
Game-theoretic Objective Space Planning

Hongrui Zheng
University of Pennsylvania

Philadelphia, PA, USA
hongruiz@seas.upenn.edu

Zhijun Zhuang
University of Pennsylvania

Philadelphia, PA, USA
zhijunz@seas.upenn.edu

Johannes Betz
Technical University of Munich

Munich, Germany
johannes.betz@tum.de

Rahul Mangharam
University of Pennsylvania

Philadelphia, PA, USA
rahulm@seas.upenn.edu

Abstract: Generating competitive strategies and performing continuous motion
planning simultaneously in an adversarial setting is a challenging problem. In ad-
dition, understanding the intent of other agents is crucial to deploying autonomous
systems in adversarial multi-agent environments. Existing approaches either dis-
cretize agent action by grouping similar control inputs, sacrificing performance
in motion planning, or plan in uninterpretable latent spaces, producing hard-to-
understand agent behaviors. Furthermore, the most popular policy optimization
frameworks do not recognize the long-term effect of actions and become myopic.
This paper proposes an agent action discretization method via abstraction that pro-
vides clear intentions of agent actions, an efficient offline pipeline of agent popu-
lation synthesis, and a planning strategy using counterfactual regret minimization
with function approximation. Finally, we experimentally validate our findings on
scaled autonomous vehicles in a head-to-head racing setting. We demonstrate that
using the proposed framework significantly improves learning, improves the win
rate against different opponents, and the improvements can be transferred to un-
seen opponents in an unseen environment.

1 Introduction

Motion planning for autonomous agents in adversarial settings remains a challenging problem, es-
pecially for systems with continuous dynamics, where the state, action, and observation spaces are
uncountably infinite. Consider, for example, a head-to-head race between two autonomous race cars.
In order to be competitive, an agent not only needs to perform in the highly dynamically challenging
task when there are no other agents but also has to adjust their strategy in the presence of another
equally competitive agent.

Usually, autonomous agents in these settings are studied as a partially observed Markov decision
process (POMDP). A POMDP is represented by the tuple (S,A, PSA,O, r, γ) with state space S,
action space A, state-action transition probabilities PSA, observation space O, rewards r : S ×A →
R and discount factor γ. The objective of each agent in the setting is to find the optimal policy
π : O → A with parameterization θ by maximizing the cumulative discounted expected rewards.

θ∗ = argmax
θ

∑
t

γt E
PSA

[r(πθ(O(t)))] (1)

However, several challenges arise when the state, action, and observation space of the agents are
continuous and uncountably infinite.

1. Continuous action space creates additional complexity when optimizing for a policy. Traditional
motion planners and optimal controllers are excellent at dealing with this, but it is challenging to

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

optimize them to perform well in an adversarial setting. The first choice for existing solutions is
to model the policy πλ(s, a) as a distribution with a neural network that predicts the corresponding
parameters λ. The actions are then sampled from the distribution. Alternatively, methods discretize
the action space of agents, including binning the control input into intervals or using a bang-bang
control. In the first case, bang-bang control-like behavior has been observed in learned policies that
use distributions [1, 2, 3]. It has been shown that replacing Gaussian distribution-based policies with
bang-bang controllers retains the same level of performance [4]. Thus, it is clear that even when
continuous actions are used, existing approaches generally fall into grouping action into similar
control inputs for agents and provide little control over explainable agent intention.

2. The POMDP setting uses a discount factor γ on the expected rewards. The consequence is that
the rewards obtained towards the end will always be weighted less than the rewards obtained in
the beginning. In adversarial settings that stretch over longer episodes, for example, head-to-head
racing, chess, and Go, most of the reward is not obtained until the very end of the game. The
POMDP formulation is myopic and becomes less suitable for such problems.

3. When considering an adversarial setting in which the outcome of the competition is heavily
influenced by the interaction between two agents, existing approaches, for example, Sinha et al. [5],
maintain a belief vector over parameterization of the opponent agent. However, the performance of
such approaches does not generalize when the opponent’s strategy goes out of distribution.

To address these issues, we propose an alternative framework, specifically an alternative space,
dubbed the Objective Space, in which policies operate and are optimized. Instead of discretizing by
grouping, we propose discretizing by abstraction (Figure 1). i.e., representing policies by a combi-
nation of their properties, or their desired objectives. Back to our racing example, a racing policy
is represented by how aggressive and conservative it is instead of its parameterization. Within this
framework, policies generate interpretable actions by changing the characteristics of agent policies.
Furthermore, instead of optimizing for aggregated discounted rewards, we aim to minimize regret
where the long-term effect of actions is considered. In short, the overall goal is to formulate the
agent’s action selection problem into the following equation.

{a′0, a′1, . . . , a′T }∗ = argmin
a′
t∼π′(θ)

∑
t

RT (a
′
t)

π′(θ) ∼ PA′

(2)

Where RT is the regret generated by the sequence of actions against another agent, PA′ is an em-
pirical distribution over set A′, a countable finite set of actions.

1.1 Contributions

In summary, existing frameworks do not adequately address the challenges associated with continu-
ous space POMDPs. The primary contribution of this work is:

(i) A agent action discretization method that encodes interactive agents via abstraction in a
new action space dubbed the Objective Space.

which addresses challenges (1) and (3). The secondary contributions of this work are:

(ii) An efficient pipeline that synthesizes a population of agents with multi-objective opti-
mization.

(iii) A novel game-theoretic planning strategy using counterfactual regret minimization
with function approximation to solve an extensive form game version of the original
problem.

which address challenge (2).

2

1.2 Related Work

1.2.1 RL in Latent Space

Our proposed framework is closely related to methods that operate in a latent space. Typically,
encoder architectures are used to create implicit models of the world, agent intentions, agent inter-
actions, or dynamics. Using a neural network to model the evolution of the world was proposed [6]
and recently revisited [7]. These approaches allow the agents to train themselves inside “halluci-
nated dreams” generated by these models. Similarly, Hafner et al. [8] learns the latent dynamics of
complex dynamic systems and trains agents in latent imagination for traditionally difficult control
tasks. Schwarting et al. [9] uses latent imagination in self-play to produce interesting agent behav-
iors in racing games. There is also a line of work [10, 11] that combines video prediction models
with latent imagination for model-based RL tasks. Finally, Xie et al. [12] uses the latent space to
represent the intention of the agent in multi-agent settings. None of the above-mentioned approaches
provides explainable latent spaces. In comparison, our proposed approach provides foundation for
interpretable spaces where agent actions are still abstracted into a lower dimension.

1.2.2 Regret Minimization with Approximation

Value function approximation [13, 14] is widely used in reinforcement learning. Similarly, we
approximate the converged counterfactual regret during the proposed approximated CFR. Jin et
al. [15] approximates an advantage-like function as a proxy for regret in a single agent setting.
Brown et al. [16] approximates the behavior of CFR in a multi-agent setting. Our differs from both
in that we directly approximate the counterfactual regret in a multi-agent setting.

1.2.3 Value Decomposition

When constructing the new agent action space, our approach is inspired by Value Decomposition
Networks (VDN) [17]. In VDN, the learned network decomposes value functions for a team of
agents in MARL. Our proposed method decomposes long-term reward into surrogate objectives
with multiple basis functions.

2 Methodology

2.1 Overview

We first show an overall picture of our proposed method.

First, we discretize agent actions by decomposing agent optimization objectives into a function space
with basis functions describing surrogate agent characteristics. For example, for an autonomous
race car, how aggressive or conservative the driving policies are. Then we generate the inverse
of the function space by generating populations of agents using population-based multi-objective
optimization. The inverse is used to define the new discretized agent actions where each action
increases or decreases the function value of a single basis function of the function space. Lastly, we
form the original problem into a two-player, finite, extensive form game, and solve the game with
counterfactual regret minimization (CFR) with function approximation. In the following sections,
we will describe details of each module.

2.2 Agent Action Discretization

We take inspiration from the value decomposition [17]. We can think of general policy optimiza-
tion as “moving” a policy’s characteristics towards being performant on a reward defined by the
task. Our approach decomposes this single metric by defining multiple characterization functions
fk : S ×O ×A → R, where each function fk, k ∈ {1, 2, . . . , n} models some property k of the
outcome (generated trajectory) of each agent policy. For example, in a car racing task, we can model
the aggressiveness and restraint of the racing policy. We then form a function space F ⊆ Rn using

3

Env

...

Objective
Space

Discretized
Actions in

Agent
Policies

New Policy
Parameterization

Figure 1: Agent Action Discretization. In the proposed method, agent policies are encoded into
the Objective Space via designed basis functions. The new action set corresponds to moving in the
Objective Space. When an action is chosen, a new policy parameterization is selected.

these characteristic functions as basis functions. We refer to this function space as the Objective
Space in the following discussion. Let the vector VF = [f1(θ), f2(θ), . . . , fn(θ)] denote a point in
the Objective Space. This new function space can be related to the original policies of the POMDP
as follows.

π(θ) = F−1(VF) (3)
For a point VF in F , the inverse is defined as:

F−1(VF) = argmin
θ

||VF −F(θ)||2 (4)

We describe how a population of θs are generated for the inverse in Section 2.3. Next, we define a
legal action in the new action space A′. For a point VF ∈ Rn in F , the new point induced by an
action a′(VF), a′ ∈ A′ will have the following properties.

∃k ∈ {1, 2, . . . , n}, |VF [k]− a′(VF)[k]| = ϵ, ϵ > 0

∀j ̸= k, VF [j] = a′(VF)[j]
(5)

This means that in the new action space A′, actions are increasing or decreasing the value of only
one of basis functions. Thus, such a transformation reduces the motion planning space from in-
finitely large to 2n, and also provides an explanation for agent actions, depending on how these
characterization functions are defined. This addresses challenge one. Furthermore, the input of the
characterization functions are state space trajectories, or production of agent policies in the state
space. In a POMDP setting, state space trajectories of an adversarial agent are usually assumed to
be observable. Thus, modeling opponent agent actions in this discretization setting is fairly straight-
forward. An overview of the method can be found in Figure 1. This addresses challenge two.

2.3 Agent Population Synthesis

In order to define the inverse, we need to create a discrete population of θs in Equation 4. Denote the
set of all possible policy parameterizations as Θ. Since it might not be defined at every point in the
function space F , we define the inverse loosely by generating a population of θs using population-
based multi-objective optimization where the objectives are the previously defined characterization
functions:

min
θ∈Θ

(f1(θ), f2(θ), . . . , fn(θ)) (6)

Note that here the functions could be negated in the minimization depending on the specific charac-
teristic function. Since a θ that minimizes all objectives simultaneously usually does not exist, we
use the Pareto Front Θ∗ as the population.

θ∗ ∈ Θ∗ ⇐⇒ ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , |Θ|} fi(θ
∗) ≤ fi(θj)

And ∃i ∈ {1, . . . , n}, fi(θ∗) < fi(θj)
(7)

The population synthesis process is depicted in Figure 2. Since multi-objective optimization is a
well studied research area and not a core contribution of this paper, we refer the readers to the
literature [18, 19] for more technical discussions on the subject.

4

Sample

Sample

Update Sample Distribution

Pareto
FrontIterate through Generations

Objective Space Policy
Parameter Space

Evaluate with
Basis Functions

Generation
 of Policies

Figure 2: Population Synthesis. Population-based optimization is an iterative process that maintains
a sampling distribution. At each iteration, a generation of genomes is sampled using the distribu-
tion, then put through the basis functions into the Objective Space. Based on the performance of
each genome, the sampling distribution is updated. The figure depicts 2D parameter space and 3D
Objective Space, but in practice there are no limits in their dimensions.

2.4 Game Model and Notation

After the discretization of the actions, one could choose their policy optimization method based on
the specific application. In this paper, we specifically study a two-player, zero-sum, finite game.
Thus, we model it as an Extensive Form Game, which has a tree-like structure. We also make a
connection to the original POMDP by also discretizing it in time. We define each transition between
nodes on the game tree as a fixed-length sub-episode in the original POMDP. We partition the orig-
inal POMDP episode T0,...,T into m segments [T0,...,T/m, TT/m,...,2T/m, . . . , T(m−1)T/m,...,T]. At
each transition point between segments, an agent is allowed to perform an action defined in Equation
5. This means that the game tree will have depth m. An important observation here is that even with
this discretization, since the state space of the original POMDP is continuous, the new game’s state
space is still infinite, i.e. there are infinitely many types of nodes in the game tree. We will discuss
how to address this in Section 2.5.

Formally, we define the simplified game as a zero sum extensive form game with partial information
and perfect recall. The agents have partial information since the original formulation is a POMDP,
perfect recall since the agents have unlimited memory. We denote a player as i ∈ P . History h ∈ H
is all current state information, including private information known to subsets of players, and the
history of actions taken. The empty set and all prefixes of h are also in H . Z ⊆ H denotes the set
of terminal histories. Actions are denoted as A′(h) = a′ where h is nonterminal. Note that this is
the same set of actions as defined in Equation 5. The information set, or infoset, Ii ∈ Ii for the
player i is similar to the history, but only contains information visible to the player i. The strategy
of the player i is denoted as σi ∈ Σi, which is a distribution over actions A′(Ii), and Σi is the set of
all strategies for the player i. Furthermore, the strategy is the probability of taking action a′ given
the information set I . σ is the strategy profile that comprises all the strategies of the players. σ−i

is strategies of all players except i. The probability of reaching history h with the strategy profile σ
is denoted by pσ(h). And pσ(h)−i denotes the probability of reaching h without the contribution of
the player i. The terminal utility, or payoff, of a player i for a terminal history h ∈ Z is ui(h).

5

2.5 Counterfactual Regret Minimization

Following the definition of the game model in the previous section, it is natural to optimize the
strategy of our agents in a regret-minimizing framework. We choose Counterfactual Regret Min-
imization (CFR). CFR is an iterative algorithm that has a convergence bound of O

(
1√
T

)
. CFR

minimizes overall regret by minimizing counterfactual regret, and therefore can compute a Nash
equilibrium in self-play [20]. However, we still have not addressed the issue of infinite game states.
Inspired by value function approximation in RL approaches [13, 14], we address this by approxi-
mating the counterfactual regret. After approximating counterfactual regret, we use regret matching
(RM) [21] as the strategy of an iteration since it does not require parameters. We next describe the
procedure of CFR with approximate counterfactual regret.

The counterfactual value vσ
i (I) of the player i is the expected utility of the player i reaching I with

probability one.

vσ
i (I) =

∑
z∈ZI

pσ−i(z[I])p
σ(z[I] → z)ui(z) (8)

Where ZI is the set of terminal histories reachable from I and z[I] is the prefix of z up to I .
pσ(z[I] → z) is the probability of reaching z from z[I]. And vσ

i (I, a
′) follows the same calcula-

tion and assumes that player i takes action a′ on the information set I with probability one. The
immediate or instantaneous counterfactual regret is

rt(I, a′) = vσt

i (I, a′)− vσt

i (I) (9)

The counterfactual regret for information set I and action a at iteration t is

Rt(I, a′) =

t∑
τ=1

rτ (I, a′) (10)

Up to this point, we’ve condensed the calculation of counterfactual regret into a very compact form.
Here, we introduce the function approximator gϕ parameterized by ϕ, where we approximate the
counter factual regret at iteration t as:

Rt(I, a′) ≈ gϕ(I, a
′) (11)

Additionally, we clip the counterfactual regret by using Rt
+(I, a

′) = max{Rt(I, a′), 0}. Regret
Matching is used to pick the next action. In RM, the strategy for iteration t+ 1 is:

σt+1(I, a′) =
Rt

+(I, a
′)∑

a′∈A(I)R
t
+(I, a

′)
(12)

If the sum of the counterfactual regret of all actions at an iteration is zero, then any arbitrary strategy
may be chosen. Finally, to better cope with approximation errors [16], we choose the action with
the highest approximate counterfactual regret with probability one:

a′t+1 = argmax
a′
t+1∈A′

Rt+1
+ (I, a′t+1) = argmax

a′
t+1∈A′

gϕ(I, a
′
t+1) (13)

Since we have the possibility to query the game using many possible combinations of action for both
agents, we exploit the convergent behavior of CFR in self play. Therefore, we set the approximation
target for gϕ not to be the iterative behavior of CFR, but the “converged” counterfactual regrets. In a
traditional CFR setup, the set of possible infosets is countable and finite, but the tree depth might be
immense; hence, the iterative structure. In contrast, since we have partitioned the POMDP episode
into equal length segments, our tree depth can be small by choice. However, our set of possible
infosets is uncountable and infinite. Thus, instead of approximating the iterative behavior of CFR,
we collect limited samples of full games, then directly predict the “converged” counterfactual regret.
The next section will describe the self-play structure and how training samples are collected.

6

2.6 Collecting Game Samples

The objective of the function approximator gϕ is to approximate the counterfactual regret at the final
iteration of CFR. Therefore, the input of the approximator is the set of information and the action
being evaluated. We set up the two player games as follows. First, we set the depth of the game
tree to a fixed integer m. Thus, an agent will take m actions in total for the rollout. The initial
starting points for both agents are chosen as random points of VF from the Pareto Front Θ∗. Then,
we traverse every single branch on the game tree by taking all combinations of action at each node
for both agents. At the terminal nodes on the tree, the final utilities are calculated for each game, and
the corresponding counterfactual regret is also calculated for every action at every node. Since the
number of actions is determined by the number of basis functions fk chosen, we know |A′| = 2k.
With a tree depth of m, the total number of branches in each game tree is 2k(m−1). The total
number of games played between two agents using all possible combinations of actions will then
be 22k(m−1). If we select Ninit initial starting points VF for both agents, there will be N2

init number
of trees with different root nodes for each agent. Thus, in total, the number of data points collected
to train the approximator is N2

init2
2k(m−1). An information set I at a specific node includes: the

history of nodes traversed and the actions taken before arriving at this node, the Objective Space
values V ego

F , V opp
F of each agent of the corresponding nodes in the history, More details on network

architecture design and the training procedure will be provided in Appendix C.

In summary, we started with a POMDP with continuous states, action, and observation spaces. Then,
through abstraction, we discretized the agent’s action space. And through partitioning the POMDP
into segments of equal duration in time, we were able to optimize for the original POMDP objective
in Equation 1 using CFR with counterfactual regret approximation in an extensive form game, regret
minimizing setting, giving us the final action selection policy in Equation 13.

3 Experiments

Short Rollouts

...
1

Objective Space

Aggressiveness

C
on

se
rv

at
iv

en
es

s

ActionPopulation

Synthesis

Planner Cost
Weights
Update

5

Ego

Opponent

Counterfactual Regret

Prediction

2 43

Figure 3: Overview of experiment pipeline. Simulated racing between two autonomous race cars is
used as a case study (Marker 1, Section 3.1). A competitive agent population is synthesized offline
(Marker 2, Section 3.3). These agents are used to build the Objective Space using basis functions
that model the aggressiveness and conservativeness of policies (Marker 3, Section 3.3). Then online,
an approximate CFR where counterfactual regret is predicted with a learned model is used to find the
best action in the Objective Space (Marker 4, Section 3.4). Lastly, with the updated motion planner
parameterization, control inputs for the autonomous race car are produced (Marker 5, Section 3.2).

3.1 Simulation Setup

We study a two-player head-to-head autonomous race scenario as the case study. The simulation
environment [22] is a gym [23] environment with a dynamic bicycle model [24] that considers side
slip. The objective of the ego in this game is to progress further along the track than the opponent in
the given amount of time without crashing into the environment or the other agent. The state space of
an agent in the environment is x = [x, y, ψ, s] where x, y is the position of the agent in the world, ψ
is the heading angle, and s is the progress indicator in the Frenet coordinate system [25]. The control
input space of an agent is u = [δ, v] where δ is the steering angle and v is the desired longitudinal
velocity. The observation space of an agent is r ∈ Rq , where r is the range measurement vector
produced by a ray-marching LiDAR simulation, and q is the number of laser beams. Based on the

7

simulation, the utility of the winner of the game is the scalar value (swinner − sloser), and the loser is
the negative of that to keep the game zero-sum. If there are collisions that end the game prematurely,
both agents get zero utility. Since the agents will plan its motion in a receding-horizon fashion, we
need to make a clear distinction between the motion planner time steps and the POMDP time steps.
Following the notation of the previous sections, the POMDP time steps will use t and T , and the
motion planning time steps will use τ and T in the following discussions.

3.2 Motion Planning and Agent Parameterization

We parameterize the agent policy π(θ) by parameterizing the specific motion planner used by the
agent. The motion planner is the link between mapping our defined agent actions in Equation 5 to
continuous control input to the agent’s dynamic system. We use a sampling-based motion planner
that samples local goals for the vehicle in a lattice pattern, as shown in Figure 4. Then, a set of
dynamically feasible trajectories Υ is generated [26] that takes the vehicle from the current state to
the sampled goal state. The predefined cost functions cj are then evaluated on all the trajectories
sampled. θ in our case is a vector of weights that indicates how much the motion planner considers
a certain property (maximum curvature, collision with opponent, etc.) of the proposed trajectories.
The trajectory with the lowest weighted sum of the cost function is selected as the final trajectory
(Equation 14). More details on trajectory generation and cost function designs can be found in
Appendix A.

Υ∗ = argmin
i∈{1,2,...,n}

n∑
j=1

θjcj(Υi) (14)

After selecting a trajectory, control inputs are generated using Pure Pursuit [27]. We then denote the
instantaneous control input given a desired trajectory as ut defined below.

uτ = PP(Υ∗
τ) = [δτ , vτ] (15)

For a sequence of control inputs over a horizon, we denote it as U0,T = [u0, u1, . . . , uτ]. As
empirical evidence, we can see the different behavior of the agent induced by having different pa-
rameterizations in Figure 4. By changing how each cost function weighs in the cost calculation, the
motion planner produces very different trajectories. The parameterization in the first figure weighs
the penalty on deviating from a predetermined raceline less, thus generating a path that keeps a
higher velocity around the opponent vehicle. The parameterization in the second figure weights
this penalty more, thus generating a path that slows down and follows the opponent in front, while
keeping a trajectory closely matching the raceline.

3.3 Basis Function Definition and Population Synthesis

We next define the basis functions that form the new objective space in which we plan. In this case
study, we experiment with a two-dimensional Objective Space. We define two basis functions, one

Figure 4: Effect of the different weighting of cost functions on agent behavior. A detailed description
of all cost functions can be found in Appendix A. The red trajectories are in collision with the track,
thus assigned infinite cost.

8

modeling the aggressiveness and the other modeling the restraint of the agent. Again, each of the
basis functions takes in state space trajectories and observation histories produced by agents, and
produces a scalar value. Recall from Section 2.4, we have segmented the original POMDP episode
into m sub-episodes. To keep consistency, each basis function will be evaluated on trajectories gen-
erated during the same duration with these sub-episodes. For aggressiveness, we design a function
that measures how much an agent has made progress on the track more than its opponent. Thus, for
a given trajectory, the aggressiveness is as follows.

fagg(θego) = fagg(Υ(θego),Υ(θopp)) = sego − sopp (16)

For restraint, we design a function that measures how much an agent tries to avoid collision with
average minimum instantaneous time-to-collision (iTTC). And the restraint is as follows.

fres(θego) = fres(rego) = − 1

(T/m)

T/m∑
t=0

min
q

[
rt,q
ṙt,q

]
+∞

(17)

Where ṙ is the range rate and is calculated as projections of the longitudinal velocity of the vehicle
to the corresponding scan angles of the LiDAR rays. The operator []+∞ sets the negative elements
of the vector to infinity. Note that both outputs of these functions depend either on the opponent
agent’s trajectory or on the specific track segment that the agents traveled on. We will discuss how
these are selected in the population synthesis discussions. Note that for both of these basis functions,
the higher the function value, the more aggressive or restraint the agent policy is. Therefore, when
synthesizing for a population, we minimize the negated value of these functions (Equation 6).

We synthesize the population of agents using population-based optimization. These optimization
algorithms generally have the same recipe. First, a distribution of optimization variables is initial-
ized. Then, a predetermined number (population size) of genomes are sampled from the distribution.
Then each genome is evaluated for the given objectives. After collecting all the evaluation results,
the sampling distribution is updated based on the results. For example, some algorithms maintain
a high-dimensional Gaussian distribution, and update the mean and covariance based on the top
performing samples in the last iteration. Iterating through generations, we can build a population
using all previously sampled genomes. During the evaluation, we select a fixed number of random
sections of the race track and a set of random parameterization θ as opponents. These random se-
lections remain the same throughout generations. Depending on the specific use case, and desired
density of the Objective Space, one can choose to subsample the population. In our case, we use
a near-optimal set based on the Pareto front Θ∗, denoted Pno, so that the selected policies are opti-
mized for each objective. In all experiments where a subset of initial points in the Objective Space is
needed, we use a Determinantal Point Process (DPP) [28] using Euclidean distances in the Objective
Space for subsampling. More details on the optimization algorithm and how we create the subsets
can be found in Appendix B.

3.4 Regret Prediction Model

When collecting training samples for the approximator gϕ, we employ the self-play structure
described in Section 2.6. First, two subsets of the near-optimal set PDPP1 and PDPP2, where
PDPP1 ∩PDPP2 = ∅, and |PDPP1| = |PDPP2|. We construct game trees using each pair in the Cartesian
product PDPP1 × PDPP2 as the initial starting points in the Objective Space of the two agents. We
then play through the entire game tree and collect the necessary data points for training. We used
a multilayer perceptron (MLP) with one hidden layer of size 2048 and leaky ReLU activation as
gϕ. The network is trained using L1 loss on the prediction targets, and optimized with Adam with
adaptive learning rate for 2000 epochs. More details on the number of each chosen subset and the
total number of data points can be found in Appendix C.

To put everything together, the game-theoretic planner works in the following order. First, the ego
selects a random starting point on the Pareto Front in the Objective Space. Then, the approximated
CFR observes the opponent’s trajectory to locate it in the Objective Space, and predicts the coun-
terfactual regret for each available action. Next the action with highest approximate counterfactual

9

regret is taken, and moves the ego’s current position in the Objective Space to a new point. The
corresponding cost weights for the motion planner are used to update the motion planner. Lastly, the
motion planner generates the control input for the ego agent.

3.5 Simulated Racing

In the experiments, our aim is to answer the following four questions.

1. Does the agent action discretization aid our agent in learning a more competitive and gen-
eral policy?

2. Does being game-theoretic improve an agent’s win rate against a competitive opponent?

3. Does the proposed agent action discretization provide interpretable explanations for agent
actions?

4. Does the proposed approach generalize to unseen environments and unseen opponents?

3.5.1 Action Discretization in Learning

To answer the first question, we compare the results of a single agent environment where the objec-
tive is to finish two laps as fast as possible on the race track without crashing. We compare three
agents in this experiment. The first is PPO [29] with continuous actions on both steering and throttle.
The second is PPO with discretized actions: turn left, turn right, and stay straight. The third is our
proposed approach without the CFR updates. The agents under both PPO settings are rewarded by
a small keep alive reward for every time step the car is not in collision and a large terminal reward
when finishing two laps under the time limit. They are also penalized by a value scaled with lap
time. The PPO policies use the range measurement vector from the LiDAR scan as the observation.
During training, the PPO agent with discrete actions converges to a policy that can finish two laps. In
comparison, the PPO agent with continuous actions does not. We set up the experiments as follows.
For PPO agents, the same trained agent is used in all rollouts, and the starting positions of the agents
are slightly different in each rollout. For agents using the proposed approach, we again sample a
subset of the near-optimal set using DPP. The number of DPP samples here matches the number of
random starts for the PPO agents. We record the success rate and lap times over 20 trials for each
agent both on the seen map and on the unseen map. More details on the implementation of PPO
agents can be found in Appendix D.

Table 1: Success rate and elapsed times of different agents finishing two laps in a single agent
setting.

Agent Success Rate Avg. Elapsed Time (s)
On Seen Map

PPO-continuous 0.0 N/A
PPO-discrete 0.3 63.782± 0.225

Ours (w/o CFR) 1.0 48.533± 1.398
On Unseen Map

PPO-continuous 0.0 N/A
PPO-discrete 0.25 67.292± 0.156

Ours (w/o CFR) 1.0 50.814± 1.343

The recorded results are shown in Table 1. First, we compare the two PPO agents to see the effect
of using discretized actions. Our experiment confirms that agents with discretized actions are easier
to train. At the end of training, the continuous PPO agent, although turning in the correct direction
when encountering corners, was unable to complete the entire lap. Then we compare the discrete
PPO with our proposed method. Although able to complete the two laps during training, simply
changing the starting position by a small amount drops the success rate to only 30% even when
evaluations are performed on the same map the agent saw during training. When moved to an unseen
map, the success rate drops further to only 25%. In comparison, the proposed method maintains a

10

perfect success rate throughout the evaluations, even when moved to an unseen map. Although not
the main objective of this experiment, we see that the proposed method was able to achieve a lower
lap time across the board. Although PPO agents are awarded for having shorter lap times, they
cannot compete with the proposed method.

3.5.2 Effect of being Game-theoretic

Table 2: Win-rates in head-to-head racing experiments with mean win rate differences and p-values.

Opponent
Ego

∆µ p-valueWin-rate Win-rate
Non-GT GT

On Seen Map
Non-GT 0.515± 0.251 0.569± 0.213 0.054 0.0142
Random 0.624± 0.225 0.670± 0.199 0.046 0.00370
Unseen 0.586± 0.101 0.597± 0.089 0.011 0.0863

On Unseen Map
Non-GT 0.553± 0.256 0.628± 0.180 0.075 0.0124
Random 0.625± 0.278 0.738± 0.172 0.113 0.00276
Unseen 0.556± 0.101 0.565± 0.098 0.009 0.147

To answer the second question, and in order to show the effectiveness of game-theoretic planning,
we race the policies from our framework against various opponents in different environments. Each
experiment is a single head-to-head race with a fixed duration. We designate the winner of the race
as the agent who progressed further down the track at the end of the duration. To ensure fairness,
the agents start side by side at the same starting line on track, and alternate starting positions. The
starting line is also randomized five times for one pair of agents. There are three types of agents
in the experiment. The GT agent is produced under the proposed population synthesis framework
with CFR and counterfactual regret approximation. The non-GT agent is also produced in the same
population synthesis framework but without CFR. The random agent is a random selection from all
the explored parameterizations from the population synthesis framework without CFR. Lastly, the
unseen agent is a competitive motion planner under a completely different parameterization. The
ego agents in the experiments are GT and non-GT agents, while the opponents are non-GT, random,
and unseen (Table 2). We choose 20 different variants of each agent. Thus, each table cell in Table
2 consists of statistics from 202 ∗ 2 ∗ 5 = 4000 head-to-head racing games. Each agent is allowed
m = 4 actions, with each sub-episode lasting T/m = 8 seconds. The total length of the games is
40 seconds, with the first 8 seconds as the initial sub-episode to observe the opponent. We report the
results of paired t-tests against all opponents with the null hypothesis that the use of the proposed
CFR process does not change the win rate. As shown in Table 2, the main result of this experiment
is that the p-value is small enough to reject the null hypothesis in most cases. Across all pairings
of ego and opponent, there is an increase in average win rate by using our proposed approximated
CFR, significantly in most cases. Although not as significant when playing an unseen opponent, the
trend is still clearly present. This finding validates our counterfactual regret approximator and the
effect of CFR by showing significant improvement.

3.5.3 Agent Characterization

To answer the third question, we examine selected rollouts of the racing games to investigate whether
the actions of the agents are interpretable. In the first segment of the track (before the decision point)
in Figure 5, the ego agent uses a random choice of starting parameterization to plan and observe the
opponent for T/m seconds. The ego and the opponent remained side by side until the second corner.
Then at the decision point, which is the moment we select an action and transition from one node on
the game tree to the next, the ego observed that the opponent’s strategy produced a trajectory that is
positioned in the lower right quadrant of the Objective Space (more conservative than aggressive).
The counterfactual regret approximator then predicted that increasing aggressiveness has the highest
estimated counterfactual regret. The planner switches to the new cost weights corresponding to the

11

new point in the objective space (left subplot). The selected action’s effect is immediately evident
since the ego slowed down less than the opponent in the chicane (after the decision point) and
overtook the opponent by the end of the second sub-episode.

Figure 5: Effect of taking an action in the Objective Space. The left subplot shows what the action
looks like in the Objective Space. The right subplot shows that after taking an action, the ego
overtakes the opponent.

Figure 6: Trajectories of ego’s actions in Objective Space. In subplots A and B, the opponent is more
conservative and the ego decides to increase aggressiveness right away. In subplots C and D, the
opponent is more aggressive and the ego decides to increase in restraint until there is an opportunity
to increase in aggressiveness and overtake.

We then take a step back and look at a bigger picture which shows agent decisions of the entire
rollout in the Objective Space. In Figure 6, four different rollouts are shown in which the ego wins
at the end. In subfigures A and B, the opponent agent is observed to be in the lower right quadrant of
the Objective Space, meaning that these agents value safety more than progress. In these scenarios,
the ego agent, starting in the lower right quadrant, became more aggressive than conservative with
each action. In subfigures C and D, the opponent agent is observed to be in the upper left quadrant of
the objective space, meaning that these agents value progress more than safety. In these scenarios,
the ego decides to stay conservative and only increases aggressiveness later on when there is an
opportunity to overtake.

From these two closer examinations of agent actions, using interpretable basis functions to construct
the Objective Space has a clear benefit. Discretizing agent actions by abstraction provides a much
clearer context for explaining agent decision-making.

3.5.4 Facing Unknown Opponents

And lastly, to answer the fourth question, we examine the results when faced with unknown envi-
ronments. Since we defined the Objective Space basis function to take the outcome (generated state
space trajectories) of a policy as input, agents deal with unseen adversaries in unseen environments

12

better. In the adversarial multi-agent environment from rows 3 and 6 in Table 2, we see that the
increase in the win rate is retained, though not as significant as other scenarios.

4 Limitations and Future Work

First, we chose to partition the original POMDP episode into equal duration segments. This choice
led to a distinct game tree structure with depth m, and kept the input space of the counterfactual
regret approximator gϕ manageable. If agent decision making, or strategy switching, is desired at a
higher frequency, one might employ a receding horizon update scheme. However, this might lead
to too large a tree depth m when designing the function approximator. Future work should focus on
addressing this issue by finding the balance point for this trade-off.

Second, experiments should investigate biases in the evaluation scenarios during the optimization
and experiments. Randomness affects the selection of the opponent set and the track sections during
optimization. The biases in selecting evaluation scenarios are also present in the first column of
Table 2. When a non-GT agent plays against a non-GT agent, the ego win rate should be close to
50%. Future work can focus on designing experiments to evaluate whether this deviation from the
50% win rate is significant. Furthermore, biases must be eliminated when selecting random subsets
of the agent population and evaluating scenarios.

Third, instead of playing against randomized opponents during population-based optimization, the
opponent set should become more and more competitive as the optimization iterates. The authors
experimented with mixing agents on the Pareto front periodically into the opponent set, resulting in
premature convergence to less competitive agents. An alternative is to incorporate self-play into the
acceptance of new genomes. Instead of accepting all new genomes in each generation, new genomes
are compared against the ones from the previous generation. Only winning genomes are passed on
to the next generation.

Fourth, opponents in the experiments do not adapt their planner cost weights like ego agents. Using
an adaptive planner would increase competition for a fairer two-sided interaction.

Lastly, the basis functions used in the case study are chosen by hand with expert knowledge of the
subject matter. On the basis of the proposed formulation, this should not be a hard requirement
for improvement in agent action discretization. Discovering these basis functions automatically and
selecting the metrics most different from each other to construct the Objective Space will create an
interesting research problem where hidden mechanics of agent interaction could be discovered.

5 Conclusion

To overcome the challenges that come with continuous-space POMDPs, we propose an agent action
discretization that encodes policy characteristics into the Objective Space. Agent actions produced in
this space are interpretable and help with generalization. The central hypotheses of this paper are that
using the proposed discretization of agent action and CFR with counterfactual regret approximation
not only significantly improves the win rate against different opponents, improves interpretability
when explaining agent decisions, but also transfers to unseen opponents in an unseen environment.
We first define the Objective Space and legal actions in this space, then perform agent population
synthesis via multi-objective optimization. Next, we train a counterfactual regret approximator and
implement an online planning pipeline that uses CFR to maximize the win rate. Lastly, we provide
statistical evidence showing significant improvements to the win rate that are generalized to unseen
environments. Moreover, we provide an examination on how the agent action discretization method
improves interpretability when explaining agent decisions. We significantly (with a p-value less
than 0.05) improved the win rate by 5.4% on the seen map and 7.5% on the unseen map on average
against non-game-theoretic opponents; the win rate by 4.6% on the seen map and 11.3% on the
unseen map on average against random opponents. Lastly, we improved the win rate by 1.1% on the
seen map and 0.9% on the unseen map against unseen opponents.

13

6 Societal Impact

Understanding the intent of a learning-based agent and its peers in the environment is crucial to
deploying autonomous systems in adversarial multi-agent settings. Real-world applications, such
as autonomous vehicles, financial decision making algorithms, and recommendation algorithms, are
examples of such autonomous systems. Without a proper system that supports explaining decisions
made by such systems in a human-interpretable way, it is impossible to assign blame when malfunc-
tions occur. Especially in life-critical applications, these requirements become even more important.
This work provides a preliminary framework for interpretable agent actions in autonomous systems.

References
[1] S. H. Huang, M. Zambelli, J. Kay, M. F. Martins, Y. Tassa, P. M. Pilarski, and R. Hadsell.

Learning Gentle Object Manipulation with Curiosity-Driven Deep Reinforcement Learning,
Mar. 2019. URL http://arxiv.org/abs/1903.08542. arXiv:1903.08542 [cs].

[2] G. Novati and P. Koumoutsakos. Remember and Forget for Experience Replay, May 2019.
URL http://arxiv.org/abs/1807.05827. arXiv:1807.05827 [cs, stat].

[3] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Model-Based Reinforcement Learn-
ing for Closed-Loop Dynamic Control of Soft Robotic Manipulators. IEEE Transactions on
Robotics, 35(1):124–134, Feb. 2019. ISSN 1552-3098, 1941-0468. doi:10.1109/TRO.2018.
2878318. URL https://ieeexplore.ieee.org/document/8531756/.

[4] T. Seyde, I. Gilitschenski, W. Schwarting, B. Stellato, M. Riedmiller, M. Wulfmeier, and
D. Rus. Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli
Policies, Nov. 2021. URL http://arxiv.org/abs/2111.02552. arXiv:2111.02552 [cs].

[5] A. Sinha, M. O’Kelly, H. Zheng, R. Mangharam, J. Duchi, and R. Tedrake. FormulaZero:
Distributionally Robust Online Adaptation via Offline Population Synthesis. In Proceedings of
the 37th International Conference on Machine Learning, pages 8992–9004. PMLR, Nov. 2020.
URL https://proceedings.mlr.press/v119/sinha20a.html. ISSN: 2640-3498.

[6] J. Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning in
reactive environments. In 1990 IJCNN International Joint Conference on Neural Networks,
pages 253–258 vol.2, San Diego, CA, USA, 1990. IEEE. doi:10.1109/IJCNN.1990.137723.
URL http://ieeexplore.ieee.org/document/5726682/.

[7] D. Ha and J. Schmidhuber. World Models. Mar. 2018. doi:10.5281/zenodo.1207631. URL
http://arxiv.org/abs/1803.10122. arXiv:1803.10122 [cs, stat].

[8] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to Control: Learning Behav-
iors by Latent Imagination, Mar. 2020. URL http://arxiv.org/abs/1912.01603.
arXiv:1912.01603 [cs].

[9] W. Schwarting, T. Seyde, I. Gilitschenski, L. Liebenwein, R. Sander, S. Karaman, and D. Rus.
Deep Latent Competition: Learning to Race Using Visual Control Policies in Latent Space,
Feb. 2021. URL http://arxiv.org/abs/2102.09812. arXiv:2102.09812 [cs].

[10] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan,
C. Finn, P. Kozakowski, S. Levine, A. Mohiuddin, R. Sepassi, G. Tucker, and H. Michalewski.
Model-Based Reinforcement Learning for Atari, Feb. 2020. URL http://arxiv.org/abs/

1903.00374. arXiv:1903.00374 [cs, stat].

[11] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine. SOLAR: Deep Struc-
tured Representations for Model-Based Reinforcement Learning. In Proceedings of the 36th
International Conference on Machine Learning, pages 7444–7453. PMLR, May 2019. URL
https://proceedings.mlr.press/v97/zhang19m.html. ISSN: 2640-3498.

14

http://arxiv.org/abs/1903.08542
http://arxiv.org/abs/1807.05827
http://dx.doi.org/10.1109/TRO.2018.2878318
http://dx.doi.org/10.1109/TRO.2018.2878318
https://ieeexplore.ieee.org/document/8531756/
http://arxiv.org/abs/2111.02552
https://proceedings.mlr.press/v119/sinha20a.html
http://dx.doi.org/10.1109/IJCNN.1990.137723
http://ieeexplore.ieee.org/document/5726682/
http://dx.doi.org/10.5281/zenodo.1207631
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/2102.09812
http://arxiv.org/abs/1903.00374
http://arxiv.org/abs/1903.00374
https://proceedings.mlr.press/v97/zhang19m.html

[12] A. Xie, D. Losey, R. Tolsma, C. Finn, and D. Sadigh. Learning Latent Representations to
Influence Multi-Agent Interaction. In Proceedings of the 2020 Conference on Robot Learn-
ing, pages 575–588. PMLR, Oct. 2021. URL https://proceedings.mlr.press/v155/

xie21a.html. ISSN: 2640-3498.

[13] R. S. Sutton and A. G. Barto. Reinforcement Learning, second edition: An Introduction. MIT
Press, Nov. 2018. ISBN 978-0-262-35270-3. Google-Books-ID: uWV0DwAAQBAJ.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning, Dec. 2013. URL http://arxiv.org/

abs/1312.5602. arXiv:1312.5602 [cs].

[15] P. Jin, K. Keutzer, and S. Levine. Regret Minimization for Partially Observable
Deep Reinforcement Learning, Oct. 2018. URL http://arxiv.org/abs/1710.11424.
arXiv:1710.11424 [cs].

[16] N. Brown, A. Lerer, S. Gross, and T. Sandholm. Deep Counterfactual Regret Minimiza-
tion. Nov. 2018. doi:10.48550/arXiv.1811.00164. URL https://arxiv.org/abs/1811.

00164v3.

[17] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel. Value-Decomposition Networks For Co-
operative Multi-Agent Learning, June 2017. URL http://arxiv.org/abs/1706.05296.
arXiv:1706.05296 [cs].

[18] R. Marler and J. Arora. Survey of multi-objective optimization methods for engineering. Struc-
tural and Multidisciplinary Optimization, 26(6):369–395, Apr. 2004. ISSN 1615-1488. doi:
10.1007/s00158-003-0368-6. URL https://doi.org/10.1007/s00158-003-0368-6.

[19] N. Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

[20] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret Minimization in Games with
Incomplete Information. In Advances in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper/2007/

hash/08d98638c6fcd194a4b1e6992063e944-Abstract.html.

[21] S. Hart and A. Mas-Colell. A Simple Adaptive Procedure Leading to Correlated Equilib-
rium. Econometrica, 68(5):1127–1150, 2000. ISSN 1468-0262. doi:10.1111/1468-0262.
00153. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.

00153. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0262.00153.

[22] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam. F1TENTH: An Open-source
Evaluation Environment for Continuous Control and Reinforcement Learning. Proceedings
of Machine Learning Research, 123, Apr. 2020. URL https://par.nsf.gov/biblio/

10221872-f1tenth-open-source-evaluation-environment-continuous-control-reinforcement-learning.

[23] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym, June 2016. URL http://arxiv.org/abs/1606.01540. arXiv:1606.01540
[cs].

[24] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable benchmarks for
motion planning on roads. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 719–726,
June 2017. doi:10.1109/IVS.2017.7995802. URL https://ieeexplore.ieee.org/

abstract/document/7995802?casa_token=44FC2OFG6RcAAAAA:k7KqKJTKPoT7qzAA_

PYWEWjzNoiZR805_3hrVNbJMuke313u318YUQ4eVTiy91ZrVp6LjrRzYVQ.

[25] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. Optimal trajectory generation for dynamic
street scenarios in a frenet frame. In 2010 IEEE international conference on robotics and
automation, pages 987–993. IEEE, 2010.

15

https://proceedings.mlr.press/v155/xie21a.html
https://proceedings.mlr.press/v155/xie21a.html
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1710.11424
http://dx.doi.org/10.48550/arXiv.1811.00164
https://arxiv.org/abs/1811.00164v3
https://arxiv.org/abs/1811.00164v3
http://arxiv.org/abs/1706.05296
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6
https://proceedings.neurips.cc/paper/2007/hash/08d98638c6fcd194a4b1e6992063e944-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/08d98638c6fcd194a4b1e6992063e944-Abstract.html
http://dx.doi.org/10.1111/1468-0262.00153
http://dx.doi.org/10.1111/1468-0262.00153
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00153
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00153
https://par.nsf.gov/biblio/10221872-f1tenth-open-source-evaluation-environment-continuous-control-reinforcement-learning
https://par.nsf.gov/biblio/10221872-f1tenth-open-source-evaluation-environment-continuous-control-reinforcement-learning
http://arxiv.org/abs/1606.01540
http://dx.doi.org/10.1109/IVS.2017.7995802
https://ieeexplore.ieee.org/abstract/document/7995802?casa_token=44FC2OFG6RcAAAAA:k7KqKJTKPoT7qzAA_PYWEWjzNoiZR805_3hrVNbJMuke313u318YUQ4eVTiy91ZrVp6LjrRzYVQ
https://ieeexplore.ieee.org/abstract/document/7995802?casa_token=44FC2OFG6RcAAAAA:k7KqKJTKPoT7qzAA_PYWEWjzNoiZR805_3hrVNbJMuke313u318YUQ4eVTiy91ZrVp6LjrRzYVQ
https://ieeexplore.ieee.org/abstract/document/7995802?casa_token=44FC2OFG6RcAAAAA:k7KqKJTKPoT7qzAA_PYWEWjzNoiZR805_3hrVNbJMuke313u318YUQ4eVTiy91ZrVp6LjrRzYVQ

[26] A. Kelly and B. Nagy. Reactive Nonholonomic Trajectory Generation via Parametric Opti-
mal Control. The International Journal of Robotics Research, 22(7-8):583–601, July 2003.
ISSN 0278-3649. doi:10.1177/02783649030227008. URL https://doi.org/10.1177/

02783649030227008. Publisher: SAGE Publications Ltd STM.

[27] R. C. Coulter et al. Implementation of the pure pursuit path tracking algorithm. Carnegie
Mellon University, The Robotics Institute, 1992.

[28] A. Kulesza and B. Taskar. Determinantal Point Processes for Machine Learning. Foundations
and Trends® in Machine Learning, 5(2–3):123–286, Dec. 2012. ISSN 1935-8237, 1935-8245.
doi:10.1561/2200000044. URL https://www.nowpublishers.com/article/Details/

MAL-044. Publisher: Now Publishers, Inc.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms, Aug. 2017. URL http://arxiv.org/abs/1707.06347. arXiv:1707.06347
[cs].

[30] D. Ferguson, T. M. Howard, and M. Likhachev. Motion planning in urban environments.
Journal of Field Robotics, 25(11-12):939–960, 2008. ISSN 1556-4967. doi:10.1002/
rob.20265. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20265.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20265.

[31] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B. Lohmann.
Minimum curvature trajectory planning and control for an autonomous race car. Vehicle
System Dynamics, 58(10):1497–1527, Oct. 2020. ISSN 0042-3114. doi:10.1080/00423114.
2019.1631455. URL https://www.tandfonline.com/doi/10.1080/00423114.2019.

1631455. Publisher: Taylor & Francis.

[32] B. Nagy and A. Kelly. TRAJECTORY GENERATION FOR CAR-LIKE ROBOTS USING
CUBIC CURVATURE POLYNOMIALS.

[33] T. M. Howard and A. Kelly. Optimal Rough Terrain Trajectory Generation for Wheeled Mo-
bile Robots. The International Journal of Robotics Research, 26(2):141–166, Feb. 2007.
ISSN 0278-3649. doi:10.1177/0278364906075328. URL https://doi.org/10.1177/

0278364906075328. Publisher: SAGE Publications Ltd STM.

[34] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee. Motion planning for autonomous
driving with a conformal spatiotemporal lattice. In 2011 IEEE International Conference
on Robotics and Automation, pages 4889–4895, May 2011. doi:10.1109/ICRA.2011.
5980223. URL https://ieeexplore.ieee.org/abstract/document/5980223?

casa_token=6oERxpLXAXAAAAAA:26DT28GkkAlWWvnMTWPBdMeuNu1f0bs5T6nT_

3E2wAPPTeoT5O8tEVIKOowSqzxlhcCEgcNiCtQ. ISSN: 1050-4729.

[35] T. M. Howard. Adaptive model-predictive motion planning for navigation in complex environ-
ments. Carnegie Mellon University, 2009.

[36] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. Araújo. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal
of Machine Learning Research, 23(274):1–18, 2022. URL http://jmlr.org/papers/v23/

21-1342.html.

16

http://dx.doi.org/10.1177/02783649030227008
https://doi.org/10.1177/02783649030227008
https://doi.org/10.1177/02783649030227008
http://dx.doi.org/10.1561/2200000044
https://www.nowpublishers.com/article/Details/MAL-044
https://www.nowpublishers.com/article/Details/MAL-044
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1002/rob.20265
http://dx.doi.org/10.1002/rob.20265
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20265
http://dx.doi.org/10.1080/00423114.2019.1631455
http://dx.doi.org/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/10.1080/00423114.2019.1631455
https://www.tandfonline.com/doi/10.1080/00423114.2019.1631455
http://dx.doi.org/10.1177/0278364906075328
https://doi.org/10.1177/0278364906075328
https://doi.org/10.1177/0278364906075328
http://dx.doi.org/10.1109/ICRA.2011.5980223
http://dx.doi.org/10.1109/ICRA.2011.5980223
https://ieeexplore.ieee.org/abstract/document/5980223?casa_token=6oERxpLXAXAAAAAA:26DT28GkkAlWWvnMTWPBdMeuNu1f0bs5T6nT_3E2wAPPTeoT5O8tEVIKOowSqzxlhcCEgcNiCtQ
https://ieeexplore.ieee.org/abstract/document/5980223?casa_token=6oERxpLXAXAAAAAA:26DT28GkkAlWWvnMTWPBdMeuNu1f0bs5T6nT_3E2wAPPTeoT5O8tEVIKOowSqzxlhcCEgcNiCtQ
https://ieeexplore.ieee.org/abstract/document/5980223?casa_token=6oERxpLXAXAAAAAA:26DT28GkkAlWWvnMTWPBdMeuNu1f0bs5T6nT_3E2wAPPTeoT5O8tEVIKOowSqzxlhcCEgcNiCtQ
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html

A Motion Planner

We use a sampling-based hierarchical motion planner similar to that of [30]. At the top level, the
planner receives information on the current poses and velocities of the ego and opponent, as well as
an optimal race line generated using [31] for the current map. The race line consists of waypoints
as tuples of (x, y, θ, v), which are the desired position, heading, and velocity of the vehicle. Then n
uniform grid points representing local goals are sampled around the race line (see Figure 4). Then
dynamically feasible trajectories are generated from the current pose of the car to the sampled goals
using third-order clothoids combining methods from [32, 26, 33, 34, 35]. Additionally, for each
generated trajectory, m velocity scaling factors are assigned to generate different velocity profiles
for the same path. Hence, the planner samples n×m trajectories at one planning step.

We define multiple cost functions (cj in Equation 14) to evaluate the quality of each trajectory for
geometric properties and velocity profiles. We use the following cost functions:

• cmc = max
sf
s=0{κs}: maximum curvature on the trajectory

• cal = arc length sf of the trajectory

• chys =
∣∣∣∣Tt − T ∗

t−1

∣∣∣∣
2

hysteresis loss that measures similarity to the previously selected
trajectory. Calculated as the Euclidean distance between the two trajectories. Note that
the previously selected trajectory is shifted forward to compensate for the vehicle’s motion
between time steps.

• cdo distance to the optimal race line measured by lateral deviation. For every single position
on the trajectory, a corresponding nearest point is found on the optimal raceline. Then the
lateral is calculated in the Frenet coordinate frame.

• cco fixed collision cost with the opponent discounted by relative speed to the opponent at
each time step.

• cv1 velocity cost that encourages higher speed.

• cv2 velocity cost that penalizes co-occurrence of high speed and high curvature.

In addition, we include a global velocity scaling factor γ as another parameter for the agent. There-
fore, each agent can be parameterized by the weight vector θ:

θ = [γ, cmc, cal, chys, cdo, cco, cv1, cv2]

In addition, trajectories in collision with the environment are assigned infinite costs.

B Population-based Agent Optimization

We use the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [19] as the population-
based multi-objective optimizer. Parameterization of each genome in the ES has the seven cost
weights ranging from 1.0 to 10.0 and the velocity discount factor ranging from 0.6 to 1.0. The
duration of each rollout is 8 seconds in the evaluation. In the evaluation to obtain the Objective
Space position of each genome, we use 120 pairs of opponents with randomized cost weights and
randomized section of the race track. The average basis function values across all pairs obtained
for each genome are used to put them into the Objective Space. To encourage exploration, during
every rollout, if the ego overtakes the opponent, the aggressiveness value of the genome increases
by 10%. If the ego crashes into the opponent, the aggressiveness value increases by 10% and the
conservativeness value increases by 1.

In Figure 7, we show the progression of the two competing objectives and the crash and overtake
rate during optimization. The figure shows that the overtake rate is higher when the current param-
eterization is more aggressive. However, the crash rate is also higher. The trend of the objective
scores in the figure shows that the two objectives are competing, and we have explored a wide range
of different parameterizations.

17

Figure 7: Progression of CMA-ES optimization. The x-axis denotes generations of 100 genomes.

Figure 8: Position of different sets of prototypes in the Objective Space.

After obtaining the Pareto front Ppf and the set of all agents explored Pall from CMA-ES, we create
several different subsets of the agents explored using the Objective Space. First, we create a near-
optimal set Pno using all points in the agents explored within dnear = 0.3 away in Euclidean distance
from every point in Ppf. Next, we use a Determinantal Point Process (DPP) to sample NDPPi = 20
samples from the near-optimal set into PDPPi. Multiple DPP subsets are used in our experiments.

Figure 8 shows the subsets of prototypes Pall, Ppf, Pno, and an example DPP subset PDPP1 in the 2D
Objective Space. This figure shows the coverage of explored agents in the Objective Space.

Figure 9: Episodic returns when training PPO policies. Moving average of 10 steps shown.

18

C Counterfactual Regret Prediction

In our experiments, we choose our game tree depth as m = 4 and the dimension of the Objective
Space as k = 2. The total number of branches is 43 = 64. The possible combinations of actions
taken between two agents are 642 = 4096 games. When Ninit = 20, the total number of games
played in data collection is 202 ∗ 4096 = 1638400. We calculated and collected the counterfactual
regret at each data point for querying. When two nodes are on the same branch of the game tree,
they have the same terminal utility.

We encode Objective Space values into fixed-length vectors with zero padding. Masks are set up
so that only positions with objective values are filled with ones; otherwise, zeros. All actions are
one-hot encoded. In total, the input feature size for the prediction model is 40. We use a multilayer
perceptron (MLP) with one hidden layer of size 2048 and leaky ReLU activation between layers.
We train the network with L1 loss, batch size of 1024, and Adam optimizer with adaptive learning
rate (starting at 0.005, reduce when validation loss plateaus for ten steps) in 2000 epochs.

D PPO Agents

RL agents used for the comparison are trained using continuous and discrete PPO in CleanRL [36].
We show the episodic returns for each agent in 9. The training is capped at 1000000 total time
steps, with 7000 steps between each policy update. The learning rate is annealed and starts at 3e-4
for continuous PPO and 2.5e-4 for discrete PPO. The discount factor for both is set at 0.99. The
λ for the general advantage estimation for both is set at 0.95. The epochs to update is 10 for the
continuous policy and 4 for the discrete policy. The surrogate clipping coefficient is 0.2 for both
policies. The entropy coefficient is 0 for the continuous policy and 0.01 for the discrete policy. The
coefficient for the value function is 0.5 for both policies. The maximum norm for gradient clipping
is 0.5 for both policies. The continuous action is sampled from a learned Gaussian with control input
limits. The discrete action is steering with 0.3, -0.3, and 0.0 steering angles, all with a velocity of
5.0 m/s. Agents get a reward of 0.01 for every time step not in collision, a reward of 40 for reaching
the end of two laps without collision. The gym environment is set with a timeout to avoid infinite
episodes.

19

	Introduction
	Contributions
	Related Work
	RL in Latent Space
	Regret Minimization with Approximation
	Value Decomposition

	Methodology
	Overview
	Agent Action Discretization
	Agent Population Synthesis
	Game Model and Notation
	Counterfactual Regret Minimization
	Collecting Game Samples

	Experiments
	Simulation Setup
	Motion Planning and Agent Parameterization
	Basis Function Definition and Population Synthesis
	Regret Prediction Model
	Simulated Racing
	Action Discretization in Learning
	Effect of being Game-theoretic
	Agent Characterization
	Facing Unknown Opponents

	Limitations and Future Work
	Conclusion
	Societal Impact
	Motion Planner
	Population-based Agent Optimization
	Counterfactual Regret Prediction
	PPO Agents

