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Figure 1: Examples of images generated for learning instance-level representations. Given an object generated
by a generative di!usion model (column 1), the foreground is segmented (column 2) and di!erent background
variations are added (columns 3 & 4), producing images of the same instance under diverse conditions.

Abstract

Instance-level recognition (ILR) focuses on identifying individual objects rather than broad
categories, o!ering the highest granularity in image classification. However, this fine-grained
nature makes creating large-scale annotated datasets challenging, limiting ILR’s real-world
applicability across domains. To overcome this, we introduce a novel approach that syn-
thetically generates diverse object instances from multiple domains under varied conditions
and backgrounds, forming a large-scale training set. Unlike prior work on automatic data
synthesis, our method is the first to address ILR-specific challenges without relying on any
real images. Fine-tuning foundation vision models on the generated data significantly im-
proves retrieval performance across seven ILR benchmarks spanning multiple domains. Our
approach o!ers a new, e"cient, and e!ective alternative to extensive data collection and
curation, introducing a new ILR paradigm where the only input is the names of the target
domains, unlocking a wide range of real-world applications.

1 Introduction

Object recognition and retrieval span multiple levels of granularity, from semantic-level labels (Russakovsky
et al., 2015) to fine-grained categories (Gosselin et al., 2014; Krause et al., 2015), and the most detailed
form, i. e. instance-level recognition (ILR) (Ypsilantis et al., 2021). Unlike semantic recognition, which
groups objects into broad classes, ILR identifies unique object instances, treating each real-world entity as
its own category. This extreme granularity makes ILR particularly challenging.
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ILR has applications in domains such as landmarks (Weyand et al., 2020; Philbin et al., 2007; 2008), art-
work (Ypsilantis et al., 2021), products (Oh Song et al., 2016; Peng et al., 2020), fashion (Liu et al., 2016),
and everyday objects (Wang & Jiang, 2015; Kordopatis-Zilos et al., 2025). However, large-scale training data
remains a major bottleneck. Unlike semantic or fine-grained recognition, where class names help structure
data and reduce false negatives, ILR requires exhaustive, instance-specific annotations, an expensive and
labor-intensive process. Single-domain datasets rely on manually curated ground truth, while multi-domain
datasets often lack dedicated training sets (Wang & Jiang, 2015; Kordopatis-Zilos et al., 2025). Collecting
images of the same instance under di!erent conditions further compounds the challenge, slowing progress.

To address this, we propose a novel pipeline that automatically generates images of unique objects under
diverse conditions, enabling instance-level representation learning without manual data collection. The
pipeline requires only the name of one or more domains, e. g. “everyday objects” or “artworks”, as input
and outputs a representation model fine-tuned for those domains. A large language model (LLM) (Hurst
et al., 2024) generates a list of relevant object categories, and a generative di!usion model (GDM) (Sauer
et al., 2024; Rombach et al., 2022) synthesizes images for those categories. We assume that generations from
a given seed define an instance-level class, while di!erent seeds correspond to distinct classes. To ensure
diversity, we introduce background and lighting variations using ICLight (Zhang et al., 2025).

The generated instances (see Figure 1) are used to fine-tune a foundational vision encoder such as
SigLIP (Zhai et al., 2023). We adopt a metric learning approach (Patel et al., 2022), treating images of
the same instance as positives and others as negatives, and optimize an information retrieval metric across
large batches. The resulting representation improves over the base model across multiple ILR benchmarks,
including artwork, landmark, and product datasets.

This is the first work to learn a single representation model that generalizes across diverse ILR domains while
providing an e!ective alternative to large-scale real data . While prior research explored synthetic training
data (Peng et al., 2015; Fan et al., 2024; Tian et al., 2024), our method is the first tailored specifically for
ILR. The pipeline synergistically integrates LLMs and GDMs, leveraging rapid advances in both fields and
remaining adaptable to future improvements.

2 Related work

Instance-level representations Instance-level recognition requires image representations that capture
fine-grained object details while distinguishing them from numerous semantically similar classes. Generic
models like ResNet (He et al., 2016) and CLIP (Radford et al., 2021) struggle in this setting, as they
prioritize high-level semantics over instance-specific features. A common solution is fine-tuning pre-trained
backbones on domain-specific datasets—such as artwork (Ypsilantis et al., 2021), landmarks (Lee et al.,
2022; Shao et al., 2023; Cao et al., 2020; Suma et al., 2024), or products (Patel et al., 2022; Ramzi et al.,
2022)—to enhance their ability to di!erentiate individual instances. Recent e!orts focus on universal embed-
dings (Ypsilantis et al., 2023) that cover jointly a whole range of domains and tasks. However, models still
require fine-tuning with class-supervised learning to acquire the necessary discriminative properties, making
the scarcity of high-quality labeled datasets a major challenge. Data augmentation techniques (Ypsilantis
et al., 2021) help mitigate this issue by generating diverse variations of an instance from limited samples.
The only prior work that also leverages generative models for instance-level tasks (Sundaram et al., 2025)
fine-tunes a separate model for each instance, requiring a few real images as input. In contrast, our approach
trains a single model that generalizes well across objects and domains without relying on any real images.

Training with synthetic images Synthetic data has been used in a variety of computer vision problems,
such as object detection (Peng et al., 2015; Rozantsev et al., 2015; Georgakis et al., 2017), segmentation (Chen
et al., 2019; Ros et al., 2016), autonomous driving (Abu Alhaija et al., 2018), object pose estimation (Cai
et al., 2022; Labbé et al., 2020), 3D-tasks (Chang et al., 2015), and recently for representation learning (Tian
et al., 2024; Wu et al., 2023). An early practice is to cut the real objects and paste them onto backgrounds
to generate synthetic images for instance or object detection (Dwibedi et al., 2017; Georgakis et al., 2017).
However, challenges remain in reducing the boundary artifacts and achieving consistent lighting conditions
between the object and background, as these problems often result in unrealistic composite images. More
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recently, the main sources of synthetic images are computer graphics pipeline or rendering engines (Mahmood
et al., 2019), generative adversarial networks (GAN) (Besnier et al., 2020; Brock, 2018), and text-to-image
GDM (Fan et al., 2024; Sarıyıldız et al., 2023). Images generated through rendering engines often su!er from
domain gap when compared to real-world test images, requiring domain adaptation techniques to mitigate
the gap during training. In contrast, GAN and GDM produce more realistic images that do not typically
require post-generation domain adaptation (Wang et al., 2020). Text-to-image GDM, in particular, o!ers
a higher degree of control in the image generation process, for example, changing the background of the
target object using text prompts (Mokady et al., 2023; Raj et al., 2023; Geng et al., 2024; Zhang et al.,
2023). This ability to control image features through text makes GDM particularly valuable for generating
diverse images, which is crucial for representation learning (Tian et al., 2024; Wu et al., 2023). However,
synthesizing images for instance-level task is not trivial, as it requires generating a synthetic object under
various conditions while preserving its structure and texture.

Metric learning for image retrieval Given a training dataset, the most common approach for training
deep representation networks for image retrieval is supervised learning using categorical labels. As a result, a
large number of methods have proposed classification-based losses (Zhai & Wu, 2018; Deng et al., 2019; Teh
et al., 2020; Qian et al., 2019; Kim et al., 2020). Despite not directly optimizing the pairwise distance metric
that is used at test time, such approaches achieve very good performance, especially when combined with
propagating the representation across examples (Elezi et al., 2020; Seidenschwarz et al., 2021; Kotovenko
et al., 2023). Other methods directly optimize the distance metric with pairwise losses. These most often
rely on hand-crafted loss functions, such as the most popular contrastive (Hadsell et al., 2006), and triplet
loss (Schro! et al., 2015), by postulating a correlation between such a training objective and the test time
objective which is typically an information retrieval metric. Finding informative pairs and triplets (Musgrave
et al., 2020; Roth et al., 2020; Oh Song et al., 2016; Sohn, 2016) appears to be very important. As a natural
follow-up, a few recent methods directly optimized di!erentiable approximations of retrieval metrics, such
as average precision (Rolínek et al., 2020; He et al., 2018; Revaud et al., 2019; Ramzi et al., 2021; 2022) and
recall (Patel et al., 2022). In this work, we rely on recall@k (Patel et al., 2022) as a loss function which is
demonstrating top results on a variety of benchmarks in the literature and does not require hard negative
mining. Self-supervised (Kim et al., 2022) methods exist as well and are shown e!ective, but are tested
only on training data from the target distributions, which is not a realistic setup. A recent alternative to
CLIP (Radford et al., 2021), called Unicom (An et al., 2023), trains on LAION 400M (Schuhmann et al.,
2021), treats captions as weak annotations to perform text-based clustering, and reformulates the learning
as a classification task. Their results show improvements in a set of di!erent retrieval datasets, including
instance-level ones. Alternatively, we propose leveraging synthetic data to introduce an extensive collection
of objects with diverse variations into the training dataset.

3 Method

Next, we formulate the target task and describe the training data generation and representation learning.
An overview of the proposed generation process is shown in Figure 2.

3.1 Task formulation

The target task is instance-level image retrieval. Given a query image, the goal is to retrieve all positive
images from a database (db), i. e. those that depict the same object instance as the query. Images depicting
di!erent object instances, even if they belong to the same semantic category, are negatives and should not
be retrieved. This is an open-world task, testing on unseen objects from a variety of domains which may be
seen or unseen during training.

We consider the e"cient retrieval variant using global descriptors. Formally, an image x is mapped to a
d-dimensional global descriptor z = fω(x) → Rd. Retrieval is performed via nearest neighbor search in
Euclidean space, ranking database descriptors based on their cosine similarity to the query. The encoder,
parameterized by ω, is optimized during training. We focus on fine-tuning foundational models (Zhai et al.,
2023) that already perform well by pretraining.
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Figure 2: Overview of instance-level training data generation. A domain name or description is the only
input, which is used to prompt an LLM to provide a list of object category names. Then, we generate
examples of those categories using a GDM, remove the background, and synthesize lighting and background
multiple times per generated example to create a diverse set of positive images for each instance.

3.2 Instance-level training data generation

We propose a pipeline that requires only the name, or a textual description, of a target domain as input, and
automatically generates an image training set with instance-level labels. The process consists of four stages:
(i) Objects categories generation by prompting an LLM to provide a list of object category names; (ii) Object
instance generation by prompting a GDM to generate object instances from each category; (iii) Background
generation by synthesizing diverse backgrounds per instance; (iv) Viewpoint variations by augmenting the
generated images with geometric transformations. Each stage of the process is detailed below.

Object categories generation Object categories (e. g. table, chair, clock) are needed to prompt the GDM
for image generation. We automatically obtain a list of object categories by prompting an LLM with minimal
information about the domain of interest. In the general case in which we do not target a specific domain, the
prompt we use is “Provide a raw list of names of everyday objects.” For specific domains, such as artwork,
landmark, or product, we enrich the prompt with relevant information and hint with a few examples of
object categories. Full details of the designed prompts are provided in the supplementary material. This
approach yields a rich and diverse list of C object categories. Examples of category names generated for
the general case are sofa, desk, while for the specific domains are bust, castle, and polaroid film, for artwork,
landmark, and product, respectively.

Object instance generation We prompt a GDM, in particular Stable Di!usion Turbo (Sauer et al.,
2024), with an object category to generate K images per category. We assume that generating images with
di!erent random seeds produces variations that are distinct and recognizable as separate instances within the
same category. Therefore, following an instance-level class definition, each of the M generated images, where
M = CK, is treated as a separate class in our training set. To facilitate the follow-up step of background
generation, we target a simple or uniform background. To achieve this, we add “in a clean background"
to the prompt after the object category as in, “a table in a clean background." Examples in Figure 3 show
that, even though the background removal process may fail in both cases, it is less likely to happen with the
extended prompt, while the original prompt provides outputs with richer background.

Background generation We create variations of an object instance by generating images with multiple,
distinct backgrounds and lighting conditions. Given a generated instance in the previous step, we rely on
ICLight (Zhang et al., 2025) to perform the relighting and add di!erent backgrounds. Firstly, background
removal is conducted to ensure that the input image only depicts the object of interest. Our generated
images are typically quite easy to have their background removed. We additionally perform padding with
a random amount and resize to the original resolution so that the object appears at di!erent sizes and
positions. Then, the object category is used as a prompt, which guides ICLight to generate an environment
that is commonly appropriate for the specific object. We repeat this process N times per generated object
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Figure 3: Examples of object instances generated by GDM for specific categories. We show the category
name, the generated image and the background removal process with using “in a clean background” (columns
1 & 2) and without it (columns 3 & 4).

instance with di!erent seeds to generate multiple backgrounds. The N images are all elements of the same
class in our training set and the only members of this class. Figure 4 shows examples of generated lighting
and background for a variety of object categories.

Viewpoint variations All images of a class depict the object under di!erent background and similar
viewpoint which only varies because of the padding of the previous step. We additionally rely on simple
random geometric augmentations during training to further modify the object’s geometry. This process
resembles self-supervised learning with instance-discrimination (Oquab et al., 2023; Chen et al., 2020), where
two positive examples are just two di!erent random augmentations of the same input image. Nevertheless,
there is an essential di!erence in our case, that the background and lighting significantly vary. Such a factor
makes our training setting a unique of its kind.

3.3 Representation learning

In total, our generated dataset contains CKN training images, forming CK classes coming from C object
categories. We construct training batches by sampling B classes and all their corresponding images, resulting
in NB images per batch. During training, we adopt a query v. s. database scheme: one image from each of
the N images per class is randomly chosen as the query, while the remaining NB ↑ 1 images of the batch
form the database, as shown in Figure 5.

The similarity between the query and db images is computed in ŷ → RNB→1, while y → {0, 1}NB→1 denotes
the labels of all db images with respect to the query, i. e. positive or negatives based on their classes. We
optimize an information retrieval metric as the loss function, in particular an approximation of recall at the
top-k ranks, based on ŷ, and y. We train with the average of recall@k loss estimated for di!erent values
of k. The approximation of recall is possible by formulating its estimation with the use of step functions,
which, during training, are replaced with a sigmoid function. The technical and implementation details can
be found in the original paper (Patel et al., 2022).
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Figure 4: Examples of object instances generated by GDM (column 1), and the generated images that leave
the object intact and add lighting and background that is well suited to the object (columns 2 ↓ 4).
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Figure 5: Training batch construction for instance-level representation learning. A batch simulates a retrieval
task with a query (blue) and database of positive (green) and negative (red) images. Images are considered
positive if they belong to the same class, otherwise they are negatives. An image encoder is trained with
metric learning on this batch.

4 Experiments

4.1 Experimental details

Data generation details We use GPT-4o (Hurst et al., 2024) as an LLM for the object categories
generation. The LLM is prompted to generate two types of objects: generic and domain-specific. Generic
objects consist of daily-life objects, while domain-specific objects are objects represented in the particular
domains of our evaluation benchmarks. Details about the number of generated object categories are in
Table 1. We set the number of inference steps to 1 when generating instances from each object category
using Stable Di!usion Turbo. Before applying ICLight to synthesize four distinct backgrounds, i. e. N = 4,
we add random padding (up to 50% of the image resolution) to the foreground-segmented instance, keeping
the same aspect ratio.

Table 1: Statistics of the generated training dataset. ILGen-G and ILGen-S comprise only objects from the
generic domain and one of the specific domains, respectively. ILGen-ALL comprises 50% of objects from the
generic domain (10K) and all objects from the three specific domains (10K), i. e. 20K objects in total.

domain of objects C K instances
generic 2, 000 10 20, 000

art 200 15 3, 000

landmark 50 80 4, 000

product 200 15 3, 000

Training set variants To evaluate the quality of our generated data, we compare the performance of the
backbone models trained on our generated dataset, some of its variants and alternatives with real objects
and/or images.

• Pretrained: The original datasets which the backbones are pretrained on. SigLIP and CLIP are
pretrained on web-based text-image datasets, WebLI (Chen et al., 2023) and WIT (Radford et al.,
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Table 2: Details of evaluation datasets.
dataset queries database domain metric
MET (Ypsilantis et al., 2021) 19K 397K artwork mAP@100

R-Oxford (Radenovi! et al., 2018) 70 4.9K landmark mAP

R-Paris (Radenovi! et al., 2018) 70 6K landmark mAP

GLDv2 (Weyand et al., 2020) 1K 761K landmark mAP@100

SOP (Oh Song et al., 2016) 60.5K 60.5K product mAP@100

INSTRE (Wang & Jiang, 2015) 1.2K 27K multi mAP

mini-ILIAS (Kordopatis-Zilos et al., 2025) 1.2K 5M multi mAP@1K

2021), respectively. ViT is pretrained on ImageNet (Dong et al., 2009). The frozen backbones are
evaluated.

• ILGen-ALL - all domains: Our generated dataset with 10K objects from the generic domain and
10K objects from the specific domains. This dataset is used by default, unless otherwise stated. See
Table 1 for details.

• ILGen-G - generic domain: Our generated dataset with up to 20K objects from the generic
domain only.

• ILGen-S - specific domain: Our generated dataset with images from only one of the three specific
domains.

• ILGen-ALL without background: Our generated dataset without background generation.

• Objaverse-background: Objaverse 1.0 (Deitke et al., 2023) is a large-scale 3D object dataset with
818K 3D objects across various categories. We randomly select 20K objects, render each 3D object
into 16 views (Liu et al., 2024), and choose the four views around the main one, resulting in a total
of 80K images to match the statistics of our generated dataset. For each view, we add a background
with the same generation process as in our method. This dataset allows us to compare with training
on real objects rather than synthetic ones, but on synthesized images via rendering.

• Real-S - specific domain: To compare with training on real images that are manually annotated,
we use the MET, GLDv2, and SOP training sets to obtain domain-specific models for artwork,
landmark, and product, respectively. We follow the same dataset split as in Ypsilantis et al. (2023).
To provide a direct comparison, we use the same number of instances as the corresponding domain-
specific parts of our dataset, i. e. 3K, 4K, and 3K, respectively, and 4 images per instance.

• Real-ALL - all domains: The above is extended to compose a dataset by merging the training
sets of SOP, InShop, RP2k, GLDv2 and MET. We use all classes with at least 4 images from the
first three datasets that are small, and complement with enough classes equally from the other two
datasets to reach 20K instances. We sample 4 images per class.

Training details During training, we use random cropping, resizing, flipping, color jitter, and mapping to
grayscale as image augmentations (He et al., 2020). We use a batch size of 1, 600 images (B = 400, N = 4)
and optimize over 400 queries, one per class. We use the vanilla version of the recall@k loss with its default
hyper-parameters, and train until all classes have been loaded in a batch. We use learning rate 10→5 and
Adam optimizer (Kingma & Ba, 2015) with a weight decay 10→6. Experiments are run on a single A100 or
V100 GPU.

Backbones We use SigLIP ViT-L/16 (Zhai et al., 2023), CLIP ViT-L/14 (Radford et al., 2021), and
ViT-B/16 (Dosovitskiy et al., 2021), briefly referred to as SigLIP, CLIP, and ViT-B. Images are resized to
336 ↔ 336, 384 ↔ 384, and 224 ↔ 224 pixels, respectively, according to their pretraining setup. We load the
pre-trained models from timm1 and treat the [CLS] token as the global descriptor.

1
https://timm.fast.ai/
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Table 3: Evaluation results using SigLIP with di!erent training datasets, number of instances, and use
of synthetic background (bg). ILGen-G uses generic domain object categories, while ILGen-ALL includes
domain-specific objects.

ID data instance avg
artwork landmark product multi

MET ROP GLD SOP INS mIL

1 pretrained - 47.5 67.3 45.0 15.7 55.4 80.6 21.0

2 Objaverse-background 20K 51.4 74.0 43.5 16.4 57.7 87.3 29.8

3 ILGen-G 5K 51.5 72.3 46.8 17.4 55.6 86.1 31.2
4 ILGen-G 10K 51.8 72.7 46.1 17.9 55.4 87.2 31.4
5 ILGen-G 20K 51.0 72.2 46.4 17.7 55.8 85.3 28.7

6 ILGen-ALL w/o bg 20K 49.4 72.4 45.7 17.2 60.5 77.9 22.7
7 ILGen-ALL 20K 52.6 75.0 48.7 18.3 55.3 87.4 30.8

Evaluation benchmarks We use a set of standard and diverse ILR retrieval and classification datasets
for evaluation. ILR datasets are comprised of queries, a database in which the same instances as queries
exist as positives, and occasionally, a distractor set of irrelevant images. Details are provided in Table 2 and
the dataset list is as follows:

• Artwork domain: The MET dataset (Ypsilantis et al., 2021) comprises a database of catalog photos
from the Metropolitan Museum of Art and query images taken by visitors inside the museum. To
adapt the benchmark for retrieval, we retain only queries with at least one positive match in the
database, i. e. we discard the distractor queries, and keep only the first positive per query in the
database asserting visual overlap between the two images.

• Landmark domain: R-Oxford (Radenovi# et al., 2018), R-Paris (Radenovi# et al., 2018), and
GLDv2 (Weyand et al., 2020) are the most widely used datasets in this domain. For R-Oxford and
R-Paris, we report results on the Medium and Hard evaluation split with distractors, and following
standard practice, we report average performance across the two datasets, denoted as ROP.

• Product domain: SOP (Oh Song et al., 2016) whose images are crawled from e-commerce websites.

• Multi-domain: We use INSTRE (Wang & Jiang, 2015) and ILIAS (Kordopatis-Zilos et al., 2025)
which include a variety of objects from multiple domains such as daily objects, landmarks, etc. We
use the mini version of ILIAS with 5M distractor images.

4.2 Results for di!erent training sets

Table 3 shows the main results for SigLIP after training on a variety of datasets.

Impact of synthetic data ILGen-ALL (ID7) provides consistent improvement compared to the pretrained
(ID1) model on all datasets except SOP where performance does not change, with an average improvement
equal to 5.1. Compared to Objaverse, which uses images rendered from 3D objects rather than automatically
generated, ILGen-ALL performs better on most datasets, especially on ROP. This suggests that our method,
which relies solely on synthesized objects, learns representations that are at least as e!ective as those learned
on rendered objects.

Number of instances We evaluate SigLIP backbone trained on the generic-domain version of the dataset,
ILGen-G, with di!erent numbers of instances: 5K, 10K, and 20K (corresponding to ID3, ID4, and ID5 in
Table 3). Even with the smallest set of 5K generic instances (ID3), performance on all the benchmarks is
better than the pre-trained backbone (ID1). When the number of instances increases to 10K (ID4), the
average performance increases further, but saturates for the largest set (ID5).
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Figure 6: Average Precision (AP) per query for the pretrained backbone (y-axis) and the backbone fine-tuned
on ILGen-ALL (x-axis). Each point represents a query in the evaluation dataset. Points below the diagonal
indicate a query with improved performance when fine-tuned on ILGen-ALL. Results using SigLIP.

Table 4: Comparison between training on real-labeled images and training our synthetic images on four
di!erent domains using SigLIP .

dataset avg
artwork landmark product multi

MET ROP GLD SOP INS mIL

pretrained 47.5 67.3 45.0 15.7 55.4 80.6 21.0

Real-S (artwork) 49.9 75.2 46.8 17.18 57.0 80.9 22.4
ILGen-S (artwork) 51.2 73.7 47.0 17.24 55.6 85.4 28.3
Real-S (landmark) 50.0 69.6 55.0 19.8 56.7 78.6 20.2
ILGen-S (landmark) 51.0 72.5 50.7 19.7 54.6 84.4 24.2
Real-S (product) 48.3 63.8 46.1 16.9 60.3 80.7 21.8
ILGen-S (product) 50.5 71.6 46.4 17.0 55.9 85.0 27.1
Real-ALL 51.4 69.3 55.3 19.7 71.8 72.7 19.3
ILGen-ALL 52.6 75.0 48.7 18.3 55.3 87.4 30.8

Diverse v. s. clean background Training on ILGen-ALL with clean background (ID6) improves the
performance on most datasets compared to the pretrained backbone. However, performance drops on IN-
STRE and the improvement is small on mini-ILIAS, which are two datasets with high background clutter.
Synthesizing realistic and diverse backgrounds (ID7) leads to a substantial improvement on most datasets
compared to clean background (ID6). SOP forms an exception, where having clean background is the variant
that brings a noticeable improvement, which is related to the commonly clean background in this test set.

Domain of the instances Complementing ILGen-G-10K (ID4) with 10K images from domain-specific
objects (ID7) is much better on average than complementing it with 10K generic objects (ID5). Such a choice
strengthens performance on the tests sets related to those specific domains, i. e. MET, ROP, and GLDv2,
but has smaller or no improvement on datasets with a large variety of objects, i. e. INSTRE and mini-ILIAS.
Therefore, leveraging synthetic images in a diverse set of targeted domains, our method has the potential to
e!ectively address data scarcity and obtain universal representation models.

Improvement per query In Figure 6, we compare the performance of the pretrained and the ILGen-
ALL fine-tuned backbone on a query basis. Training on the dataset of the proposed method improves the
performance on the majority of queries and over the whole range of performance values with the pretrained
model, even for many highly performing queries of INSTRE.

Comparison to real manually labeled images We train SigLIP on both real-labeled and our synthetic
images with recall@k loss under the same setting and present results in Table 4. We make the following
observations. Training with our synthetic images yields better overall performance compared to real-labeled
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Table 5: Evaluation results on di!erent backbones. Representations learned on synthetic data using ILGen-
ALL outperform the pretrained representations on all datasets, except SigLIP and ViT on SOP.

model data avg
artwork landmark product multi

MET ROP GLD SOP INS mIL

SigLIP
pretrained 47.5 67.3 45.0 15.7 55.4 80.6 21.0
ILGen-ALL 52.6 75.0 48.7 18.3 55.3 87.4 30.8

CLIP
pretrained 37.5 47.1 40.0 10.5 41.8 75.1 10.4
ILGen-ALL 46.8 69.6 43.7 16.8 45.5 81.7 23.8

ViT-B
pretrained 25.7 34.2 24.6 5.7 43.7 41.9 4.0
ILGen-ALL 34.3 50.8 29.8 9.1 40.8 65.1 10.1

Table 6: Evaluation results by training SigLIP on ILGen-ALL using di!erent loss function.

loss avg
artwork landmark product multi

MET ROP GLD SOP INS mIL

pretrained 47.5 67.3 45.0 15.7 55.4 80.6 21.0

recall@k (Patel et al., 2022) 52.6 75.0 48.7 18.3 55.3 87.4 30.8
infoNCE (Chen et al., 2020) 52.2 75.1 48.6 18.8 54.2 86.0 30.7
contrastive (Chopra et al., 2005) 50.6 62.8 46.0 16.1 53.8 86.4 38.4
softmax margin (Wang et al., 2018) 51.5 70.1 47.3 18.4 55.4 88.0 29.8

images. Although training with real images from a single domain achieves better performance within the
specific domain, our synthetic images have better performance across other domains except for product.
Notably, results on multi-domain (INSTRE and mini-ILIAS) reveal that our synthetic images are the best in
all cases, indicating the strength of our approach to cover a large range of domains. Performance when testing
on ROP is always better when training on real images, possibly indicating shortcomings of the generative
models for large objects with many details.

4.3 Ablations and more results

Backbones In Table 5 we present results for fine-tuning two additional backbones. Performance improve-
ments are similar to those of SigLIP, demonstrating the general applicability of our method.

Di!erent loss function We train SigLIP using infoNCE loss (Chen et al., 2020), contrastive loss (Chopra
et al., 2005), and softmax margin loss (Wang et al., 2018), which are widely used in representation learning,
and present results in Table 6. The generated training set is shown to be e!ective with a diverse set of losses,
while the recall@k loss remains the best overall choice.

Training images per class Table 7 shows the performance with di!erent numbers of images per instance-
level class during training (ID-S1 and ID-S2). We decrease the number of images per class N in the training
set to 3 and 2. The trained models achieve an average performance of 51.5 and 50.3, respectively, which is
a considerable drop compared to the main variant that achieves 52.6.

LLM models and prompts To examine the e!ect of the prompts and LLMs, we evaluate variants from
ID-S3 to ID-S5 in Table 7. In ID-S3, we use a fixed prompt template across all the generic and specific
domains with GPT-4o (see the supplementary material). In ID-S4 and ID-S5, we use our designed prompts
with two other LLMs, DeepSeek-V3 and Claude 3.7 Sonnet, respectively. The similar results suggest that
our method is robust regardless of the LLM or prompt type.

GDM We apply di!erent GDMs and higher-quality images to study how instance generation quality a!ects
performance, as shown in ID-S6 and ID-S7 in Table 7. In ID-S6, we change SD Turbo to SD v2.0, resulting in
worse performance, likely due to more intricate backgrounds that hinder accurate foreground segmentation.
We use 50 inference steps following the default setting. In ID-S7, we increase the inference steps of SD Turbo
from the default 1 to 5, aiming to generate higher-quality images. Although the visual quality is better, there
was no overall significant performance improvement. Additional details are in the supplementary material.
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Table 7: Ablation study on training data (S1-S2), LLM (S3-S5), GDM (S6-S7), and background generation
(S8-S9). ID1 (pretrained) and ID7 (ILGen-ALL) were presented in Table 3. Each ablation modifies only one
component compared to ID7. Pos refers to the number of training images per instance class. Steps are the

inference steps during image generation. SD Turbo uses 1 step by default. SD refers to Stable Di!usion.
ID data LLM GDM background results

dataset pos prompt model model steps model padding avg MET ROP GLD SOP INS mIL

1 pretrained - - - - - - - 47.5 67.3 45.0 15.7 55.4 80.6 21.0

S1 generated 3 designed GPT-4o SD Turbo 1 ICLight ✁ 51.5 73.7 47.8 18.3 56.2 85.6 27.7
S2 generated 2 designed GPT-4o SD Turbo 1 ICLight ✁ 50.3 71.3 46.6 17.8 55.3 85.5 25.2
S3 generated 4 template GPT-4o SD Turbo 1 ICLight ✁ 52.6 74.9 48.0 18.6 56.5 86.2 31.6
S4 generated 4 designed DeepSeek SD Turbo 1 ICLight ✁ 52.6 75.3 47.0 18.2 55.0 88.0 32.1
S5 generated 4 designed Claude SD Turbo 1 ICLight ✁ 52.5 74.6 48.8 18.3 55.5 87.5 30.6
S6 generated 4 designed GPT-4o SD v2.0 50 ICLight ✁ 51.8 74.1 47.6 18.2 56.6 86.9 27.6
S7 generated 4 designed GPT-4o SD Turbo 5 ICLight ✁ 53.0 74.7 49.1 18.2 56.6 88.3 31.0
S8 generated 4 designed GPT-4o SD Turbo 1 SD v2.0 ✁ 47.1 70.8 48.8 17.8 54.6 75.4 15.2
S9 generated 4 designed GPT-4o SD Turbo 1 ICLight ✂ 51.5 75.1 49.9 19.1 57.4 82.9 24.7

7 generated 4 designed GPT-4o SD Turbo 1 ICLight ✁ 52.6 75.0 48.7 18.3 55.3 87.4 30.8

similarity: 0.87 similarity: 0.83 similarity: 0.79 similarity: 0.77

ILGen-ALL MET ILGen-ALL GLDv2 ILGen-ALL R-Oxford ILGen-ALL R-Paris

similarity: 0.73 similarity: 0.82 similarity: 0.74 similarity: 0.73

ILGen-ALL INSTRE ILGen-ALL SOP ILGen-ALL mini-ILIAS ILGen-ALL mini-ILIAS

Figure 7: Pairs of ILGen-ALL and test sets with the highest similarity score. While these pairs share some
common appearance, they do not indicate data leakage from an ILR point of view.

Background generation As shown in Table 7, changing ICLight to SD v2.0 for background generation
(ID-S8) leads to worse performance even than the pretrained model (ID1). This is due to poor identity
preservation, while ICLight is tailored to this task. When we switch o! padding (ID-S9), which is our way
of varying object size and position, the average performance drops by 1.1%, demonstrating that even such a
simple viewpoint variation has a positive impact.

Train and test set overlap To investigate whether objects from the test sets have leaked into the
generated training set, we perform the following mining process. We use the trained model as a descriptor
extractor and perform retrieval using the test queries as queries and the generated training set as the
database. We visually inspect the results with the highest similarity scores and do not identify any cases of
such leakage as shown in Figure 7. The pairs showcase similar characteristics (a strength of our approach),
but are not positive from an instance-level point of view.

5 Conclusion

This work introduces a novel approach to training ILR models using generative di!usion models to
automatically create diverse, instance-specific training images. By eliminating the need for extensive data
collection and curation, our method opens up new opportunities to easily train ILR models across various
domains. Although foundational representation models are generally considered universal and capable
of performing well across a wide range of domains, we show that fine-tuning these models exclusively on
synthetic instance-level data results in notable performance improvements.
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