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Abstract

Protein structure prediction models are now capable of generating accurate 3D
structural hypotheses from sequence alone. However, they routinely fail to capture
the conformational diversity of dynamic biomolecular complexes, often requiring
heuristic MSA subsampling approaches for generating alternative states. In parallel,
cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for imaging
near-native structural heterogeneity, but is challenged by arduous pipelines to
transform raw experimental data into atomic models. Here, we bridge the gap
between these modalities, combining cryo-EM density maps with the rich sequence
and biophysical priors learned by protein structure prediction models. Our method,
CryoBoltz, guides the sampling trajectory of a pretrained biomolecular structure
prediction model using both global and local structural constraints derived from
density maps, driving predictions towards conformational states consistent with
the experimental data. We demonstrate that this flexible yet powerful inference-
time approach allows us to build atomic models into heterogeneous cryo-EM
maps across a variety of dynamic biomolecular systems including transporters and
antibodies.

1 Introduction

Proteins and other macromolecules in our cells are constantly vibrating, deforming, and interacting
with other surrounding molecules. Characterizing the variability of their atomic structures, i.e., of the
relative 3-dimensional (3D) locations of their atoms, can deepen our understanding of the complex
chemical mechanisms underlying basic biological systems. For example, understanding how a driver
mutation can alter the probability of certain conformational states has applications ranging from drug
design [25] to molecular engineering [21].

A variety of experimental methods for protein structure determination have been developed, with
X-ray crystallography and cryo-electron microscopy (cryo-EM) being the most widely used today. In
cryo-EM, a series of breakthroughs in both hardware [80, 9, 24, 29] and software [69, 27, 68, 64]
led to the so-called “resolution revolution” [47], resulting in routine near-atomic resolution structure
determination for well-behaved purified protein samples. Cryo-EM, in particular, also possesses
the ability to measure and reconstruct the conformational landscape of dynamic biomolecular com-
plexes [68, 64, 94, 10, 62, 63]. However, these experiments are still complex, costly, and time
consuming, requiring expensive microscopes and facilities, as well as hours to days of data pro-
cessing through iterative computational pipelines [49]. Notably, current reconstruction algorithms
only output 3D “density maps” that approximate the electron scattering potential of the molecule.
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Figure 1: Problem statement. Diffusion-based structure prediction models [1, 88] can sample
different conformations, but the generated ensemble is generally peaked around a single conformation.
A cryo-EM experiment probes the full conformational landscape but current reconstruction algorithms
only provide density maps, not atomic models. With CryoBoltz, we guide the diffusion process
in atomic space with experimental cryo-EM measurements to increase sample diversity and more
faithfully reflect the true conformational ensemble.

Fitting atomic models within these maps is a significant computational challenge for which existing
methods [85, 51, 82, 81, 35, 39] only provide partial solutions that need to be manually refined.

Building on decades of data acquisition, processing, and curation [7, 8], machine-learning-based
sequence-to-structure models were developed and trained on publicly available structural data [41,
3, 52, 1]. These models, however, are still trained to map a given sequence to a unique, most likely
structure and are therefore bound to viewing proteins as static objects. Shifting structure prediction
models to a dynamic paradigm constitutes one of today’s main challenges for structural biology.

Recent exploratory lines of work have attempted to address this outstanding challenge. MSA
subsampling methods, for example, rely on randomly masking input sequence data to broaden the
diversity of output structures [87, 23, 43, 36]. Despite results showing improved diversity on specific
systems, MSA subsampling methods remain an active area of research, with no clear consensus yet
regarding their performance. Moreover, these methods are not well suited for complexes that can
adopt many different conformational states or a continuum of conformational states. Other works,
including AlphaFlow [40] and BioEmu [50], investigated incorporating physics-based molecular
dynamics simulation as additional training data. These works also showed greater variability among
output structures but were mainly demonstrated on small peptides, additionally requiring costly
training and relying on simulations that may not capture realistic atomic motions.

Here we introduce a method, CryoBoltz, that leverages heterogeneous cryo-EM data to guide the
sampling process of a diffusion-based structure prediction algorithm (Figure 1). Our implementation
is based on Boltz-1 [88], an open-source sequence-conditioned diffusion model heavily inspired by
the state-of-the-art model AlphaFold3 [1]. Through a multiscale guidance mechanism, CryoBoltz
combines the structural information learned by the pretrained diffusion model with experimentally-
captured data, producing structures consistent with the cryo-EM data. Importantly, our method does
not require an additional training step, while effectively mitigating the single-structure bias of current
structure prediction models. We demonstrate results on both synthetic and real cryo-EM maps of
dynamic biomolecular complexes.

2 Background

2.1 Diffusion-Based Sampling in AlphaFold3

Recent advances in protein structure prediction from sequences are exemplified by major break-
throughs such as AlphaFold2 [41] and AlphaFold3 [1]. While AlphaFold2 predicts static structures
with remarkable accuracy, AlphaFold3 introduces a diffusion modeling head within its structure
module, enabling generative sampling of different conformations, conditioned on the same sequence.
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Specifically, AlphaFold3 utilizes a diffusion model operating directly in the space of atomic coordi-
nates, x ∈ RN×3 where N represents the number of modeled atoms. Given a sequence s, we call
p0(x|s) the distribution of conformations of the folded protein (or complex) at ambient temperature.
We then call pt(x|s) the marginal distribution of conformations obtained by sampling x0 from p0(x|s)
and simulating the forward diffusion process

dx = f(x, t)dt+ g(t)dw, (1)

from 0 to t, where f(x, t) and g(t) are predefined drift and diffusion functions while dw represents a
standard Wiener process in atomic coordinate space. The drift and diffusion functions are chosen such
that pT (x|s) ≈ N (0, I) for some T ∈ R. One way to sample from the target distribution p0(x|s) is
then to sample xT from N (0, I) and simulate the reverse diffusion process

dx =
(
f(x, t)− g(t)2∇x log pt(x|s)

)
dt+ g(t)dw (2)

from T to 0 [2, 34]. In the above equation, the score function ∇x log pt(x|s) is unknown and
implicitly depends on the target distribution. AlphaFold3 therefore uses an approximation of the
score function, called sθ(x, s, t). This “score model” can be obtained using a finite set of samples
from p0(x|s) and a training strategy based on denoising score matching [84, 76].

Boltz-1 closely follows the architecture and framework of AlphaFold3 with minor modifications,
achieving comparable accuracy in predicting biomolecular complex structures [88].

2.2 Likelihood-Based Guidance

In an “inverse problem”, one aims at recovering an unknown object x from a measurement y,
given a known “likelihood model” p(y|x). Inverse problems are often framed as posterior sampling
problems, i.e., they aim at sampling from the posterior p(x|y). Using Bayes’ rule, the posterior can
be decomposed as a product of the likelihood, p(y|x), and the prior distribution over x.

In this context, several works have recently shown that pretrained diffusion models can be interpreted
as implicitly defined priors and therefore used to solve posterior sampling problems [38, 75, 11, 12,
74, 45, 46, 86], as surveyed in [20]. Effectively, these methods are able to “guide” a diffusion model
using a measurement y and its corresponding likelihood model. The key insight of these works lies
in noticing that the score function of the posterior can be re-written as a sum: ∇x log pt(x|y) =
∇x log pt(x) +∇x log p(y|xt = x). The first term is directly approximated by the pretrained score
model sθ(x, s, t), but the challenge lies in the second term. The conditional probability p(y|xt) can
be written as a conditional expectation Ex0∼p(x0|xt)[p(y|x0)], but approximating this expectation
with Monte Carlo samples is not a computationally tractable option, because sampling n times from
the conditional distribution p(x0|xt) requires solving n differential equations. In ScoreALD, Jalal
et al. [38] first suggested to replace the latter distribution with a Dirac delta centered on x, effectively
replacing p(y|xt) with p(y|x). Despite promising results on low-noise and linear inverse problems,
ScoreALD tends to drive samples off the diffusion manifold, i.e., in regions where pt(x) ≪ 1,
where the score model was only sparsely supervised and is therefore highly inaccurate. To mitigate
this issue, Chung et al. [12] suggested in the DPS algorithm to center the Dirac delta distribution
on x̂θ(x, t) = Ex0∼p(x0|xt=x)[x0], which can be expressed as an affine function of sθ(x, t) with
Tweedie’s formula [77, 66, 26]. The guided reverse diffusion process is therefore defined as

dx =

f(x, t)− g(t)2sθ(x, t)− λ(t)∇x log p(y|x0 = x̂θ(x, t))︸ ︷︷ ︸
s̃θ(y,x,t)

 dt+ g(t)dw, (3)

where s̃θ(y,x, t) is an additional guidance term.

In parallel to the guidance-based approach, other works have attempted to frame the posterior sampling
problem as a problem of variational inference [30, 55], but remain limited by the expressivity of the
variational family (e.g., Gaussian distributions [55]) or by the necessity to repeatedly solve initial-
value problems [30]. Most recently, MCMC-based strategies like DAPS [91] proposed to correct
previous sampling methods with an equilibration step based on MCMC sampling (e.g., Langevin
dynamics or Hamiltonian Monte Carlo) and showed improved performance on high-noise or highly
nonlinear problems. However, owing to the simplicity and effectiveness of the DPS algorithm for our
problem of interest, we base our guiding mechanism on the DPS framework.
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Figure 2: Overview of the guidance mechanism. The diffusion process starts with a “warm up”
stage where the score model is only conditioned on the sequence. During “global guidance”, the
structure is guided to minimize its distance to a point cloud representation of the input cryo-EM map.
During “local guidance”, it is guided to maximize its consistency with the original input map. Finally,
the last “relaxation” steps are unguided and allow the model to correct fine-grained details.

2.3 Forward Model for Cryo-EM Maps

Cryo-EM reconstructs a 3D electron scattering potential from many independent 2D projection
images of frozen biomolecular complexes. The reconstructed density map y is usually represented
as a 3D array: y ∈ Rw×h×d. In the forward model, a given structure’s cryo-EM density is typically
modeled as a sum of Gaussian form factors centered on each atom. Formally, the observed density
map can be modeled as y = B(Γ(x, s))+η [22], where Γ is an operator that sums isotropic Gaussians
centered on each heavy (non-hydrogen) atom in x. Their amplitudes and variances are tabulated [33]
and typically depend on the chemical elements in x. B represents the effect of “B-factors” [44] and
can be viewed as a spatially dependent blurring kernel modeling molecular motions and/or signal
damping by the transfer function of the electron microscope. Finally, η models i.i.d. Gaussian noise.

3 Methods

In this section, we describe how CryoBoltz uses an input cryo-EM map to guide a diffusion process
in atomic space. Our implementation is based on the DPS algorithm (Section 2.2) [12].

3.1 Overview: Multiscale Guidance

Because the forward model turning atomic models x into density maps is highly nonlinear (Sec-
tion 2.3), the likelihood function p(y|x) is multimodal w.r.t. x, making the posterior p(x|y) ∝
p(y|x)p(x) rugged and hard to sample from with score-based methods. In order to regularize the
target ensemble distribution in the early diffusion steps, CryoBoltz uses a global-to-local guidance
strategy that ignores high-resolution information until the later diffusion steps.

First, we use Tw steps of unguided reverse diffusion, only conditioning the score model on the
sequence s, to bootstrap (i.e., “warm up”) the atomic model and obtain a structure close to the one
the diffusion model is initially biased towards (Figure 1, left), following Equation 2. We then use
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Tg steps of a “global guidance” strategy, further described in Section 3.2, followed by Tl steps of a
“local guidance” stage, described in Section 3.3. Finally, the last Tr diffusion steps are unguided to
help solve high-resolution inconsistencies (e.g., steric clashes). Figure 2 provides an overview of our
multiscale guidance strategy.

3.2 Global Guidance

At the beginning of the global guidance stage, the density map y ∈ Rw×h×d is transformed into a
3D point cloud Y ∈ Rk×3. This conversion is done using the weighted k-means clustering algorithm
with a predefined number of clusters k dependent on the number of atoms in the system and the
voxel size of the map (see details in the Appendix). This point cloud, inspired by the volumetric
shape constraints in Chroma [37], provides a compact and low-resolution representation of the map
that can be used to efficiently guide the diffusion process towards the global shape of the protein
complex. A key benefit of the point cloud representation is that the distance between x and Y can be
defined using standard distances derived from optimal-transport theory, like the Sinkhorn divergence
D(x,Y), a regularized version of the Wasserstein distance [60]. In the first global guidance step, the
intermediate sample x is aligned with the density map prior to computing the Sinkhorn divergence
(see Appendix for more details).

Following the DPS framework, we define the guided diffusion process using Equation 3 (with
sequence-conditioning in the pretrained score model), where the guidance term is defined as

s̃θ(y,x, s, t) = −∇xD(x̂θ(x, s, t),Y). (4)

The schedule of the guidance strength λ(t) is described in the Appendix. Note here that the global
guidance term is not directly derived from a physics-based likelihood model, but rather defined
heuristically in order for the atomic model x to fit the low-resolution details of the cryo-EM map.

3.3 Local Guidance

During local guidance, the original density map is used and the guidance term of Equation 3 is
directly derived from the forward model described in Section 2.3, i.e.,

s̃θ(y,x, s, t) = −∇x∥y − B(Γ(x̂θ(x, s, t), s))∥2. (5)

At this stage, the guidance term includes all the structural information captured in the density map,
including higher resolution details, and derives directly from physics-based assumptions on the
cryo-EM forward model and noise model.

3.4 Related Work

Our work proposes to guide a pretrained diffusion model operating on atomic coordinates using
experimental cryo-EM data. Equivalently, our method can be seen as a model building method
leveraging a pretrained diffusion model as a regularizer.

First developed for X-ray crystallography [13], model building methods were later adapted to operate
on cryo-EM data [85, 51, 82, 81] but the obtained atomic models were often incomplete and needed
refinement [73]. Machine-learning-based methods were also developed, either relying on U-Net
architectures [72, 92, 61] or combining 3D transformers with Hidden Markov Models [32]. He
et al. [35] first made use of sequence information in EMBuild, and ModelAngelo [39] has recently
established a new state of the art for automated de novo model building. Combining a GNN-
based architecture with preprocessed sequence information [65], ModelAngelo outperforms previous
approaches. However, its performance relies on high-resolution maps (below 4 Å) and often yields
incomplete models on blurry, low-resolution data (Figure 5, for example). As a result, manual model
building remains the prevailing solution in these challenging regimes, particularly in those involving
flexible or heterogeneous complexes.

The possibility of using structure prediction models as regularizers for 3D reconstruction problems
was only demonstrated very recently. In ROCKET, Fadini et al. [28] introduced a method to use
AlphaFold2 [41] as a prior for building atomic models that are consistent with cryo-EM, cryo-ET
or X-ray crystallography data. The method regularizes the problem by transferring the optimization
from atomic space to the latent space of AlphaFold2. In contrast, our method leverages AlphaFold3’s
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Table 1: Quantitative evaluation with synthetic maps (STP10 [6] and CH67 antibody [70])
and ablation study. We report the Root Mean Square Deviation (RMSD) for all atoms, the Cα
RMSD, and the template-modeling (TM) score. For CH67, we also report the RMSD for the Cα
atoms in the CDR H3 loop (local RMSD). The last two columns show an ablation study on the
guidance mechanism. The mean across 3 replicates is reported for the best of 25 samples (lowest
all-atom RMSD). Random MSA subsampling of Boltz-1 [88] (Boltz-1 + MSA sub.) is run with MSA
depths of 64, 128, 256, 512, and 1024, each producing 5 samples. Bold indicates best value. AF3 is
AlphaFold3 [1].

CryoBoltz Boltz-1 Boltz-1 + AF3 Local Global
Structure Metrics MSA sub. only only

RMSD (Å, ↓) 1.057 3.815 3.768 1.263 3.860 1.287
STP10 (inward) Cα RMSD (Å, ↓) 0.371 3.554 3.513 0.623 3.559 0.778

TM score (↑) 0.998 0.863 0.865 0.994 0.862 0.990

RMSD 0.888 2.656 2.542 4.478 2.722 1.164
STP10 (outward) Cα RMSD 0.440 2.419 2.295 4.228 2.458 0.779

TM score 0.997 0.948 0.953 0.828 0.946 0.991

CH67 antibody

RMSD 1.048 1.961 1.954 1.887 1.443 1.281
Cα RMSD 0.637 1.469 1.522 1.453 0.945 0.880
Local RMSD 1.269 3.120 3.270 3.191 1.718 1.899
TM score 0.994 0.972 0.969 0.971 0.990 0.988

diffusion-based structure module for efficient optimization directly in atomic space. Other works
investigated the possibility to guide diffusion-based models using experimental data [54, 53] but were
only used to process X-ray crystallography data. In this modality, each measurement provides an
average of the contribution of each conformation in the crystal, which inherently limits the extent to
which structural variability can be analyzed. Finally, ADP-3D [48] demonstrated diffusion-based
model refinement using cryo-EM measurements, but the method requires an initial model (provided,
for example, by ModelAngelo [39]) and was not compared to existing structure prediction methods.

4 Results

4.1 Experimental Setup

Datasets and metrics. We evaluate our method on six biomolecular systems. For two of them,
we guide CryoBoltz with synthetic density maps (STP10 [6] and CH67 antibody [70]) and use
real, experimental maps for the other four systems (P-glycoprotein [14], Pma1, CYP102A1, and
YbbAP [56]). We chose these four systems because (1) they have two or more density maps
corresponding to different conformational states; (2) the corresponding atomic models were deposited
after the Boltz-1 [88] training cutoff; (3) they are composed of two or fewer unique chains, so that
an accurate unguided Boltz-1 prediction can be obtained; and (4) the sequence is shorter than 2,200
residues, which we found to be the max sequence length that could fit in Boltz-1. For three of
these systems (P-glycoprotein, CYP102A1, and YbbAP), at least one map is of lower resolution (>4
Å). To assess the quality of a generated structure, we align it to the deposited (reference) structure
pairing α-carbons, then compute Cα root mean square deviation (RMSD), all-atom RSMD, and
template-modeling (TM) score [93]. We sample 25 structures for each of three model replicates. We
additionally report map-model fit metrics in Supplementary Table B2.

Baselines. We compare CryoBoltz against the diffusion-based structure prediction models Boltz-
1 [88] and AlphaFold3 [1]. We additionally evaluate Boltz-1 with MSA subsampling, producing
5 samples each for 64, 128, 256, 512, and 1024 randomly drawn MSA sequences. On the experi-
mental datasets, we also compare our results to those obtained with the model building algorithm
ModelAngelo [39].
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Figure 3: Results on STP10 [6]. a) CryoBoltz can predict both the outward and inward states,
when guided with the respective cryo-EM density map. Best sample (lowest all-atom RMSD across
all model replicates) is shown. b, c) Current structure prediction models are biased towards one of
these states. Boltz-1 [88] only predicts the outward state (b) while AlphaFold3 [1] only predicts the
inward state (c). Five best samples relative to the outward and inward PDB structures, respectively,
are shown.

4.2 Synthetic datasets

STP10. We demonstrate our method on the sugar transporter protein STP10, a plant protein that
switches between inward-facing and outward-facing conformations as it shuttles substrates across the
cell membrane [6]. From the deposited atomic models of these structures (PDB:7AAQ, 7AAR) [4, 5], we
generate synthetic density maps at a resolution of 2 Å using the molmap function in ChimeraX [59]. In
Figure 3, we show that density-guided diffusion allows for accurate modeling of both conformational
states. While unguided Boltz-1 only samples the outward conformation, CryoBoltz guidance drives
the rearrangement of helices to sample the inward conformation. MSA subsampling slightly improves
the accuracy of Boltz-1 but still only samples the outward conformation. AlphaFold3, in contrast, only
samples the inward conformation. As seen in Table 1, CryoBoltz not only models both conformations,
but also improves the accuracy of the predictions over their unguided counterparts, achieving an
all-atom RMSD below 1 Å for the outward state.

Figure 4: Results on CH67 antibody [70]. CryoBoltz
fits the CDR H3 loop more accurately than Boltz-1 [88]
and AlphaFold3 [1]. Three best samples (lowest all-
atom RMSD across all model replicates) are shown on
the right.

CH67 antibody. CH67 is an antibody
whose Fab domain binds the influenza
hemagglutinin receptor during the human
immune response [70]. Responsible for
this interaction is the complimentarity-
determining region (CDR) H3, a short loop
that is highly variable across antibody fam-
ilies and thus is modeled poorly by pro-
tein structure prediction methods. To as-
sess the ability of our method to cope with
the lower resolutions typically obtained for
antibody cryo-EM maps, we simulate a
4 Å density map of the CH67 Fab domain
(PDB:4HKX) [71]. In Figure 4, we show
that CryoBoltz accurately models the CDR
H3 loop, correctly placing the backbone
and most of the side chains. With some
samples achieving a local RMSD below
1 Å on this region (Supplementary Fig-
ure B2), our method improves over Boltz-1 and AlphaFold3 (Table 1), due to both better global
modeling of the full Fab structure as well as local modeling of the H3 loop itself (Supplementary
Figure B1).
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Table 2: Quantitative evaluation using real cryo-EM density maps of four biomolecular systems.
We report the mean all-atom RMSD (Å), Cα RMSD (Å) and TM score for the best of 25 samples
(lowest all-atom RMSD) across 3 model replicates. We indicate the resolution of the input map (res.)
as well as the completeness (comp.) of the model built by ModelAngelo (MA) [39] (percentage of
modeled over deposited residues). Pgp is P-glycoprotein [14] and CYP is CYP102A1. Bold indicates
best value.

CryoBoltz Boltz-1 AlphaFold3 ModelAngelo
Res. RMSD RMSD TM RMSD RMSD TM RMSD RMSD TM Comp. TM

Structure (Å) all Cα score all Cα score all Cα score (%) score

Pgp (apo) 4.3 1.382 1.208 0.989 6.994 7.194 0.767 3.827 3.865 0.904 40.3 0.361
Pgp (inward) 4.4 1.348 1.187 0.989 5.630 5.692 0.828 2.692 2.663 0.947 18.3 0.134
Pgp (occluded) 4.1 1.727 1.677 0.979 2.929 2.904 0.942 3.440 3.420 0.921 2.3 0.010
Pgp (collapsed) 4.4 1.309 1.261 0.988 3.425 3.412 0.917 4.568 4.554 0.864 2.5 0.010

Pma1 (active) 3.25 2.046 1.776 0.973 2.987 2.752 0.935 6.628 6.389 0.769 91.5 0.889
Pma1 (inhibited) 3.52 1.999 1.590 0.979 6.140 5.829 0.794 8.017 7.776 0.723 72.8 0.721

CYP (open) 6.5 4.167 3.946 0.957 8.532 8.439 0.788 6.490 6.361 0.890 0.0 0.000
CYP (closed) 4.4 2.004 1.552 0.990 8.784 8.667 0.743 3.585 3.391 0.946 18.9 0.102

YbbAP (bound) 3.66 1.320 0.678 0.997 3.623 3.339 0.928 3.749 3.480 0.922 81.7 0.801
YbbAP (unbound) 4.05 2.454 2.039 0.974 7.842 7.654 0.776 4.022 3.744 0.913 55.4 0.548

4.3 Experimental datasets

P-glycoprotein. P-glycoprotein is a membrane transporter that conducts cellular export of toxic com-
pounds including chemotherapy drugs, making it an important therapeutic target for inhibition [14].
We test our method on experimental density maps corresponding to four states in the transport cycle:
the apo state, inward state, occluded state, and collapsed state (EMD-40226, 40259, 40258, 40227).
We mask the maps around their corresponding deposited atomic models (PDB:8GMG, 8SA1, 8SA0,
8GMJ) [15, 18, 17, 16] in order to remove non-protein detergent density, which is a byproduct of
sample preparation for transmembrane proteins. As shown in Figure 5 and Table 2, CryoBoltz
samples the full set of conformations, outperforming baselines in all metrics across all four states.
We additionally find that ModelAngelo predictions are highly incomplete, with only between 2.3%
and 40.3% of residues modeled. We provide ModelAngelo with the original maps as they lead to
marginally higher performance.

Pma1. We use two experimental maps of a Pma1 monomer (EMD-64135, 64136), corresponding
to the active and inhibited states (PDB:9UGB, 9UGC) [89, 90] of this ATPase. Unguided Boltz only
samples the active state, whereas guidance also samples the inhibited state with an all-atom RMSD
of 2.00 Å and Cα RMSD of 1.59 Å (Table 2, Figure 6). AlphaFold3 predictions are not accurate with
respect to either state.

CYP102A1. We use two experimental maps of CYP102A1 (EMD-27534, 27536), of resolutions
4.4 Å and 6.5 Å, corresponding to the open and closed states (PDB:8DME, 8DMG) [78, 79] of this
oxygenase. Guidance improves the all-atom RMSD of the closed state from 8.78 Å to 2.00 Å over
unguided Boltz-1, whereas for the lower resolution open state map, a more modest improvement
from 8.53 Å to 4.17 Å is observed. ModelAngelo only models 18.9% of the 4.4 Å map and none of
the 6.5 Å map.

YbbAP. We use two experimental maps of the YbbAP transporter [56] (EMD-51292, 51291), corre-
sponding to states in which ATP is bound or unbound (PDB:9GE7, 9GE6) [58, 57]. Unguided Boltz
only samples the bound state, which guidance further improves to an all-atom RMSD of 1.32 Å. The
unbound state is additionally obtained through guidance. We observe that MSA subsampling also
allows Boltz-1 to sample the unbound sample in some model replicates (Supplementary Table B1).

4.4 Ablations

To validate our multiscale approach, we ablate the model by exclusively running the global guidance
phase or local guidance phase. As shown in Table 1, while global guidance alone often improves
metrics over baselines, local guidance further boosts accuracy by fitting higher-resolution details.
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Figure 5: Results on P-glycoprotein [14]. CryoBoltz recovers distinct states of the protein using
four experimental cryo-EM maps. ModelAngelo [39] produces highly incomplete models.

Local guidance alone also improves performance over unguided Boltz-1, but is ultimately insufficient
in driving large conformational changes. We report ablations for real density maps in Supplementary
Table B1. The combination of local and global guidance leads to better accuracy than either one
alone for most of the maps.

5 Discussion

This work introduces a guidance mechanism that increases the capability of current diffusion-
based structure prediction models. The guiding information, derived from experimental cryo-EM
measurements, biases sampling towards atomic models consistent with the observed data. Our
method does not require any retraining or finetuning and can be used on top of any available model,
thereby making it possible to benefit from their continuous improvement. Through experiments
on both synthetic and experimental data, we show that CryoBoltz can increase the diversity of
sampled conformations – revealing states that are missed by existing diffusion models – and predict
more accurately the structure of regions that are key to function, like CDR loops in antibodies. On
experimental data, we show that state-of-the-art model building methods can fail and CryoBoltz,
leveraging knowledge acquired from large-scale datasets of protein structures, can fit atomic models
within minutes, saving hours of manual refinement. With the increasing availability of predicted
structures as priors for cryo-EM model building, the principled validation of the resulting atomic
models, especially those derived from lower resolution maps, remains an open question.

An important limitation of CryoBoltz is the limited stability of optimization, due to the multimodality
of the likelihood p(y|x). This instability is mitigated by sampling several structures simultaneously
and selecting the best fit a posteriori, but this comes at the cost of increased memory and time
consumption. Importantly, CryoBoltz also relies on the base (unguided) model being able to provide a
good initialization during the “warm-up” stage, which we found not to be the case on several systems
(e.g., DSL1/SNARE complex [19], full IgG antibody [67]). Future directions for this work therefore
include exploring ways to stabilize guidance, mitigating the drift towards “off-manifold” regions
(where the diffusion model is highly inaccurate), or getting rid of heuristic choices like the specific
duration of each guidance stage. Finally, when having access to N cryo-EM maps, associated with
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PDB:9UGB
Active state

PDB:9UGC

Inhibited state

Pma1

PDB:8DMG
Closed state

PDB:8DME
Open state

PDB:9GE6
Unbound state

PDB:9GE7
Bound state

CYP102A1 YbbAP

Figure 6: Results on Pma1, CYP102A1, and YbbAP [56]. Cryoboltz guides the atomic model into
two distinct conformations per complex based on experimental density maps.

similar conformations, exploring the possibility to optimize a unique deformation model instead of
N independent models constitutes an interesting avenue for future work.

Conclusion. In this study, we demonstrate the possibility of increasing the sample diversity of
state-of-the-art generative models using experimental cryo-EM data. Doing so, we hope to contribute
to the ongoing community effort towards efficiently exploring the conformational landscape of
macromolecules with machine learning models.
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Appendix

A Supplemental Methods

A.1 Point cloud construction

For global guidance, the input density map is converted to a point cloud by performing weighted
k-means clustering on the voxel coordinates, where the weights are given by the map intensity values.
k is set to ⌊N/(4r3)⌋, where N is the number of atoms in the system and r is the voxel size of
the map in Å. Prior to clustering, density values below a threshold may be set to 0, and connected
density components below a size threshold may be removed ("dusted"). See Experimental Details for
dataset-dependent values, where applicable.

A.2 Simulated map construction

For local guidance, a density map is simulated from the sample using a single Gaussian per atom
whose amplitude is given by atomic number, as implemented in the default molmap function of
ChimeraX [59]. The map is simulated to match the voxel size and nominal resolution of the input
map.

A.3 Alignment to density map

For efficient optimization of the point cloud guidance term, the intermediate sample must be aligned
to the input density map. We obtain an unguided sample and dock it into the map using the ChimeraX
fitmap function [59]. Prior to the first step of guidance, the intermediate sample is aligned to the
unguided sample via the Kabsch algorithm [42].

A.4 Sinkhorn divergence

For two point clouds X ∈ RN×3 and Y ∈ RM×3, the entropy-regularized optimal transport distance
is given by

OTϵ(X,Y ) = min
γ∈RN×M

+

N∑
i

M∑
j

γijCij − ϵ

N∑
i

M∑
j

γij log γij

where γ is a transport plan whose rows each sum to 1/N and columns each sum to 1/M . The first
term is the Wasserstein distance between the point clouds, where the cost Cij between two points is
the squared Euclidean distance 1

2 ||Xi − Yj ||22. The second term is the entropy of γ, which allows
for tractable and differentiable optimization and is controlled by the regularization strength ϵ. As
the entropy term introduces an approximation error to the true Wasserstein distance, the Sinkhorn
divergence corrects for this and is defined as

D(X,Y ) = OTϵ(X,Y )− 1

2
OTϵ(X,X)− 1

2
OTϵ(Y, Y )

We use the GeomLoss library for efficient optimization of the objective D with respect to the sample
coordinates [31]. The reach parameter is set to 10 while all others are set to their defaults.

A.5 Guidance schedule

For the synthetic datasets, the numbers of steps in the guidance phases are Tw = 125, Tg = 25,
Tl = 25, and Tr = 25. For the experimental datasets, the numbers of steps are Tw = 100, Tg = 50,
Tl = 25, and Tr = 25. During the global guidance phase (for all datasets), the guidance strength is
annealed along a cosine schedule from 0.25 to 0.05, i.e., λ(t) = 0.05+ 1

2 (0.25−0.05)(1+cos( πtTg
)).

During the local guidance phase, the guidance strength is made constant at λ(t) = 0.5.

A.6 Experimental Details

STP10. Deposited structures of the inward and outward conformations (PDB:7AAQ, 7AAR) [4, 5] were
stripped of non-protein entities. Synthetic density maps of 2 Å resolution and 1 Å voxel size were
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generated using the ChimeraX molmap function [59], then padded to dimension w = h = d = 100.
The wild-type protein sequence corresponding to PDB:7AAQ was given as input.

CH67 Antibody. The deposited structure of the antibody Fab (PDB:4HKX) was stripped of non-
protein entities and the bound hemagglutinin receptor. A synthetic density map of 4 Å resolution
and 1 Å voxel size was generated and padded to dimension w = h = d = 100. For CryoBoltz and
Boltz-1 [88], the step_scale parameter, which controls the temperature of the sampling distribution,
is set at 3.0 to increase CDR H3 loop accuracy.

P-glycoprotein. The experimental maps of four conformational states (EMD-40226, 40259,
40258, 40227) were masked around their corresponding deposited models (PDB:8GMG, 8SA1, 8SA0,
8GMJ) [15–18] to remove micelle density, using the ChimeraX volume zone function [59]. A padding
of 5 voxels was then added to each side.

Pma1. The experimental maps of two conformational states (EMD-64135, 64136) were cropped to a
tight box at a density threshold of 0.35 then padded by 10 voxels on each side. This removed empty
background regions for computational efficiency. During the global guidance phase of the method,
the maps were thresholded at a value of 0.35.

CYP102A1. The experimental maps of two conformational states (EMD-27534, 27536) were cropped
to a tight box at a density threshold of 1.25 then padded by 10 voxels on each side. During the global
guidance phase of the method, the maps were thresholded at a value of 1.25.

YbbAP. The experimental maps of two conformational states (EMD-51292, 51291) were cropped to
a tight box at a density threshold of 0.005 then padded by 10 voxels on each side. During the global
guidance phase of the method, the maps were thresholded at a value of 0.005, and dusted with size
threshold 100.

A.7 Computational resources

All experiments were performed on a single Nvidia A100 GPU with 80 GB VRAM.

B Supplemental Results

B.1 Map-model fit and statistical significance

In Table B2, we report evaluation metrics and confidence bounds on the best generated sample as
assessed by map-model fit. Three replicates of each method are run to produce 25 samples per
replicate. Samples are ranked according to the real-space correlation coefficient (RSCC), which is the
Pearson correlation between the input density map and a map simulated from the sample [83]. For the
unguided baselines, we first align each sample to the deposited model via the Kabsch algorithm [42].
CryoBoltz demonstrates statistically significant improvement over baselines across a majority of
maps and metrics.

B.2 Spread of sample quality

In Figures B2 and B3, we visualize the full distribution of RMSD values over all samples produced
by CryoBoltz, Boltz-1 and AlphaFold3. For nearly all maps, a majority of CryoBoltz samples are
more accurate than those produced by the baselines.
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Table B1: Additional baselines and ablations for experimental cryo-EM density maps. Extending
Table 2, we report accuracy metrics for MSA subsampling of Boltz-1, as well as ablations of the
local and global guidance phases. We report the mean all-atom RMSD (Å), Cα RMSD (Å) and TM
score for the best of 25 samples (lowest all-atom RMSD) across 3 model replicates. Random MSA
subsampling of Boltz-1 (Boltz-1 + MSA sub.) is run with MSA depths of 64, 128, 256, 512, and
1024, each producing 5 samples. Pgp is P-glycoprotein and CYP is CYP201A1. Bold indicates best
value(s).

CryoBoltz Boltz-1 + MSA subsampling Local only Global only
RMSD RMSD TM RMSD RMSD TM RMSD RMSD TM RMSD RMSD TM

Structure all Cα score all Cα score all Cα score all Cα score

Pgp (apo) 1.382 1.208 0.989 6.902 7.099 0.770 5.897 6.026 0.810 1.501 1.335 0.986
Pgp (inward) 1.348 1.187 0.989 5.541 5.601 0.831 4.416 4.438 0.878 1.369 1.252 0.988
Pgp (occluded) 1.727 1.677 0.979 2.875 2.847 0.945 1.916 1.882 0.974 1.714 1.673 0.979
Pgp (collapsed) 1.309 1.261 0.988 3.497 3.482 0.914 1.781 1.754 0.977 1.453 1.424 0.984

Pma1 (active) 2.046 1.776 0.973 3.204 2.935 0.927 3.228 2.938 0.930 2.164 1.907 0.967
Pma1 (inhibited) 1.999 1.590 0.979 7.444 7.156 0.745 7.299 6.974 0.751 2.223 1.829 0.971

CYP (open) 4.167 3.946 0.957 11.971 11.868 0.635 8.342 8.242 0.804 3.918 3.720 0.959
CYP (closed) 2.004 1.552 0.990 13.395 13.262 0.594 6.132 5.986 0.857 2.089 1.763 0.987

YbbAP (bound) 1.320 0.678 0.997 3.586 3.273 0.931 3.625 3.360 0.926 1.695 1.161 0.991
YbbAP (unbound) 2.454 2.039 0.974 5.254 4.992 0.865 7.069 6.825 0.823 2.762 2.400 0.964

Table B2: Evaluation of samples chosen by map-model fit. We report the Root Mean Square
Deviation (RMSD) for all atoms, the Cα RMSD, the template-modeling (TM) score, and the real-
space correlation coefficient (RSCC). For CH67, we also report the RMSD for the Cα atoms in
the CDR H3 loop (local RMSD). The mean and 95% confidence interval across 3 replicates are
reported for the best of 25 samples as assessed by map fit (highest RSCC). Bold indicates (statistically
significant) best value(s).

Structure Metrics CryoBoltz Boltz-1 AlphaFold3

STP10
(inward)

RMSD (Å, ↓) 1.1756 ± 0.0859 3.8313 ± 0.0810 1.3250 ± 0.0216

Cα RMSD (Å, ↓) 0.4776 ± 0.0262 3.5838 ± 0.0913 0.6543 ± 0.0248

TM score (↑) 0.9969 ± 0.0002 0.8620 ± 0.0043 0.9939 ± 0.0003

RSCC (↑) 0.8525 ± 0.0043 0.2402 ± 0.0031 0.7343 ± 0.0029

STP10
(outward)

RMSD 0.9090 ± 0.0308 2.6596 ± 0.0039 4.4777 ± 0.0244

Cα RMSD 0.4670 ± 0.0613 2.4203 ± 0.0102 4.2283 ± 0.0369

TM score 0.9971 ± 0.0006 0.9485 ± 0.0004 0.8276 ± 0.0022

RSCC 0.8862 ± 0.0064 0.5098 ± 0.0015 0.1946 ± 0.0011

CH67 antibody

RMSD 1.2957 ± 0.2995 1.9940 ± 0.0810 1.9719 ± 0.1210

Cα RMSD 0.8739 ± 0.2010 1.4970 ± 0.0418 1.4935 ± 0.0902

Local RMSD 1.3326 ± 1.0667 3.5518 ± 0.1133 3.9562 ± 0.4517

TM score 0.9917 ± 0.0027 0.9713 ± 0.0029 0.9708 ± 0.0035

RSCC 0.9521 ± 0.0041 0.8452 ± 0.0155 0.8466 ± 0.0117

P-glycoprotein
(apo)

RMSD 1.4931 ± 0.0803 7.0928 ± 0.1115 3.8272 ± 1.4344

Cα RMSD 1.3377 ± 0.1124 7.3054 ± 0.1164 3.8652 ± 1.5225

TM score 0.9876 ± 0.0004 0.7650 ± 0.0054 0.9036 ± 0.0611

RSCC 0.8157 ± 0.0007 0.4261 ± 0.0033 0.5797 ± 0.0982

P-glycoprotein
(inward)

RMSD 1.4311 ± 0.0346 5.6799 ± 0.1275 2.6923 ± 1.1995

Cα RMSD 1.2828 ± 0.0407 5.7454 ± 0.1302 2.6634 ± 1.2533

TM score 0.9876 ± 0.0007 0.8293 ± 0.0056 0.9475 ± 0.0440

RSCC 0.8165 ± 0.0011 0.5109 ± 0.0069 0.6927 ± 0.0884
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P-glycoprotein
(occluded)

RMSD 1.8070 ± 0.0094 2.9844 ± 0.1159 3.4641 ± 0.0747

Cα RMSD 1.7505 ± 0.0080 2.9566 ± 0.1160 3.4429 ± 0.0738

TM score 0.9778 ± 0.0004 0.9402 ± 0.0041 0.9209 ± 0.0021

RSCC 0.7662 ± 0.0006 0.6191 ± 0.0072 0.5857 ± 0.0001

P-glycoprotein
(collapsed)

RMSD 1.3881 ± 0.0349 3.4253 ± 0.2934 4.5681 ± 0.1824

Cα RMSD 1.3397 ± 0.0363 3.4117 ± 0.2929 4.5538 ± 0.1798

TM score 0.9860 ± 0.0007 0.9174 ± 0.0128 0.8642 ± 0.0084

RSCC 0.7884 ± 0.0012 0.5746 ± 0.0330 0.4904 ± 0.0108

Pma1
(active)

RMSD 2.1745 ± 0.3212 3.0098 ± 0.2575 6.6283 ± 1.0733

Cα RMSD 1.9144 ± 0.3517 2.7817 ± 0.2590 6.3890 ± 1.0764

TM score 0.9706 ± 0.0082 0.9352 ± 0.0114 0.7691 ± 0.0523

RSCC 0.5633 ± 0.0113 0.3540 ± 0.0234 0.2054 ± 0.0102

Pma1
(inhibited)

RMSD 2.0499 ± 0.1296 6.1404 ± 0.7005 8.2569 ± 0.5666

Cα RMSD 1.6640 ± 0.1413 5.8287 ± 0.7180 8.0042 ± 0.5289

TM score 0.9774 ± 0.0026 0.7943 ± 0.0339 0.7167 ± 0.0202

RSCC 0.5276 ± 0.0012 0.2439 ± 0.0246 0.2166 ± 0.0027

CYP201A1
(open)

RMSD 4.3939 ± 0.0988 8.5324 ± 0.1545 6.5074 ± 0.0836

Cα RMSD 4.1473 ± 0.0923 8.4389 ± 0.1539 6.3770 ± 0.0791

TM score 0.9535 ± 0.0013 0.7878 ± 0.0110 0.8912 ± 0.0036

RSCC 0.7693 ± 0.0013 0.5074 ± 0.0059 0.6220 ± 0.0043

CYP201A1
(closed)

RMSD 2.8636 ± 0.6566 8.7837 ± 0.3684 3.5848 ± 0.5770

Cα RMSD 2.4669 ± 0.7572 8.6674 ± 0.3758 3.3910 ± 0.6050

TM score 0.9868 ± 0.0022 0.7435 ± 0.0151 0.9459 ± 0.0186

RSCC 0.8062 ± 0.0002 0.4937 ± 0.0059 0.6830 ± 0.0338

YbbAP
(bound)

RMSD 1.3842 ± 0.0803 3.6264 ± 0.2116 3.7488 ± 0.1888

Cα RMSD 0.7578 ± 0.0892 3.3550 ± 0.2512 3.4802 ± 0.1897

TM score 0.9961 ± 0.0006 0.9283 ± 0.0092 0.9219 ± 0.0079

RSCC 0.7046 ± 0.0005 0.5074 ± 0.0116 0.4966 ± 0.0083

YbbAP
(unbound)

RMSD 3.8623 ± 0.6404 8.2798 ± 0.2012 4.0646 ± 0.4578

Cα RMSD 3.5271 ± 0.7067 8.0973 ± 0.2010 3.7913 ± 0.4791

TM score 0.9607 ± 0.0058 0.7751 ± 0.0066 0.9114 ± 0.0184

RSCC 0.7098 ± 0.0011 0.4944 ± 0.0111 0.5594 ± 0.0178
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Figure B1: Full CH67 antibody [70] structures generated by all methods. Top 5 samples from
each method, as ranked by all-atom RMSD.

STP10 (inward) STP10 (outward)

CH67 (full) CH67 (CDR H3)

Figure B2: Distribution of RMSD values for synthetic maps. All-atom RMSD values for all
samples over all replicates are visualized as histograms with 50 bins.
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P-glycoprotein (apo) P-glycoprotein (inward)

P-glycoprotein (occluded) P-glycoprotein (collapsed)

Pma1 (active) Pma1 (inhibited)

CYP102A1 (open) CYP102A1 (closed)

YbbAP (bound) YbbAP (unbound)

Figure B3: Distribution of RMSD values for experimental maps. All-atom RMSD values for all
samples over all replicates are visualized as histograms with 50 bins.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims and contributions are supported with experimental results in
Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The method is described in Section 3 and implementation details are given in
Section 4.1 and in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code will be released upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Details are given in Section 4.1 and in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard errors obtained over several replicas in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in Sections 1 and 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Code (Boltz-1, AlphaFold3, ModelAngelo), software (ChimeraX) and data
(PDB, EMDB) are properly credited and cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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