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Population Transformer: Learning Population-level Representations of
Intracranial Activity
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Abstract
We present a self-supervised framework that
learns population-level codes for intracranial neu-
ral recordings at scale, unlocking the benefits of
representation learning for a key neuroscience
recording modality. The Population Transformer
(PopT) lowers the amount of data required for
decoding experiments, while increasing accuracy,
even on never-before-seen subjects and tasks. We
address two key challenges in developing PopT:
sparse electrode distribution and varying electrode
location across patients. PopT stacks on top of
pretrained representations and enhances down-
stream tasks by enabling learned aggregation of
multiple spatially-sparse data channels. Beyond
decoding, we interpret the pretrained PopT and
fine-tuned models to show how it can be used to
provide neuroscience insights learned from mas-
sive amounts of data. We release a pretrained
PopT to enable off-the-shelf improvements in
multi-channel intracranial data decoding and in-
terpretability.

1. Introduction
Building effective representations of neural recordings is an
important tool in enabling neuroscience research. We are
particularly interested in modeling intracranial recordings,
which rely on probes placed within the brain to provide
high temporal resolution recordings of local neural activity
(Parvizi & Kastner, 2018; Herff et al., 2020). Because of its
dispersed placement within the brain volume, intracranial
recordings suffer from data sparsity. Moreover, there is of-
ten significant variability in probe placement across subjects
(Parvizi & Kastner, 2018; Herff et al., 2020), leading to high
variability in input channel meaning. Historically, construct-
ing decoders from intracranial data has relied on supervised
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learning (Faezi et al., 2021; Herff et al., 2020; Martin et al.,
2018; Metzger et al., 2023; Willett et al., 2023), but this
requires experimenters to collect annotated data, which is
scarce due to patient availability and labor-intensive label-
ing.

To improve decoding data-efficiency, self-supervised pre-
training on unannotated data can be employed to first learn
generic representations of the recordings. This means that
the model does not have to use valuable annotated samples
to learn how to do feature extraction before it can do classi-
fication, improving the reach of neuroscientific research.

In this paper, we are interested in developing generic rep-
resentations of multi-channel intracranial recordings that
enable efficient adaptation to a wide range of downstream de-
coding tasks. Prior work has shown how to pretrain subject-
specific (Le & Shlizerman, 2022) or channel-specific (Wang
et al., 2022) models of intracranial data, but such techniques
ignore inter-channel relationships or commonalities that
might exist across subjects. The most general approach
would be to pretrain using data from multiple datasets, but
would require tackling the aforementioned challenges of
sparse electrode coverage and variable electrode placement
between subjects.

We propose Population Transformer (PopT), a self-
supervised pretraining approach on transformers (Vaswani
et al., 2017) that learns subject-generic representations of
arbitrary electrode ensembles (Figure 1). During pretrain-
ing, we simultaneously optimize both a channel-level and
ensemble-level objective, that requires the model to (1) build
representations of channels in the context of other channels
and (2) meaningfully distinguish temporal relationships be-
tween different ensembles of channels.

Our approach builds on top of existing single-channel em-
beddings, such as BrainBERT (Wang et al., 2022), which
has two key advantages. First, by separating the single-
channel embedding and multi-channel-aggregation into dif-
ferent modules, we make our approach agnostic to the spe-
cific type of temporal embedding used, leaving room for
future independent improvements along either the temporal
or spatial dimension, an approach that has been validated
in video modeling (Arnab et al., 2021). Second, by taking
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advantage of the temporal feature-extraction learned during
single-channel pretraining, we make our population-level
training more data-efficient.

Empirically, we find that our pretrained PopT outperforms
non-pretrained aggregation approaches, highlighting the use-
fulness of learning spatial relationships during pretraining.
Moreover, we find that these benefits hold even for subjects
not seen during pretraining, lending to its usefulenss for
new subject decoding. We also find that the pretrained PopT
weights themselves reveal interpretable patterns for neuro-
scientific study. We show how the pretrained weights can
be probed for connectivity and how the fine-tuned attention
weights can be used to map task-specific functional salience.

Our main contributions are:

1. a generic self-supervised learning framework, Popu-
lation Transformer, PopT, that learns joint representa-
tions of varying spatially-sparse time series on top of
pretrained single-time-series representations,

2. a demonstration that self-supervised pretraining sys-
tematically yields better performance, sample effi-
ciency, and compute efficiency when downstream de-
coding aggregations of electrode embeddings, even for
subjects held out during pretraining,

3. a new method for brain region connectivity analysis
and functional brain region identification based on the
pretrained and fine-tuned PopT weights,

4. a trained usable off-the-shelf model that computes
population-level representations of intracranial neural
recordings.

2. Related Work
Self-supervised learning on neural data Channel inde-
pendent pretrained models are a popular approach for neu-
ral spiking data (Liu et al., 2022), intracranial brain data
(Wang et al., 2022; Talukder & Gkioxari, 2023), and gen-
eral time-series (Talukder et al., 2024). Additionally, in
fixed-channel neural datasets, approaches exist for EEG
(Chien et al., 2022; Kostas et al., 2021; Yi et al., 2023),
fMRI (Thomas et al., 2022; Kan et al., 2022; Ortega Caro
et al., 2023), and calcium imaging (Antoniades et al., 2023)
datasets. However, all of this work do not learn population-
level interactions across datasets with different recording
layouts due to the single-channel focus or the ability to as-
sume fixed-channel setups. Several works pretrain spatial
and temporal dimensions across datasets with variable in-
puts (Zhang et al., 2024; Yang et al., 2024; Jiang et al., 2024;
Ye et al., 2024; Cai et al., 2023), but most simultaneously
learn the temporal embeddings with the spatial modeling,
which make them challenging to interpret and computation-
ally expensive to train. As far as we know, we are the first
to study the problem of building pretrained channel aggre-

gation models on top of pre-existing temporal embeddings
trained across datasets with variable sampling of input chan-
nels, allowing for modeling of high quality (¿2kHz sampling
rate) intracranial data.

Modeling across variable input channels Modeling spa-
tial representations on top of temporal embeddings have
been found to be beneficial for decoding (Faezi et al.,
2021; Le & Shlizerman, 2022; Azabou et al., 2024), but
prior works use supervised labels, so do not leverage large
amounts of unannotated data. The brain-computer-interface
field has been studying how to align latent spaces (Pandari-
nath et al., 2018; Karpowicz et al., 2022; Degenhart et al.,
2020; Jude et al.; Ma et al., 2023) which either still requires
creating an alignment matrix to learn across datasets or only
provides post-training alignment mechanisms rather than
learning across datasets. Other approaches impute missing
channels or learn latent spaces robust to missing channels
(Talukder et al., 2022; Zhang et al., 2021; Chau et al., 2024),
but these are more suited for the occasional missing channel
rather than largely varying sensor layouts. We directly learn
spatial-level representations using self-supervised learning
across datasets to leverage massive amounts of unannotated
intracranial data.

3. Population Transformer Approach
In order to learn a subject-generic model of intracranial ac-
tivity that can handle arbitrary configurations of electrodes,
we design a self-supervised training scheme that requires
the model to learn representations of individual electrodes
as well as groups of electrodes. One component of our
self-supervised loss requires the model to identify which
channels have been swapped with activity from the same
channel, but at a different time point. To do this task, the
model must build a representation of the channel’s activ-
ity that is sensitive to the context of all the surrounding
channels. The other component requires the model to dis-
criminate between randomly selected subsets of electrodes
to determine if their activity has occurred consecutively in
time or not. This requires the same sensitivity to context,
but at the ensemble level. One can think of this swap and
discriminate objective as exposing the model to many in-
silico ablations of the brain, and asking the model to learn
the connections between regions in the presence of these
ablations.

A key aspect of our method is the fact that our objective is
discriminative, rather than reconstructive, as is often the case
in self-supervision (Liu et al., 2021; Wang et al., 2022). We
found this to be necessary, because in practice, the temporal
embeddings often have low effective dimension (see (Wang
et al., 2022)), and reconstruction rewards the model for
overfitting to “filler” dimensions in the feature vector (see
Section 5).
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Figure 1. Schematic of our approach. The inputs to our model (a) are the combined neural activities from a collection of intracranial
electrodes in a given time interval. These are passed to a frozen temporal embedding model, which produces a set of time-contextual
embedding vectors (yellow). The 3D position of each electrode (red) is added to these vectors to produce the model inputs (orange). The
PopT produces space-contextual embeddings for each electrode and a [CLS] token (blue), which can be fine-tuned for downstream tasks.
During pretraining, (b) the PopT is trained on two objectives simultaneously. In the first, the PopT determines whether two different
sets of electrodes (orange vs brown) represent consecutive or non-consecutive times. In the second objective, the PopT must determine
whether an input channel has been replaced with activity at a random other time that is inconsistent with the majority of inputs.

We take additional steps to make our model subject and
configuration generic. We provide the absolute position of
every electrode to the model, which allows the model to
learn a common position embedding space across subjects.
We also vary the size of the subsets we select in our sampling
procedure to ensure that the model can handle ensembles
of differing number, which is important for neuroscience
applications, in which experiments have varying number
of electrodes, and analysis may be done on the electrode,
wire, region, or brain level. Finally, we select that subsets
are disjoint, to ensure that the model does not learn to solve
the task by trivial copying.

Architecture A schematic of our Population Transformer
(PopT) approach is shown in Figure 1. Consider a given sub-
ject with Nc channels indexed by C = {1, ..., Nc}. Activity
from channel i at time t can be denoted by xt

i. The PopT
takes as input an interval of brain activity X = {xt

i|i ∈ C}
from a given time t and a special [CLS] token. Per channel,
each interval of brain activity is passed through a temporal
embedding model T , in our case BrainBERT, to obtain a
representation of each channel’s temporal context.

Before being inputted to the PopT, each channel’s 3D po-
sition is added to this embedding, so the final input is
XB = {T (x) + pos(i) +N (0, σ)|x ∈ X}. Here, we add
Gaussian fuzzing to prevent overfitting to a particular set

of coordinates. Spatial location is given by the electrode’s
Left, Posterior, and Inferior coordinates (Wideman, 2024);
see (Wang et al., 2022) for details on how these were ob-
tained. Each coordinate is encoded using sinusoidal position
encoding (Vaswani et al., 2017). And the three encodings
are concatenated together to form the position embedding
pos(i) = [eleft; epost.; einf].

The core of PopT consists of a transformer encoder stack
(see Appendix A: Architectures). The output of the PopT
are spatial-contextual embeddings of the channels Y = {yi}
as well as an embedding of the CLS token ycls. Dur-
ing pretraining, the PopulationTransformer additionally is
equipped with a linear layer head for the [CLS] token out-
put and separate linear layer heads for all other individual
token outputs. These produce the scalars ỹcls and ỹi and
respectively, which are used in the objective (see Figure 1a).

Pretraining Our pretraining objective has two components:
channel-wise discrimination and next brain state discrim-
ination, which is a group-level objective (see Figure 1b).
First, we describe the next brain state discrimination task.
Two different subsets of channels SA, SB ⊂ C are cho-
sen with the condition that they be disjoint SA ∩ SB = ∅.
During pretraining, the model receives the activities from
these channels at separate times XA = {xt

i | i ∈ SA}
and XB = {xt′

i | i ∈ SB}. The objective of the task is

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Under review at ICML 2024 AI for Science workshop

Pitch Volume Sent. Onset Speech/Non-speech

BrainBERT: single channel 0.53± 0.05 0.58± 0.08 0.68± 0.04 0.66± 0.09
Linear + BrainBERT 0.59± 0.08 0.66± 0.08 0.70± 0.09 0.71± 0.11
Deep NN + BrainBERT 0.58± 0.08 0.67± 0.08 0.71± 0.10 0.72± 0.10
Non-pretrained PopT 0.53± 0.06 0.61± 0.13 0.74± 0.10 0.70± 0.08
Pretrained PopT 0.69± 0.07 0.84± 0.06 0.86± 0.05 0.89± 0.07

Table 1. Pretraining PopT is critical to downstream decoding performance. We test on a variety of audio-linguistic decoding tasks
(see Section 4) with either a single channel (row 1) or 90 channels (rows 2-5) as input. Shown are the ROC-AUC mean and standard
error across subjects. We see that all aggregation approaches (rows 2-5) outperform single-channel decoding with BrainBERT (Wang
et al., 2022) (row 1). Pretraining PopT and then fine-tuning it for downstream decoding results in significantly better performance (bold)
compared to non-pretrained aggregation approaches (rows 2-4). This gain cannot be explained by simply providing more temporal
embeddings, as evidenced by the performance of Linear and Deep NN (rows 2 and 3) that take the concatenated raw temporal embeddings
as input. Neither can the gain be attributed to simply using a Transformer architecture, as is shown by a comparison with a non-pretrained
PopT (row 4).

Figure 2. Pretrained PopT downstream performance scales better with ensemble size. Increasing channel ensemble size from 1 to 30
(x-axis), we see pretrained PopT (green) decoding performance (y-axis) not only beat non-pretrained approaches (orange, purple, pink),
but also continually improve more with increasing channel count. Shaded bands show the standard error across subjects.

then to determine whether these states XA and XB have
occurred consecutively in time or are separated by some
further, randomly selected interval. Given the output of the
classification head, the objective is the binary cross entropy:

1
Nbatch

∑
i y

∗
i LN = y∗cls log(p(ỹcls))+(1−y∗cls) log(p(ỹcls))

where y∗cls = 1(|t− t′| < 500ms).

Next we describe our channel-wise discriminative learning.
The token level objective is to determine whether a channels
activity has been swapped with activity from a random time.
Precisely, activity from each channel i is drawn from a time
ti. All channels are drawn from the same time ti = T ,
and then 10% of the channels are randomly selected to
have their activity replaced with activity from the same
channel, but taken from a random point in time ti ̸= T .
Then, given the token outputs of the Population Transformer,
the objective function is the binary cross entropy: LC =

1
Nbatch

∑
i y

∗
i log(p(ỹ)) + (1 − y∗i ) log(p(ỹi)) where y∗i =

1(ti ̸= t).

Then, our complete objective function is L = LN + LC .

Fine-tuning During fine-tuning, the [CLS] intermediate
representation, ỹcls of the pretrained PopT is passed through
a single layer linear neural network to produce a scalar ŷcls.
This scalar is the input to binary cross entropy loss for our
decoding tasks (see Section 4).

4. Experiment Setup
Data We use the publicly available subject data from (Wang
et al., 2022). Data was collected from 10 subjects (total
1,688 electrodes, with a mean of 167 electrodes per subject)
who watched 26 movies while intracranial probes recorded
their brain activity. The movie transcripts were aligned to
the brain activity so that features such as volume, pitch, etc.
could be associated with the corresponding sEEG readings.
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19 of the sessions are used for pretraining. 7 of the sessions
are held-out for evaluation.

Decoding We evaluate the effectiveness of our pretrained
PopT model by fine-tuning it on the four downstream de-
coding task used in the evaluation of (Wang et al., 2022).
Two of the tasks are audio focused: determining whether
a word is spoken with a high or low pitch and determining
whether a word is spoken loudly or softly. And two of the
tasks have a more linguistic focus: determining whether the
beginning of a sentence is occurring or determining whether
any speech at all is occurring.

Our approach enables decoding on any arbitrary size of
ensemble. We verify that our model is able to leverage
additional channels for improved decoding performance
that scales the number of inputs. To test this, we first order
the electrodes by their individual linear decodability per
task, and we increase the number of channels available to
the model at fine-tuning time.

Baselines We want to determine whether the information
about spatial relationships learned during pretraining was
useful at fine-tuning time. For comparison, we concate-
nate the raw BrainBERT embeddings and train a linear and
deep NN on the decoding task. This sets a baseline for
how much improvement is achievable from simply having
more channels available at once. To determine whether our
performance can be attributed to using a more powerful
architecture, we also fine-tune a PopT without pretraining,
i.e. with randomly initialized weights.

5. Results
Decoding performance Compared to trying to decode from
the bare BrainBERT embeddings or from a non-pretrained
PopT, the PopT both achieves better decoding performance
(see Table 1) and does so with steeper scaling per added
channel (Figure 2).

To verify that the weights of the pretrained PopT capture
neural processing well even without fine-tuning, we also
train a linear-encoder on top of the frozen PopT [CLS]
token and find the same trends ( Figure 10: Frozen scaling –
Figure 10). This point in particular is important in building
confidence in the results of our interpretability studies (see
Section 6), in which we use the frozen pretrained weights
to analyze connectivity.

Sample and compute efficiency Our PopT learns spatial
relationships between channels, in a way that makes down-
stream supervised learning more data and compute efficient
(see Figure 3 and Figure 4). Compared to the non-pretrained
baseline models, fine-tuning the pretrained PopT achieves
more decoding performance from fewer samples. At only
200 examples, the pretrained PopT has already surpassed

the performance achieved by the non-pretrained model on
the full dataset, for the volume, sentence onset, and speech
vs. non-speech tasks Figure 3. The number of steps required
for each model to converge is also greatly reduced by start-
ing with the pretrained PopT. We see that fine-tuning the
pretrained PopT consistently requires 500 steps or fewer
steps to reach its converged performance Figure 4, whereas
the non pretrained baselines may require 2k or more steps.

Generalizability To test whether our pretrained weights
will be useful for subjects not seen during training, we con-
duct a hold-one-out analysis. We pretrain a model using all
subjects except for one, and then fine-tune and evaluate on
the model downstream. We find that missing a subject from
pretraining does not significantly affect the downstream re-
sults (see Figure 5). This raises our confidence that the
pretrained weights will be useful for unseen subjects and
for researchers using new data.

Scaling with number of pretraining subjects To investi-
gate the effect of scaling pretraining data on our model, we
pretrain additional versions of PopT using only 1, 2, or 3
subjects. We find a consistent improvement in downstream
decoding when we increase the number of pretraining sub-
jects available across all our downstream decoding tasks
Figure 6. A significant improvement is found with just 1
pretraining subject already, potentially due to adaption to
the temporal embeddings used. The decoding performance
using all our pretraining data is significantly higher in most
decoding tasks than with just 1 or 2 subjects in the pre-
training data, suggesting the potential for our framework to
continue scaling with more subjects.

Ablation of loss components and position information
An ablation study confirms that both the network-wise and
channel-wise component of the pretraining objective con-
tribute to the downstream performance (Table 2). We also
find that including the 3D position information for each
channel is critical for decoding. These findings also hold
when the PopT is kept frozen during fine-tuning (see Ap-
pendix G: Frozen ablation – Table 4). Additionally, we
find that the discriminative nature of our loss is necessary
for decoding. Attempting to add an L1 reconstruction term
to our pretraining objective results in poorer performance,
perhaps because the model learns to overfit on low-entropy
features in the embedding. Our discriminative loss requires
the model to understand the embeddings in terms of how
they can be distinguished from one another, which leads the
model to extract more informative representations.

6. Interpreting Learned Weights
Our final analysis are two interpretability studies of the
Population Transformer’s learned weights. In the first, we
use the PopT weights to uncover connectivity maps of the
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Figure 3. Pretrained PopT is more sample efficient when fine-tuning. Varying the number of samples available to each model at train
time (x-axis), we see how the pretrained PopT is highly sample efficient, requiring only a fraction of samples to reach the full performance
level of non pretrained aggregation approaches (dashed lines). Bands show standard error across test subjects. Stars indicate performance
of the model trained on the full fine-tuning dataset.

Figure 4. Pretrained PopT is consistently more compute efficient when fine-tuning. Number of steps required for each model to reach
final performance during fine-tuning (dashed lines). We find that pretrained PopT consistently requires fewer than 750 steps (each step is
training on a batch size of 256) to converge, in contrast to the 2k steps required for the non pretrained PopT. Linear aggregation can be
similarily compute efficient, but occasionally benefits from more training steps depending on dataset size (Speech vs. Non-speech). Bands
show standard error across test subjects. Stars indicate fully trained performance.

Pitch Volume Sent. Onset Speech/Non-speech

PopT 0.69± 0.07 0.84± 0.06 0.86± 0.05 0.89± 0.07
PopT w/o group-wise loss 0.66± 0.07 0.83± 0.06 0.84± 0.04 0.88± 0.08
PopT w/o channel-wise loss 0.67± 0.06 0.81± 0.08 0.84± 0.06 0.87± 0.09
PopT w/o position encoding 0.59± 0.07 0.67± 0.10 0.75± 0.08 0.79± 0.08
PopT with reconstruction loss 0.60± 0.11 0.73± 0.11 0.81± 0.05 0.83± 0.09

Table 2. PopT ablation study. We individually ablate our losses and positional encodings during pretraining then decode on the resulting
models. Shown are ROC-AUC mean and standard error across subjects. The best performing model across all decoding tasks uses all three
of our proposed components, showing that they are all necessary. Removing our positional encoding during pretraining and fine-tuning
drops the performance the most, indicating that position encoding is highly important for achieving good decoding. Additionally, we
attempt adding a reconstruction component to the loss as a regularizing term, but find that this leads to poorer performance (see Section 5).

channels, and in the second, we use the attention weights of
the fine-tuned PopT to identify candidate functional brain
regions per decoding task.

Connectivity For identifying connectivity per region, tradi-

tional neuroscience analyses typically use cross-correlation
as a measure of channel connectivity (Wang et al., 2021).
Our PopT allows for an alternative method of determining
connectivity, based on the degree to which channels are sen-
sitive to each other’s context. We go through our channels,
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Figure 5. Gains in decoding performance are available to new
subjects. To test whether our pretrained PopT weights will be able
to yield decoding benefits for unseen subjects, we run a hold-one-
out analysis in which we exclude one subject from pretraining and
then evaluate on that subject during fine-tuning (Held-out). We
compare this with our full PopT model that has seen all subjects
during pretraining (All). A minimal decrease in downstream decod-
ing performance is found if the subject is held-out from pretraining
(Held-out vs All). This is in stark contrast to the achievable down-
stream performance with a non pretrained PopT (Non-pretrained
PopT).

masking one channel and then evaluating the model’s per-
formance on the pretraining channel-wise objective for the
remaining unmasked channels. We take the degradation in
performance as a measure of connectivity. We can construct
plots as in Figure 7, that recapitulate the strongest connec-
tivity of the cross-correlation maps. Note that while some
approaches for modelling brain activity explicitly build this
into their architecture (Cai et al., 2023) we recover these
connections purely as a result of our self-supervised learn-
ing.

Candidate functional brain regions from attention
weights Next, we discuss the possibility of uncovering
functional brain regions from the attention weights. After
fine-tuning our weights on a decoding task, we can examine
the attention weights of the [CLS] output for candidate
functional brain regions. We obtain a normalized Scaled
Attention Weight metric across all subjects to be able to ana-
lyze candidate functional brain regions across sparsely sam-
pled subject datasets Figure 8. The Scaled Attention Weight
is computed from raw attention weights at the [CLS] token
passed through the attention rollout algorithm (Abnar &
Zuidema, 2020). The resulting weights from each channel
are then grouped by brain region according to the Destrieux
layout (Destrieux et al., 2010). Additional details available
in Appendix D.

The resulting weights reveal expected functional brain re-
gions related to the tasks decoded Figure 8. For our low-
level perceptual auditory tasks (Volume and Pitch), we see
that our model learns to attend to the primary auditory cor-

Figure 6. Pretraining with more subjects leads to better down-
stream performance. We pretrain PopT with different number
of subjects (colors) and test on our decoding tasks (x-axis). Bars
indicate mean and standard error of performance across channel
ensembles 5-30 on test subject 3. Model descriptions: 0 subjects
(non-pretrained), 1 subject (pretrain w/ subject 4), 2 subjects (pre-
train w/ subjects 4, 8), 3 subjects (pretrain w/ subjects 4, 8, 10),
All subjects (pretrain w/ all 10 subjects). Pretraining with one
subject gives a considerable benefit compared to no pretraining
(red to yellow), but the addition of more subjects to pretraining
consistently improves performance (yellow → green).

tex. For our higher-level language distinction tasks (Speech
vs. Non-speech and Sentence onset), we see higher atten-
tion is placed at language areas like Wernicke’s area. Given
the massive pretraining PopT undergoes, these scaled atten-
tion weights provide a valuable a new tool for discovering
candidate functional brain regions.

7. Discussion
We presented a self-supervised learning scheme for learning
effective representations of intracranial activity from tempo-
ral embeddings. We find that pretraining the PopT results
in better channel efficiency at fine-tuning time. This can re-
duce the number of electrodes needed in future experiments,
which is critical for an invasive recording modality such as
sEEG. We showed that self-supervised pretraining imbues
our model with knowledge of spatial relationships between
these embeddings and improved downstream decoding that
scales with the number of available channels. As an aside,
we note that the tasks we evaluate necessitate wide coverage
of the brain. This is evidenced by the fact that performance
scales with the number of input channels. With future col-
lection of high quality intracranial data, we can continue
scaling PopT and uncover exciting new data-driven findings
for neuroscience.

By decoupling temporal and spatial feature extraction, we
are able to leverage existing temporal embeddings to learn
spatiotemporal representations efficiently and with a smaller
number of parameters. Our approach also leaves open the
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Figure 7. Probing the pretrained model for inter-channel con-
nectivity Traditionally, connectivity analysis between regions is
done by computing the coherence (Wang et al., 2021), i.e. cross-
correlation, between electrode activity (left). We propose an al-
ternative analysis based on how channels matter to each other in
the context of our pretraining objective. Iteratively, we select an
electrode, mask out its activity, and then plot the degradation in the
channel-wise objective function of the pretrained PopT objective
for the unmasked electrodes. Plotting the values of this delta (right)
recovers the main points of connectivity, purely based off of the
relationships learned during pretraining. Shown here is a plot for a
single subject; plots for all test subjects can be seen in Appendix E:
Connectivity.

possibility for independent improvement in temporal mod-
eling. If future approaches introduce better time-series rep-
resentations, are approach will be able to incorporate these
advantages directly. Finally, we note that our method can
serve more generally as a representation learning approach
for any ensemble of sparsely distributed time-series data
channels.

Limitations and Future Work As far as we know, no large
public sEEG dataset that are of the same level of quality as
ours (2048 Hz sampling rate, aligned electrode coordiantes,
multimodal stimulus) are available, so direct comparison
with existing approaches is difficult. Additionally, existing
sEEG test datasets that have been used by existing deep
learning models (Zhang et al., 2024) focus on the artifact
and seizure detection tasks (Nejedly et al., 2020), which are
less interesting at a network-level due to the dependence on
human labeling while looking at the time-series sEEG data
(Islam et al., 2022).

Given the high sampling rate of our sEEG data (10x of prior
work (Zhang et al., 2024; Cai et al., 2023)), training an
end-to-end spatio-temporal model on our data would not
have been computationally feasible, lending to the benefits
of learning spatial representations on top of learned tempo-
ral embeddings. With the development and acquisition of
compute resources, it would be a valuable future work to
compare our approach with end-to-end approaches.

Figure 8. Attention weights from a fine-tuned PopT identify
candidate functional brain regions Candidate functional maps
can be read from attention weights of a PopT fine-tuned on our
decoding tasks. For the Volume and Pitch tasks, note the weight
placed on the primary auditory cortex (black arrows), but not in
Wernicke’s area. For the Speech vs Non-speech and Sentence
onset tasks, note the weight placed on regions near Wernicke’s
area (black arrows). Center brain figure highlight regions related
to auditory-linguistic processing such as language production area
Broca’s area, language understanding Wernicke’s area, and the
primary auditory cortex (adapted from (NIH, 2017)).

8. Conclusion
We introduced a pretraining method for learning represen-
tations of arbitrary ensembles of intracranial electrodes.
We showed that our pretraining produced considerable im-
provements in downstream decoding, that would not have
been possible without the knowledge of spatial relation-
ships learned during the self-supervised pretraining stage.
We showed that this scheme produces interpretable weights
from which connectivity maps and candidate functional
brain regions can be read. Finally, we release the pretrained
weights for our PopT with BrainBERT inputs as well as
our code for plug-and-play pretraining with any temporal
embedding (see attached supplemental materials).
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A. Architectures and training
Pretrained PopT The core Population Transformer consists of a transformer encoder stack with 6 layers, 8 heads. All layers
(N = 6) in the encoder stack are set with the following parameters: dh = 512, H = 8, and pdropout = 0.1. We pretrain the
PopT model with the LAMB optimizer (You et al., 2019) (lr = 1e− 4), with a batch size of nbatch = 256, and train/val/test
split of 0.98, 0.01, 0.01 of the data. We pretrain for 500,000 steps, and record the validation performance every 1,000
steps. Downstream evaluation takes place on the weights with the best validation performance. We use the intermediate
representation at the [CLS] token dh = 512 and put a linear layer that outputs to dout = 1 for fine-tuning on downstream
tasks. These parameters for pretraining were the same for any PopT that needed to be pretrained (hold-one-out subject,
subject subsets, ablation studies).

Non-pretrained PopT The architecture for the non-pretrained PopT is the same as the pretrained PopT (above). However,
no pretraining is done, and the weights are randomly initialized with the default initializations.

Linear The linear baseline consists of a single linear layer that outputs to dout = 1. The inputs are flattened and
concatenated BrainBERT embeddings demb = 756 from a subset of channels S ⊂ C. Thus, the full input dimension is
dinput = demb ∗ |S|.

Deep NN The inputs are the same as above, but the decoding network now consists of 5 stacked linear layers, each with
dh = 512 and a GeLU activation.

Downstream Training For both PopT models, we train with these parameters: AdamW optimizer (Loshchilov & Hutter,
2017), lr = 5e−4 where transformer weights are scaled down by a factor of 10 (lrt = 5e−5), nbatch = 256, a Ramp Up
scheduler (ildoonet, 2024) with warmup 0.025 and Step LR gamma 0.99, reducing 100 times within the 2000 total steps that
we train for. For Linear and DeepNN models, we train with these parameters: AdamW optimizer (Loshchilov & Hutter,
2017), lr = 5e−4, nbatch = 256, a Ramp Up scheduler (ildoonet, 2024) with warmup 0.025 and Step LR gamma 0.95,
reducing 25 times within the 17,000 total steps we train for. For all downstream decoding, we use a fixed train/val/test split
of 0.8, 0.1, 0.1 of the data.

Compute Resources To run all our experiments (data processing, pretraining, evaluations, interpretability), one only needs 1
NVIDIA Titan RTXs (24GB GPU Ram) and up to 80 CPU cores (700GB memory) if running sequentially. Pretraining PopT
takes 4 days on 1 GPU. Our downstream evaluations take a few minutes to run each. For the purposes of data processing
and gathering all the results in the paper, we parallelized the experiments on roughly 8 GPUs and 80 CPU cores.

B. Decoding tasks
We follow the same task specification as in Wang et al. (2022), with the modification that the pitch and volume examples are
determined by percentile (see below) rather than standard deviation in order to obtain balanced classes.

Pitch The PopT receives an interval of activity and must determine if it corresponds with a high or low pitch word being
spoken. For the duration of a given word, pitch was extracted using Librosa’s piptrack function over a Mel-spectrogram
(sampling rate 48,000 Hz, FFT window length of 2048, hop length of 512, and 128 mel filters). For this task, for a given
session, positive examples consist of words in the top-quartile of mean pitch and negative examples are the words in the
bottom quartiles.

Volume The volume of a given word was computed as the average intensity of root-mean-square (RMS) (rms function,
frame and hop lengths 2048 and 512 respectively). As before, positive examples are the words in the top-quartile of volume
and negative examples are those in the bottom quartiles.

Speech vs non-speech Positive examples are intervals of brain activity that correspond with dialogue being spoken in the
stimuli movie. Negative examples are intervals of activity from 1s periods during which no speech is occurring in the movie.

Sentence onset Negative examples are as before. Positive examples are intervals of brain activity that correspond with
hearing the first word of a sentence.
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C. Data

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Held-
out

1
19 91 Thor: Ragnarok 1.83

Fantastic Mr. Fox 1.75
The Martian 0.5 x

2

12 100 Venom 2.42
Spider-Man: Homecoming 2.42
Guardians of the Galaxy 2.5
Guardians of the Galaxy 2 3
Avengers: Infinity War 4.33
Black Panther 1.75
Aquaman 3.42 x

3
18 91 Cars 2 1.92 x

Lord of the Rings 1 2.67
Lord of the Rings 2 (extended
edition)

3.92

4 9 135 Megamind 2.58
Toy Story 1.33
Coraline 1.83 x

5 11 205 Cars 2 1.75 x
Megamind 1.77

6
12 152 Incredibles 1.15

Shrek 3 1.68 x
Megamind 2.43

7 6 109 Fantastic Mr. Fox 1.5

8 4.5 72 Sesame Street Episode 1.28

9 16 102 Ant Man 2.28

10 12 173 Cars 2 1.58 x
Spider-Man: Far from Home 2.17

Table 3. Subject statistics Subjects used in PopT training, and held-out downstream evaluation. Table taken from (Wang et al., 2022).
The number of uncorrupted, electrodes that can be Laplacian re-referenced are shown in the second column The average amount of
recording data per subject is 4.3 (hrs).

D. Interpretation Methods
Connectivity analysis We start with a pretrained PopT. To test a particular channel’s contribution to connectivity, we mask it
with all zeros. Then, we consider the remaining unmasked channels and ask, how much increase do we see in the pretraining
channel-wise loss? Recall that this objective is to determine whether or not a channel has had its inputs swapped with
random activity. If the increase in loss is large, then we infer that the masked channel provided important context for this
task. Using this delta as a measure for connectivity, we can then average across regions, as provided by the Desikan-Killiany
atlas (Alexander et al., 2019) and produce a plot using mne-connectivity (Gramfort et al., 2013).

Scaled Attention Weight First, we obtain an attention weight matrix across all trials which includes weights between all
tokens. Then, we perform attention rollout (Abnar & Zuidema, 2020) across layers to obtain the contributions of each input
channel by the last layer. We take the resulting last layer of rollout weights for all channels, where the target is the [CLS]
token, normalize within subject, and scale by ROC AUC to obtain the Scaled Attention Weight per channel. Finally, we plot
the 0.75 percentile weight per region, as mapped by the Destrieux atlas (Destrieux et al., 2010) using Nilearn (nil, 2015).
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E. Connectivity

Figure 9. Full connectivity for our 7 test subjects. We compare between traditional connectivity analaysis performed via coherence (top
row in each section) and the analysis based on our PopT pretrained weights (bottom row in each section). We note that our analysis usually
recovers the strongest points of connectivity fromt the traditional analysis. Coherence was computed using scikit-learn’s (Pedregosa et al.,
2011) signal.coherence.
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F. Frozen scaling

Figure 10. Pretraining is critical to frozen PopT performance that scales with the number of channels. As in Figure 2, we see that
pretraining results in better downstream decoding and better scaling with the number of added channels. However, unlike in Figure 2, the
PopT weights are frozen during fine-tuning, and only the linear classification head is updated. Bands show standard error across subjects.
Results are shown for a frozen PopT with BrainBERT inputs.

G. Frozen ablation

Sentence onset Speech/Non-speech Pitch Volume

Frozen PopT 0.73± 0.06 0.72± 0.08 0.59± 0.06 0.63± 0.07
w/o cls 0.67± 0.08 0.68± 0.07 0.58± 0.04 0.60± 0.07
w/o replace loss 0.69± 0.07 0.69± 0.09 0.59± 0.06 0.62± 0.06
w/o position encoding 0.70± 0.07 0.69± 0.07 0.56± 0.08 0.61± 0.06

Table 4. An ablation study of the components of our approach for the frozen PopT. During pretraining, we alternate using either only the
CLS or token contrastive component of the loss. We fine-tune these weights on all subjects. We find that both components contribute to
the full model’s performance.
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