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Abstract—Next-generation cellular concepts rely on the pro-
cessing of large quantities of radio-frequency (RF) samples.
This includes Radio Access Networks (RAN) connecting the
cellular front-end and its framework for the AI processing of
spectrum-related data, as well as the AI-native air interface.
The RF data collected by the dense RAN radio units and
spectrum sensors may need to be jointly processed for intelligent
decision making. Moving large amounts of data to AI agents may
result in significant bandwidth and latency costs. We propose
a deep learned compression (DLC) model, HQARF, based on
learned vector quantization (VQ), to compress the complex-
valued samples of RF signals comprised of 6 modulation classes.
We are assessing the effects of HQARF on the performance of
an AI model trained to infer the modulation class of the RF
signal. Compression of narrow-band RF samples for the training
and off-the-site inference will allow not only for an efficient use
of the bandwidth and storage for non-real-time analytics, and a
decreased delay in real-time applications, but also for efficient AI
models in the air interface. While exploring the effectiveness of
the HQARF signal reconstructions in modulation classification
tasks, we highlight the DLC optimization space and some open
problems related to the training of the VQ embedded in HQARF.

I. INTRODUCTION

Data reconstruction from lossy compression incurs a loss of
information when the information rate in bits drops below the
theoretical lossless minimum, equivalent to the data entropy
[1]. If a trained model is used to infer data properties from
the reconstructions that suffered information loss relative to
the training data, its performance may deteriorate [2], [3].
This paper considers digitally-modulated radio-signal samples
in the baseband, intended for the use by a remote deep learning
(DL) model trained to infer the signal modulation from such
samples. Next-generation (NextG) cellular concepts will rely
on the processing of large quantities of RF samples. This
includes the new Radio Access Networks (RAN) integrating
the cellular front-end with the multi-access edge computing
(MEC) architecture and the RAN Intelligent Controller (RIC)
framework for AI/ML processing of the spectrum-related data.
The RF data collected by the RAN radio units of multiple
adjacent NextG cells and spectrum sensors may need to be
jointly processed for intelligent decision-making. This may
happen both at the edge and in the cloud. Meanwhile, the AI-
native air-interface is being addressed by the standard bodies
[4], including the data compression for raw data. Moving
large amounts of data results in significant bandwidth and
latency costs [5]. We believe that it is important to explore
the possibility of RF data compression that would preserve
the utility of the data. We here apply DL compression (DLC,
or learned compression - LC) to compress the complex-valued
samples of RF signals comprised of 6 modulations classes. We

are assessing the effects of such compression on the perfor-
mance of an AI model trained to infer the modulation class of
captured RF signals and then make intelligent decisions based
on their classification.

Machine-learning-based modulation classification, known as
ModRec, is an important part of the RF machine learning
(RFML) [6] used in spectrum management, interference de-
tection and threat analysis. While exploring the feasibility
of the compression of baseband RF samples for the RFML
training and off-site inference by the modulation classification
task, this paper also highlights some open problems related
to vector-quantization methods embedded in the LC training.
In this setup, an RF datapoint, which is an array of complex-
valued narrowband RF samples, is to be reconstructed from
its compressed representation by the user of the ModRec
classification model. The compressed representation will be
received over a network or retrieved from a storage with no
errors. Note the presence of two RFML models, one for the
learned compression (LC) that we propose here, and another
for the ModRec which evaluates it.

Prior and Proposed LC work: An LC model is trained
to seamlessly compress data using DL algorithms. LC may
leverage discriminative models such as autoencoders [7], or
generative models such as variational autoencoders (VAE) [8]
and generative adversarial networks (GAN) [9]. The most pop-
ular LC architectures typically include a neural net backbone
built upon the VAE architecture [10]. One of the latest deep
compression models, known as VQ-VAE [11], is an extension
to VAE that employs learned vector quantization (VQ). For 30
years, since [12], the learning of optimal VQ codebooks has
been an open problem resulting in many attempts to generate a
converging algorithm that could learn the quantization vectors
for any type of data. The LC proposed here, Hierarchical
Quantized Autoencoder for RF data (HQARF), will be ana-
lyzed using a family of models, starting from a hierarchical
autoencoder, trained using only the reconstruction loss, via
an extended model that performs vector quantization (VQ) of
the autoencoder’s latent space, and ending with a generative
model, like VQ-VAE, whose generative loss compares the pos-
terior of the quantized latent representation with a categorical
prior. The generative model is motivated by the possibility to
leverage statistical diversity of reconstructions [13] to mitigate
reconstruction loss or adversarial attacks [14], [15], [16]. The
trainable VQ codebook [12], [17] helps to achieve a desired
compression rate while maximizing the task-based utility of
the reconstructions. To allow for scalability, HQARF maintains
a hierarchical architecture. This hierarchical architecture is
based on [18] in which a hierarchical version of VQ-VAE,



called Hierarchical Quantized Autoencoder (HQA) has been
applied to simple image datasets. To the best of our knowledge,
learned compression has not yet been applied to the RF data.
We will therefore first explore it in a small, task-specific
context, aiming to assess how lossily compressed RF data
affects the accuracy of a modulation classification model
whose training dataset did not include lossy compression. We
motivate the problem and define the basic model in Sec. II.
We discuss the details of the compression architecture and
the training process, including the loss functions in Sec. III.
The classification model and the evaluation of the HQARF
reconstructions are discussed in Sec. IV. We conclude in
Sec. V.

II. SYSTEM MODEL

The hierarchical nature of HQARF allows us to use the
same compression model adaptively for different compression
rates, and analyze the effectiveness of the quantization on
different levels. Multiple compression rates may be important
for joint network source coding. Fig.1 depicts our system
model where after the compression is done by HQARF, the
compressed representation from the desired level (or multiple
levels) is sent to a ModRec classifier (or stored, awaiting
retrieval by the classifier). The reconstruction is performed
at the remote site using the same trained HQARF to recover
the original data before classifying it by the ModRec model.
The reconstruction uses as many hierarchy layers as the
compression has used. Our HQARF model made 2 significant
modifications to HQA. First, we modified the architecture
to work with vectors of complex-valued RF samples instead
of images, and modified the reconstruction loss to account
for the complex phase reconstruction. Secondly, we took a
hierarchical approach to training and analyzing the model;
first, we train a hierarchical autoencoder (HAE), then we
transfer-learn a vector-quantized version of that model using
the trained weights of the HAE, while adding a trainable VQ
codebook which quantizes the HAE bottleneck, accompanied
by a loss component that measures the quantization error;
finally, we add the generative loss component based on the
Kullback-Leibler divergence, effectively creating a hierarchical
VQ-VAE for the RF data (HQARF).

III. HQARF COMPRESSION OF RF DATAPOINTS
Lossless compression is about finding the shortest digital

representation (in bits) of a signal. Lossless compression algo-
rithms take as an input arbitrary information signal represented
(sampled) as a sequence of N symbols and process it with
the objective to find its shortest compressed representation: a
sequence of uniformly distributed bits which cannot be com-
pressed further without a loss of information. Consequently,
lossless compressed representation allows for complete recon-
struction of the original sequence of N symbols. Information
theory sets the foundations for entropy coding, with the length
n of the shortest lossless representation equal to the signal’s
entropy, resulting in a rate R = n/N bits-per-symbol. Lossy
compression achieves an even shorter representation and lower
rate R but the signal reconstructed from such representation

suffers a distortion D from the original signal. However,
certain utilities of the signal reconstructed from the lossy com-
pression may be unaffected. For example, lossy reconstructed
data with a distortion Du may still be fully classifiable by a
deep learning model that was trained on uncompressed data.

Using HQARF to generate lossy reconstructions, we will
analyze the effect on the classification accuracy depending on
the compression rate r• (the size in bits relative to the original
size). We will compare these with the original of the unit
compression ratio. Here, different compression rates ri are
expected to match different bandwidths under a low-latency
transmission τRF , and/ or different storage capacity. Please
see Fig 1 where the original x requires bandwidth ≥ B∗ to be
transmitted to the remote classifier within latency τRF while
the HQARF hierarchy levels i ∈ {0, · · · 4} compress x to fit
the bandwidth Bi < B∗. To be able to assess the feasibility
of a given classification accuracy under the constraint Bi,
we next explain the dataset, its compression model and the
methodology of its training in detail.
A. HQARF Dataset for modulation recognition (ModRec)

Consider the problem of inferring a property of a physical
signal from the signal’s reconstruction x̂ out of a lossily-
compressed representation. We narrow down that question to
inferring the modulation class and assessing the classification
accuracy in a deep learning setup, given the compression
rate. We denote by MRθ(x) the algorithm for modulation
classification (ModRec), where the weights θ have been trained
on {x ∈ X} . We are interested in comparing A(x̂) and A(x),
where A(•) is the accuracy of MRθ. The datapoint x can be
represented as x = [Rei + jImi] , i = 1 · · · p with j =

√
−1.

We next describe how x is created from a modulated RF signal
u, obtained as u = Ms(b), where s ∈ S is the employed
modulation scheme, and b are information bits. S denotes the
finite set of available digital modulation schemes. In this work,

S = [4ask, 8pam, 16psk, 32qam− cross, 2fsk, ofdm256] ,

so we refer to our dataset as 6Mod. Ms = {0, 1}m → Cn
describes the modulation function. The sequence of bits b =
{0, 1}m is encoded into a sequence of complex valued num-
bers of length n, where the complex sample ci = Rei+jImi,
encodes the modulation phase ϕ = arctanRei/Imi, and
amplitude ai =

√
Re2i + Im2

i . We create datapoints as sub-
sequences x of u ∈ Cn, of length p = 1024. Depending
on the modulation, x contains more or less mappings of
the original random sequence of bits b. This leads to an
imbalanced approach to classifying modulations because in
any given sequence of length p we will see more randomness
due to the original random bit sequence b in low-order mod-
ulations than in high-order modulations. Additionally, there is
a problem of mistaking one modulation with another whose
phase constellation is a subset of its own ( like 4ASK (1) is of
8PAM (2), and 16PSK (3) is of 32qam-cross (4)), which we
illustrate in [19]. However, as this is independent of HQARF,
we do not consider its effects on the classification accuracy.

We prepared a synthetic modulation dataset by using the
open-source library torchsig featured in [20]. The torchsig



Fig. 1. The RF data x from a SDR goes through HQARF compression layers i ∈ {0, · · · , 4} requiring bandwidth Bi, to store or transmit the compressed
information, vs. directly storing/transmitting x and consuming B∗ for a remote classifier to infer its modulation class. x is composed of 1024 complex-valued
samples. If a compressed representation ZQi

, is stored/ transmitted, the same HQARF model is used to recover x, decompressing ZQi
into x̂. We want the

ModRec not to see a difference between x̂ and x for all i ∈ {0, · · · , 4} . ξ = 1.37.

library here emulates the clear-channel samples of high SNR
while the effect of the channel and receiver imperfections
will be addressed in future research, by leveraging the natural
denoising properties of autoencoders in the process of training.
The library function ComplexTo2D is used to transform vectors
of complex-valued numbers into the the 2-channel datapoints,
with each channel comprised of p real numbers, previously
normalized. Channel 1 contains the real components (I) and
channel 2 the imaginary ones (Q). Datapoints that are 2-D
real-valued vectors required modifications of the architecture
in [18] (see Section III-C).
B. Generative DLC with hierarchical VQ-VAE

Architecturally, a VQ-VAE is composed of 3 modules
(Fig. 2): E - the Encoder (with output ze), Q - the Vector-
Quantizer (with output zq) and D - the Decoder which
produces the reconstruction of the input x, denoted x̂. The
HQARF uses a hierarchy of VQ-VAEs in which the encoder’s
output of the first layer (L0) ze (creating the least compressed
reconstruction) is the input into the second VQ-VAE and so
on (Fig. 1). The ith ze is of dimension dim(zie) = (ℓ, p/2i+1).
The VQ-VAE model projects ze into discrete latent space zq
as illustrated in Fig. 2. The latent representation zq produces
lower information rate Izq . The hierarchy of the Encoder-
Decoder (E-D) blocks (representing an autoencoder - AE),
which is of the same architecture as the respective HQARF
blocks, but trained without the Q block and a generative
loss, is denoted here as HAE. We will refer to the outermost
level of HQARF as VQAE0 and to the same architecture
without the Q block as AE0. The output ze of the E block,
is of the same dimension in VQAE0 and AE0. Note that it
does not have to be lower than the input’s dimension for
the compression to happen. The compression is achieved by
adding the Q block with output zq. In fact, the ze in the
VQAE0 (AE0) of the HQARF showcased here projects the
input x of dimensions 2×1024 into ze of dimensions ℓ×zen ,
where dim(ze)[0] = ℓ = 64, and dim(ze)[1] = zen = 512.
Obviously, AE0 does not act as a compression model, but the
VQAE0 does. Due to the complexity of training all 3 com-
ponents (E+D+Q) simultaneously, we performed the following
ablation study. We first train the HAE, using the reconstruction
loss LR(x, x̂), and then transfer its learned weights to the
respective blocks of the HQARF. Next, we train HQARF

Fig. 2. Training VQ-VAE - top: randomly initialized parameters of the
encoder (E), decoder (D) and the nc=16 quantization codebook (Q) code-
words of dimension ℓ; bottom: the final trained VQ-VAE where a single
codeword’s index from the trained Q (QF ) will be associated with each of
the zen = dim(ze)[1] slices of x’s latent projection ze. x is compressed into
zq of zen × log2(nc) bits. Top right: The t-SNE visualization of QF shows
clusterization around a few codewords, illustrated with unequal Voronoy cells
in the bottom right.

using a modified loss including the additional component
which measures the quantization error, the commitment loss
LQ = Eq(zq=k|x)∥ze(x)− ek∥2, where ek is the codeword
k of the quantization codebook (see (3) for the definition of
the posterior q(zq = k|x)). Note that every hierarchy layer
trains a separate E, Q and D block. Finally, after training
this hierarchical vector-quantized HAE, we add a generative
loss function and retrain HQARF to its final version. The
generative loss is a Kullback-Leibler (KL) divergence between
the posterior q(zq = k|x) and the categorical prior with nc

classes, where nc is the number of codewords in Q.
The nc codewords (vectors) ej , j ∈ 1, · · · , nc are of dimen-

sion ℓ. Hence, for VQAE0’s z0e , each one of its zen = 512
slices of dimension ℓ = 64 will be represented by a number,
indexing a single codeword ej out of the nc = 64 codewords.
For each of 512 slices, the reconstructing user receives this
index, losslessly represented by log2(nc) bits. Information
rate of the compressed representation zq can be calculated as
Izq = zen × log2(nc),where zen = dim(ze)[1] (Fig. 2). This
is possible as we are parameterizing the E architecture by
the tuple (ℓ, h), to yield the dimensionality of the latent slice
dim(ze)[0] = ℓ, making it part of the ℓ-dimensional space in
which the Q resides (see the Voronoi tessellation in Fig. 2).
We explain the effect of h in Sect. III-C.

The zq in other HQARF layers will be quantized similarly



as we make sure by the architecture design that each layer’s
dim(ze)[0] = ℓ, equal to the codeword length. Although the
codebooks across layers are of the same size 64 × 64, they
do not have to be, given that the VQ-VAEs are independently
trained. As far as their training is concerned, the codebooks
are agnostic of where the training data is coming from. The
optimal Q dimension is an open question.

As x consists of 2p real numbers, organized in 2 channels
[20] and normalized, we consider each element of x to be
independently drawn from a normal Gaussian distribution. It
is known that Gaussian has the largest entropy HN (X) of all
distributions of equal variance. For unit variance, HN (X) =
1/2 log(2πe) = 2.05. Hence, the information rate, expressed
in the number of bits for each input x is Ix = dim(x)HN (x).
Recall that zq, the quantized version of the bottleneck ze,
follows multivariate categorical distribution of size nc, as
each of ze[1] slices of ze will be represented by the index
of one of the codewords ej . Hence, zq’s dimension is just
dim(ze)[1] = zen , and each of the zen elements is described
by log2(nc) bits. For nc = 2d, the compression ratio will be

CR =
Ix
Izq

=
dim(x)HN (X)

zen log2(nc)
=

2.05dim(x)

d× zen
. (1)

If d is such that d < 2.05, it leads to CR ≥ 1 for each ze with
dim(x) ≥ zen), meaning that zq compresses such x. We want
to allow for a larger codebook to be able to perform good
vector quantization training: if instead of nc = 22.05 ≈ 4, we
use nc = 26 (d = 6), we must design zen to be significantly
lower than dim(x) in order to achieve sufficient compression.
Under this premise, we design the architecture of the E −D
on each hierarchy level to give us zen = dim(input)[1]/2.
Here, input is the input to that specific hierarchy level. Hence,
for L0, we have CR0 = 2.05×2p

6p/2 = 1.37, as dim(input) =

dim(x) = 2p, and zen(0)
= 512. The codeword index per slice

of ze is all that we transmit (store) on any compression level,
given the user’s knowledge of the trained codebooks. For any

other level i > 0, CRi = CRi−1 ∗
Ize(i−1)

Izqi
and the input

ze(i−1)
has the same number of channels ℓ as the bottleneck

qi , hence,

CRi =
Ix
Izqi

=
B∗

Bi
=

2pHN (X)

d× dim(ze(i))[1]
=

4.1p

6p/2i+1
= ξ2i,

(2)

where ξ = 1.37 is featured in Fig. 1. These calculations yield
the compression rate r0 = 1/CR0 = 0.73. Each subsequent
reconstruction’s dimension is decreased by 2, resulting in
r4 = 0.73/16 ≈ 0.045. On the other hand, our approximation
Ix = dim(x)HN (x) is very conservative because the real
compression gain is much bigger. CRi in (2) may be
considered a lower bound, as in practice each of the 2p
components of x is represented in the single precision floating-
point format, consisting of 32 bits, rather than 2.05.

C. Neural Net architecture of VQ-VAE in HQARF
The encoder architecture for ze0 = p/2 is parameterized

by variables ℓ and h, and composed of 3 1-D convolutional

layers. The decoder consists of an equal number of 1-D
deconvolutions. Despite the simple architecture of the E-D,
difficulties in training were caused by the complexity of the
E-Q-D hierarchy, the diverse structure of the loss and its
stochastic component, and the intricate data structure. To
mitigate this, we introduced a novel process of first training a
hierarchy of autoencoders, using a 2-component reconstruction
loss, and then transfer-learning the hierarchy of VQ-VAEs by
transferring the weights of the autoencoders. The bottleneck
ze is the output of third 1-D convolutional layer in E, with
ℓ output channels. The other convolutional layers have the
number of output channels affected by the parameter h,
which is how the learning capacity (number of weights) is
controlled across the layers. We started with the parameter
values inherited from [18] and concluded that these parameters
are not optimal. Our criterion for optimality is based on the
comparison of the evaluated classification accuracy Ai(x̂) of
the Li reconstructions and the accuracy that we expect based
on the singular value decomposition (SVD) that we performed
on the original data.

Fig. 3. Table of the HAE encoders’ input/ output dimensions and the SVD
bound (L5) for optimal h parameters.

SVD-based threshold: We performed an SVD on the
original 6Mod data in the complex-valued domain, and cal-
culated how many eigenvectors we should keep to preserve
more than 99 % of the total information in the data. The
result is that we need 500 out of the original 1024 complex
eigenvectors. This means that designing ze s.t. the product
of its dimensions is equal to 0.5 (dim(x)), allows for the x̂
reconstructed from such a ze to be perfectly classified. Hence,
according to the table in Fig. 3, L5 is our SVD bound, as
its ze has 1/2 of the original dimensions: if we manage to
achieve the accuracy A5 = 100% by modifying h, it means
that the HAE autoencoders are parameterized well (and so
are the HQARF’s). With original parameters, A4 was as low
as 50% while it is 80% in Fig. 5 and above 90% in Fig.
6, almost closing the gap to the SVD bound. We are in the
process of optimizing the size of the codebook to achieve the
best HQARF performance for the new HAE architecture as it
experienced a drop despite a better HAE (Fig. 6).

The Q is designed as a learnable tensor of dimension nc×ℓ,
s.t. we can train it based on the MSE distance dMSE between
each ek of length ℓ, and each of the zen slices of length ℓ. As
in [18], we pick the ek to quantize each slice using a stochastic
method, based on sampling the posterior probability

q(zq = k|x) = exp−∥ze(x)−ek∥2

, k ∈ {1, · · · , nc} . (3)

This posterior is the basis of the KL loss, which serves to



make q(zq = k|x) similar to a categorical prior. Generative
reconstructions (illustrated in [19]) are important for the data
robustness [13]. The Q codewords (CWs) are being learned
starting from random Gaussian samples at the initialization,
and converging to a Q that minimizes the loss function,
composed not only of the reconstruction loss LR(x, x̂), but
also the KL generative loss, and a commitment loss measuring
the distance between the ze and the chosen ek. Note that,
in the outermost layer L0, we added a new component to
LR(x, x̂) = LMSE + Lϕ, to measure not only the MSE
distance between x and x̂, but also the cosine loss

Lϕ = 1/p

p∑
i=1

x[i, :]× x̂[i : 0]T

∥x∥ × ∥x̂∥
.

As x[i, :] are the real and imaginary parts of the ith RF sample,
Lϕ measures the phase reconstruction, a very important feature
in digital phase modulations. For details of the Q training,
please consult our code [21]. Apart from the typical tuning
of the Q parameters using stochastic gradient descent of the
loss, and obtaining a differentiable sample from the posterior
(3) via the Gumbel Softmax relaxation [22], the least used
CW is periodically reset to the vicinity of the most used CW.
We considered the reset period to be a hyper-parameter and
obtained good results when it increased, as frequent resetting
foster instability. More importantly, we defined the vicinity of
the CW adaptively, circling in with the number of resets (see
t-SNE [23] visual of the codebook in Fig. 2). The optimal
reset policy is actively investigated using the statistics of ek
over the training epochs.

Fig. 4. I/Q scatterplot of 6 different classes based on the reconstructions
across layers compared with the ideal (original) scatterplot. We concatenated
20 reconstructions of random datapoints of the same class, each comprised
of 1024 complex-valued samples, and plotted them in the complex plane.

IV. EVALUATION WITH THE EFFICIENTNET CLASSIFIER

Upon training the 5 HQARF Layers on the 6Mod dataset,
we evaluated it on a modified EfficientNet B4 [24] refer-
enced in [20], which was appropriately transfer-learned on
the original 6Mod dataset. Evaluation gave us a reference
accuracy A(x) ≈ 100%. Fig. 5 shows how the accuracy
of reconstructions depends on the compression ratio (CR).
The HAE accuracy should not be associated with the CR in
the x-axis. It is there to illustrate the SVD gap, i.e., if the
space of the h parameter, and possibly the overall architecture,
should be further explored (as emphasized by the accuracies

of the 2 trained models with different h in Figs. 5 and 6).
Fig. 4 shows ”‘digital constellations”’ of the originals and their
reconstructions. While the real constellations show complex
samples at symbol times, ours are the scatterplots of complex
samples at a much higher rate obtained by baseband sampling.
However, they illustrate the gradual deterioration in the phase
reconstruction while the ModRec utility follows the trend
(Figs. 5 and 6).

V. CONCLUSIONS AND FUTURE WORK

We introduce HQARF, the first vector-quantization (VQ)
based learned compression (LC) of modulated RF signals
and evaluate their lossy reconstructions on a modulation
recognition (ModRec) task, illustrating the utility of LC in
this domain and its optimization space. Based on our results,
this proof of concept deserves further investigation, as it may
have applications in intelligent network optimization where
large quantities of RF samples need to be collected to train
the AI in NextG cellular algorithms [4]. Moreover, vector-
quantized latent representations of RF signals can be useful in
the design of the diffusion-based AI-native air-interface, such
as [25], where quantizing the latent space would help achieve
a better trade-off between quality and speed [26]. The simple
architecture and compact size of HQARF are very convenient
for the quantization close to the radio interface. We point out
to the complex factors affecting the ModRec accuracy on the
HQARF reconstructions, but also the fidelity of their complex-
plane scatterplots and spectrograms (which is the focus of a
companion paper [19]). These optimization factors include the
HQARF architecture, training methodology, loss functions and
the dimension and training of the VQ codebook. We defined
a bound for the LC performance based on SVD. Pursuing this
bound by tuning optimization factors, we kept improving our
results, and plan to continue doing so in the future.

Fig. 5. Accuracy vs compression ratio (CR) across Layers for HAE,
HQARF NO KL and HQARF with Q of size 64 × 64. The CR on the x
axis does not apply to HAE, as HAE does not perform VQ: HAE is added
to track how close we are to the bound given by SVD.

Fig. 6. Improved HAE architecture almost closes the gap to the SVD bound,
but the HQARF performance experiences a drop. We will continue to optimize
the codebook size to leverage the HAE gain in the HQARF performance.
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