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ABSTRACT

As generative models become increasingly powerful and pervasive, the ability
to unlearn specific data, whether due to privacy concerns, legal requirements, or
the correction of harmful content, has become increasingly important. Unlike in
conventional training, where data are accumulated and knowledge is reinforced,
unlearning aims to selectively remove the influence of particular data points without
costly retraining from scratch. To be effective and reliable, such algorithms need
to achieve (i) forgetting of the undesired data, (ii) preservation of the quality of
the generation, (iii) preservation of the influence of the desired training data on
the model parameters, and (iv) small number of training steps. We propose fast
unlearning algorithms based on loss gradient orthogonalization for unconditional
and conditional generative models. We show that our algorithms are able to forget
data while maintaining the fidelity of the original model. On standard image
benchmarks, our algorithms achieve orders of magnitude faster unlearning times
than their predecessors, such as gradient surgery. We demonstrate our algorithms
with datasets of increasing complexity (MNIST, CelebA and ImageNet-1K) and
for generative models of increasing complexity (VAEs and diffusion transformers).

1 INTRODUCTION

Machine learning models are often trained on datasets that contain personal or sensitive information,
such as medical records, financial data, or social media activity (Mireshghallah et al., 2021; Truong
et al., 2021). This reliance on personal data introduces substantial privacy risks, especially when
models can unintentionally memorize or leak identifiable information; see Carlini et al. (2021) for an
in-depth exploration of this issue in the context of large language models (LLMs). Legal frameworks
such as the General Data Protection Regulation (GDPR) and related EU laws have been established
to address these issues (gdp, 2016). One of the central provisions is the right to be forgotten (RTBF),
which grants individuals the ability to request the deletion of their personal data (Kuner et al., 2020).
It is increasingly likely that this obligation will become a standard requirement for machine learning
services. Retraining large models from scratch each time such a request is received is computationally
infeasible since the training costs are substantial (Brown et al., 2020; Hoffmann et al., 2022). Machine
unlearning refers to the removal of the influence of specific data points from a trained model without
requiring full retraining. In the context of generative models this can be formalized as follows. Given
a training dataset D = Dr ⊔ Df partitioned into retain and forget datasets Dr and Df , respectively,
and a modelMθ trained on D, the objective of unlearning is to update the model parameters θ in
a way such that P (sim(x,Df ) ≥ δ) ≤ ε where P denotes probability, x is a sample generated by
the updated model, sim is an appropriate similarity measure, and ε, δ are thresholds controlling the
degree of forgetting. For an unlearning algorithm to be effective, it should (i) prevent the model from
generating data resembling samples from Df , (ii) preserve the quality or fidelity of the generated
samples, (iii) retain the influence ofDr on the model parameters, and (iv) require only a small number
of training steps.

A simple approach to machine unlearning is to reverse the model update steps by performing
gradient ascent on the loss computed over the forget dataset Df . However, this method is susceptible
to catastrophic forgetting, where the model loses knowledge far beyond just the targeted forget
dataset (McCloskey & Cohen, 1989; Luo et al., 2023). To mitigate this, several approaches combine
gradient ascent on Df with gradient descent on the retain dataset Dr (Yao et al., 2024). The Gradient
Difference (GDiff) method minimizes the difference of losses evaluated on the retain and forget

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

datasets. Balancing the opposing updates in ascent-descent methods or weighing the loss terms
properly in methods like GDiff is challenging since the forget and retain datasets might have significant
size disparity, and the risk of catastrophic forgetting persists unless training hyperparameters such
as the learning rate are finely tuned (Bu et al., 2024). Recently, multi-task optimization (MTO)
techniques have inspired several unlearning algorithms (Sener & Koltun, 2018; Yu et al., 2020). One
such algorithm is gradient surgery (Bae et al., 2023) where gradient ascent is performed in a direction
that is orthogonal to the loss gradient computed over the retain dataset. This method, however,
remains sensitive to the choice of hyperparameters and can suffer from catastrophic forgetting without
careful tuning, see Appendix D for an example.

In this work, we aim to advance the gradient surgery framework for unlearning in generative models.
Although our proposed algorithms are general-purpose and presented accordingly, we demonstrate
their effectiveness specifically using variational autoencoders (VAEs) (Kingma & Welling, 2013;
Rezende et al., 2014) and diffusion transformers (Peebles & Xie, 2023) for three widely used
benchmark image datasets MNIST (Deng, 2012), CelebA (Liu et al., 2015) and ImageNet-1K (Deng
et al., 2009).

CONTRIBUTIONS

Our main contributions are as follows:

1. We propose two new unlearning algorithms that regularize the main loss function with an
additional term enforcing orthogonality between loss gradients computed over the retain and
forget datasets. We provide algorithms for both unconditional and conditional generative
models.

2. We compare our algorithms against prior approaches, including gradient surgery and gradient
ascent, evaluating both unlearning speed and the quality of generated samples. Our methods
achieve orders of magnitude faster unlearning than gradient surgery, while retaining the
influence of the desired training data unlike gradient ascent.

3. We provide implementations of both the proposed and baseline algorithms, along with the
experiment data, through this anonymized file.

2 RELATED WORK

Early foundational work by Koh and Liang Koh & Liang (2017) introduced influence functions
as a principled approach for quantifying the impact of removing individual training points from
machine learning models. Although influential, their technique is computationally demanding,
limiting its scalability, particularly for large-scale neural networks (Basu et al., 2020; Guo et al.,
2020). To address these computational challenges, recent studies have developed more efficient and
scalable methodologies. For example, Schioppa et al. (2022) and Guo et al. (2020) proposed efficient
approximations of influence functions that significantly reduce computational complexity. Further,
innovative optimization-based frameworks such as SCRUB by Kurmanji et al. (2023) approximate
data removal for classification models such as ResNet (He et al., 2016) using a teacher-student
distillation paradigm combined with checkpoint rewinding. Gradient-based methods have emerged
as an effective paradigm for machine unlearning. Golatkar et al. (2020) approximate the influence of
individual data points on model parameters using the Fisher Information Matrix and use it to execute
unlearning in deep networks. Building on this, Mixed-Privacy Forgetting (Golatkar et al., 2021)
combines public and private data during training, enabling the selective removal of private data while
preserving the utility of public data. Neel et al. (2021) propose Descent-to-Delete, a gradient-based
optimization technique that incrementally updates model parameters to approximate the behavior of
a model trained without the forgotten data.

Unlearning in generative models introduces distinct challenges due to their capacity to implicitly
memorize training data, complicating data removal without degrading generative quality. Addressing
these, Sun et al. (2025) introduced methods specifically designed to detect and mitigate unintended
memorization in generative adversarial networks (GANs). Heng & Soh (2023) proposed Selective
Amnesia, which leverages continual learning frameworks to selectively remove specific concepts
from deep generative models without compromising the overall data distribution learned by the model.
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In the context of LLMs, recent works have tackled critical challenges such as selective forgetting
of harmful or copyrighted content and aligning models to user preferences (Jang et al., 2022; Chen
& Yang, 2023; Qu et al., 2025; Pawelczyk et al., 2023). These methods employ parameter-efficient
fine-tuning, low-rank adaptations, and in-context learning strategies to remove specific learned
knowledge while minimally impacting overall model performance. Style unlearning in the context of
text-to-image models has been recently studied, using negative classifier-free guidance (Gandikota
et al., 2023).

Negative Preference Optimization (NPO) (Zhang et al., 2024) offers an alignment-inspired approach
to machine unlearning by assigning lower preference or likelihood to data from the forget set.
Through preference-based training, the model learns to reduce its reliance on forget data, often
using pairwise comparisons or preference signals. Normalized Gradient Difference (NGDiff) (Bu
et al., 2024) approaches unlearning as a multi-task optimization problem, balancing the objectives of
forgetting and retaining. By normalizing the gradient differences between these tasks and employing
an adaptive learning rate scheduler, NGDiff provides stable training and effectively manages the
trade-off between unlearning and model utility. Cao et al. (2022) propose a projection residual based
method to remove the influence of undesired data. In the same vein, gradient surgery (Bae et al.,
2023) attempts to maximize the loss in a direction orthogonal to the loss gradient evaluated on the
retain dataset. While promising for generative models, gradient surgery can suffer from inefficiency
when there is significant overlap between loss gradients computed on the retain and forget data,
and may even cause catastrophic forgetting. We aim to improve upon this approach by explicitly
enforcing orthogonality between these conflicting gradients. Our algorithms exhibit no catastrophic
forgetting, achieve fast unlearning speeds, and are robust to hyperparameter selection.

For a comprehensive overview of unlearning techniques for large language models, including method
categorization and scale-specific challenges, see Blanco-Justicia et al. (2025). For a broad taxonomy
of machine unlearning across centralized, distributed, and privacy-critical settings with a focus on
open problems and verification, see Wang et al. (2024).

3 UNLEARNING VIA ORTHOGONALIZATION

We now describe the unlearning algorithms used to produce the results presented in this paper.
The pseudocode for all the algorithms presented in this section can be found in Appendix B. We
first describe classical gradient ascent and gradient surgery before introducing our Unlearning via
Orthogonalization (UNO) algorithms with and without surgery.

3.1 GRADIENT ASCENT

We begin by introducing the most primitive approach, namely, gradient ascent. Given a pretrained
modelMθ with trained parameters θ = θ⋆, trained using a loss function L on a dataset D, unlearning
can be induced by maximizing the loss on the forget data, which can be done with the update step:

θk+1 = θk + ηgf , (A)

where θk represents the model parameters after the k-th training step with θ0 = θ⋆, η is the learning
rate, and gf is the gradient of the loss evaluated over the forget data (we omit the index of θ in the
definition below for brevity),

gf =
1

|Df |
∑
x∈Df

∇θL(Mθ, x). (1)

This approach, however, may delete knowledge acquired on the retain data Dr if gf resembles gr,
the gradient of loss evaluated over the retain data,

gr =
1

|Dr|
∑
x∈Dr

∇θL(Mθ, x). (2)

A naive way to prevent the model from forgetting retain data is to perform alternating ascent in the
direction of gf and descent in the direction of gr:

θk+1 =

{
θk + ηgf , if k is even,
θk − ηgr, if k is odd.

(A-D)
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This simple modification, which we will refer to as ascent-descent, does not safeguard against
catastrophic forgetting, as we will see in Section 4. See Appendix C for examples of catastrophic
forgetting induced by gradient ascent and ascent-descent.

3.2 GRADIENT SURGERY

Similar challenges also arise in a related subfield of machine learning: multi-task optimization
where a model must learn to perform new tasks without compromising performance on earlier
tasks (Crawshaw, 2020). If the loss gradient corresponding to the new task points in a direction
opposing the loss gradients corresponding to the old tasks, the model risks losing its previously
learned skills with each new gradient descent step, paralleling catastrophic forgetting. In multi-task
optimization, gradient surgery refers to techniques that modify task-specific gradients during training
to reduce this interference between tasks. When gradients from different tasks conflict, i.e., point in
opposing directions, methods like PCGrad project gradients to minimize this conflict, allowing the
model to learn multiple tasks more effectively without one task hindering the progress of another (Yu
et al., 2020).

Gradient surgery can be used to reduce the potential conflict between gf and gr to improve the vanilla
gradient ascent (Bae et al., 2023) via removing the orthogonal projection of gr from gf before taking
the ascent step:

ḡf = gf −
gr · gf

gr · gr
gr,

θk+1 = θk + ηḡf .
(SA)

While this modified ascent reduces over-unlearning compared to vanilla ascent, it does not fully
resolve the issue, and still requires careful tuning of η to avoid catastrophic forgetting. Therefore, we
introduce another version of gradient surgery which we find to be more stable and use it throughout,
for generating the results in Section 4. Rather than perform ascent along modified gf direction, we
perform descent along modified gr direction resulting in the following update:

ḡr = gr −
gr · gf

gf · gf
gf ,

θk+1 = θk − ηḡr,
(S)

which aims at minimizing the loss in directions orthogonal to gf . This form of gradient surgery does
not suffer from catastrophic forgetting, is robust to the choice of η, and consequently can achieve
faster unlearning speeds compared to (SA) with larger values of η. For a comparison of these two
versions of gradient surgery: (SA) and (S), see Appendix D.

3.3 UNO AND UNO-S

In the ideal scenario, when gf is orthogonal to gr, (SA) is equivalent to gradient ascent (A) without
the risk of losing desired knowledge. Furthermore, (S) is equivalent to retraining the model on the
retain data, without the risk of relearning about the forget data. Therefore, we propose a modified
loss function that attempts to enforce this ideal scenario with the help of an orthogonality promoting
regularization term,

LUNO =
1

|Dr|
∑
x∈Dr

L(Mθ, x) + βo

(
gr · gf

∥gr∥∥gf∥

)2

, (3)

where βo is a regularization parameter. The unlearning via orthogonalization algorithm (UNO), can
be expressed as performing gradient descent on this modified loss,

θk+1 = θk − η∇θkLUNO. (UNO)

Note that we only use the retain data to construct the first term in (3) to mimic the ideal retraining
scenario mentioned above.

We further propose a hybrid algorithm that applies the (UNO) update step and the (S) update step
alternately which we refer to as UNO-S:

θk+1 =

{
θk − η∇θkLUNO, if k is even,
θk − ηḡr, if k is odd.

(UNO-S)
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The UNO update step attempts to enforce orthogonality between gf and gr, which helps the subse-
quent surgery step to effectively resolve the conflict between them.

3.4 REPLACEMENT UNLEARNING FOR CONDITIONAL GENERATIVE MODELS

In the case of conditional generation, we can aim to replace the generation corresponding to an
undesired condition cf with the generation corresponding to a target condition ct. In this scenario it
is natural to minimize the following quantity,

LR =
1

|Dt|
∑
x∈Dt

L(Mθ(cf ), x) +
1

|Dt|
∑
x∈Dt

L(Mθ(ct), x), (4)

where Dt is the data corresponding to ct. The first term enforces replacement and the second term
represents the conditional variant of the retain loss that appears in (2). Using LR, we can devise the
conditional variants of (S), (UNO) and (UNO-S) by executing (UNO) with

LR
UNO = LR + βo

(
gR
r · gR

f

∥gR
r ∥∥gR

f ∥

)2

, (5)

where

gR
r = ∇θLR, (6)

gR
f =

1

|Df |
∑
x∈Df

∇θL(Mθ(cf ), x). (7)

Here Df again denotes the forget data associated with the condition cf . The surgery steps (S) and
(UNO-S) use

ḡR
r = gR

r −
gR
r · gR

f

gR
f · gR

f

gR
f . (8)

3.5 CLASSIFIER-ASSISTED UNLEARNING

We further consider the case when we may have access to a binary classifier that distinguishes forget
data from retain data and we can leverage this extra information to accelerate unlearning algorithms.
We can use this classifier to identify every sample generated by our model as either a retain or forget
sample, and compute the probability pr that a generated sample is a retain sample. This associates
our generative model with a Bernoulli distribution with probability of success pr. We would like this
distribution to have probability of success close to 1 with 1− α where α is a small positive threshold
controlling the degree of forgetting. We can enforce this by simply adding the following term to our
loss,

βhdKL = βh

[
pr log

(
pr

1− α

)
+ (1− pr) log

(
1− pr

α

)]
, (9)

where βh is a regularization parameter, and dKL represents the KL divergence between the computed
and the desired Bernoulli distributions. Small positive values of α ensure stable computation of the
KL divergence. Recalling that pr is a function of the model and its parameters, we can now use the
modified loss function in place of the original loss in the previously described algorithms. We use
the hat symbol (ˆ) to denote unlearning algorithms that operate with the additional loss term (9).
For example, gradient surgery (S), UNO, and UNO-S become Ŝ, UNÔ, and UNÔ-Ŝ, respectively,
when (9) is utilized. Addition of the new term yields the following modified definitions of gf and gr:

gf =
1

|Df |
∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL, (10)

gr =
1

|Dr|
∑
x∈Dr

∇θL(Mθ, x) + βh∇θdKL. (11)
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Using (10), (11) with (S) gives us Ŝ. Similarly, the update rule for UNÔ can be written as,

LUNÔ =
1

|Dr|
∑
x∈Dr

L(Mθ, x) + βo

(
gr · gf

∥gr∥∥gf∥

)2

+ βhdKL,

θk+1 = θk − η∇θkLUNÔ.

(UNÔ)

Alternating update steps of UNÔ and Ŝ gives us UNÔ-Ŝ. Since the KL divergence term promotes
unlearning of the forget data by preventing generation of forget samples, we also test the following
update rule which is equivalent to UNÔ with βo = 0,

LH =
1

|Dr|
∑
x∈Dr

L(Mθ, x) + βhdKL,

θk+1 = θk − η∇θkLH .

(H)

We call the resulting unlearning algorithm histogram unlearning and denote it by H. Appendix H
reports results for classifier-assisted unlearning on MNIST and CelebA.

4 RESULTS

We test the algorithms described in Section 3 and Appendix B on VAEs trained on MNIST (Deng,
2012) and CelebA (Liu et al., 2015), and on diffusion transformers trained on ImageNet-1K (Deng
et al., 2009). Each algorithm was tested 10 times to generate statistics. For the training losses used
to train the original VAEs, training data, experiment hyperparameters, and model sizes, refer to
Appendix A. The architecture of the models can be found in the code provided in Section 1. All
experiments were done on an A100 GPU provided by Google Colab.

4.1 PERFORMANCE METRICS

In order to assess the speed of unlearning we use classifiers trained on the datasets and track the
fraction of generated samples that are classified as forget samples after each model update or training
step. We define the time to unlearn as the execution time of the unlearning algorithm until the
fraction of forget samples in the generated data drops below a chosen threshold τ . On MNIST
and CelebA, our classifiers achieve ∼ 98% top-1 accuracy, whereas on ImageNet-1K our classifier
achieves ∼ 82% top-1 accuracy. Accordingly, we set τ = 0.02 for MNIST and CelebA and τ = 0.18
for ImageNet-1K. Note that we only consider the execution time of loss computation, gradient
calculation, and parameter updates, while excluding auxiliary operations such as data loading and
preprocessing. We evaluate the quality of the generated images by computing the Fréchet Inception
Distance (FID). We also report the execution time per training step, however, we do not highlight
these values in the tables, as a larger time per step does not necessarily indicate slower unlearning,
and vice versa.

4.2 MNIST

We use a 0.6M-parameter VAE with a 2-dimensional latent space, trained for 200 epochs on 60, 000
images, as our original model. We attempt to unlearn the digit "1" by running the algorithms for
530 training steps with a mini-batch size of 128, and a learning rate of 10−3. Figure 1 shows
samples generated before and after unlearning with UNO, using the same noise samples for ease of
comparison. The 1’s in the original generation (left) transform into 7, 8 and 3 after unlearning (right).
The non-1 digits remain nearly unchanged. Even though 1’s can transform into many different digits,
they have an affinity for turning into 8’s, followed by 3’s, as seen in Figure 2. This can be explained
by examining the distribution and proximity of the digits in the latent space, see Appendix E for
a detailed discussion. If the goal is uniform generation across the retain classes, one may utilize a
Kullback-Leibler divergence loss term promoting uniformity, assuming the availability of a classifier
for all classes.

Table 1 shows that UNO-S achieves the fastest unlearning time, closely followed by UNO, with
both having similar fidelity as the original model, indicated by the FID. Gradient ascent, while fast
at unlearning, suffers from catastrophic forgetting, resulting in a large FID. Ascent-descent also
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Original model After unlearning

Figure 1: MNIST samples generated by the original model (left) and after unlearning digit "1" with
UNO (right), using identical noise inputs for the decoder.
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Original model

0 1 2 3 4 5 6 7 8 9

After unlearning

Figure 2: Distribution of generated digits before (left) and after unlearning (right), for a single run
of UNO. Each histogram shows data for 500 generated samples. A bar in the right panel is colored
green if the fraction of the corresponding digit increases after unlearning, and red if it decreases.

experiences catastrophic forgetting and is significantly slower at unlearning than gradient ascent.
Gradient surgery, while preserving image quality, is ∼ 20 times slower than UNO and UNO-S at
unlearning. Even though UNO takes ∼ 3 times longer to execute a training step compared to gradient
surgery, it still achieves orders of magnitude faster unlearning speed. Since one step of surgery is
faster than one step of UNO, UNO-S overall is slightly faster than UNO, as the time per training step
is roughly averaged over the two algorithms.

4.3 CELEBA

We use an 8.7M-parameter VAE with a 512-dimensional latent space, trained for 200 epochs on
202, 599 images at 64× 64 resolution, downsampled from the original 178× 178 resolution, as our
original model. We attempt to unlearn "male" faces by running the algorithms for 659 training steps
with a mini-batch size of 128, and a learning rate of 10−3. Approximately 29% of the faces generated
by the original model are male. Figure 3 shows samples generated before and after unlearning with
UNO, using the same noise samples in the decoder. We observe that male faces are successfully
converted into female faces, and that feminine features are enhanced after unlearning, even when
the originally generated face was already female. The original image remains nearly unchanged if it
contains few or no male-specific features; see, for example, the last pair from the left in Figure 3.
One notable effect of unlearning male-specific features is that the transformed images exhibit broader
smiles. This is due to the sociological phenomenon wherein women tend to smile more than men in
photographs (Wondergem & Friedlmeier, 2012). Furthermore, we detect an increase of eye make-up
in images of females after unlearning. For more examples of these effects, see a larger collection of
before/after unlearning pairs in Appendix F, where we also show an example of unlearning eyeglasses.

Table 1 shows that UNO-S again achieves the fastest time to unlearn, followed by UNO. Even after
spending ∼ 20 times more execution time than the time to unlearn with UNO, gradient surgery

7
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Male Female

Figure 3: CelebA samples generated by the original model (top) and after unlearning "male" faces
with UNO (bottom), using identical noise inputs for the decoder.

is unable to achieve the desired ≤ 2% male faces in the generated images. After the 659 allotted
training steps gradient surgery is only able to reach ∼ 4% male faces. All three algorithms result in
similar values of FID, and the quality of the generated images is perceptually indistinguishable from
the originally generated images, as seen in Figure 3.

4.4 IMAGENET-1K

We use a 675M-parameter diffusion transformer DiT-XL/2 (Peebles & Xie, 2023) that operates on a
4× 32× 32-dimensional latent space, trained for 7M steps on 1.28M images at 256× 256 resolution.
We attempt to unlearn class 207 (Golden Retriever) by the algorithms in Section 3.4 for 100 training
steps with a mini-batch size of 10, and a learning rate of 10−4. We map the class 207 (Golden
Retriever) to images of labrador retrievers (class 208), i.e. ct = 208 and cf = 207. This reduces the
training to only consider two classes, rather than the full data set. To compute the time to unlearn, at
each training step we generate samples only for the class 207 with a (classifier-free) guidance scale
of 8 and determine what fraction of the samples are classified as golden retrievers.

Figure 4 shows that noise in the latent space that generated golden retrievers in the original model,
generate labrador retrievers after unlearning with conditional UNO-S. Images belonging to other
classes are significantly more changed than for CelebA, but remain in their respective classes. A
larger collection of before/after unlearning pairs are provided in Appendix G.

Our algorithms outperform gradient surgery both on time to unlearn and FID (see Table 1). For
ImageNet-1K the differences in performance are less pronounced. We believe that this is due to the
simpler set-up of conditional unlearning with only two classes. We remark that Peebles & Xie (2023)
report an FID value of approximately 2.3 whereas our FID values are around 12. This is due to their
significantly larger sample size of 50, 000 compared to our 22, 000 samples.

5 DISCUSSION

We advance the gradient surgery paradigm for machine unlearning by introducing two new algorithms
UNO and UNO-S and their conditional variants. We show that they are as fast as gradient ascent
at unlearning but without suffering from catastrophic forgetting, and are substantially faster than
gradient surgery for unconditional generative models. UNO-S outperforms all other algorithms
for unconditional generative models, and can be up to 1.3 times faster than UNO at unlearning.
For conditional unlearning UNO marginally outperformed UNO-S. We have shown the efficiency
of our algorithms for data sets and generative models of increasing complexity. We demonstrate
how incorporating the information provided by a classifier that distinguishes between desirable and
undesired data, can accelerate unlearning algorithms (see Appendix H). Table 2 in Appendix A
documents the hyperparameters used in our experiments. Our experiments indicate that UNO and
UNO-S are robust with respect to the selection of hyperparameters; in particular, for MNIST and
CelebA we use identical hyperparameter values (cf. Table 2).
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Figure 4: ImageNet samples generated by the original model (top) and after unlearning class 207
(Golden Retriever) with UNO-S (bottom), using identical noise inputs for the diffusion transformer.
The labels classifying each image was provided by the pretrained classifier.

Table 1: Performance of various algorithms for class/feature unlearning with VAEs on MNIST and
CelebA and diffusion transformers on ImageNet-1K. Each experiment is repeated 10 times, and the
standard deviations are shown in parentheses. FID values are calculated using 25, 000 samples for
MNIST and CelebA and 22, 000 samples for ImageNet-1K. ✗ indicates that the generated samples
after unlearning are unrecognizably different from the original model. Bold indicates the best
score among instances with acceptable FID. ✓ indicates the generated samples after unlearning are
perceptually indistinguishable from the original model in terms of visual fidelity. An asterisk (*)
denotes cases where the algorithm failed to reach the target fraction of forget samples in the generated
images within the allotted training steps. We only report on (A) and (A-D) for MNIST since they
demonstrate catastrophic forgetting in all cases; for CelebA (A) and (A-D) result in NaN for FID,
generating white images.

Dataset Algorithm Time to unlearn (s) ↓ FID ↓ Time per step (s)

MNIST
(Class: 1)

Original FID: 20.7

Gradient ascent (A) 0.024 (0.004) 612.3 (4.9) ✗ 0.005 (0.0005)
Ascent descent (A-D) 0.025 (0.006) 266.9 (19.3) ✗ 0.005 (0.0001)
Gradient surgery (S) 1.016 (0.907) 23.0 (0.2) ✓ 0.007 (0.0001)
UNO 0.055 (0.009) 21.8 (0.2) ✓ 0.020 (0.0003)
UNO-S 0.041 (0.010) 21.8 (0.4) ✓ 0.015 (0.0003)

CelebA
(Feature: Male)

Original FID: 166.3

Gradient surgery (S) 10.71∗ (3.36) 176.0 (3.7) ✓ 0.018 (0.0005)
UNO 0.524 (0.002) 174.3 (1.6) ✓ 0.175 (0.0007)
UNO-S 0.414 (0.186) 177.1 (4.7) ✓ 0.148 (0.0625)

ImageNet-1K
(Class: 207)

Original FID: 12.0

Gradient surgery (S) 7.622 (2.21) 12.3 (0.8) ✓ 0.712 (0.0090)
UNO 6.361 (0.909) 11.9 (0.8) ✓ 1.817 (0.0046)
UNO-S 6.495 (1.928) 12.0 (0.8) ✓ 1.273 (0.0080)

FUTURE WORK

It is straightforward to conceptualize low-rank adapted (Hu et al., 2021; Xu et al., 2023) variants
of the unlearning algorithms presented here. Such modifications are essential for enabling efficient
unlearning in large-scale generative models, and we leave their exploration to future research.
The CelebA experiments show that, unlearning can easily produce male-to-female face filters.
Applications of unlearning for designing a broader range of filters is an interesting topic for further
exploration. Machine learning models used to simulate or predict physical systems, such as climate
models, often generate unphysical states (Lai et al., 2024). A similar issue arises in video generation
models like Sora (Kang et al., 2024), which can produce physically implausible outputs. Use of
unlearning to prevent generation of such unphysical outputs could be explored in future.
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6 REPRODUCIBILITY STATEMENT

We provide all details necessary to reproduce our work. The paper describes the algorithms, training
procedure, hyperparameters, and datasets in detail. Code to reproduce the experiments has been
provided via an anonymized file. Experiments were conducted on a A100 GPU with 80GB GPU
RAM. We also report standard deviations over multiple runs for our results to ensure robustness.
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A EXPERIMENT SETUP

In this section we provide additional details of the experimental setup used to produce the reported
results.

A.1 VAE LOSS FUNCTIONS AND TRAINING DATA

We document here the loss functions used to train the original model. For each input image x,
the encoder outputs µ(x) ∈ Rdz and σ(x) ∈ Rdz , which parameterize the approximate posterior
distribution. Here dz is the latent dimension. The corresponding reconstruction of x by the decoder
is denoted by x̄, with x̄i referring to its i-th pixel.

The VAE used as the original model for MNIST was trained using the loss function

LMNIST =
1

|D|
∑
x∈D

[
−

784∑
i=1

(xi log(x̄i) + (1− xi) log(1− x̄i))

+
1

2

dz∑
i=1

(
µ2
i (x) + σ2

i (x)− log σ2
i (x)− 1

) ]
.

(12)

The 60, 000 training images were normalized such that pixel values lie in [0, 1], following standard
practice.

The VAE used as the original model for CelebA was trained using the loss function

LCelebA =
1

|D|
∑
x∈D

[
∥x− x̄∥2 + 1

2

dz∑
i=1

(
µ2
i (x) + σ2

i (x)− log σ2
i (x)− 1

)]
. (13)

We worked with 202, 599 cropped and aligned images in CelebA which originally have resolution
178× 178 pixels. We downsampled these images to 64× 64 resolution for training.

A.2 HYPERPARAMETERS

Table 2 lists the hyperparameters used in the unlearning experiments presented here. Here η is the
learning rate, K is the number of training steps executed, βo is the weight for the orthogonalization
loss term in (3), βh is the weight for the KL divergence loss term in (9), α is a small positive threshold
for stable computation of the KL divergence in (9), B is the batch size, and NFID is the number of
samples used for calculating FID. We use Ng = B for all the algorithms in Appendix B.4, which
determines the number of samples to be generated using the generative model. Each method was
tested 10 times for each dataset. For MNIST, FID was computed using features extracted from the
classifier model, whereas for CelebA, features were computed using the InceptionV3 model (Szegedy
et al., 2016). All experiments were done on an A100 GPU provided by Google Colab.

A.3 MODEL SIZES

The VAE models for MNIST and CelebA have 632,788 and 8,742,659 parameters with latent
dimension dz = 2 and dz = 512, respectively. The classifier models for MNIST and CelebA have
159,410 and 2,190,913 parameters, respectively. For the exact model implementations, please refer to
the code linked in Section 1. The VAEs were trained for 200 epochs on 60, 000 and 202, 599 images
in MNIST and CelebA, respectively. The classifiers were trained for 10 epochs on these datasets. For
ImageNet-1K, we use the DiT-XL/2 diffusion transformer with 675.13M parameters, trained for 7M
steps on 256× 256 images; see (Peebles & Xie, 2023) for details. For the ImageNet-1K classifier,
we use microsoft/swinv2-tiny-patch4-window8-256 (Liu et al., 2022), which has 28M parameters.
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Table 2: Experiment hyperparameters
Dataset Algorithm η K Bβo Bβh α B NFID

MNIST
(Class: 1)

Gradient ascent (A) 10−3 530 - - - 128 25,000
Ascent descent (A-D) 10−3 530 - - - 128 25,000
Gradient surgery (S) 10−3 530 - - - 128 25,000
UNO 10−3 530 103 - - 128 25,000
UNO-S 10−3 530 103 - - 128 25,000
H 10−3 530 - 103 10−8 128 25,000
Ŝ 10−3 530 - 103 10−8 128 25,000
UNÔ 10−3 530 103 103 10−8 128 25,000
UNÔ-Ŝ 10−3 530 103 103 10−8 128 25,000

CelebA
(Feature: Male)

Gradient surgery (S) 10−3 659 - - - 128 25,000
UNO 10−3 659 103 - - 128 25,000
UNO-S 10−3 659 103 - - 128 25,000
H 10−3 659 - 103 10−8 128 25,000
Ŝ 10−3 659 - 103 10−8 128 25,000
UNÔ 10−3 659 103 103 10−8 128 25,000
UNÔ-Ŝ 10−3 659 103 103 10−8 128 25,000

ImageNet-1K
(Class: 207)

Gradient surgery (S) 10−4 100 - - - 10 22,000
UNO 10−4 100 2× 10−2 - - 10 22,000
UNO-S 10−4 100 2× 10−2 - - 10 22,000

B PSEUDOCODE FOR UNLEARNING ALGORITHMS

This section presents the pseudocode for the unlearning algorithms used in this work.

B.1 GRADIENT ASCENT

Algorithms 1 and 2 describe the gradient ascent (A), and alternating gradient ascent-descent (A-D),
respectively.

B.2 GRADIENT SURGERY

Algorithms 3 and 4 describe gradient surgery with ascent in the forget direction (SA) and descent in
the retain direction (S), respectively; in particular, the former appears in Bae et al. (2023).

B.3 UNO AND UNO-S

Algorithms 5 and 6 describe unlearning via orthogonalization (UNO), and alternating orthogonaliza-
tion and surgery (UNO-S), respectively.

B.4 CLASSIFIER-ASSISTED UNLEARNING

Algorithms 7, 8, 9, and 10 describe Ŝ, UNÔ, UNÔ-Ŝ, and histogram unlearning, respectively. While
in practice it is sufficient for a binary classifier to output a logit or probability, for simplicity of
presentation we assume the classifier outputs 1 for retain samples and 0 otherwise.
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Algorithm 1 Gradient ascent (A)
1: Input: Loss function L, forget dataset Df , trained model requiring unlearningMθ, learning rate

η, number of training steps K, batch size B.
2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire mini-batch Df of size B from Df .
5: gf ← 1

B

∑
x∈Df

∇θL(Mθ, x)

6: θ ← θ + ηgf

7: end for
8: return θ

Algorithm 2 Alternating gradient ascent and descent (A-D)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: if k is odd then
6: gf ← 1

B

∑
x∈Df

∇θL(Mθ, x)

7: θ ← θ + ηgf

8: else
9: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x)
10: θ ← θ − ηgr

11: end if
12: end for
13: return θ

Algorithm 3 Gradient surgery with ascent in forget direction (SA)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x)

6: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

7: gf ← gf − gr·gf

∥gr∥2gr

8: θ ← θ + ηgf

9: end for
10: return θ

Algorithm 4 Gradient surgery with descent in retain direction (S)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x)

6: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

7: gr ← gr − gr·gf

∥gf∥2gf

8: θ ← θ − ηgr

9: end for
10: return θ
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Algorithm 5 Unlearning via orthogonalization (UNO)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Lr ← 1

B

∑
x∈Dr

L(Mθ, x)
6: gr ← ∇θLr

7: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

8: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

9: θ ← θ − η∇θL
10: end for
11: return θ

Algorithm 6 Alternating orthogonalization and surgery (UNO-S)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Lr ← 1

B

∑
x∈Dr

L(Mθ, x)
6: gr ← ∇θLr

7: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

8: if k is odd then
9: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

10: θ ← θ − η∇θL
11: else
12: gr ← gr − gr·gf

∥gf∥2gf

13: θ ← θ − ηgr

14: end if
15: end for
16: return θ

Algorithm 7 Gradient surgery with histogram unlearning (Ŝ)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B, number of samples to generate
Ng, classifier model Cϕ, weight for KL divergence loss term βh, a small positive threshold for
stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x) + βh∇θdKL

9: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL

10: gr ← gr − gr·gf

∥gf∥2gf

11: θ ← θ − ηgr

12: end for
13: return θ
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Algorithm 8 UNO with histogram unlearning (UNÔ)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B, number of samples to generate Ng , classifier model Cϕ, weight for KL divergence
loss term βh, a small positive threshold for stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: Lr ← 1

B

∑
x∈Dr

L(Mθ, x) + βhdKL

9: gr ← ∇θLr

10: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL

11: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

12: θ ← θ − η∇θL
13: end for
14: return θ

Algorithm 9 Alternating orthogonalization and surgery with histogram unlearning (UNÔ-Ŝ)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B, number of samples to generate Ng , classifier model Cϕ, weight for KL divergence
loss term βh, a small positive threshold for stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: Lr ← 1

B

∑
x∈Dr

L(Mθ, x) + βhdKL

9: gr ← ∇θLr

10: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL

11: if k is odd then
12: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

13: θ ← θ − η∇θL
14: else
15: gr ← gr − gr·gf

∥gf∥2gf

16: θ ← θ − ηgr

17: end if
18: end for
19: return θ
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Algorithm 10 Histogram unlearning (H)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B, number of samples to generate
Ng, classifier model Cϕ, weight for KL divergence loss term βh, a small positive threshold for
stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: L← 1

B

∑
x∈Dr

L(Mθ, x) + βhdKL

9: θ ← θ − η∇θL
10: end for
11: return θ

C CATASTROPHIC FORGETTING INDUCED BY GRADIENT ASCENT AND
ASCENT–DESCENT

Figure 5 shows the generated samples for unlearning the digit 1 after 49 parameter update steps of
gradient ascent (A) and ascent-descent (A-D) at a learning rate of η = 10−3. In this example, the 1’s
were successfully forgotten, but all other digits were forgotten as well. In particular, the left panel of
Figure 5 shows that the model only remembers the complement of 1’s after gradient ascent.

Gradient Ascent: Step = 49 Ascent-Descent: Step = 49

Figure 5: Catastrophic forgetting induced by gradient ascent (left) and ascent descent (right) for
MNIST at a learning rate of 10−3.

D COMPARISON OF TWO VARIANTS OF GRADIENT SURGERY

We now compare two variants of gradient surgery: 1) gradient surgery with descent in the retain
direction (S), described in Algorithm 4, used throughout this paper and 2) gradient surgery with
ascent in the forget direction (SA), described in Algorithm 3 which appears in Bae et al. (2023).
Figure 6 shows that SA is prone to catastrophic forgetting and requires a carefully tuned, small
learning rate to mitigate this effect. But even with a small learning rate the generated samples might
look significantly different from the original model; for samples generated by the original model, see
Figure 1. On the other hand, Figure 7 shows that S does not suffer from catastrophic forgetting, even
for a large learning rate applied for many training steps, and produces samples that are much closer
to the original model.
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Figure 6: Generated samples after unlearning digit 1 via gradient surgery with ascent in the forget
direction (SA), described in Algorithm 3, for two different learning rates: 10−3 (left), 10−5 (right).
SA was run for K = 53 training steps on the left and K = 530 training steps on the right.

Gr
ad

ie
nt

 su
rg

er
y 

wi
th

 d
es

ce
nt

 in
 re

ta
in

 d
ire

ct
io

n 
(S

)

Learning rate = 10 3 Learning rate = 10 5

Figure 7: Generated samples after unlearning digit 1 via gradient surgery with descent in the retain
direction (S), described in Algorithm 4, for two different learning rates: 10−3 (left), 10−5 (right). S
was run for K = 530 training steps for both learning rates.

E LATENT SPACE AND SAMPLE TRANSFORMATION VIA UNLEARNING

In our MNIST example, forgetting the digit 1 leads to an increase of generated digits 8, see Figure 2.
To understand this, we color regions in the latent space, which is two-dimensional in our case,
according to the most frequently produced digits. Figure 8 shows the distribution of digits in the
latent space for the original model. We clearly see that the region corresponding to the digit 1 shares
the largest border with the region corresponding to digit 8. This proximity in latent space makes
it easier for the unlearning algorithms to transfer the probability mass of 1 to that of 8. Figure 8
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Figure 8: Distribution of digits in the latent space of the original model for MNIST. The colors are
obtained by mapping 50, 000 images to the two-dimensional latent space, labelling them according to
the color associated with the image. To obtain smooth regions we performed averaging over nearby
points in latent space.

suggests that forgetting 7 for our original model should mostly increase the frequency of 9, which we
have experimentally verified.

F ADDITIONAL SAMPLES AND EXPERIMENTS FOR CELEBA

Figure 9 shows 18 pairs of images generated before and after unlearning with UNO for CelebA. In
many of these pairs the after image shows a subtly larger smile than the before image, see for example
the fourteenth pair. This is consistent with the phenomenon that women tend to smile more than men
in photographs (Wondergem & Friedlmeier, 2012).

F.1 EYEGLASSES REMOVAL WITH UNLEARNING

Out of the 202, 599 images in CelebA, 13, 193 or roughly 6.5% contain faces with eyeglasses. By
treating the images with eyeglasses as the forget set and those without eyeglasses as the retain set,
we can apply our unlearning algorithms to remove the presence of eyeglasses from the generated
samples. Figure 10 shows 18 pairs of generated samples before and after unlearning with UNO-S
for the same noise samples used for the decoder. For some of these before–after pairs, where the
before image contains opaque, dark eyeglasses, the after image may exhibit darker regions around
the eyes, resembling periorbital hyperpigmentation (Sarkar et al., 2016) (see, for example, the last
pair, labelled 18). This phenomenon does not occur for images with more transparent eyeglasses.
During the original training instance, the model likely conflates the concept of dark eyewear with
hyperpigmentation to some extent, due to its finite resolution capabilities. A larger model, capable of
learning finer-grained patterns, might better distinguish between these two concepts, and therefore
may not produce this phenomenon after unlearning. The hyperparameter values used in these
experiments are identical to those reported in Table 2.

G ADDITIONAL SAMPLES FOR IMAGENET-1K

Figure 11 shows 18 pairs of images generated before and after unlearning with UNO-S for ImageNet-
1K. The images exhibit a significant degree of variation, however, they clearly remain in the same
class as identified by the pretrained classifier.
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Figure 9: Results for unlearning on CelebA with UNO, illustrated using 18 pairs of generated images.
The images labeled "Before" were generated using the original model. Each image labeled "After"
was generated after unlearning using the same noise sample for the decoder as the corresponding
"Before" image.

H RESULTS FOR CLASSIFIER-ASSISTED UNLEARNING

In this section, we present the results for the algorithms introduced in Section 3.5. Comparing Table 1
with Table 3 shows that Ŝ achieves orders of magnitude speed-up over S for both MNIST and CelebA.
UNO and UNO-S, already fast, do not gain significant speed-up with classifier-assistance. Histogram
unlearning (H), although successful, is much slower than the other successful algorithms in Table 3.
All algorithms in Table 3 preserve the fidelity of the original model, with UNÔ producing the lowest
FID for both datasets.
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Figure 10: Results for eyeglasses removal on CelebA with UNO-S, illustrated using 18 pairs of
generated images. The images labeled "Before" were generated using the original model. Each image
labeled "After" was generated after unlearning using the same noise sample for the decoder as the
corresponding "Before" image.

I ORTHOGONALIZATION IN A LINEAR REGRESSION MODEL

To understand the effect of the orthogonalization term in the loss function (3) let us consider linearly
related input (x) and output (y) data

y = W ⋆x+ ζ, (14)

with ζ ∼ N (0, σ2
l ) for x ∈ Rd, y ∈ R and W ∈ R1×d. We consider two data sets, a retain data set

and a forget data set, with samples
xr ∼ N (µr, σ

2
r) (15)

xf ∼ N (µf , σ
2
f ). (16)

Drawing Nr and Nf samples we construct the data matrices Xr ∈ Rd×Nr and Xf ∈ Rd×Nf , and
the combined set X = [Xr Xf ] ∈ Rd×N with N = Nr +Nf , with corresponding Yr,f ∈ R1×Nr,f

and Y ∈ R1×N .
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Figure 11: Results for unlearning on ImageNet with UNO-S, illustrated using 18 pairs of generated
images. The images labeled "Before" were generated using the original model. Each image labeled
"After" was generated after unlearning using the same noise sample for the diffusion transformer as
the corresponding "Before" image.

We analyze now how a model, initially trained on the whole data set {X,Y } with linear regression,
changes during a single gradient decent step, and will find that the orthogonality term induces a
gradient descent along the direction of largest variance of the retain data Xr and a gradient ascent
step along the direction of largest variance of the forget data Xf .

The cost function (3) for the linear model, as a function of the model parameters W , is written as

LUNO(W ) = ∥Yr −WXr∥2 + βo∥
[
∇∥Yr −WXr∥2

]⊤ [
∇∥Yf −WXf∥2

]
∥2. (17)

The orthogonality term is readily evaluated as

∥
[
∇∥Yr −WXr∥2

]⊤ [
∇∥Yf −WXf∥2

]
∥2

= 16∥
[
XrY

⊤
r −XrX

⊤
r W⊤]⊤ [

XfY
⊤
f −XfX

⊤
f W⊤] ∥2. (18)
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Table 3: Performance of various algorithms for class/feature unlearning with VAE on MNIST
and CelebA when a classifier able to distinguish between the retain and forget data is available.
Each experiment is repeated 10 times, and the standard deviations are shown in parentheses. Bold
indicates the best score. ✗ indicates that the generated samples after unlearning are unrecognizably
different from the original model. ✓ indicates the generated samples after unlearning are perceptually
indistinguishable from the original model in terms of visual fidelity. An asterisk (*) indicates that,
without classifier assistance, the algorithm failed to reach the target fraction of forget samples in the
generated images within the allotted training steps.

Dataset Algorithm Time to unlearn (s) ↓ FID ↓ Time per step (s)

MNIST
(Class: 1)

Original FID: 20.7

H 2.181 (0.853) 23.4 (0.5) ✓ 0.006 (0.0003)
Ŝ 0.021 (0.003) 24.1 (0.5) ✓ 0.008 (0.0006)
UNÔ 0.061 (0.009) 22.1 (0.5) ✓ 0.022 (0.0002)
UNÔ-Ŝ 0.041 (0.021) 22.1 (0.4) ✓ 0.017 (0.0067)

CelebA
(Feature: Male)

Original FID: 166.3

H 4.345 (1.849) 174.8 (1.9) ✓ 0.016 (0.0001)
Ŝ 0.181 (0.209) 176.4 (3.5) ✓ 0.023 (0.0002) ∗

UNÔ 0.499 (0.071) 173.4 (1.8) ✓ 0.178 (0.0010)
UNÔ-Ŝ 0.390 (0.218) 175.2 (2.3) ✓ 0.134 (0.0696)

A gradient descent step starting from the model obtained from the whole data set X is given by

W1 = W0 − η∇LUNO(W0), (19)

where

W0 = Y X⊤ (
XX⊤)−1

(20)

is the least-square solution for the full data set. To simplify expressions we introduce the covariance
matrices

Φr,f = Xr,fX
⊤
r,f ∈ Rd×d, (21)

and the mismatch

Er,f = Yr,f −W0Xr,f ∈ R1×Nr,f , (22)

and form

θr,f = ∇
[
∥Yr,f −WXr,f∥2

]
= −Xr,fE

⊤
r,f ∈ Rd×1, (23)

which we readily identify as the gradients of the standard unregularized loss function for the linear
model restricted to the retain and forget data sets, respectively. Note that θr = gr and θf = gf

(cf. (1)–(2)). Since XY ⊤ = XrY
⊤
r +XfY

⊤
f and XX⊤W⊤

0 = (XrX
⊤
r +XfX

⊤
f )W⊤

0 , we have
θr = −θf .

Introducing for simplicity of exposition β = 64ηβ0, we obtain

W1 = W0 −
[
ηI + β∥θr∥2 [Φr − Φf ]

]
θr, (24)

which we can write as a two-step update

W 1
2
= W0 −

[
ηI + β∥θr∥2Φr

]
θr (25)

W1 = W 1
2
+ β∥θr∥2Φfθr. (26)

Hence, for the linear model, the orthogonality term leads to a gradient descent step predominantly
in the dominant eigendirection of the covariance matrix Φr of the retain data set Xr, followed by a
gradient ascent step predominantly in the dominant eigendirection of the covariance matrix Φf the
forget data set Xf .
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