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ABSTRACT

Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model
to an unlabeled target domain with no access to the source data. Inspired by
the success of large Vision-Language (ViL) models in many applications, the
latest research has validated ViL’s benefit for SFDA by using their predictions as
pseudo supervision. However, we observe that ViL’s supervision could be noisy
and inaccurate at an unknown rate, introducing additional negative effects during
adaption. To address this thus-far ignored challenge, we introduce a novel Proxy
Denoising (ProDe) approach. The key idea is to leverage the ViL model as a
proxy to facilitate the adaptation process towards the latent domain-invariant space.
Concretely, we design a proxy denoising mechanism to correct ViL’s predictions.
This is grounded on a proxy confidence theory that models the dynamic effect
of proxy’s divergence against the domain-invariant space during adaptation. To
capitalize the corrected proxy, we further derive a mutual knowledge distilling
regularization. Extensive experiments show that ProDe significantly outperforms
the current state-of-the-art alternatives under both conventional closed-set setting
and the more challenging open-set, partial-set, generalized SFDA, multi-target,
multi-source, and test-time settings. Our code will be released.

1 INTRODUCTION

Conventional Unsupervised Domain Adaptation (UDA) uses well-annotated source data and unan-
notated target data to achieve cross-domain transfer. Its data access requirement however raises the
increasing concerns around safety and privacy. There is thus a call for restricted access to source do-
main training data, leading to a more practical but challenging transfer learning setting – Source-Free
Domain Adaptation (SFDA) (Li et al., 2020a; Xia et al., 2021; Roy et al., 2022).

At the absence of source samples, applying traditional cross-domain distribution matching approaches
is no longer feasible (Ganin & Lempitsky, 2015; Kang et al., 2019). Instead, self-supervised learning
comes into play by aiming to generate/mine auxiliary information for unsupervised adaptation. There
are two main routes. The first makes SFDA as a special case of UDA by explicitly creating a
pseudo-source domain, making previous UDA methods such as adversarial learning (Xia et al., 2021;
Kurmi et al., 2021) or minimizing domain shift (Ding et al., 2022; Tian et al., 2021; Kundu et al.,
2022) applicable. The second further refines generated supervision from the source model (Lao et al.,
2021; Wang et al., 2022a; Huang et al., 2021) or target data (Yang et al., 2022; Tang et al., 2022;
Yang et al., 2021a), as the constructed pseudo source domain may be noisy. These existing methods
all perform a free alignment without external guidance from the target feature space to the unknown
domain-invariant feature space.

There has been growing interest in leveraging pre-trained large Vision-Language (ViL) models, e.g.,
CLIP (Radford et al., 2021), for transfer learning challenges. This is because ViL models have
been trained with a massive amount of diverse vision-language data, encompassing rich knowledge
potentially useful for many downstream tasks. For instance, Ge et al. (2022); Lai et al. (2023); Singha
et al. (2023) disentangle domain and category information within ViL model’s visual features by
learning domain-specific textual or visual prompts. Recently, ViL models have also been used to
tackle the SFDA problem (Tang et al., 2024c; Xiao et al., 2024). However, they simply treat the ViL
model’s predictions as ground truth, which would be not true in many unknown cases and finally
harming their performance.
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Figure 1: Conceptual illustration of ProDe.
We align the adapting direction with the de-
sired trajectory by leveraging a proxy space
that approximates the latent domain-invariant
space. This process incorporates direction
adjustments based on proxy error correction,
implementing proxy denoising, and finally
achieves enhanced model adaptation.

To address the limitation mentioned above, in this
paper, we propose a new Proxy Denoising (ProDe)
approach for SFDA. In contrast to (Tang et al., 2024c;
Xiao et al., 2024), we consider the ViL model/space
as a noisy proxy of the latent domain-invariant space1,
with a need to be denoised. At the absence of any
good reference models for measuring the noisy de-
gree with the already strong ViL model’s predictions,
we exploit the dynamics of domain adaptation pro-
cess, starting at the source model space and terminat-
ing presumably in the latent domain-invariant space.
In particular, this takes into account the proxy’s di-
vergence against the domain-invariant space (Fig. 1).
Specifically, we model approximately the effect of
ViL model’s prediction error on domain adaption by
formulating a proxy confidence theory, in relation
to the discrepancy between the source domain and
the current under-adaptation model. This leads to a
novel proxy denoising mechanism for ViL prediction
correction. To capitalize the corrected ViL predictions more effectively, a mutual knowledge distilling
regularization is further designed.

Our contributions are summarized as follows: (1) We for the first time investigate the inaccurate
predictions of ViL models in the context of SFDA. (2) We formulate a novel ProDe method that reli-
ably corrects the ViL model’s predictions under the guidance of a proxy confidence theory. A mutual
knowledge distilling regularization is also introduced for capitalizing the refined proxy predictions
more effectively. (3) Extensive experiments on four benchmarks show that our ProDe significantly
outperforms previous art alternatives in closed-set settings, as well as the more challenging partial-set,
open-set, and generalized SFDA, multi-target, multi-source and test-time settings .

2 RELATED WORK

Source-Free Domain Adaptation The main issue with SFDA is the lack of supervision during
model adaptation. To overcome this challenge, current methods are broadly divided into three
categories. The first category involves converting SFDA to conventional UDA by introducing
a pseudo-source domain. This can be achieved by building the pseudo-source domain through
generative models (Tian et al., 2022; Li et al., 2020b) or by splitting a source-distribution-like subset
from the target domain (Du et al., 2023). The second category involves mining auxiliary information
from the pre-trained source model to assist in aligning the feature distribution from the target domain
to the source domain. Commonly used auxiliary factors include multi-hypothesis (Lao et al., 2021),
prototypes (Zhou et al., 2024), source distribution estimation (Ding et al., 2022), or hard samples (Li
et al., 2021). The third category focuses on the target domain and creates additional constraints to
correct the semantic noise in model transferring. In practice, domain-aware gradient control (Yang
et al., 2021b), data geometry such as the intrinsic neighborhood structure (Tang et al., 2021) and target
data manifold (Tang et al., 2022; Tang et al., 2024a), are exploited to generate high-quality pseudo-
labels (Liang et al., 2020; Chen et al., 2022b) or inject assistance in an unsupervised fashion (Yang
et al., 2021a). The existing solutions refine auxiliary information from domain-specific knowledge,
such as the source model and unlabeled target data, while neglecting the extensive general knowledge
encoded in off-the-shelf pre-trained multimodal models.

Vision-Language Models ViL models, such as CLIP (Radford et al., 2021) and GLIP (Li et al.,
2022), have shown promise in various tasks (Liang et al., 2023; Wang et al., 2022c) due to their
ability to capture modality invariant features. There are two main lines of research related to these
models. The first line aims to improve their performance. For instance, text-prompt learning (Zhou
et al., 2022; Ge et al., 2022) and visual-prompt learning (Wang et al., 2023; Jia et al., 2022) were

1The issue of noisy predictions is evidenced by the inferior zero-shot performance of the ViL model, e.g.,
CLIP, on the target domains (see Tab. 4). Also, “domain invariant space" refers to an ideal latent embedding
space where the mapped features from different domains align with the same probability distribution.
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Figure 2: Left: Dynamics of effect of ViL model’s prediction error (proxy error) during proxy
alignment. (a) In the initial adaptation phase, it is possible to overlook the proxy errors. However, as
the in-training model approaches the proxy space, these errors become more noticeable, leading to a
continuous decline in the reliability of ViL predictions as shown in (b) and (c). Right: Our ProDe
capitalizes the corrected proxy, involving a mutual knowledge distilling regularization and a proxy
denoising mechanism imposing adjustment on the ViL logits for more reliable ViL prediction.

adopted to optimize the text encoder and image encoder, respectively, using learnable prompts related
to application scenarios. Some researchers have also improved the data efficiency of these models
by re-purposing (Andonian et al., 2022) or removing noisy data (Wang et al., 2021). The second
line of research focuses on using ViL models as external knowledge to boost downstream tasks.
Related work in this area mainly follows three frameworks: Plain fusion (Liu et al., 2024), knowledge
distillation (Pei et al., 2023) and information entropy regulating (Cha et al., 2022). Moving further
from recent ViL based SFDA models (Tang et al., 2024c; Xiao et al., 2024), we tackle the challenge
of mitigating the noise of ViL’s supervision.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We start with a labeled source domain and an unlabeled target domain, sharing the same C categories.
Let Xs and Ys be the source data samples and labels. Similarly, the target samples and the truth target
labels are denoted as Xt={xi}ni=1 and Yt={yi}ni=1, respectively, where n is the sample number.
SFDA aims to learn a target model θt :Xt→Yt given (1) the pre-trained source model θs :Xs→Ys,
(2) the unlabeled target data Xt. In this context, we further leverage a ViL model θv that produces
noise supervision.

To overcome this issue, we exploit the dynamics of domain adaptation process. As shown in Fig. 2 (a),
we consider three spaces: source domain DS (i.e., source image embedding space), domain-invariant
space DI , and ViL space DV (our best possible proxy approximating DI ). In this context, DI

typically refers to an ideal, unknown latent space that is domain generalized in image embedding
format. We want to align the in-training model DTt

from DS to DI as t ∈ [0 ∼ T ] ≫ 0. Without
access to DI , we instead perform proxy alignment (aligning DTt to proxy DV ) with adjustment.
The discrepancy between DI and DV is referred to as proxy error eV I , underpinning intuitively
ViL’s prediction errors. We further transform the task of minimizing the errors of ViL predictions to
controlling the proxy error by establishing a proxy confidence theory.

3.2 PROXY CONFIDENCE THEORY

This theory is grounded on understanding the impact of the proxy error on the domain adaptation
process. This can be achieved by examining the dynamics of the proxy alignment, which is outlined
in Section 3.1.

To account for the continuity of movement, as demonstrated in Fig. 2 (a), we consider two typical
situations in the proxy alignment process, in which the distance of DTt to DV and DI are denoted as

3
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dt
V and dt

I , respectively; the distinction between DV and DI , i.e., proxy error eV I , is a space-to-space
distance in the vector form.

• Case1: When DTt is significantly far from DV , e.g., the beginning of adaptation (t = 0),
it is hold that d0

I ≈ d0
V ≫ eV I . This implies that aligning to DI or DV is equivalent.

Consequently, the proxy errors eV I can be ignored, thereby the ViL prediction can be
deemed trustworthy.

• Case2: When DTt approaches DV , e.g., the later phase in the adaptation (t = T ≫ 0),
it becomes crucial to consider the proxy error and the distance relationship changes to
dT
I = dT

V + eV I (this equation is established based on the vector geometric property that u,
v, and u+ v form a triangle, where u and v are two sides, the u+ v is the left one). This
is when the ViL predictions become less reliable.

It is seen that the proxy errors dynamically impact on this proxy alignment process, reflected in the
relative relationship between dt

V and dt
I as:

ηt =
|dt

I |
|dt

V |
=

|dt
V + eV I |
|dt

V |
≤ |dt

V |+ |eV I |
|dt

V |
= 1 +

|eV I |
|dt

V |
, (1)

where ηt means the impact degree, |a| means the absolute value (length) of distance vector a. During
the proxy alignment, the ratio of |eV I |/|dt

V | in Eq. (1) gradually increases from 0 (e.g., Case 1) to a
non-zero value (e.g., Case 2), leading to a gradual increase in ηt from 1. In other words, the impact
of errors gradually increases.

Corresponding to this dynamics mentioned above, as shown in Fig. 2 (b), the ViL prediction variance
gradually increases, which implies a progressive decrease in the reliability of the ViL prediction. At
any time t, we treat the ViL prediction as a Gaussian distribution N (θv (xi) , δt) with the mean of
ViL model’s prediction θv (xi) and prediction variance δt ∝ ηt (Fig. 2 (c)). Here, we consider the
VLM’s predictions to be influenced by various sources of noise and uncertainty, which justifies the
Gaussian approximation according to Central Limit Theorem.

Since the eV I is unknown, we cannot formulate these dynamics explicitly. We consider this problem
approximately: Quantifying the prediction variance with the varying confidence of the ViL model
predictions. This conversion can be expressed in the form of a probability distribution with proxy
confidence as:

N (θv (xi) , δt) =⇒ P
(
GP (V ) = True, t

)
P (V ) , (2)

where P (V ) is the probability distribution of the proxy space DV ; GP (V ) stands for a random event
that the sampling results (i.e., ViL model’s prediction) from P (V ) is confident; P

(
GP (V ) = True, t

)
is proxy confidence, indicating the probability of the event GP (V ) being true at time t, and it decreases
progressively, matching the reduction of the ViL prediction reliability. By framing the prediction
as a probabilistic event, we can leverage the concept of proxy confidence, P

(
GP (V ) = True, t

)
,

to quantify how reliable we consider the VLM’s predictions to be at any point in the adaptation
process. This conversion allows us to connect the notion of prediction reliability with the underlying
distributions, making it easier to reason about the impact of proxy errors. Within this probability
context, we can formulate the proxy confidence theory for P

(
GP (V ) = True, t

)
as detailed in

Theorem 1 with proof in Appendix-A.

Theorem 1 Given a proxy alignment formulated in Section 3.1. The source domain (DS), the
domain-invariant space (DI ), the proxy space (DV ) and the in-training model (DTt

) satisfy the
probability distributions P (S), P (I), P (V ) and P (Tt), respectively, where S, I , V and Tt are
corresponding random variables. The factor describing the credibility of P (V ) has a p below.

P
(
GP (V ) = True, t

)
∝ P (Tt)

P (S)
. (3)

Given that the effect of proxy error causes the varying of the confidence factor P
(
GP (V ) = True, t

)
,

as mentioned earlier, Theorem 1 provides us an insight: The effect of ViL model’s prediction error on
domain adaption is approximately reflected by the discrepancy between the source domain and the
current in-training model.

4
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3.3 CAPITALIZING THE CORRECTED PROXY

Overview To capitalize the corrected proxy, we propose a novel ProDe method involving two
designs: A proxy denoising mechanism and a mutual knowledge distilling regularization, as shown in
Fig. 2 (d). In this method, the proxy denoising converts the original ViL predictions to reliable ones
by imposing correction on the logit level. The mutual distilling regularization encourages knowledge
synchronization between the ViL model θv (teacher) and the in-training target model θt (student),
coupled with a refinement for useful ingredients. In practice, this knowledge synchronization is
jointly encouraged by learning target-specific prompt context (for the teacher model) and encoding the
reliable proxy knowledge (for the student model). Additionally, unlike all previous SFDA approaches,
the source model θs in ProDe not only initiates the target model at the beginning of adaptation, but
also continues to serve the proxy denoising operation. ProDe’s details are presented below.

Proxy denoising This module aims to filter out the noisy ViL prediction in an individual correction
fashion, serving the target domain-specific task. Based on the results from Theorem 1 (Eq. (3)), we
further convert the ViL space’s probability distribution with proxy confidence, i.e., Eq. (2), into

log

(
P (Tt)

P (S)
P (V )

)
= logP (V )− [logP (S)− logP (Tt)] . (4)

In Eq. (4), the latter two items form an adjustment to correct for the first item, essentially providing a
strategy to obtain reliable ViL prediction. Inspired by Eq. (4), we design denoising mechanism as:

p′
i = ϕ (l′i) , l

′
i = θv (xi,v)− ω∆t, ∆t = θs (xi)− θt (xi) , (5)

where l′i and p′
i are the denoised ViL logit and prediction of input instance xi, respectively, v is the

learnable prompt context and ϕ means softmax operation; ∆t refers to the adaptive adjustment for
correction, and the hyper-parameter ω specifies the correction strength.

Mutual knowledge distilling The regularization consists of two components LSyn and LRef .
First of all, LSyn synchronizes knowledge from both sides by maximizing the unbiased mutual
information between the denoised ViL prediction p′

i and the target prediction pi = ϕ(θt(xi)). This
design is motivated by that despite massive (often noisy) data, ViL models (e.g., CLIP) don’t always
outperform source domain supervised models focused on the target task. There are three reasons:
(1) ViL models are generalists, while source domain models are specialized. (2) ViL models may
include irrelevant data, whereas source domain models use curated, relevant data. (3) ViL models
might overlook task-specific features that are captured by source domain models. Meanwhile, to
avoid the solution collapse (Ghasedi Dizaji et al., 2017), we introduce a widely used category balance
constraint (Yang et al., 2021a). Importantly, LRef distills a useful fraction of knowledge obtained by
the interaction learning as it is still likely noisy due to the lack of ground-truth labels in SFDA setting.
We use classification with the denoised ViL predictions as the labels.

Formally, we can summarize the designs mentioned above with the following objective.

LProDe = min
θt,v

α

LSyn︷ ︸︸ ︷(
−Exi∈XtMI

(
p′
i,pi

)
+ γ

C∑
c=1

q̄c log q̄c

)
−β

LRef︷ ︸︸ ︷
Exi∈Xt

C∑
c=1

1
[
c = y′

i

]
log pi,c,

(6)

where MI(·, ·) computes the mutual information (Ji et al., 2019); the second item in LSyn is the
balance loss, C is the category number, q̄c = 1

n

∑n
i=1 qi,c is c-th element of q̄, in which q̄ is are

empirical label distribution over the C categories, qi,c is the probability value of target prediction
θt (xi) in the c-th category; in LRef , pi,c is the c-th element of pi, 1[c = y′i] is a one-hot encoding
of hard category label y′i predicted by the denoised ViL prediction p′

i. With regulating of Eq. (6), we
accomplish the model training whose concrete procedure is summarized to the algorithm provided in
Appendix B.

4 EXPERIMENTS

Datasets We evaluate four widely used domain adaptation benchmarks. Among them, Office-
31 (Saenko et al., 2010) and Office-Home (Venkateswara et al., 2017) are small-scaled and medium-
scale datasets, respectively, whilst VisDA (Peng et al., 2017) and DomainNet-126 (Saito et al., 2019)
are both challenging large-scale datasets. Their details are provided in Appendix-C.
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SFDA settings We consider five distinct SFDA settings: (1) closed-set, (2) partial-set, open-set
(initialized in SHOT (Liang et al., 2020)), (3) generalized SFDA, which is detailed in GDA (Yang
et al., 2021b) initially, (4) multi-target (SF-MTDA), multi-source (SF-MSDA) that are detailed
in (Kumar et al., 2023) and (Ahmed et al., 2021), respectively, and (5) test-time adaptation (TTA)
detailed in (Wang et al., 2020). Appendix-D elaborates other experiment implementations.

4.1 COMPETITORS

Table 1: Closed-set SFDA results (%) on Office-31.
SF means source-free.

Method Venue SF A→D A→W D→A D→W W→A W→D Avg.

Source – – 79.1 76.6 59.9 95.5 61.4 98.8 78.6

SHOT ICML20 ✓ 93.7 91.1 74.2 98.2 74.6 100. 88.6
NRC NIPS21 ✓ 96.0 90.8 75.3 99.0 75.0 100. 89.4
GKD IROS21 ✓ 94.6 91.6 75.1 98.7 75.1 100. 89.2
HCL NIPS21 ✓ 94.7 92.5 75.9 98.2 77.7 100. 89.8
AaD NIPS22 ✓ 96.4 92.1 75.0 99.1 76.5 100. 89.9
AdaCon CVPR22 ✓ 87.7 83.1 73.7 91.3 77.6 72.8 81.0
CoWA ICML22 ✓ 94.4 95.2 76.2 98.5 77.6 99.8 90.3
ELR ICLR23 ✓ 93.8 93.3 76.2 98.0 76.9 100. 89.6
PLUE CVPR23 ✓ 89.2 88.4 72.8 97.1 69.6 97.9 85.8
CPD PR24 ✓ 96.6 94.2 77.3 98.2 78.3 100. 90.8
TPDS IJCV24 ✓ 97.1 94.5 75.7 98.7 75.5 99.8 90.2

DIFO-R CVPR24 ✓ 93.6 92.1 78.5 95.7 78.8 97.0 89.3
DIFO-V CVPR24 ✓ 97.2 95.5 83.0 97.2 83.2 98.8 92.5
ProDe-R – ✓ 92.6 93.2 80.9 94.6 81.0 98.0 90.0
ProDe-V – ✓ 96.6 96.4 83.1 96.9 82.9 99.8 92.6

To evaluate ProDe, we select 30 related com-
parisons divided into four groups. (1) The first
includes 2 base models involved in the SFDA
problem: The source model (termed Source)
and CLIP zero-shot (termed CLIP) (Radford
et al., 2021). (2) The second includes 7 current
state-of-the-art domain adaptation methods with
ViL model (adopting CLIP in practice), cov-
ering UDA and SFDA settings: DAPL-R (Ge
et al., 2022), PADCLIP-R (Lai et al., 2023),
ADCLIP-R (Singha et al., 2023), PDA-R (Bai
et al., 2024), DAMP-R (Du et al., 2024), DIFO-
R (Tang et al., 2024c) and DIFO-V (Tang et al.,
2024c). Among them, DIFO-R and DIFO-V
are the SFDA methods, while others are UDA
methods. The suffix of “-R” and “-V” means
that the image-encoder in CLIP uses the back-
bone of ResNet and ViT, respectively. Specif-
ically, DIFO-V employs the backbone of ViT-
B/32 across all datasets, whilst the rest methods with “-R" use ResNet101 on VisDA and ResNet50 on
the other three datasets. (3) The third comprises 16 state-of-the-art SFDA models without using ViL
model: SHOT (Liang et al., 2020), NRC (Yang et al., 2021a), GKD (Tang et al., 2021), HCL (Huang
et al., 2021), AaD (Yang et al., 2022), AdaCon (Chen et al., 2022a), CoWA (Lee et al., 2022),
ELR (Yi et al., 2023), PLUE (Litrico et al., 2023), CRS (Zhang et al., 2023), CPD (Zhou et al., 2024),
TPDS (Tang et al., 2024a), GDA (Yang et al., 2021b), PSAT-ViT (Tang et al., 2024b) CoNMix (Kumar
et al., 2023) and DECISION (Ahmed et al., 2021). Among them, GDA and PSAT-ViT are specific
for the generalized SFDA setting, while CoNMix and DECISION are SF-MTDA and SF-MSDA
methods, respectively. (4) The fourth comprises 5 state-of-the-art TTA models: Tent (Wang et al.,
2020), T3A (Iwasawa & Matsuo, 2021), CoTTA (Wang et al., 2022b), EATA (Niu et al., 2022) and
SAR (Niu et al., 2023). Additionally, for a fair comparison with DIFO, the previous best SFDA
method with ViL model, we have initiated ProDe into the same versions mentioned above: A strong
version ProDe-V and a weak version ProDe-R.

4.2 COMPARISON RESULTS ON MULTI-SFDA SETTINGS

Comparisons on closed-set SFDA. Tab. 1∼3 lists the quantitative comparisons on the four evaluation
datasets. Both ProDe-R and ProDe-V beat all non-multimodal SFDA methods by a large margin.
Compared with the second-best method CPD (Office-31), TPDS (Office-Home), PLUE (VisDA) and
GKD (DomainNet-126), ProDe-V improves by 1.8%, 12.7% 3.3% and 16.3% in average accuracy,
respectively. As for those methods with CLIP, ProDe also beat them in the same backbone setting. In
particular, compared with the multimodal SFDA method DIFO, ProDe improves by 4.8% and 5.0%
(DomainNet-126) at most using ResNet and ViT-B/32, respectively. Actually, the weak version of
our method, ProDe-R, is competitive with the strong version of DIFO, DIFO-V. All of these results
indicate that ProDe can significantly boost the cross-domain adaptation under the SFDA setting.

Comparison to CLIP prediction results. It only makes sense for ProDe to outperform CLIP. To
assess this, we conducted a quantitative comparison between our model’s adaptation performance
and CLIP’s zero-shot performance. The results of our model are reported with average accuracy. As
reported in Tab. 4, ProDe-R and ProDe-V improve at least by 6.2 % (on VisDA) and 8.7% (on VisDA
and DomainNet-126), respectively, compared with CLIP’s results on the four datasets. This result
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Table 2: Closed-set SFDA results (%) on Office-Home and VisDA. SF means source-free. The full
results on VisDA are provided in Appendix E.1.

Method Venue SF Office-Home VisDA
Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→PrAvg. Sy→Re

Source – – 43.7 67.0 73.9 49.9 60.1 62.5 51.7 40.9 72.6 64.2 46.3 78.1 59.2 49.2

SHOT ICML20 ✓ 56.7 77.9 80.6 68.0 78.0 79.4 67.9 54.5 82.3 74.2 58.6 84.5 71.9 82.7
NRC NIPS21 ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2 85.9
GKD IROS21 ✓ 56.5 78.2 81.8 68.7 78.9 79.1 67.6 54.8 82.6 74.4 58.5 84.8 72.2 83.0
AaD NIPS22 ✓ 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7 88.0
AdaCon CVPR22 ✓ 47.2 75.1 75.5 60.7 73.3 73.2 60.2 45.2 76.6 65.6 48.3 79.1 65.0 86.8
CoWA ICML22 ✓ 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5 86.9
ELR ICLR23 ✓ 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6 85.8
PLUE CVPR23 ✓ 49.1 73.5 78.2 62.9 73.5 74.5 62.2 48.3 78.6 68.6 51.8 81.5 66.9 88.3
CPD PR24 ✓ 59.1 79.0 82.4 68.5 79.7 79.5 67.9 57.9 82.8 73.8 61.2 84.6 73.0 85.8
TPDS IJCV24 ✓ 59.3 80.3 82.1 70.6 79.4 80.9 69.8 56.8 82.1 74.5 61.2 85.3 73.5 87.6

DAPL-R TNNLS23 ✗ 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5 86.9
PADCLIP-RICCV23 ✗ 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6 88.5
ADCLIP-R ICCVW23 ✗ 55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9 87.7
PDA-R AAAI24 ✗ 55.4 85.1 85.8 75.2 85.2 85.2 74.2 55.2 85.8 74.7 55.8 86.3 75.3 86.4
DAMP-R CVPR24 ✗ 59.7 88.5 86.8 76.6 88.9 87.0 76.3 59.6 87.1 77.0 61.0 89.9 78.2 88.4
DIFO-R CVPR24 ✓ 62.6 87.5 87.1 79.5 87.9 87.4 78.3 63.4 88.1 80.0 63.3 87.7 79.4 88.8
DIFO-V CVPR24 ✓ 70.6 90.6 88.8 82.5 90.6 88.8 80.9 70.1 88.9 83.4 70.5 91.2 83.1 90.3
ProDe-R – ✓ 66.0 91.2 90.8 81.4 91.4 90.5 82.2 67.3 90.8 83.6 67.7 91.6 82.9 89.9
ProDe-V – ✓ 74.6 92.9 92.4 84.4 93.0 92.2 83.8 74.8 92.4 84.9 75.2 93.7 86.2 91.6

Table 3: Closed-set SFDA results (%) on DomainNet-126. SF means source-free.

Method Venue SF C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source – – 44.6 59.8 47.5 53.3 75.3 46.2 55.3 62.7 46.4 55.1 50.7 59.5 54.7

SHOT ICML20 ✓ 63.5 78.2 59.5 67.9 81.3 61.7 67.7 67.6 57.8 70.2 64.0 78.0 68.1
GKD IROS21 ✓ 61.4 77.4 60.3 69.6 81.4 63.2 68.3 68.4 59.5 71.5 65.2 77.6 68.7
NRC NIPS21 ✓ 62.6 77.1 58.3 62.9 81.3 60.7 64.7 69.4 58.7 69.4 65.8 78.7 67.5
AdaCon CVPR22 ✓ 60.8 74.8 55.9 62.2 78.3 58.2 63.1 68.1 55.6 67.1 66.0 75.4 65.4
CoWA ICML22 ✓ 64.6 80.6 60.6 66.2 79.8 60.8 69.0 67.2 60.0 69.0 65.8 79.9 68.6
PLUE CVPR23 ✓ 59.8 74.0 56.0 61.6 78.5 57.9 61.6 65.9 53.8 67.5 64.3 76.0 64.7
TPDS IJCV24 ✓ 62.9 77.1 59.8 65.6 79.0 61.5 66.4 67.0 58.2 68.6 64.3 75.3 67.1

DAPL-R TNNLS23 ✗ 72.4 87.6 65.9 72.7 87.6 65.6 73.2 72.4 66.2 73.8 72.9 87.8 74.8
ADCLIP-R ICCVW23 ✗ 71.7 88.1 66.0 73.2 86.9 65.2 73.6 73.0 68.4 72.3 74.2 89.3 75.2
DAMP-R CVPR24 ✗ 76.7 88.5 71.7 74.2 88.7 70.8 74.4 75.7 70.5 74.9 76.1 88.2 77.5
DIFO-R CVPR24 ✓ 73.8 89.0 69.4 74.0 88.7 70.1 74.8 74.6 69.6 74.7 74.3 88.0 76.7
DIFO-V CVPR24 ✓ 76.6 87.2 74.9 80.0 87.4 75.6 80.8 77.3 75.5 80.5 76.7 87.3 80.0
ProDe-R – ✓ 79.3 91.0 75.3 80.0 90.9 75.6 80.4 78.9 75.4 80.4 79.2 91.0 81.5
ProDe-V – ✓ 83.2 92.4 79.0 85.0 92.3 79.3 85.5 83.1 79.1 85.5 83.4 92.4 85.0

shows that the multimodal CLIP space only approximates the domain-invariant space, suggesting the
need for denoising that this paper focuses on.

Comparison on partial-set and open-set settings. For a complete evaluation, we also evaluate
ProDe on two variation scenarios: Partial-set and open-set settings. As reported in Tab. 5, ProDe-V
achieves a gain of 0.6% (partial-set) and 6.7% (open-set) compared with the best competitor DIFO-V.

Comparison on generalized SFDA settings. The generalized SFDA is an extended problem of
closed-set SFDA, highlighting the anti-forgetting ability on the seen source domain. The same
as (Yang et al., 2021b), we adopt the harmonic mean accuracy as evaluation protocol, which is
computed by H = (2 ∗Accs ∗Acct)/(Accs +Acct) where Accs and Acct are the accuracies of
the adapted target model on the source domain and the target domain, respectively. Note that the
Accs is computed based on the source-testing set. The same to (Yang et al., 2021b; Tang et al.,
2024b), on the source domain, the ratio of training and testing sets is 9:1. To evaluate effectiveness,
two generalized SFDA methods, GDA and PSAT-ViT, are chosen as additional comparisons. Based
on Tab. 6, it is seen that ProDe-V outperforms all comparisons in terms of H-accuracy, even those
designed to imitate forgetting. Meanwhile, both ProDe-R and ProDe-V deliver balanced results
across the source and target domains. This is due to the correction in the proxy denoising, which
incorporates information from the source model, thereby mitigating forgetting of the source domain.

Comparison on SF-MTDA, SF-MSDA and TTA settings. This part evaluates ProDe in broader
SF-MTDA, SF-MSDA and TTA settings. For SF-MTDA, we treat multiple target domains as a single
integrated domain and adapt the source model accordingly. For SF-MSDA, we follow the ensembling
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approach from (Ahmed et al., 2021), passing the target data through each adapted source model and
averaging the soft predictions to derive the test labels. The results, as shown in the left side of Tab. 7,
demonstrate that ProDe substantially outperforms state-of-the-art alternatives in both settings.

The right side of Fig. 7 reports the results on the online SFDA setting of TTA, where all comparison
methods maintain a fixed batch size of 64, similar to ours. It is seen that ProDe demonstrates
advantages over previous state-of-the-art methods.

Table 4: Comparison results with CLIP (%).
Appendix E.1 presents the full results.

Method Office-31 Office-Home VisDA DomainNet-126

CLIP-R 71.4 72.1 83.7 72.7
ProDe-R 90.0 82.9 89.9 81.5

CLIP-V 79.8 76.1 82.9 76.3
ProDe-V 92.6 86.2 91.6 85.0

Table 5: Partial-set and open-set results (%) on
Office-Home. Appendix E.1 presents the
full results.

Partial-set Venue Avg. Open-set Venue Avg.

Source – 62.8 Source – 46.6

SHOT ICML20 79.3 SHOT ICML20 72.8
HCL NIPS21 79.6 HCL NIPS21 72.6
CoWA ICML22 83.2 CoWA ICML22 73.2
AaD NIPS22 79.7 AaD NIPS22 71.8
CRS CVPR23 80.6 CRS CVPR23 73.2
DIFO-V CVPR24 85.6 DIFO-V CVPR24 75.9
ProDe-V – 86.2 ProDe-V – 82.6

Table 6: Generalized SFDA results (%) on
Office-Home. S, T are the results of the adapted
target model on the source and target domains,
i.e., Accs, Acct, respectively; WAD means
With Anti-forgetting Design. Appendix E.1
presents the full results.

Method Venue WAD Avg.
S (98.1-S) T H

Source – ✗ 98.1 59.2 73.1

SHOT ICML20 ✗ 84.2 (13.9) 71.8 77.5
GKD IROS21 ✗ 86.8 (11.3) 72.5 79.0
NRC NIPS21 ✗ 91.3 (6.8) 72.3 80.7
AdaCon CVPR22 ✗ 88.2 (9.9) 65.0 74.8
CoWA ICML22 ✗ 91.8 (6.3) 72.4 81.0
PLUE CVPR23 ✗ 96.3 (1.8) 66.9 79.0
TPDS IJCV24 ✗ 83.8 (14.3) 73.5 78.3
GDA ICCV21 ✓ 80.0 (18.1) 70.2 74.4
PSAT-ViT TMM24 ✓ 86.4 (11.7) 83.6 85.0
DIFO-R CVPR24 ✗ 78.3 (19.8) 79.4 78.8
DIFO-V CVPR24 ✗ 78.0 (20.1) 83.1 80.5
ProDe-R – ✗ 83.3 (14.8) 82.9 83.1
ProDe-V – ✗ 84.1 (14.0) 86.2 85.1

Table 7: SF-MTDA, SF-MSDA and TTA results (%) on Office-Home. The full results of TTA are
provided in Appendix E.1.

SF-MTDA
Model Venue Ar→ Cl→ Pr→ Rw→ Avg.

TTA

Method Venue Avg.
CoNMix WACV23 75.6 81.4 71.4 73.4 75.4 Tent ICLR20 61.7
ProDe-V – 84.4 89.4 80.9 81.9 84.2 T3A NeurIPS21 63.8

SF-MSDA

Method Venue →Rw →Pr →Cl →Ar Avg. CoTTA CVPR22 60.5
SHOT-Ens ICML20 82.9 82.8 59.3 72.2 74.3 EATA ICML22 60.7
DECISION CVPR21 83.6 84.4 59.4 74.5 75.5 SAR ICLR23 60.3
ProDe-V-Ens – 84.4 89.4 80.9 81.9 84.2 ProDe-V – 78.0

4.3 MODEL ANALYSIS

Feature distribution visualization. Based on the task Cl→Ar in Office-Home, we conducted a
toy experiment to visualize the feature distribution of ProDe using the t-SNE tool. Meanwhile, five
comparisons are considered, including CLIP-V, SHOT, TPDS, DIFO-V and Oracle. Among them,
CLIP-V is the zero-shot result, and Oracle is trained on target domain Ar with the ground truth . For a
clear view, all results are presented in 3D density charts. As shown in Fig. 3, from CLIP-V to Oracle,
category clustering becomes increasingly apparent. The distribution shape of DIFO-V and ProDe-V
is closer to the expert model than that of non-multimodal methods, SHOT and TPDS. Furthermore,
although DIFO-V and ProDe-V have a similar pattern, ProDe-V’s shape is more detailed with Oracle.

Ablation studies. This part isolates the effect of (1) the objective components in Eq. (6) and (2)
proxy denoising (PD). Tab. 8 presents the ablation study results, with the baseline being the results of
the source model (1 row). When LSyn or LRef is used alone (2, 3 row), their performances show
similar average accuracy. However, when they work together, the best results are achieved (4 row).
This comparison indicates that the proposed two losses jointly contribute to the final performance.
Additionally, we further evaluate the mutual information item MI(·, ·) in LSyn with a variant of
ProDe, denoted ProDe w KL, where MI(·, ·) is replaced by the KL divergence loss. A significant
average gap of 4.8% (compared with the results in 4 row) confirms the advantage of the mutual
information optimization (5 row).
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(a) CLIP-V (b) SHOT (c) TPDS (d) DIFO-V (e) ProDe-V (f) Oracle

Figure 3: Feature visualization comparison in 3D density charts.

Furthermore, removing proxy denoising from the model (ProDe-V w/o PD in 6 row) leads to a
decrease in average accuracy by 2.0%, which confirms its effectiveness. To evaluate the effect of
components in the proxy denoising design, we respectively remove the source and target models’
logits (see Eq. (5)) to obtain two ProDe variation methods, ProDe-V w/o PD-source and ProDe-V
w/o PD-target. As listed in 7 and 8 rows, using either adjustment alone led to a significant decrease in
performance. Also, we perform the correction at the probability level, instead of the logit level, in
another comparison ProDe-V w/o PD-logits. The average 3.0% decrease (compared with ProDe-V’s
results in 4 row) confirms the rationality of correction based on logits (9 row).

Table 8: Ablation study results (%) on Office-31,
Office-Home and VisDA.

# LSyn LRef Office-31 Office-Home VisDA Avg.

1 ✗ ✗ 78.6 59.2 49.2 62.3
2 ✓ ✗ 91.8 78.8 90.2 86.9
3 ✗ ✓ 86.5 83.2 90.7 86.8
4 ✓ ✓ 92.6 86.2 91.6 90.1
5 ProDe-V w KL 82.6 83.7 89.6 85.3

6 ProDe-V w/o PD 90.5 83.9 89.9 88.1
7 ProDe-V w/o PD-source 91.2 84.6 90.2 88.7
8 ProDe-V w/o PD-target 80.1 83.5 90.8 84.8
9 ProDe-V w/o PD-logits 86.8 83.3 91.3 87.1

Table 9: Comparison results (%) on Office-31,
Office-Home and VisDA as image encoder back-
bone in CLIP adopts architecture ViT-B/16. SF
means source-free.

Method Venue SF Office-31 Office-Home VisDA

CLIP-V16 ICML21 ✗ 77.6 80.1 85.6
DAPL-V16 TNNLS23 ✗ – 85.8 89.8
ADCLIP-V16 ICCVW23 ✗ – 86.1 90.7
PAD-V16 AAAI24 ✗ 91.2 85.7 89.7
DAMP-V16 CVPR24 ✗ – 87.1 90.9
DIFO-V16 CVPR24 ✓ 92.5 85.5 91.0
ProDe-V16 – ✓ 92.5 88.0 92.0

Impact of image encoder backbone in CLIP. In addition to the ResNet and ViT-B/32 architectures
aforementioned, we also implement ProDe using another well-known architecture, ViT-B/16, which
we refer to as ProDe-V16. Furthermore, we compare the performance of CLIP-V16, DAPL-V16,
ADCLIP-V16, PAD-V16, DAMP-V16 and DIFO-V16, which also use ViT-B/16 as their image
encoder. As listed in Tab. 9, ProDe-V16 still surpasses all comparisons. Combining with the ResNet
and ViT-B/32 results reported in Tab. 1∼Tab. 2, it is concluded that the advantage of ProDe is robust
to the selection of the image-encoder backbone.

4.4 QUANTITATIVE ANALYSIS OF PROXY DENOISING IN PROXY ALIGNMENT VIEW

In this part, we make a feature space shift analysis using the measure of MMD (Maximum Mean
Discrepancy) distance to verify whether our ProDe method ensures the proxy alignment. In this
experiment, we initially train a domain-invariant Oracle model over all Office-Home data with real
labels, and use the logits to express the domain-invariant space O. Sequentially, we perform a transfer
experiment of Ar→Cl. During this adaptation, there are K (epoch number) intermediate adapting
target models. We feedforward the target data through each intermediate model and take the logits as
a space. Thus, we obtain K intermediate target feature spaces {Uk}Kk=1. These intermediate spaces
can lead to three different kinds of distances corresponding to these frozen spaces, termed dt

S (to the
source domain), dt

O (to the Oracle space) and dt
V (to the proxy CLIP space). In practice, the CLIP

image encoder’s backbone is set to ViT-B/32.

Fig. 4 (a) displays the varying curves (epoch view) of dt
S , dt

O and dt
V . As expected, dt

S increases,
along with a decreasing on dt

O. Meanwhile, dt
V exhibits a V-shaped trend. For a clear view, we zoom

into the first epoch and observe its variation details, as shown in Fig. 4 (b). In particular, there is a
smooth transition from decrease to increase on the curve of dt

V . This phenomenon indicates that
the in-training model indeed approaches the proxy space and then moves away from it to close the
domain-invariant space as our proxy error control gradually comes into play.
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Figure 4: Analysis for proxy denoising on the Al→Cl task in Office-Home. (a) The MMD-distance
varying curves (epoch view) between the intermediate spaces to the source, oracle and proxy CLIP
spaces, respectively, i.e., dt

S , dt
O and dt

V . (b) The details of dt
V (iteration view) during the first epoch.

(c) The accuracy curves of typical signals during the adaptation. (d) The MMD-distance varying
curves of ProDe (dt

V ), ProDe-KL (dkl
V ), ProDe-CLIP (dclip

V ) during the first epoch (iteration view).

Correspondingly, we also provide the accuracy varying curves of two typical signals in Fig. 4 (c),
including the target prediction (termed ProDe) and the denoised CLIP prediction (termed PRO). In
this experiment, CLIP zero-shot result (termed CLIP) is the baseline. It is seen that PRO is better than
ProDe in the early phase (0∼7 epoch) and surpassed by ProDe in the rest epochs. The results indicate
that the guidance of reliable ViL predictions can boost the adaptation performance. Meanwhile, the
PRO and ProDe curves closely resemble each other. It is understandable that the current prediction of
the in-training target model, θt(xi), is utilized to adjust the raw ViL prediction (see Eq. (5)).

To better understand the impact of proxy denoising, we also conduct a comparison using two
variations of ProDe. In ProDe-KL, the loss LSyn is changed to conventional KL-Divergence, whilst
in ProDe-CLIP, the training is based on the raw ViL prediction without proxy denoising. Employing
the same MMD-distance quantification method mentioned above, we can plot two distance curves
to the proxy space, termed dkl

V , dclip
V . In Fig. 4 (d), it is evident that ProDe moves away from the

proxy space more quickly than the other two comparisons. This result suggests that ProDe is more
responsive to proxy errors, resulting in agile error correction to match desired adapting direction.
Additionally, the three curves at the early iterations are similar, indicating the impact of denoising
eV I is negligible during this stage. This observation provides empirical evidence supporting Case1 in
our assumption.

5 CONCLUSION

The success of multimodal foundation models has sparked interest in transferring general multimodal
knowledge to assist with domain-specific tasks, particularly in the field of transfer learning. However,
for label-free scene scenarios such as SFDA discussed in this paper, the issue of filtering out noise
from multimodal foundation models has been largely overlooked. To address this fundamental
issue, this paper introduces a new ProDe approach. We first introduce a new approach called proxy
denoising, which corrects the raw ViL predictions and provides reliable ViL guidance. This approach
is based on a novel proxy confidence theory that we developed by modeling the impact of the
proxy error between the proxy ViL space and the latent domain-invariant space, using the adaptation
dynamics in the proxy alignment. Additionally, we propose a mutual distilling method to make use of
the reliable proxy. Extensive experiment results indicate that our ProDe can achieve state-of-the-art
results with significant improvements on four challenging datasets, confirming its effectiveness.

Limitation and future work. ProDe has shown impressive performance in multi-SFDA settings,
highlighting its efficacy. However, it is important to note that it is specifically designed for a white-box
and offline scenario, which may not be applicable in certain real-world contexts. For the kind of
black-box application, such as models in the cloud, our proxy denoising may not work well since all
details of the model, including the required logits features, are transparent to us. Additionally, the
training supervised by mutual knowledge distilling regularization relies on the dataset prepared in
advance, which limits the data flow over time. In the future, finding ways to extend our method to
these new scenarios will be an interesting direction.
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A PROOF OF THEOREM 1

Restatement of Theorem 1 Given a proxy alignment formulated in Section 3.1. The source
domain (DS), the domain-invariant space (DI ), the proxy space (DV ) and the in-training model
(DTt

) satisfy the probability distributions P (S), P (I), P (V ) and P (Tt), respectively, where S, I ,
V and Tt are corresponding random variables. The factor describing the credibility of P (V ) has a
relation below.

P
(
GP (V ) = True, t

)
∝ P (Tt)

P (S)
.

Proof 1 We use the spatial distance relation to represent the variation in confidence of ViL prediction,
which is causally linked to the variation in distance to DI , as demonstrated in Fig. 2 (a). At any
given time t, the correction factor can be expressed as

P
(
GP (V ) = True, t

)
∝ |Distance(DTt

, DI)|
|Distance(DS , DI)|

=
|dt

I |
|dS |

. (7)

where dt
I and dS refers to the distance from DTt

and DS to DI , respectively. Easily finding, Eq. (7)
satisfies the reliability feature of gradually decreasing from 1 to 0 as DTt

evolves from DS to DI .

To account for the fact that spaces are defined by probability distributions, we instantiate the space
distance using the widely used measurement of KL-divergence. This gives us:

|dt
I |

|dS |
=

KL (P (Tt)||P (I))

KL (P (S)||P (I))
=

∫
Tt

P (Tt) log
P (Tt)
P (I)

dTt∫
S
P (S) log P (S)

P (I)
dS

=
−
∫
Tt

P (Tt) logP (Tt)dTt +
∫
Tt

P (Tt) logP (I)dTt

−
∫
S
P (S) logP (S)dS +

∫
S
P (S) logP (I)dS

=
H(Tt) + logP (I)

H(S) + logP (I)

(8)

where H(·) stands for the information entropy. Since DI is an domain-invariant space, P (I) always
outputs 1 for the category of interesting, such that logP (I) = 0. Eq. (8) can be further converted to

H(Tt) + logP (I)

H(S) + logP (I)
=

H(Tt)

H(S)
∝ P (Tt)

P (S)
(9)

B PSEUDO TRAINING CODE OF PRODE

Based on the proposed objective presented in Eq. (6), we achieve the model training iteration-wise.
The training process are summarized as Alg. 1.

Algorithm 1 Training of ProDe
Input: Source model θs, ViL model θv , target dataset Xt, C prompts with context v, #iteration M .
Procedure:
1: Initialisation: Set target model θt = θs, prompt context v ="a photo of a".
2: for m = 1:M do
3: Sample a batch X b

t from Xt.
4: Forward updated prompts and X b

t through θv .
5: Forward X b

t through θt.
6: Conduct proxy denoising for the ViL predictions of X b

t (Eq. (5)).
7: Update model θt and prompt context v by optimizing objective LProDe (Eq. (6)).
8: end for
9: return Adapted target model θt.

C EVALUATION DATASETS

In this paper, the ProDe method is evaluated on four widely used benchmarks for domain adaptation
problems as follows.
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• Office-31 (Saenko et al., 2010) is a small-scaled dataset including three domains, i.e.,
Amazon (A), Webcam (W), and Dslr (D), all of which are taken of real-world objects in
various office environments. The dataset has 4,652 images of 31 categories in total.

• Office-Home (Venkateswara et al., 2017) is a medium-scale dataset that is mainly used
for domain adaptation, all of which contains 15k images belonging to 65 categories from
working or family environments. The dataset has four distinct domains, i.e., Artistic
images (Ar), Clip Art (Cl), Product images (Pr), and Real-word images (Rw).

• VisDA (Peng et al., 2017) is a large-scale dataset with 12 types of synthetic to real transfer
recognition tasks. The source domain contains 152k synthetic images (Sy), whilst the target
domain has 55k real object images (Re) from the famous Microsoft COCO dataset.

• DomainNet-126 (Saito et al., 2019) is another challenging large-scale dataset. It has been
created by removing severe noisy labels from the original DomainNet dataset (Peng et al.,
2019) containing 600k images of 345 classes from 6 domains of varying image styles. The
dataset is further divided into four domains: Clipart (C), Painting (P), Real (R), and Sketch
(S), and contains 145k images from 126 classes.

D IMPLEMENTATION DETAILS

Souce model pre-training. For all transfer tasks on the four evaluation datasets, we train the source
model θs on the source domain in a supervised manner using the following objective of the classic
cross-entropy loss with smooth label, totally the same as other methods (Liang et al., 2020; Yang
et al., 2021a; Tang et al., 2022).

Ls (Xs,Ys; θs) = −Exs
i∈Xs

C∑
c=1

1̃ [c = ysi ] log p
s
i,c,

where psi,c is the c-th element of ps
i = ϕ(θs(x

s
i )) that is the category probability vector of input

instance xs
i after θs conversion with ending softmax operation ϕ; 1̃ [c = ysi ] = (1− σ) 1 [c = ysi ] +

σ/C is the smooth label (Müller et al., 2019), in which 1 [c = ysi ] is a one-hot encoding of hard label
ysi and σ = 0.1. The source dataset is divided into the training set and testing set in a 0.9:0.1 ratio.

Network setting. The ProDe framework involves two networks, namely the target model and the
ViL model. In practice, the target model comprises a deep architecture-based feature extractor and a
classifier that consists of a fully connected layer and a weight normalization layer. As seen in previous
work (Xu et al., 2019; Liang et al., 2020; Roy et al., 2022), the deep architecture is transferred
from the deep models pre-trained on ImageNet. Specifically, ResNet-50 is used on Office-31 and
Office-Home, whilst ResNet-101 is employed on VisDA and Domain-Net. As for the ViL model,
we choose CLIP to instantiate it where the text encoder adopts Transformer structure and the image
encoder takes ResNet or ViT-B/32 according to the specific implementations, which are marked by
suffix of “-R" or “-V".

Hyper-parameter setting. The ProDe model involves four parameters: The correction strength
factor ω in Eq. (5) and two trade-off parameters α, β and γ in objective LProDe (Eq. (6)). On all four
datasets, we set (ω, α, β) = (1, 1, 0.4). Parameter γ is sensitive to the dataset scale, also noted in the
TPDS method (Tang et al., 2024a). In practice, the setting of γ = 1.0/1.0/0.1/0.5 is employed on
Office-31, Office-Home, VisDA and DomainNet-126, respectively.

Training setting. We chose a batch size of 64 and utilized the SGD optimizer with a momentum of
0.9 and 15 training epochs on all datasets. The learnable prompt context is initiated by the template of
‘a photo of a [CLASS].’, as suggested by (Radford et al., 2021), where the [CLASS] term is replaced
with the name of the class being trained. All experiments are conducted with PyTorch on a single
GPU of NVIDIA RTX. Each transfer task is repeated five times, and the final result is calculated as
the average of the five attempts.
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Table 10: Full results (%) of closed-set SFDA on VisDA. SF means source-free.

Method Venue SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Perclass

Source - - 60.7 21.7 50.8 68.5 71.8 5.4 86.4 20.2 67.1 43.3 83.3 10.6 49.2

SHOT ICML20 ✓ 95.0 87.4 80.9 57.6 93.9 94.1 79.4 80.4 90.9 89.8 85.8 57.5 82.7
NRC NIPS21 ✓ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 90.7 94.8 94.1 90.4 59.7 85.9
GKD IROS21 ✓ 95.3 87.6 81.7 58.1 93.9 94.0 80.0 80.0 91.2 91.0 86.9 56.1 83.0
AaD NIPS22 ✓ 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
AdaCon CVPR22 ✓ 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
CoWA ICML22 ✓ 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
ELR ICLR23 ✓ 97.1 89.7 82.7 62.0 96.2 97.0 87.6 81.2 93.7 94.1 90.2 58.6 85.8
PLUE CVPR23 ✓ 94.4 91.7 89.0 70.5 96.6 94.9 92.2 88.8 92.9 95.3 91.4 61.6 88.3
CPD PR24 ✓ 96.7 88.5 79.6 69.0 95.9 96.3 87.3 83.3 94.4 92.9 87.0 58.7 85.5
TPDS IJCV24 ✓ 97.6 91.5 89.7 83.4 97.5 96.3 92.2 82.4 96.0 94.1 90.9 40.4 87.6

DAPL-R TNNLS23 ✗ 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
PADCLIP-R ICCV23 ✗ 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5
ADCLIP-R ICCVW23 ✗ 98.1 83.6 91.2 76.6 98.1 93.4 96.0 81.4 86.4 91.5 92.1 64.2 87.7
PDA-R AAAI24 ✗ 97.2 82.3 89.4 76.0 97.4 87.5 95.8 79.6 87.2 89.0 93.3 62.1 86.4
DAMP-R CVPR24 ✗ 97.3 91.6 89.1 76.4 97.5 94.0 92.3 84.5 91.2 88.1 91.2 67.0 88.4
DIFO-R CVPR24 ✓ 97.7 87.6 90.5 83.6 96.7 95.8 94.8 74.1 92.4 93.8 92.9 65.5 88.8
DIFO-V CVPR24 ✓ 97.5 89.0 90.8 83.5 97.8 97.3 93.2 83.5 95.2 96.8 93.7 65.9 90.3
ProDe-R – ✓ 97.3 89.6 84.5 86.1 96.4 95.9 92.1 88.6 94.1 93.8 93.9 66.6 89.9
ProDe-V – ✓ 98.3 92.0 87.3 84.4 98.5 97.5 94.0 86.4 95.0 96.1 94.2 75.6 91.6

Table 11: Full results (%) of partial-set SFDA and open-set SFDA on Office-Home.

Partial-set Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Source – 45.2 70.4 81.0 56.2 60.8 66.2 60.9 40.1 76.2 70.8 48.5 77.3 62.8

SHOT ICML20 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
HCL NIPS21 65.6 85.2 92.7 77.3 76.2 87.2 78.2 66.0 89.1 81.5 68.4 87.3 79.6
CoWA ICML22 69.6 93.2 92.3 78.9 81.3 92.1 79.8 71.7 90.0 83.8 72.2 93.7 83.2
AaD NIPS22 67.0 83.5 93.1 80.5 76.0 87.6 78.1 65.6 90.2 83.5 64.3 87.3 79.7
CRS CVPR23 68.6 85.1 90.9 80.1 79.4 86.3 79.2 66.1 90.5 82.2 69.5 89.3 80.6
DIFO-V CVPR24 70.2 91.7 91.5 87.8 92.6 92.9 87.3 70.7 92.9 88.5 69.6 91.5 85.6
ProDe-V – 71.4 90.4 94.5 86.9 89.3 92.8 89.4 74.2 93.7 89.5 71.8 90.8 86.2
Open-set Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Source – 36.3 54.8 69.1 33.8 44.4 49.2 36.8 29.2 56.8 51.4 35.1 62.3 46.6

SHOT ICML20 64.5 80.4 84.7 63.1 75.4 81.2 65.3 59.3 83.3 69.6 64.6 82.3 72.8
HCL NIPS21 64.0 78.6 82.4 64.5 73.1 80.1 64.8 59.8 75.3 78.1 69.3 81.5 72.6
CoWA ICML22 63.3 79.2 85.4 67.6 83.6 82.0 66.9 56.9 81.1 68.5 57.9 85.9 73.2
AaD NIPS22 63.7 77.3 80.4 66.0 72.6 77.6 69.1 62.5 79.8 71.8 62.3 78.6 71.8
CRS CVPR23 65.2 76.6 80.2 66.2 75.3 77.8 70.4 61.8 79.3 71.1 61.1 78.3 73.2
DIFO-V CVPR24 64.5 86.2 87.9 68.2 79.3 86.1 67.2 62.1 88.3 71.9 65.3 84.4 75.9
ProDe-V – 75.4 85.8 86.5 83.2 86.3 86.1 83.6 74.5 86.8 81.9 74.6 86.5 82.6

Table 12: Results (%) of CLIP on the four evaluation datasets. The backbone of CLIP image-encoder
in CLP-R and CLP-V are the same as ProDe-R and ProDe-V, respectively.

Method Venue Office-31 Office-Home VisDA DomainNet-126
→A →D →W →Avg. →Ar →Cl →Pr →Rw →Avg. Sy→Re →C →P →R →S →Avg.

CLIP-R ICML21 73.1 73.9 67.0 71.4 72.5 51.9 81.5 82.5 72.1 83.7 67.9 70.2 87.1 65.4 72.7
ProDe-R – 80.9 95.3 93.9 90.0 82.4 67.0 91.4 90.7 82.9 89.9 80.3 79.2 91.0 75.4 81.5

CLIP-V ICML21 76.0 82.7 80.6 79.8 74.6 59.8 84.3 85.5 76.1 82.9 74.7 73.5 85.7 71.2 76.3
ProDe-V – 83.0 98.2 96.6 92.6 84.3 74.9 93.2 92.3 86.2 91.6 85.3 83.2 92.4 79.1 85.0

E SUPPLEMENTAL EXPERIMENTS

E.1 SUPPLEMENTATION OF FULL EXPERIMENT RESULTS

Full results on VisDA. Tab. 10 is the supplement of average results on the VisDA dataet (reported in
Tab. 2), displaying the full classification results over the 12 categories. Specifically, the ProDe-R and
ProDe-V totally obtain best results on 7/12 categories, leading to the advantage on average accuracy.
On some cases, such as bcycl, car and truck, ProDe has presents significant advantages over the
previous methods.
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Table 13: Generalized SFDA results (%) on Office-Home. S, T are the results of the adapted target
domain on the source and target domains, respectively; H means the harmonic mean accuracy; WAD
is short for With Anti-forgetting Design.

Method Venue WAD Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw
S T H S T H S T H S T H S T H S T H

Source – ✗ 97.9 43.7 60.4 97.9 67.0 79.5 97.9 73.9 84.2 97.1 49.9 65.9 97.1 60.1 74.2 97.1 62.5 76.0

SHOT ICML20 ✗ 78.6 55.0 64.7 83.8 78.7 81.2 88.6 81.3 84.8 78.0 69.1 73.2 76.6 78.9 77.7 77.1 79.1 78.1
GKD IROS21 ✗ 81.9 56.5 66.9 87.0 78.3 82.4 91.4 82.2 86.6 80.3 69.2 74.3 80.9 80.4 80.6 81.4 78.7 80.1
NRC NIPS21 ✗ 86.9 57.2 69.0 92.9 79.3 85.6 95.3 81.3 87.7 81.7 68.9 74.8 89.1 80.6 84.6 88.8 80.2 84.3
AdaCon CVPR22 ✗ 75.2 47.2 57.9 91.0 75.1 82.3 93.9 75.5 83.7 79.4 60.7 68.8 88.2 73.3 80.0 83.4 73.2 78.0
CoWA ICML22 ✗ 89.0 57.3 69.7 93.0 79.3 85.6 94.6 81.0 87.3 86.6 69.3 77.0 86.3 77.9 81.9 83.4 79.6 81.5
PLUE CVPR23 ✗ 91.8 49.1 63.9 96.3 73.5 83.4 97.2 78.2 86.6 93.9 63.0 75.3 95.6 73.5 83.1 94.3 74.5 83.2
TPDS IJCV24 ✗ 78.0 59.3 67.4 83.6 80.3 81.9 88.1 82.1 85.0 75.4 70.6 72.9 77.3 79.4 78.3 76.2 80.9 78.5
GDA ICCV21 ✓ 68.8 54.7 60.9 72.0 75.6 73.8 74.5 78.5 76.4 77.2 66.6 71.5 79.7 74.0 76.7 78.5 78.4 78.4
PSAT-ViT TMM24 ✓ 81.6 73.1 77.1 87.0 88.1 87.6 88.1 89.2 88.7 82.7 82.1 82.6 82.7 88.8 85.7 83.5 88.9 86.1
DIFO-R CVPR24 ✗ 73.8 62.6 67.8 76.3 87.5 81.5 79.7 87.1 83.2 73.1 79.5 76.2 64.8 87.9 74.6 66.3 87.4 75.4
DIFO-V CVPR24 ✗ 73.8 70.6 72.2 75.0 90.6 82.1 80.7 88.8 84.6 70.4 82.5 75.9 64.3 90.6 75.2 65.9 88.8 75.7
ProDe-R – ✗ 77.5 66.0 71.3 82.9 91.2 86.9 86.8 90.8 88.8 76.0 81.4 78.6 73.5 91.4 81.4 72.5 90.5 80.5
ProDe-V – ✗ 79.7 74.6 77.1 84.9 92.9 88.7 89.0 92.4 90.7 76.1 84.4 80.0 74.3 93.0 82.6 73.5 92.2 81.8

Method Venue WAD Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
S T H S T H S T H S T H S T H S T H S T H

Source – ✗ 99.2 51.7 68.0 99.2 40.9 57.9 99.2 72.6 83.8 98.1 64.2 77.6 98.1 46.3 62.9 98.1 78.1 87.0 98.1 59.2 73.1

SHOT ICML20 ✗ 88.2 68.2 76.9 80.7 53.6 64.4 90.1 81.6 85.6 91.7 73.5 81.6 84.8 59.4 69.8 92.2 83.5 87.6 84.2 71.8 77.5
GKD IROS21 ✗ 89.4 67.4 76.8 84.1 55.4 66.8 92.0 82.6 87.0 93.7 74.3 82.9 86.2 60.3 70.9 93.5 84.2 88.6 86.8 72.5 79.0
NRC NIPS21 ✗ 89.1 66.6 76.2 90.1 57.3 70.1 96.6 82.0 88.7 97.8 71.0 82.3 90.7 57.9 70.7 97.1 84.9 90.6 91.3 72.3 80.7
AdaCon CVPR22 ✗ 93.4 60.2 73.2 88.4 45.2 59.8 94.3 76.6 84.5 93.3 65.6 77.0 84.1 48.3 61.3 94.5 79.1 86.1 88.2 65.0 74.8
CoWA ICML22 ✗ 94.6 68.1 79.2 93.2 56.4 70.3 95.0 82.6 88.3 96.3 72.9 83.0 93.7 61.3 74.1 95.6 83.7 89.3 91.8 72.4 81.0
PLUE CVPR23 ✗ 98.7 62.2 76.3 98.5 48.3 64.8 98.9 78.6 87.6 98.1 68.6 80.7 95.1 51.8 67.1 97.8 81.5 88.9 96.3 66.9 79.0
TPDS IJCV24 ✗ 87.7 69.8 77.7 81.4 56.8 66.9 90.4 82.1 86.0 92.3 74.5 82.5 83.2 61.2 70.5 92.0 85.3 88.5 83.8 73.5 78.3
GDA ICCV21 ✓ 87.8 65.1 74.8 86.3 53.2 66.1 90.3 81.6 85.7 83.2 72.0 77.2 78.3 60.2 68.1 83.4 82.8 83.1 80.0 70.2 74.4
PSAT-ViT TMM24 ✓ 89.6 83.0 86.2 87.4 72.0 79.0 92.5 89.6 91.0 87.4 83.3 85.3 84.2 73.7 78.6 89.6 91.3 90.5 86.4 83.6 85.0
DIFO-R CVPR24 ✗ 85.6 78.3 81.8 76.6 63.4 69.4 86.0 88.1 87.0 89.4 80.0 84.4 80.7 63.3 70.9 87.2 87.7 87.4 78.3 79.4 78.8
DIFO-V CVPR24 ✗ 84.3 80.9 82.5 77.4 70.1 73.6 87.2 88.9 88.0 88.5 83.4 85.9 80.9 70.5 75.3 87.4 91.2 89.3 78.0 83.1 80.5
ProDe-R – ✗ 90.0 82.2 85.9 82.3 67.3 74.1 91.1 90.8 90.9 92.4 83.6 87.7 82.7 67.7 74.4 91.4 91.6 91.5 83.3 82.9 83.1
ProDe-V – ✗ 88.7 83.8 86.2 81.8 74.8 78.1 91.6 92.4 92.0 92.6 84.9 88.6 84.4 75.2 79.5 92.4 93.7 93.0 84.1 86.2 85.1

Table 14: Full results (%) of the TTA setting on Office-Home.

Method Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Tent ICLR20 47.6 63.2 72.3 57.1 63.7 65.9 55.9 46.6 72.7 67.7 51.8 77.1 61.7
T3A NeurIPS21 49.7 73.2 77.0 55.5 67.7 68.5 55.8 46.1 75.7 67.0 49.6 78.0 63.8
CoTTA CVPR22 44.5 62.5 72.3 55.4 63.0 65.3 54.9 46.0 76.7 66.0 49.5 76.7 60.5
EATA ICML22 46.4 62.5 72.2 55.3 65.8 65.8 53.8 43.4 76.4 66.5 50.5 76.4 60.7
SAR ICLR23 45.3 61.9 71.9 55.4 66.4 65.7 53.7 42.7 72.5 66.4 49.3 76.2 60.3
ProDe-V – 64.5 84.9 84.7 76.1 85.1 83.7 75.5 64.0 85.1 77.4 67.3 87.1 78.0

Table 15: Reliance analysis results (%) on Office-31 in the Closed-set SFDA setting.

Method Venue A→D A→W D→A D→W W→A W→D Avg.

DIFO w/ CLIP CVPR24 97.2 95.5 83.0 97.2 83.2 98.8 92.5
ProDe w/ CLIP – 96.6 96.4 83.1 96.9 82.9 99.8 92.6

DIFO w/ OpenCLIP CVPR24 96.8 98.1 82.9 98.7 82.7 100. 93.2
ProDe w/ OpenCLIP – 95.2 97.1 87.0 96.0 87.3 97.0 93.3

Full results of partial-set and open-set SFDA. Tab. 11 is the supplementation of these average
accuracy in Tab. 5, reporting the full classification accuracy over 12 transfer tasks in Office-Home. In
the partial-set setting (the top in the table), ProDe-V beats other methods on half of the tasks, whilst
DIFO-V and CoWA dominate the rest of the tasks. As taking the open-set setting (the bottom in the
table), ProDe-V gets the top results on 8/12 tasks. Moreover, besides the Rw→Pr task, the rest of the
best eight tasks have 8.0% increase at least, compared with the best-second methods. So, the ProDe
gains substantial improvement in average performance.

Full results of the comparison to CLIP’s zero-shot. As the supplement of average results in the
comparison to CLIP (reported in Tab. 4), Tab. 12 presents the full quantitative results categorized by
the target domain name. For instance, for domain A in Office-31, we averaged the adapting accuracy
of other domains to A, such as D→A, W→A, notated by →A. As reported in Tab. 12, both ProDe-R
and ProDe-V obtain the best results across all groups, compared to the respective CLIP version.
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Table 16: Reliance analysis results (%) on Office-Home and VisDA in the Closed-set SFDA setting.

Method Venue Office-Home VisDA
Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→PrAvg.Sy→Re

DIFO w/ CLIP CVPR24 70.6 90.6 88.8 82.5 90.6 88.8 80.9 70.1 88.9 83.4 70.5 91.2 83.1 90.3
ProDe w/ CLIP – 74.6 92.9 92.4 84.4 93.0 92.2 83.8 74.8 92.4 84.9 75.2 93.7 86.2 91.6

DIFO w/ OpenCLIP CVPR24 80.2 94.2 91.7 85.4 93.7 91.6 82.7 79.2 91.7 85.3 80.4 94.8 87.6 90.7
ProDe w/ OpenCLIP– 82.5 96.0 94.5 87.9 95.8 94.4 87.8 82.8 94.2 88.6 83.3 96.3 90.3 93.0

Table 17: Reliance analysis results (%) on DomainNet-126 in the Closed-set SFDA setting.

Method Venue C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

DIFO w/ CLIP CVPR24 76.6 87.2 74.9 80.0 87.4 75.6 80.8 77.3 75.5 80.5 76.7 87.3 80.0
ProDe w/ CLIP – 83.2 92.4 79.0 85.0 92.3 79.3 85.5 83.1 79.1 85.5 83.4 92.4 85.0

DIFO w/ OpenCLIP CVPR24 91.2 91.5 79.4 85.2 91.2 79.7 85.7 82.7 80.5 85.9 81.3 91.4 84.6
ProDe w/ OpenCLIP – 86.7 93.7 84.4 89.2 93.7 84.5 89.6 86.6 84.4 89.5 86.7 93.7 88.6

Table 18: Results (%) of OpenCLIP on the four evaluation datasets.

Method Venue Office-31 Office-Home VisDA DomainNet-126
→A →D →W →Avg. →Ar →Cl →Pr →Rw →Avg. Sy→Re →C →P →R →S →Avg.

OpenCLIP CVPR23 85.7 91.2 91.8 89.6 83.8 76.1 93.5 92.3 86.4 86.7 86.4 82.0 92.3 80.8 85.4
ProDe w/ OpenCLIP – 87.2 96.1 96.5 93.3 88.1 82.9 96.0 94.4 90.3 93.0 89.4 86.7 93.7 84.4 88.6

Full results of generalized SFDA. As a supplement to the average results of the generalized SFDA
results (reported in Tab. 6), Tab. 13 presents the full results on 12 transfer tasks, including S-, T- and
H-accuracy. In terms of H-accuracy, ProDe-V achieves the best results on 8 out of 12 tasks. These
results are not only due to significant improvements in the target domain (see T-accuracy), but also
derive from a balanced drop in the source domain (see S-accuracy).

Full results of TTA. As a supplement to the average results of the TTA results (reported in Tab. ??),
Tab. 14 presents the full results on the Office-Home dataset. On all 12 transfer tasks, ProDe-V
achieves substantial increase, leading to 14.2% gains on top of the second-best method T3A.

E.2 EXPANDED MODEL ANALYSIS

Reliance analysis on ViL models. As illustrated in the right of Fig. 2, our proxy denoising is
executed at the logit level, which means that the proposed method does not depend on a specific ViL
model, such as CLIP, since it does not utilize the internal structure of these models. To validate this
claim, we conduct an extensive test with OpenCLIP (Cherti et al., 2023). Meanwhile, we selected
DIFO, the previous best ViL-based method, for comparison. Tab. 15∼Tab. 17 present comparison
results across all four datasets. Regardless of whether we use CLIP or OpenCLIP as the ViL model,
ProDe beats DIFO in average accuracy. Furthermore, the relative gains are consistent. In comparison
to DIFO, ProDe improves approximately by 0.1%, 3.0%, 2.0% and 4.5% on Office-31, Office-Home,
VisDA and DomainNet-126, respectively. This trend suggests that our method is generic with the ViL
model, and can readily benefit from the advancement in ViL models.

In addition, Tab. 18 displays a comparison of the zero-shot results from OpenCLIP. In all tasks (which
are detailed in the "Full results of the comparison to CLIP’s zero-shot" section of Section E.1),
ProDe w/ OpenCLIP surpasses OpenCLIP. This suggests that the task-specific target model effectively
incorporates generic knowledge in ViL models.

Effect of prompt learning. In ProDe, prompt learning contributes to knowledge synchronization. To
isolate its effectiveness, we propose a variation method ProDe-V w/o prompt that removes prompt
learning. As shown in Tab. 19, the absence of prompt learning results in 0.9% decrease in average
accuracy. These results indicate that this prompt learning might reduce the proxy error by tuning
space DV close to the domain-invariant space DI , meeting our expectations.
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Figure 5: Sensitivity analysis of hyper-parameters α, β and ω.

Table 19: Ablation results (%) of prompt learn-
ing on Office-31, Office-Home and VisDA.

# Method Office-31 Office-Home VisDA Avg.

1 ProDe-V w/o prompt 92.3 84.4 90.9 89.2
2 ProDe-V 92.6 86.2 91.6 90.1

Table 20: Comparison of training resource de-
mands (per iter.) on Ar→Cl in Office-Home.

# Item / Method SHOT AaD ProDe

1 GPU memory consumption↓ (G) 7.868 9.622 9.851
2 Training times↓ (s) 0.407 0.547 0.491

Training resource demands. To evaluate the training resource demands, we select two typical
methods without using ViL model, SHOT and AaD, as comparisons. We conducted the test using the
transfer task Ar → Cl from Office-Home, under the same testing conditions, including mini-batch
size. The results, as shown in Tab. 20, indicate that despite using a large ViL model, our approach
does not incur significant additional training costs and requires a similar amount of computational
resources. This is because: (1) The ViL model is frozen in our method, making its use efficient, and
(2) Our ProDe approach does not require a feature bank with periodic updates for deep clustering like
SHOT, nor does it involve identifying neighborhoods as in AaD.

Table 21: Comparison with SFDA methods with ViT back-
bone on closed-set SFDA setting (%). ViL means whether
using the ViL model.

Method Venue ViL Office-31 Office-Home VisDA DomainNet-126

SHOT-ViT ICML20 ✗ 91.4 78.1 – 71.4
DIPE-ViT CVPR22 ✗ 90.5 78.2 – –
DSiT-ViT ICCV23 ✗ 93.0 80.5 – –
AaD-ViT NeurIPS22 ✗ – – – 72.7
DPC IJCAI24 ✓ 93.3 85.4 – 85.6
ProDe-V16 – ✓ 92.5 88.0 92.0 88.1

Comparison with SFDA methods
with ViT backbone. To achieve
a comprehensive evaluation, in this
part, we present comparisons with
typical SFDA methods using ViT
backbones (cited from DPC (Zhan
et al., 2024)), employing ViT-B/16.
Specifically, the comparison meth-
ods include SHOT-ViT (Liang et al.,
2020), DIPE-ViT (Wang et al., 2022a),
DSiT-ViT (Sanyal et al., 2023), AaD-
ViT (Yang et al., 2022) and DPC. The
results in the Tab. 21 show that ProDe-
V16 consistently outperforms DPC in most cases. An exception is that ProDe-V16 is only 0.8%
behind on Office-31, which may be attributed to potential overfitting on this relatively small dataset.
Notably, even with a ResNet backbone for the target model, ProDe-V16 still surpasses DPC, which
utilizes a ViT. Generally, using a ViT for such a small training dataset is unnecessary due to the
tendency for overfitting.

Parameter sensitivity. In this part, we discuss the parameter sensitivity of parameters α, β in LProDe

(see Eq. (6)) and correction strength parameter ω in proxy denoising (see Eq. (5)). All experiments
are conducted based on the transfer tasks Cl→Ar in the Office-Home dataset. The varying range
are set to 0.5 ≤ α ≤ 1.4, 0.1 ≤ β ≤ 1.0 and 0.5 ≤ ω ≤ 1.4 in 0.1 step size. Fig. 5 (a) depicts the
results as α–β vary. When the two parameters changes, there are no evident drops in the accuracy
variation curves, except for two boundary situations: (1) α = 0.5 and (2) β = 1.0. The results
indicate that ProDe is insensitive to parameters α and β. Meanwhile, when we select parameters,
α’s value should be lager than β. Besides, in Fig. 5 (b) and (c), we display the results when α× ω
and β × ω vary, respectively. Thus, we present the relation between the correction strength and
regularization elements in LProDe. From the two sub-figures, it is seen that the performance has a
significant drop as we adopt ω = 1.4. This show that the correction strength in the proxy denoising
block should not be too strong.
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