explanations of the model’s decision-making process, surpassing traditional methods204

like Grad-CAM in providing nuanced insights into feature importance. This enhanced205

explainability is crucial for building trust with healthcare professionals and facilitating the206

responsible adoption of AI in clinical settings.207

2. Bias Detection and Mitigation: The proposed framework demonstrates a unique capability208

to uncover hidden biases in medical image analysis models. By enabling the identifica-209

tion and mitigation of biases that may be imperceptible through conventional techniques,210

our approach contributes to the development of fairer and more equitable AI systems in211

healthcare.212

3. Computational Efficiency: Achieving competitive performance with only 1.4 million213

parameters, our MFM addresses the critical need for efficient AI models that can be deployed214

in resource-constrained healthcare settings.215

4. Adaptability: The effectiveness of our transfer learning approach, allowing rapid adaptation216

to new medical imaging tasks with minimal fine-tuning, showcases the potential of our217

pre-trained MFM as a versatile foundation for various healthcare applications.218

5. Robustness: By incorporating advanced data augmentation techniques and attention mecha-219

nisms, our model demonstrates improved robustness to variations in medical imaging data,220

a crucial factor for reliable deployment in real-world clinical scenarios.221

These advancements collectively address several key challenges in the development of MFMs, as222

highlighted in the workshop’s topics of interest. Our work contributes to the creation of explainable223

MFMs, enhances robustness in medical diagnosis, improves efficiency in model deployment, and224

promotes fairness in healthcare AI applications.225

However, it is important to acknowledge the limitations of our study. While we have demonstrated226

promising results across several medical imaging modalities, further research is needed to validate the227

generalizability of our approach to a broader range of healthcare applications. Additionally, long-term228

studies in clinical settings will be crucial to fully assess the impact of our bias mitigation strategies229

on patient outcomes and healthcare equity.230

Looking ahead, several exciting avenues for future research emerge from this work:231

• Multimodal Integration: Extending our framework to incorporate multiple data modalities,232

such as patient histories, could further enhance the diagnostic capabilities and personalization233

of MFMs. From an explainability standpoint, Large Language Models could help to provide234

textual reasoning of the diagnosis.235

• Federated Learning: Exploring federated learning approaches could address privacy236

concerns and enable collaborative model improvement across healthcare institutions without237

compromising patient data security.238
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• Continuous Learning: Developing strategies for continuous model updating in clinical239

settings, while maintaining interpretability and fairness, will be crucial for the long-term240

effectiveness of MFMs.241

• Human-AI Collaboration: Investigating optimal ways to integrate MFMs into clinical242

workflows, fostering effective collaboration between AI systems and healthcare profession-243

als, represents a critical area for future study.244

In conclusion, our generative AI framework for MFMs represents a step forward in solving the main245

problems of explainability, unbiasedness and efficiency for the development of more reliable and246

efficient AI-based medical assistants.247
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