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Abstract

We study pre-training representations for decision-making using video data, which1

is abundantly available for tasks such as game agents and software testing. Even2

though significant empirical advances have been made on this problem, a theoret-3

ical understanding remains absent. We initiate the theoretical investigation into4

principled approaches for representation learning and focus on learning the latent5

state representations of the underlying MDP using video data. We study two types6

of settings: one where there is iid noise in the observation, and a more challenging7

setting where there is also the presence of exogenous noise, which is non-iid noise8

that is temporally correlated, such as the motion of people or cars in the background.9

We study three commonly used approaches: autoencoding, temporal contrastive10

learning, and forward modeling. We prove upper bounds for temporal contrastive11

learning and forward modeling in the presence of only iid noise. We show that12

these approaches can learn the latent state and use it to do efficient downstream RL13

with polynomial sample complexity. When exogenous noise is also present, we14

establish a lower bound result showing that the sample complexity of learning from15

video data can be exponentially worse than learning from action-labeled trajectory16

data. This partially explains why reinforcement learning with video pre-training is17

hard. We evaluate these representational learning methods in three visual domains,18

yielding results that are consistent with our theoretical findings.19

1 Introduction20

Representations pre-trained on large amounts of offline data have led to significant advances in21

machine learning domains such as natural language processing [Liu et al., 2019, Brown et al., 2020]22

and multi-modal learning [Lin et al., 2021, Radford et al., 2021]. This has naturally prompted a23

similar undertaking in reinforcement learning (RL) with the goal of training a representation model24

that can be used in a policy to solve a downstream RL task. The natural choice of data for RL25

problems is trajectory data, which contains the agent’s observation along with actions taken by26

the agent and the rewards received by it [Sutton and Barto, 2018]. A line of work has proposed27

approaches for learning representations with trajectory data in both offline [Uehara et al., 2021, Islam28

et al., 2022] and online learning settings [Nachum et al., 2018, Bharadhwaj et al., 2022]. However,29

unlike text and image data, which are abundant on the internet or naturally generated by users,30

trajectory data is comparatively limited and expensive to collect. In contrast, video data, which31

only contains a sequence of observations (without any action or reward labeling), is often plentiful,32

especially for domains such as gaming and software. This motivates a line of work considering33

learning representations for RL using video data [Zhao et al., 2022]. But is there a principled34

foundation underlying these approaches? Are representations learned from video data as useful35

as representations learned from trajectory data? We initiate a theoretical understanding of these36
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Figure 1: A flowchart of our video pre-training phase. Left: We assume access to a large set of
videos (or, unlabeled episodes). Center: A representation learning method is used to train a model ϕ
which maps an observation to a vector representation. Right: This representation can be used in a
downstream task to do reinforcement learning or visualize the latent world state.

approaches to show when and how these approaches yield representations that can be used to solve a37

downstream RL task efficiently.38

Consider a representation learning pipeline shown in Figure 1. We are provided videos, or equivalently39

a sequence of observations, from agents navigating in the world. We make no assumption about the40

behavior of the agent in the video data. They can be trying to solve one task, many different tasks, or41

none at all. This video data is used to learn a model ϕ that maps any given observation to a vector42

representation. This representation is subsequently used to perform downstream RL — defining a43

policy on top of the learned representation and only training the policy for the downstream task. We44

can also use this representation to define a dynamics model or a critique model. The representation45

can also help visualize the agent state space or dynamics for the purpose of debugging.46

A suitable representation for performing RL efficiently is aligned with the underlying dynamics of47

the world. Ideally, the representation captures the latent agent state, which contains information about48

the world relevant to decision-making while ignoring any noise in the observation. For example,49

in Figure 1, ignoring noise such as the motion of geese in the background is desirable if the task50

involves walking on the pavement. We distinguish between two types of noise: (1) temporally51

independent noise that occurs at each time step independent of the history, (2) temporally dependent52

noise, or exogenous noise, that can evolve temporally but in a manner independent of the agent’s53

actions (such as the motion of geese in Figure 1).54

A range of approaches have been developed that provably recover the latent agent state from observa-55

tions using trajectory data [Misra et al., 2020, Efroni et al., 2022] which contains actions. However,56

for many domains there is relatively little trajectory data that exists naturally, making it expensive57

to scale these learning approaches. In contrast, video data is more naturally available but these58

prior provable approaches do not work with video data. On the other hand, it is unknown whether59

approaches that empirically work with video data provably recover the latent representation and lead60

to efficient RL. Motivated by this, we build a theoretical understanding of three such video-based61

representation learning approaches: autoencoder which trains representations by reconstructing62

observations, forward modeling which predicts future observations, and temporal contrastive learning63

which trains a representation to determine if a pair of observations are causally related or not.64

Our first theoretical result shows that in the absence of exogenous noise, forward modeling and65

temporal contrastive learning approaches both provably work. Further, they lead to efficient down-66

stream RL that is strictly more sample-efficient than solving these tasks without any pre-training.67

Our second theoretical result establishes a lower bound showing that in the presence of exogenous68

noise, any compact and frozen representation that is pre-trained using video data cannot be used to do69

efficient downstream RL. In contrast, if the trajectory data was available, efficient pre-training would70

be possible. This establishes a statistical gap showing that video-based representation pre-training71

can be exponentially harder than trajectory-based representation pre-training.72

We empirically test our theoretical results in three visual domains: GridWorld (a navigation domain),73

ViZDoom basic (a first-person 3D shooting game), and ViZDoom Defend The Center (a more74

challenging first-person 3D shooting game). We evaluate the aforementioned approaches along with75

ACRO [Islam et al., 2022], a representation pre-trained using trajectory data and designed to filter out76

exogenous noise. We observe that in accordance with our theory, both forward modeling and temporal77
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contrastive learning succeed at RL when there is no exogenous noise. However, in the presence78

of exogenous noise, their performance degrades. Specifically, we find that temporal contrastive79

learning is especially prone to fail in the presence of exogenous noise, as it can rely exclusively80

on such noise to optimally minimize the contrastive loss. While we find that forward modeling is81

somewhat robust to exogenous noise, however, as exogenous noise increases, its performance quickly82

degrades as well. While any finite-sample guarantees for the autoencoding method remain an open83

question, empirically, we find that the performance of autoencoder-based representation learning is84

unpredictable. On the other hand, ACRO continues to perform well, highlighting a disadvantage of85

video pre-training. The code for all experiments will be made available at <url-redacted>.86

2 Representation Learning for RL using Video Dataset87

We assume access to a dataset D of n videos D = {(x(i)
1 , x

(i)
2 , · · · , x(i)

H )}ni=1 where x
(i)
j is the jth88

observation (or frame) of the ith video. We are provided a decoder class Φ = {ϕ : X → [N ]},89

and our goal is to learn a decoder ϕ ∈ Φ that captures task-relevant information in the underlying90

state ϕ⋆(x) while throwing away as much exogenous noise as possible. Instead of proposing a new91

algorithm, we analyze the following three classes of well-known video-based representation learning92

methods. Our goal is to understand whether these methods provably learn useful representations.93

Autoencoder. This approach first maps a given observation x to an abstract state ϕ(x) using a decoder94

ϕ ∈ Φ, and then uses it to reconstruct the observation x with the aid of a reconstruction model class95

Z = {z : [N ] → X}. Formally, we optimize the following loss:96

ℓauto(z, ϕ) =
1

nH

n∑
i=1

H∑
h=1

∥z(ϕ(x(i)
h ))− x

(i)
h ∥22. (1)

In practice, autoencoders are typically implemented using a Vector Quantized bottleneck trained in a97

Variational AutoEncoder manner, which is called the VQ-VAE approach [Oord et al., 2017].98

Forward Modeling. This approach is similar to the autoencoder approach but instead of re-99

constructing the input observation, we reconstruct a future observation using a model class100

F = {f : [N ]× [K] → ∆(X )} where N is the output size of the decoder class Φ and K ∈ N101

is a hyperparameter representing the forward time steps from the current observation. We collect a102

dataset of multistep transitions Dfor = {(x(i), k(i), x′(i))}ni=1 sampled iid using the video dataset D103

where the observation x(i) is sampled randomly from the ith video, k(i) ∈ [K], and x′(i) is the frame104

k(i)-steps ahead of x(i) in the ith video. We distinguish between two types of sampling procedures,105

one where k(i) is always a fixed given value k ∈ [K], and one where k(i) ∼ Unf ([K]). Given the106

dataset Dfor, we optimize the following loss:107

ℓfor(f, ϕ) =
1

n

n∑
i=1

ln f
(
x′(i) | ϕ(x(i)), k(i)

)
. (2)

Temporal Contrastive Learning. Finally, this approach trains the decoder ϕ to learn to separate a108

pair of temporally causal observations from a pair of temporally acausal observations. We collect109

a dataset of Dtemp = {(x(i), k(i), x′(i), z(i))}⌊n/2⌋i=1 tuples using the multistep transitions dataset110

Dfor. We use 2 multistep transitions to create a single datapoint for Dtemp to keep the datapoints111

independent. To create the ith datapoint for Dtemp, we use the multistep transitions (x(2i), k(2i), x′(2i))112

and (x(2i+1), k(2i+1), x′(2i+1)) and sample z(i) ∼ Unf({0, 1}). If z(i) = 1, then our ith datapoint113

is a causal observation pair (x(2i), k(2i), x′(2i), z(i)), otherwise, it is an acausal observation pair114

(x(2i), k(2i), x(2i+1), z(i)). Depending on how we sample k, we collect a different dataset Dfor, and115

accordingly a different dataset Dtemp. Given the dataset Dtemp, we optimize the following loss using a116

regression model g belonging to a model class G = {g : X × [K]×X → [0, 1]}:117

ℓtemp(g, ϕ) =
1

⌊n/2⌋

⌊n/2⌋∑
i=1

(
z(i) − g(ϕ(x(i)), k(i), x′(i))

)2
. (3)

Practical Implementations. We use the aforementioned description of methods for theoretical118

analysis. However, their practical implementations differ in a few notable ways. Most importantly119

3



we either use a continuous vector representation ϕ : X → Rd for modeling Φ, or apply a Vector120

Quantized (VQ) bottleneck [Oord et al., 2017] on top of the vector representation to model a discrete-121

representation decoder. We also optimize the loss using minibatches and use square loss for training122

forward modeling and SimCLR loss [Chen et al., 2020] for contrastive learning. We experimentally123

show that our theoretical findings extend to these practical implementations.124

3 Is Video Based Representation Learning Provably Correct?125

In this section, we present our main theoretical results. We first prove that both forward modeling and126

temporal contrastive methods succeed when there is no exogenous noise. We then establish a lower127

bound showing that video-based representation learning is exponentially harder than trajectory-based128

representation learning. We defer all proofs to the Appendix and only provide a sketch here.129

3.1 Upper Bound in Block MDP Setting130

We start by stating our theoretical setting and our main assumptions.131

Theoretical Setting. We assume a Block MDP setting and access to a dataset D =132 {
(x

(i)
1 , x

(i)
2 , · · · , x(i)

H )
}n

i=1
of n independent and identically distributed (iid) videos sampled from133

data distribution D. We denote the probability of a video as D(x1, x2, · · · , xH). We assume that D134

is generated by a mixture of Markovian policies ΠD, i.e., the generative procedure for D is to sample135

a policy π ∈ ΠD with some probability and then generate an entire episode using it. We assume136

that observations encode time steps. This can be trivially accomplished by simply concatenating the137

time step information to the observation. We also assume that the video data has good state space138

coverage and that the data is collected by noise-free policies.139

Assumption 1 (Requirements on Data Collection). There exists an ηmin > 0 such that if s is a state140

reachable at time step h by some policy in Π, then D (ϕ⋆(xh) = s) ≥ ηmin. Further, we assume that141

every data collection policy π ∈ ΠD is noise-free, i.e., π(a | xh) = π(a | ϕ⋆(xh)) for all (a, xh).142

Justification for Assumption 1 In practice, we expect this assumption to hold for tasks such as143

gaming, or software debugging, where video data is abundant and, therefore, can be expected144

to provide good coverage of the underlying state space. This assumption is far weaker than the145

assumption in batch RL which also requires actions and rewards to be labeled, which makes it more146

expensive to collect data that has good coverage [Chen and Jiang, 2019]. Further, unlike imitation147

learning from observations (ILO) [Torabi et al., 2019], we don’t require that these videos provide148

demonstrations of the desired behavior. E.g., video streaming of games is extremely common on the149

internet, and one can get many hours of video data this way. However, this data wouldn’t come with150

actions (which will be mouse or keyboard strokes) or reward labeling, and the game levels or tasks151

in the data can be different or even unrelated to the downstream tasks we want to solve. As such, the152

video data do not provide demonstrations of the desired task. Further, as the video data is typically153

generated by humans, we can expect the data collection policies to be noise-free, as these policies are154

realized by humans who would not make decisions based on noise. E.g., a human player is unlikely155

to turn left due to the background motion of leaves that is unrelated to the game’s control or objective.156

We analyze the temporal contrastive learning and forward modeling approaches and derive upper157

bounds for these methods in Block MDPs. While autoencoder-based approaches sometimes do158

well in practice, it is an open question whether finite-sample bounds exist for them and we leave159

their theoretical analysis to future work and instead evaluate them empirically. In addition to the160

decoder class Φ, we assume a function class F to model f for forward modeling and G to model g161

for temporal contrastive learning. We make a realizability assumption on these function classes.162

Assumption 2 (Realizability). There exists f⋆ ∈ F , g⋆ ∈ G and ϕfor, ϕtemp ∈ Φ such that f⋆(X ′ |163

ϕfor(x), k) = Pfor(X
′ | x, k) and g⋆(z | ϕtemp(x), k, x

′) = Ptemp(z = 1 | x, k, x′) on the appropriate164

support, and where Pfor and Ptemp are respectively the Bayes classifier for the forward modeling and165

temporal contrastive learning methods.166

Justification for Assumption 2. Realizability is a typical assumption made in theoretical analysis of167

RL algorithms [Agarwal et al., 2020]. Intuitively, the assumption states that the function classes are168

expressive enough to represent the Bayes classifier of their problem. In practice, this is usually not a169
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concern as we will use expressive deep neural networks to model these function classes. We will170

empirically show the feasibility of this assumption in our experiments.171

Finally, we assume that our data distribution has the required information to separate the latent states.172

We state this assumption formally below and then show settings where this is true.173

Assumption 3 (Margin Assumption). We assume that the margins βfor and βtemp defined below:174

βfor = inf
s1,s2∈S,s1 ̸=s2

Ek

[
∥Pfor(X

′ | s1, k)− Pfor(X
′ | s2, k)∥TV

]
βtemp = inf

s1,s2∈S,s1 ̸=s2

1

2
Ek,s′ [|Ptemp(z = 1 | s1, k, s′)− Ptemp(z = 1 | s2, k, s′)|] ,

are strictly positive, and where in the definition of βtemp, we sample s′ from the video data distribution175

and k is sampled according to our data collection procedure.176

Justification for Assumption 3. This assumption states that we need margins (βfor) for forward177

modeling and (βtemp) for temporal contrastive learning. A common scenario where these assump-178

tions are true is when for any pair of different states s1, s2, there is a third state s′ that is reachable179

from one but not the other. If the video data distribution D supports all underlying transitions, then180

this immediately implies that ∥Pfor(X
′ | s1, k)− Pfor(X

′ | s2, k)∥TV > 0 which implies βfor > 0.181

This scenario occurs in almost all navigation tasks. Specifically, it occurs in the three domains we182

experiment with. While it is less clear, under this assumption we also have βtemp > 0.183

We now state our main result for forward modeling under Assumption 1-3.184

Theorem 1 (Forward Modeling Result). Fix ϵ > 0 and δ ∈ (0, 1) and let A be any prov-185

ably efficient RL algorithm for tabular MDPs with sample complexity nsamp(S,A,H, ϵ, δ). If186

n is poly
{
S,H, 1/ηmin, 1/βfor, 1/ϵ, ln(1/δ), ln|F|, ln|Φ|} for a suitable polynomial, then forward187

modeling learns a decoder ϕ̂ : X → [|S|]. Further, running A on the tabular MDP with188

nsamp(S,A,H, T, ϵ/2, δ/4) episodes returns a latent policy φ̂. Then there exists a bijective mapping189

α : S → [|S|] such that with probability at least 1− δ we have:190

∀s ∈ S, Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1− 4S3H2

η2minβfor

√
1

n
ln

( |F|·|Φ|
δ

)
,

and the learned observation-based policy φ̂ ◦ ϕ̂ : x 7→ φ̂(ϕ̂(x)) is ϵ-optimal, i.e.,191

V (π⋆)− V (φ̂ ◦ ϕ̂) ≤ ϵ.

Finally, the number of online episodes used in the downstream RL task is given by192

nsamp(S,A,H, ϵ◦/2, δ◦/4) and doesn’t scale with the complexity of function classes Φ and F .193

The result for temporal contrastive is identical to Theorem 1 but instead of βfor we have βtemp and194

instead of F we have G. These upper bounds provide the desired result which shows that not only195

can we learn the right representation and near-optimal policy but also do so without online episodes196

scaling with ln|Φ|. Typically, the function class for forward modeling F is much more complex than197

G, however, as we show in Appendix C.5, the margin for forward modeling βfor is larger than for198

contrastive learning βtemp leading to a trade-off between these two approaches.199

3.2 Learning from Video is Exponentially Harder than Learning from Trajectory Data200

When online RL is possible, there exist algorithms Misra et al. [2020], Efroni et al. [2022] that can201

learn an accurate latent state decoder ϕ̂ with high probability and use it to learn near-optimal policies.202

These methods train the decoder using online trajectory data. This begs the following question: Is it203

possible to learn a latent state decoder that is useful for performing RL using offline video data? As204

the next result shows, this is not always the case.205

Theorem 2 (Lower Bound for Video). Suppose |S|, |A|, H ≥ 2. Then, for any ε ∈ (0, 1), any206

algorithm A1 that outputs a state decoder ϕ with ϕh : X → [L], L ≤ 21/4ε−1, ∀h ∈ [H] given a207

video dataset D sampled from some MDP and satisfies Assumption 1, and any online RL algorithm208

A2 uses that state decoder ϕ in its interaction with such an MDP (i.e., A2 only observes states209
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through ϕ) and output a policy π̂, there exists an MDP instance M in a class of MDPs which satisfies210

Assumption 3 and is PAC learnable with Õ(poly(|S|, |A|, H, 1/ε)) complexity, such that211

VM (π⋆
M )− VM (π̂) > ε,

regardless of the size of the video dataset D for algorithm A1 and the number of episodes of212

interaction for algorithm A2.213

The basic idea behind that hard instance construction is that, without the action information, it is214

impossible for the learning agent to distinguish between endogenous states and exogenous noise. For215

example, consider an image consisting of N ×N identical mazes but where the agent controls just216

one maze. Other mazes contain other agents which are exogenous for our purpose. In the absence of217

actions, we cannot tell which maze is the one we are controlling and must memorize the configuration218

of all N ×N mazes which grow exponentially with N . Another implication from that hard instance219

is – if the margin condition (Assumption 3) is violated, the exponentially large state decoder is also220

required for the regular block MDP without exogenous noise; a detailed discussion can also be found221

in Section C.3. We also discuss settings where we may be able to efficient-learning with just video222

data with additional assumptions in Appendix C.4.223

4 Experimental Results and Discussion224

We empirically evaluate the above video-based representation learning methods on three visual225

environments: a gridworld environment and two VizDoom environments. We defer the results on one226

of the Vizdoom environments along with additional experimental details and results to Appendix D.227

Our main goal is to validate our theoretical findings by evaluating these methods in the presence and228

absence of exogenous noise and comparing their performance with a trajectory-based method.229

4.1 Experimental Details230

GridWorld. We consider navigation in a 12× 12 Minigrid environment [Chevalier-Boisvert et al.,231

2023]. The agent (red triangle) can only observe an area around itself, and the goal is to reach the key232

quickly (Fig. 3). The position of the agent and key randomizes each episode.233

ViZDoom Defend the Center This is a first-person shooting game [Wydmuch et al., 2018, Kempka234

et al., 2016], in which the player needs to kill a variety of monsters to score (Fig. 5). The episode235

ends when the monster is killed or after 500 steps.236

Exogenous Noise. For all domains, the observation is an RGB image. We add exogenous noise237

to it by superimposing 10 generated diamonds of a particular size. The color and position of238

these diamonds are our exogenous state. At the start of each episode, we randomly generate these239

diamonds, after which they move in a deterministic path. We also test the setting in which there240

is exogenous noise in the reward. We compute a score based on just the exogenous noise and add241

it to the reward presented to the agent. However, the agent is still evaluated on the original reward.242

Model and Learning. Our decoder class Φ is a convolutional neural network. We use a deconvolu-243

tional neural network to model f and h. We experimented with both using a vector representation for244

ϕ and also using a VQ-bottleneck to discretize the embeddings. We use PPO to do downstream RL245

and keep ϕ frozen during the RL training. We also visualize the learned representations by training246

a decoder on them and fixing ϕ to reconstruct the input observations. We then look at the generated247

images to see what information from the observation is preserved by the representation.248

ACRO. We also evaluate the learned representations against ACRO [Islam et al., 2022] which249

uses trajectory data. This approach learns representation ϕ by predicting action given a pair of250

observations E [ln p(ah | ϕ(xh), xh+k, k)]. ACRO is designed to filter out exogenous noise as this251

information is not predictive of the action. Our goal is to test if we get much better representations252

if we have access to trajectory data instead of video data.253

4.2 Empirical Results and Discussion254

We present our main empirical results in Fig. 2 and Fig. 4 and discuss the results below.255

Forward modeling and temporal contrastive both work when there is no exogenous noise. In256

accordance with Theorem 1, we observe that in the case of both GridWorld (Figure 2) and ViZDoom257
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(a) No Noise (b) Only Observation Noise (c) Only Reward Noise (d) Both

Figure 2: RL experiments in the GridWorld environment.

(a) Original (b) Forward Model (c) Autoencoder (d) Contrastive

Figure 3: Decoded image reconstructions for different methods in the GridWorld environment. We
train a reconstruction model on top of frozen learned representations ϕ trained with a given video-
based method. Top row: shows an example from the setting where there is no exogenous noise.
Bottom row: shows an example with exogenous noise (colored diamond shapes).

(a) No Noise (b) Only Observation Noise (c) Only Reward Noise (d) Both

Figure 4: RL experiments using different latent representations for the ViZDoom Defend the Center
environment.

Defend the Center (Figure 4), these approaches learn a decoder ϕ that lead to success with RL258

in the absence of any exogenous noise. For GridWorld, we find support for this result with VQ259

bottleneck during representation learning (Fig. 2(a)) whereas for ViZDoom Defend the Center,260

we find support for this result even without the use of a VQ bottleneck (Fig. 4(a)). These results261

are further supported via qualitative evaluation through image decoding from the learned latent262

representations (Fig. 3) which show that these representations can recover critical elements like walls.263

We find that autoencoder performs well in ViZDoom Defend the Center but not in gridworld, which264

aligns with a lack of any theoretical understanding of autoencoders.265

Performance with exogenous noise. We find that in the presence of exogenous noise (Figure 2, Fig-266

ure 4), representations from forward modeling achieve a lower performance specially in gridworld,267

whereas temporal contrastive representations completely fail. One hypothesis for the stark failure of268
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(a) Original (b) Forward Modeling (c) Autoencoder (d) Temporal Contrastive

Figure 5: Decoded image reconstructions for different methods in ViZDoom Defend the Center.

temporal contrastive learning is that the agent can tell whether two observations are causal or not, by269

simply focusing on the noisy diamonds that move in a predictive manner. Therefore, the contrastive270

learning loss can be reduced by focusing entirely on the exogenous noise. Whereas, forward modeling271

is more robust as it needs to predict future observations, and the agent’s state is more helpful for272

doing that than noise. This shows in the reconstructions (Figure 3(b)(d), Figure 5(b)(d)). As expected,273

the reconstructions for forward modeling continue to capture state-relevant information, whereas for274

temporal contrastive they focus on noise and miss relevant state information. In Appendix C.6, we275

formally prove that there exists an instance where forward modeling can recover the latent state for276

low-levels of exogenous noise, whereas temporal contrastive cannot do so for any level of exogenous277

noise.278

(a) ACRO (b) Forward Modeling

Figure 6: RL performance with varying size for exogenous
noise in the GridWorld environment.

Comparison with ACRO. Finally,279

we draw a comparison between the280

performance of video-pretrained rep-281

resentation and ACRO which uses282

trajectory data. ACRO achieves283

the strongest performance across all284

tasks (Figure 2, Figure 4). Ad-285

ditionally, we also observe that as286

we increase the size of the exoge-287

nous noise elements in the obser-288

vation space (Figure 6), the perfor-289

mance of forward modeling, the over-290

all best video-based approach, de-291

grades more drastically compared to292

ACRO. This agrees with our theoreti-293

cal finding (Theorem 2) that learning representations from video-based data is significantly harder294

than trajectory-based data when exogenous noise is present.295

5 Conclusion296

Videos are a naturally available source of data for training representations for RL. In this work,297

we study whether existing video-based representation learning methods are provably effective for298

downstream RL tasks. We provide both upper and lower bounds for these methods in two theoretical299

settings and provide empirical validation of our findings on three visual domains. Using our theoretical300

tools to develop better video-based representation learning methods and extending our analysis to301

other formal settings are natural future work directions.302
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A Preliminaries and Overview431

In this section, we provide a formal overview of our learning setup and problem statement.432

Mathematical Notation. We use [N ] for N ∈ N to define the set {1, 2, · · · , N}. We assume all sets433

to be countable. For a given set U , we denote its cardinality by |U| and define ∆(U) as the space of434

all distributions over U . We denote the uniform distribution over U by Unf(U). Finally, poly{·}435

denotes a term that scales polynomially in the listed quantities.436

Block MDPs. We study episodic RL in Block Markov Decision Processes (Block MDP) [Du et al.,437

2019]. A Block MDP is defined by the tuple (X ,S,A, T,R, q, µ,H) where X is a set of observations438

that can be infinitely large, S is a finite set of latent states, and A is a set of finite actions. The439

transition dynamics T : S × A → ∆(S) define transitions in the latent state space. The reward440

function R : S ×A → [0, 1] assigns a reward R(s, a) if action a is taken in the latent state s. When441

the agent visits a state s, it receives an observation x ∼ q(· | s) sampled from an emission function442

q : S → ∆(X ). This emission process contains temporally independent noise but no exogenous443

noise. Finally, µ ∈ ∆(S) is the distribution over the initial latent state and H is the horizon denoting444

the number of actions per episode. The agent interacts with a block MDP environment by repeatedly445

generating an episode (x1, a1, r1, · · · , xH , aH , rH) where s1 ∼ µ and for all h ∈ [H] we have446

xh ∼ q(· | sh), rh = R(sh, ah), and sh+1 ∼ T (· | sh, ah), and all actions {ah}Hh=1 are taken by the447

agent. The agent never directly observes the latent states (s1, s2, · · · , sH).448

A key assumption in Block MDPs is that two different latent states cannot generate the same449

observation. This is called the disjoint emission property and holds in many game and OS settings.450

Formally, this property allows us to define a decoder ϕ⋆ : X → S that maps an observation to the451

unique state that can generate it. The agent does not have access to ϕ⋆. If the agent had access to ϕ⋆,452

one could map each observation from an infinitely large space to the finite latent state space, which453

allows the use of classical finite RL methods [Kearns and Singh, 2002].454

Exogenous Block MDPs (Ex-Block MDP). We also consider RL in Exogenous Block MDPs (Ex-455

Block MDPs) that extend Block MDPs to include exogenous noise [Efroni et al., 2022]. An Ex-Block456

MDP is defined by (X ,S,Ξ,A, T, Tξ, R, q,H, µ, µξ) where X ,S,A, T,R,H and µ have the same457

meaning and type as in Block MDPs. The additional quantities include Ξ which is the space of458

exogenous noise and can be infinitely large. We use the notation ξ ∈ Ξ to denote the exogenous noise.459

For the setting in Fig. 1, the exogenous noise variable ξ captures variables such as the position of460

geese, the position of leaves on the trees in the background, and lighting conditions. The exogenous461

noise ξ changes with time according to the transition function Tξ : Ξ → ∆(Ξ) and is at start sampled462

from µξ. Note that unlike the agent state s ∈ S, the exogenous noise ξ ∈ Ξ, evolves independently463

of the agent’s action and does not influence the evolution of the agent’s state. The emission process464

q : S × Ξ → ∆(X ) in Ex-Block MDP uses both the current agent state and exogenous noise, to465

generate the observation at a given time. For example, the image generated by the agent’s camera466

contains information based on the agent’s state (e.g., agent’s position and orientation), along with467

exogenous noise (e.g., the position of geese). Similar to the Block MDP, we assume there exists468

unknown decoders ϕ⋆ : X → S and ϕ⋆
ξ : X → ξ that can map an observation to the current agent469

state s and exogenous ξ respectively.470

Provable RL. We assume access to a policy class Π = {π : X → A} where a policy π ∈ Π allows the471

agent to take actions. For a given policy π, we use Eπ [·] to denote expectation taken over an episode472

generated by sampling actions from π. We define the value of a policy V (π) = Eπ

[∑H
h=1 rh

]
473

as the expected total reward or expected return. Our goal is to learn a near-optimal policy π̂, i.e.,474

supπ∈Π V (π) − V (π̂) ≤ ϵ with probability at least 1 − δ for a given tolerance parameter ϵ > 0475

and failure probability δ ∈ (0, 1), using number of episodes that scale polynomially in 1/ϵ, 1/δ, and476

other relevant quantities. We will call such an algorithm as provably efficient. There exist several477

provably efficient RL approaches for solving Block MDPs [Mhammedi et al., 2023, Misra et al.,478

2020], and Ex-Block MDPs [Efroni et al., 2022]. These approaches typically assume access to a479

decoder class Φ = {ϕ : X → [N ]} and attempt to learn ϕ⋆ using it. These algorithms don’t use480

any pre-training and instead directly interact with the environment and learn a near-optimal policy481

by using samples that scale with poly(S,A,H, ln|Φ|, 1/ϵ, 1/δ). Crucially, the dependence on ln|Φ|482

cannot be removed. The decoder class Φ and all other function classes in this work are assumed to483
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have bounded statistical complexity measures. For simplicity, we will assume that these function484

classes are finite and derive guarantees that scale logarithmically in their size (e.g., ln|Π|).1485

Representation Pre-training using Videos. RL algorithms for the above settings require online486

episodes that scale with ln|Φ| which is expensive for real-world problems where Φ is represented by a487

complex neural network. Offline RL approaches Uehara et al. [2021] offer a substitute for expensive488

online interactions but require access to labeled episodes (with actions and rewards) that are not489

naturally available in many settings such as games and software. In contrast, we focus on pre-training490

the decoder ϕ using video data which is naturally available in these settings.491

Problem Statement. We are given two hyperparameters ϵ > 0 and δ ∈ (0, 1) and a sufficiently large492

dataset of videos. We are also given a decoder class Φ = {ϕ : X → [N ]} containing decoders that493

map an observation to one of the N possible abstract states. During the pre-training phase, we learn494

a decoder ϕ ∈ Φ using the video data. We then freeze ϕ and use it to do RL in a downstream task.495

Instead of using any particular choice of algorithm for RL, we assume we are given a provably efficient496

tabular RL algorithm A . We convert the observation-based RL problem to a tabular MDP problem by497

converting an observation x to its abstract state representation ϕ(x) using the frozen learned decoder498

ϕ. The algorithm A uses ϕ(x) instead of x and outputs an abstract policy φ : [N ] → A. We want499

that supπ∈Π V (π) − V (φ ◦ ϕ) ≤ ϵ with probability at least 1 − δ, where φ ◦ ϕ : x 7→ φ(ϕ(x)) is500

our learned policy. We also require the number of online episodes in the downstream RL phase to501

not scale with the size of the decoder class Φ. This allows us to minimize expensive online episodes502

while using naturally available offline video data for pre-training.503

B Additional Related Work504

Representation Learning for Reinforcement Learning A line of research on recurrent state space505

models is essentially concerned with the next-frame approach, although typically with conditioning on506

actions. Moreover, to model uncertainty in the observations, a latent variable with a posterior depend-507

ing on the current observation (or even a sequence of future observations) is typically introduced. [Ke508

et al., 2019] considered learning such a sequential prediction model which predicts observations and509

conditions on actions. They used a latent variable with a posterior depending on future observations510

to model uncertainty. These representations were used for model-predictive control and improved511

imitation learning. Dreamer [Hafner et al., 2019, 2023] uses the next-frame objective but also condi-512

tions on actions. The IRIS algorithm [Micheli et al., 2023] uses the next-frame objective but uses the513

transformer architecture, again conditioning on actions. The InfoPower approach [Bharadhwaj et al.,514

2022] combines a one-step inverse model with a temporal contrastive objective. Sobal et al. [2022]515

explored using semi-supervised objectives for learning representations in RL, yet used action-labeled516

data. Wang et al. [2022] used a decoupled recurrent neural network approach to learn to extract517

endogenous states, but relied on action-labeled data to achieve the factorization. Deep Bisimulation518

for Control [Zhang et al., 2020] introduced an objective to encourage observations with similar value519

functions to map to similar representations.520

Self-prediction methods such as BYOL-explore [Guo et al., 2022] proposed learning reward-free521

representations for exploration, but depended on open-loop prediction of future states conditioned on522

actions . An analysis paper studied a simplified action-free version of the self-prediction objective523

[Tang et al., 2023] and showed results in the absence of using actions, although this has not been524

instantiated empirically to our knowledge.525

A further line of work from theoretical reinforcemnt learning has examined provably efficient526

objectives for discovering representations. Efroni et al. [2022] explored representation learning in527

the presence of exogenous noise, establishing a sample efficient algorithm. However Efroni et al.528

[2022] and the closely related work on filtering exogenous noise required actions [Lamb et al., 2022,529

Islam et al., 2022]. Other theoretical work on learning representations for RL has required access to530

action-labeled data [Misra et al., 2020].531

Representation Learning from Videos Self-supervised representation learning from videos has532

a long history. Srivastava et al. [2015] used recurrent neural networks with a pixel prediction533

objective on future frames. Parthasarathy et al. [2022] explored temporal contrastive objectives for534

self-supervised learning from videos. They also found that the features learned well aligned with535

1Our theoretical analyses can be extended to other complexity metrics such as Rademacher complexity.
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human perceptual priors, despite the model not being explicitly trained to achieve such alignment.536

Aubret et al. [2023] applied temporal contrastive learning to videos of objects being manipulated in a537

3D space, showing that this outperformed standard augmentations used in computer vision.538

Using Video Data for Reinforcement Learning The VIPER method [Escontrela et al., 2023] uses539

a pre-trained autoregressive generative model over action-free expert videos as a reward signal for540

training an imitation learning agent. The Video Pre-training (VPT) algorithm [Baker et al., 2022]541

trained an inverse kinematics model on a small dataset of Minecraft videos and used the model542

to label a large set of unlabeled Minecraft videos from the internet. This larger dataset was then543

used for imitation learning and reinforcement learning for downstream tasks. Zhao et al. [2022]544

explicitly studied the challenges in using videos for representation learning in RL, identifying five545

key factors: task mismatch, camera configuration, visual feature shift, sub-optimal behaviors in the546

data, and robot morphology. Goo and Niekum [2019] learn reward functions for multi-step tasks547

from videos by leveraging a single video segmented with action labels (one-shot learning). Sikchi548

et al. [2022] propose a two-player ranking game between a policy and a reward function to satisfy549

pairwise performance rankings between behaviors. Their proposed method achieves state-of-the-art550

sample efficiency and can solve previously unsolvable tasks in the learning from observation (no551

actions) setting.552

Recently some approaches have also considered recovering latent actions from video data using an553

encoder-decoder approach [Ye et al., 2022]. In general, the lower bound in Theorem 2 applies to these554

methods and they do not provably work in the hard instances with exogenous noise. For example,555

the latent actions can capture exogenous noise instead of actions, if the former is more predictive of556

changes in the observations. However, in simpler cases such as 3D games, where the agent’s action is557

typically most predictive of changes in observations, or in settings with no exogenous noise, one can558

expect these approaches to do well.559

C Proofs of Theoretical Statements560

We state our setting and general assumptions before presenting method specific results. We also561

include a table of notations in Table 1.

Notation Description

[N ] Denotes the set {1, 2, · · · , N}
∆(U) Denotes the set of all distributions over a set U
Unf(U) Uniform distribution over U
supp(P) Support of a distribution P ∈ ∆(U), i.e., supp(P) = {x ∈ U | P(x) > 0}.
X Observation space
S Latent endogenous state
A Action space
T : S → A → ∆(S) Transition dynamics
R : S ×A → [0, 1] Reward function
µ Start state distribution
H Horizon indicating the maximum number of actions per episode
ϕ⋆ : X → S Endogenous state decoder

Table 1: Description for mathematical notations.

562

We are given a dataset D =
{
(x

(i)
1 , x

(i)
2 , · · · , x(i)

H )
}n

i=1
of n independent and identically distributed563

(iid) unlabeled episodes. We will use the word video and unlabeled episodes interchangeably. We564

assume the underlying data distribution is D. We denote the probability of an unlabeled episode as565

D(x1, x2, · · · , xH). We assume that D is generated by a mixture of Markovian policies ΠD, i.e., the566

generative procedure for D is to sample a policy π ∈ ΠD with probability Θπ and then generate567

an entire episode using it. For this reason, we will denote D = Θ ◦ ΠD where Θ is the mixture568

distribution. We assume no direct knowledge about either ΠD or Θ, other than that the set of policies569

in ΠD are Markovian. We define the underlying distribution over the action-labeled episode as570
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D(x1, a1, x2, · · · , xH , aH), of which the agent only gets to observe the (x1, x2, · · · , xH). We will571

use the notation D to refer to any distribution that is derived from the above joint distribution.572

We assume that observations encode time steps. This can be trivially accomplished by simply573

concatenating the time step information to the observation. This also implies that observations from574

different time steps are different. Because of this property, we can assume that the Markovian policies575

used to realize D were time homogenous, i.e., they only depend on observation and not observation576

and timestep pair (this is because we include timesteps in the observation). Therefore, for all h ∈ [H]577

and k ∈ N we have:578

D(xh+k = x′ | xh = x) = D(xk+1 = x′ | x1 = x) (4)

We denote D(xh) to define the marginal distribution over an observation xh, and D(xh, xh+k) to579

denote the marginal distribution over a pair of observations (xh, xh+k) in the episode. We similarly580

define D(xh, ah) as the distribution over observation action pairs (xh, ah).581

We assume that the video data has good coverage. This is stated formally below:582

Assumption 4 (State Coverage by D). Given our policy class Π, there exists an ηmin > 0 such thatif583

supπ∈Π Pπ(sh = s) > 0 for some s ∈ S, then we assume D (ϕ⋆(xh) = s) ≥ ηmin.584

In practice, Assumption 4 can be satisfied since videos are more easily available than labeled episodes585

and we can hope that a large diverse collection of videos can provide reasonable coverage over the586

underlying state action space. E.g., for tasks like gaming, one can use hours of streaming data from587

many users.588

Further, we also assume that the data policy depends only on the endogenous state. Recall that for an589

observation x ∈ X , its endogenous state is given by ϕ⋆(x) ∈ S.590

Assumption 5 (Noise-Free Video Distribution). For any h, π ∈ ΠD, xh ∈ supp Pπ and a ∈ A, we591

have592

π(a | xh) = π(a | ϕ⋆(xh)).

Justification of Noise-Free Policy. Typically, video data is created by humans. E.g., a human may593

be playing a game and the video data is collected by recording the user’s screen. A user is unlikely to594

take actions relying on iid or exogenous noise in the observation process. Therefore, the collected595

data can be expected to obey the noise-free assumption.596

Multi-step transition. We choose to analyze a multi-step variant of standard temporal contrastive597

and forward modeling algorithms that train on a dataset of pairs of observations (x, x′) that can be598

variable time steps apart. As our proof will show, this gives the algorithms more expressibility and599

allows them to learn correct representations for some problems that their single-step variants (i.e., the600

observations are adjacent) or fixed time-step variants (i.e., the observations are fixed time steps apart)601

cannot solve. We will use the variable k to denote the time steps by which these observations differ.602

Formally, we will call (x, k, x′) as a multi-step transition where x was observed at some time step h,603

and x′ was observed at h+ k. For the single-step variant of the algorithms, we have k = 1. For the604

fixed multi-step variant, we have k > 1 but k is fixed. Finally, in the general multi-step variant, we605

will assume that k is picked from Unf([K]) where K is a fixed upper bound.606

Extending episode to H +K. When using k > 1, we may want to collect a multi-step transition607

(x, k, x′) where x = xH to allow learning state representation for time step H . However, at this point,608

we don’t have time steps left to observe xH+k. We alleviate this by assuming that we can allow an609

episode to run till H +K if necessary. In practice, this is not a problem where the algorithm sets the610

horizon and not the environment. However, if we cannot go past H , then we can instead assume that611

all states are reachable by the time step H −K and so their state representation can be learned when612

x is selected at xH−K . In our analysis ahead, we make the former setting that the episodes can be613

extended to H +K, but it can be easily rephrased to work with the other setting.614

For both the forward model and the temporal contrastive approach, we assume access to a dataset615

Dfor =
(
(x(i), k(i), x′(i))

)n
i=1

of pairs of observations. We define a few different distributions that616

can be used to generate this set. For a given k ∈ [K], we define a distribution Dk over k-step separate617
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observations as:618

Dk (X = x,X ′ = x′) =
1

H

H∑
h=1

D(xh = x, xh+k = x′) (5)

We can sample (x, k, x′) ∼ Dk(X,X ′) by sampling an episode (x1, x2, · · · , xH) ∼ D, and then619

sampling a h ∼ Unf([H]), and choosing x = xh and x′ = xh+k.620

We also define a distribution Dunf where we also sample k uniformly over available choices:621

Dunf (X = x, k,X ′ = x′) =
1

K
Dk(xh = x, xh+k = x′) (6)

We can sample (x, k, x′) ∼ Dunf(X,X ′) by sampling an episode (x1, x2, · · · , xH) ∼ D, and then622

sampling h ∈ [H], and sampling k ∈ [K], and choosing (xh, xh+k) as the selected pair.623

We define a useful notation ρ ∈ ∆(X ) as:624

ρ(X = x) =
1

H

H∑
h=1

D(xh = x). (7)

The distribution ρ(X) is a good distribution to sample from as it covers states across all time steps.625

Finally, because of Assumption 4, we have the following:626

∀s ∈ S, ρ(s) ≥ ηmin
H

(8)

This is because we assume every state s ∈ S, is visited at some time step t, and so we have627

D(st = s) ≥ ηmin, and ρ(s) = 1
H

∑H
h=1 D(sh = s) ≥ 1

HD(st = s) ≥ ηmin
H .628

It can be easily verified that for both Dk(X,X ′) and Dunf(X,X ′), their marginals over X is given629

by ρ(X). Both Dk and Dunf satisfy the noise-free property. We prove this using the next two630

Lemma.s631

Lemma 1 (Property of Noise-Free policy). Let π be a policy such that for any x ∈ X , we have632

π(a | x) = π(a | ϕ⋆(x)). Then for any h ∈ [H] and k ∈ [K] we have Pπ(xh+k = x′ | xh = x) only633

depend on ϕ⋆(x) and this common value is defined by Pπ(xh+k | sh = ϕ⋆(x)).634

Proof. The proof is by induction on k. For k = 1 we have:635

Pπ(xh+1 = x′ | xh = x) =
∑
a∈A

T (x′ | x, a)π(a | xh = x) =
∑
a∈A

T (x′ | ϕ⋆(x), a)π(a | xh = ϕ⋆(x)),

and as the right hand side only depends on ϕ⋆(x), the base case is proven. For the general case, we636

have:637

Pπ(xh+k = x′ | xh = x) =
∑
x̃∈X

Pπ(xh+k = x′, xh+k−1 = x̃ | xh = x)

=
∑
x̃∈X

Pπ(xh+k = x′ | xh+k−1 = x̃)Pπ(xh+k−1 = x̃ | xh = x)

=
∑
x̃∈X

Pπ(xh+k = x′ | xh+k−1 = x̃)Pπ(xh+k−1 = x̃ | xh = ϕ⋆(x)),

where the second step uses the fact that π is Markovian and the last step uses the inductive case for638

k − 1.639

Lemma 2 (Distribution over Pairs). Let k ∈ [K], x ∈ supp ρ(X), then the distribution Dk(X
′ | x)640

only depends on ϕ⋆(x). This allows us to define Dk(X
′ | ϕ⋆(x)) as this common value. Similarly,641

the distribution Dunf(X
′ | x, k) depends only on ϕ⋆(x) and k. We define this common value as642

Dunf(X
′ | ϕ⋆(x), k).643
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Proof. For any k we have:644

Dk(X = x,X ′ = x′) =
1

H

H∑
h=1

D(xh = x, xh+k = x′)

=
1

H

H∑
h=1

∑
π∈ΠD

ΘπPπ(xh = x, xh+k = x′)

=
1

H

H∑
h=1

∑
π∈ΠD

ΘπPπ(xh = x)P(xh+k = x′ | xh = x)

=
1

H

H∑
h=1

∑
π∈ΠD

ΘπPπ(xh = x)Pπ(xh+k = x′ | sh = ϕ⋆(x)), (using Lemma 1)

=
q(x | ϕ⋆(x))

H

H∑
h=1

∑
π∈ΠD

ΘπPπ(sh = ϕ⋆(x))Pπ(xh+k = x′ | sh = ϕ⋆(x))

The marginal Dk(X = x) is given by:645

Dk(X = x) =
1

H

H∑
h=1

∑
π∈ΠD

Θπq(x | ϕ⋆(x))Pπ(sh = ϕ⋆(x)) =
q(x | ϕ⋆(x))

H

H∑
h=1

Dk(sh = ϕ⋆(x)).

The conditional Dk(X
′ = x′ | X = x) is given by:646

Dk(X
′ = x′ | X = x) =

Dk(X = x,X ′ = x′)

Dk(x)

=

∑H
h=1

∑
π∈ΠD

ΘπPπ(sh = ϕ⋆(x))Pπ(xh+k = x′ | sh = ϕ⋆(x))∑H
h=1 Dk(sh = ϕ⋆(x))

Therefore, the conditional Dk(X
′ = x′ | X = x only depends on ϕ⋆(x), and we define this common647

value as Dk(X
′ = x′ | s = ϕ⋆(x)).648

The proof for Dunf is similar. We can use the property of Dk that we have proven to get:649

Dunf(X
′ = x′ | X = x, k) =

Dunf(X = x, k,X ′ = x′)∑
x̃∈X Dunf(X = x, k,X ′ = x̃)

=
Dk(X = x,X ′ = x′)∑
x̃∈X Dk(X = x,X ′ = x̃)

=
Dk(X

′ = x′ | X = x)∑
x̃∈X Dk(X ′ = x̃ | X = x)

=
Dk(X

′ = x′ | X = ϕ⋆(x))∑
x̃∈X Dk(X ′ = x̃ | X = ϕ⋆(x))

.

Therefore, Dunf(X
′ = x′ | X = x, k) only depends on ϕ⋆(x). We will define the common values as650

Dunf(X
′ = x′ | s = ϕ⋆(x), k).651

Lemma 2 allows us to define Dk(x
′ | ϕ⋆(x)) and Dunf(x

′ | ϕ⋆(x), k), as the distribution only652

depends on the latent state.653

C.1 Upper Bound for the Forward Model Baseline654

Let Dfor = {(x(i), k(i), x′(i))}ni=1 be a pair of iid multi-step observations. We will collect this655

dataset in one of three ways:656

1. Single step (k = 1), in this case we will sample (x(i), x′(i)) ∼ Dk(X,X ′). As explained657

before, we can get this sample using the episode data. We save (x(i), k, x′(i)) as our sample.658
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2. Fixed multi-step. We use a fixed k > 1, and sample (x(i), x′(i)) ∼ Dk(X,X ′). We save659

(x(i), k, x′(i)) as our sample.660

3. Variable multi-step. We sample (x, k, x′) ∼ Dunf(X, k,X ′) and use it as our sample.661

We will abstract these three choices using a general notion of Dpr ∈ ∆(X × [K] × X ). In the662

first two cases, we assume we have point-mass distribution over k and given this k, we sample663

from Dk(X,X ′). We will assume (x(i), k(i), x′(i)) ∼ Dpr. We can create Dfor from the dataset664

D of n episodes sampled from D using the sampling procedures explained earlier. Note that as665

marginals over both Dk(X) and Dunf(X) is ρ(X), therefore, the marginals over Dpr(X) is also666

ρ(X). Additionally, we will define Dpr(k) as the marginal over k which is either point-mass in the667

first two sampling procedures and Unf([K]) in the third procedure.668

We assume access to two function classes. The first is a decoder class ΦN : X → [N ] where N is a669

given number that satisfies N ≥ |S|. The second is a conditional probability class F : [N ]× [K] →670

∆(X ).671

Assumption 6. (Realizability of Φ and F) We assume that there exists ϕ◦ ∈ ΦN and f◦ ∈ F such672

that f◦(x′ | ϕ◦(x), k) = Dpr(x
′ | x, k) = Dpr(x

′ | ϕ⋆(x), k) for all (x, k) ∼ Dpr(·, ·).673

This assumption firstly is non-vacuous as Dpr(x
′ | x) = Dpr(x

′ | ϕ⋆(x)), and therefore, we can674

apply a bottleneck function ϕ and still assume realizability. For example, we can assume that ϕ̃ is the675

same as ϕ⋆ up to the relabeling of its output, and f̃(x′ | i) = Dpr(x
′ | s).676

Let f̂ , ϕ̂ be the empirical solution to the following maximum likelihood problem.677

f̂ , ϕ̂ = arg max
f∈F,ϕ∈ΦN

1

n

n∑
i=1

ln f
(
x′(i) | ϕ(x(i)), k(i)

)
(9)

Note that when k is fixed (we sample from Dk), then information theoretically there is no advantage678

of condition on k and it can be dropped from optimization.679

As we are in a realizable setting (Assumption 6), we can use standard maximum likelihood guarantees680

to get the following result.681

Proposition 3 (Generalization Bound). Fix δ ∈ (0, 1), then with probability at least 1− δ, we have:682

E(x,k)∼Dpr

[∥∥∥Dpr(X
′ | x, k)− f̂(X ′ | ϕ̂(x), k)

∥∥∥2
TV

]
≤ ∆2(n; δ),

where ∆2(n; δ) = 2
n ln

(
|Φ|·|F|

δ

)
.683

For proof see Chapter 7 of Geer [2000].684

Finally, we assume that the forward modeling objective is expressive to allow the separation of states.685

While, this seems like assuming that the objective works, our goal is to establish a formal notion of686

the margin so we can verify it later in different settings to see when it holds.687

Assumption 7. (Forward Modeling Margin). We assume there exists a βfor ∈ (0, 1) such that:688

inf
s1,s2∈S,s1 ̸=s2

Ek∼Dpr

[
∥Dpr(X

′ | s1, k)−Dpr(X
′ | s2, k)∥TV

]
≥ βfor

Note that this defines two types of margin depending on Dpr. When k is a fixed value, the margin is689

given by:690

β
(k)

for = inf
s1,s2∈S,s1 ̸=s2

∥Dpr(X
′ | s1, k)−Dpr(X

′ | s2, k)∥TV .

When we sample k ∼ Unf([K]) then the margin is given by:691

β
(u)

for = inf
s1,s2∈S,s1 ̸=s2

1

K

K∑
k=1

∥Dpr(X
′ | s1, k)−Dpr(X

′ | s2, k)∥TV .

We will use the abstract notion βfor for forward margin which will be equal to β
(k)

for or β(u)

for depending692

on our sampling procedure. It is easy to see that β(u)

for =
1
K

∑K
k=1 β

(k)

for.693

We are now ready to state our first main result.694
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Proposition 4 (Recovering Endogenous State.). Fix δ ∈ (0, 1), then with probability at least 1− δ695

we learn ϕ̂ that satisfies:696

Px1,x2∼ρ

(
ϕ⋆(x1) ̸= ϕ⋆(x2) ∧ ϕ̂(x1) = ϕ̂(x2)

)
≤ 2∆(n, δ)

βfor
.

Proof. We start with a coupling argument where we sample x1, x2 independently from Dpr(X)697

which is the same as ρ(X).698

Ex1,x2∼Dpr,k∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}
∥Dpr(X

′ | x1, k)−Dpr(X
′ | x2, k)∥TV

]
≤ Ex1,x2∼Dpr,k∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}∥∥∥f̂(X ′ | ϕ̂(x1), k)−Dpr(X
′ | x1, k)

∥∥∥
TV

]
+ Ex1,x2∼Dpr,k∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}∥∥∥f̂(X ′ | ϕ̂(x1), k)−Dpr(X
′ | x2, k)

∥∥∥
TV

]
We bound these two terms separately699

Ex1,x2∼Dpr,k∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}∥∥∥f̂(X ′ | ϕ̂(x1), k)−Dpr(X
′ | x1, k))

∥∥∥
TV

]
≤
√
Ex1,x2∼Dpr,k∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}]
·
√

Ex1,x2∼Dpr,k∼Dpr

[∥∥∥f̂(X ′ | ϕ̂(x1), k)−Dpr(X ′ | x1, k))
∥∥∥2

TV

]

=

√
Ex1,x2∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}]
·
√
E(x,k)∼Dpr

[∥∥∥f̂(X ′ | ϕ̂(x)−Dpr(X ′ | x))
∥∥∥2

TV

]
≤ b ·∆,

where b =

√
Ex1,x2∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}]
and the second step uses Cauchy-Schwarz inequal-700

ity. It is straightforward to verify that b ∈ [0, 1]. We bound the second term similarly701

Ex1,x2∼Dpr,k∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}∥∥∥f̂(X ′ | ϕ̂(x1), k)−Dpr(X
′ | x2, k)

∥∥∥
TV

]
= Ex1,x2∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}∥∥∥f̂(X ′ | ϕ̂(x2), k)−Dpr(X
′ | x2, k)

∥∥∥
TV

]
≤ b ·∆,

where the second step uses the crucial coupling argument that we can replace x1 with x2 because of702

the indicator 1
{
ϕ̂(x1) = ϕ̂(x2)

}
, and the last step follows as we reduce it to the first term except703

we switch the names of x1 and x2. Combining the two upper bounds we get:704

Ex1,x2∼Dpr,k∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}
∥Dpr(X

′ | x1, k)−Dpr(X
′ | x2, k)∥TV

]
≤ 2b ·∆

or, equivalently,705

Ex1,x2∼Dpr

1{ϕ̂(x1) = ϕ̂(x2)
}
Ek∼Dpr

[
∥Dpr(X

′ | x1, k)−Dpr(X
′ | x2, k)∥TV

]︸ ︷︷ ︸
:=Γ(x1,x2)

 ≤ 2b ·∆

Let Γ(x1, x2) = Ek∼Dpr

[
∥Dpr(X

′ | x1, k)−Dpr(X
′ | x2, k)∥TV

]
. For any two observations, if706

ϕ⋆(x1) = ϕ⋆(x2), then ∥Dpr(X
′ | x1)−Dpr(X

′ | x2)∥TV = 0, and therefore, Γ(x1, x2) = 0707

because of Lemma 2. Otherwise, Γ(x1, x2) is at least βfor, by Assumption 6. Combining these two708

observations we get:709

Γ(x1, x2) ≥ βfor1{ϕ⋆(x1) ̸= ϕ⋆(x2)}

Combining the previous two inequalities we get:710

Ex1,x2∼Dpr

[
1
{
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

}]
≤ 2b ·∆

βfor
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This directly gives711

Px1,x2∼Dpr

(
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

)
≤ 2b∆

βfor
≤ 2∆

βfor
.

The proof is completed by recalling that marginal Dpr(X) is the same as ρ(X).712

Proposition 4 shows that the learned ϕ̂ has one-sided error. If it merges two observations, then with713

high probability they are not from the same state. As N = |S|, we will show below that the reverse is714

also true.715

Theorem 5. If N = |S|, then there exists a bijection α : [N ] → S such that for any s ∈ S we have:716

Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1− 4N3H2∆

η2minβfor
,

provided ∆ <
η2

minβfor
N2H2 .717

Proof. We define a few shorthand below for any j ∈ [N ] and s̃ ∈ S718

P(j, s̃) = Px∼ρ

(
ϕ̂(x) = j ∧ ϕ⋆(x) = s̃

)
ρ(j) = Px∼ρ

(
ϕ̂(x) = j

)
ρ(s̃) = Px∼ρ (ϕ

⋆(x) = s̃) .

It is easy to verify that P(j, s̃) is a joint distribution with ρ(j) and ρ(s̃) as its marginals.719

Fix i ∈ [N ] and s ∈ S.720

Px1,x2∼ρ

(
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

)
= Px1,x2∼ρ

(
∪s̃∈S,j∈[N ]

{
ϕ̂(x1) = j ∧ ϕ̂(x2) = j ∧ ϕ⋆(x1) = s̃ ∧ ϕ⋆(x2) ̸= s̃

})
≥ Px1,x2∼ρ

(
ϕ̂(x1) = i ∧ ϕ̂(x2) = i ∧ ϕ⋆(x1) = s ∧ ϕ⋆(x2) ̸= s

)
= Px1∼ρ

(
ϕ̂(x1) = i ∧ ϕ⋆(x1) = s

)
Px2∼ρ

(
ϕ̂(x2) = i ∧ ϕ⋆(x2) ̸= s

)
= Px∼ρ

(
ϕ̂(x) = i ∧ ϕ⋆(x) = s

)(∑
s′∈S

Px∼ρ

(
ϕ̂(x) = i ∧ ϕ⋆(x) = s′

)
− Px∼ρ(ϕ̂(x) = i ∧ ϕ⋆(x) = s)

)

= P(i, s)

(∑
s′∈S

P(i, s′)− P(i, s)

)
= P(i, s) (ρ(i)− P(i, s)) .

Combining this with Proposition 4, we get:721

∀i ∈ [N ], s ∈ S, P(i, s) (ρ(i)− P(i, s)) ≤ ∆′ :=
2∆

βfor

where we have used a shorthand ∆′ = 2∆/βfor. We define a mapping α : S → [N ] where for any722

s ∈ S:723

α(s) = arg max
j∈[N ]

P(j, s) (10)

We immediately have:724

P(α(s), s) = max
j∈[N ]

P(j, s) ≥ 1

N

N∑
j=1

P(j, s) =
1

N
ρ(s) ≥ ηmin

NH
, (11)
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where we use the fact that max is greater than average in the first inequality, and Equation 8. Further,725

for every s ∈ S, we have:726

P(α(s), s) (ρ(α(s))− P(α(s), s)) ≤ ∆′.

Plugging the lower bound P(α(s), s) ≥ ηmin
NH , we get:727

P(α(s), s) ≥ ρ(α(s))− NH∆′

ηmin
. (12)

We now show that if ∆′ <
η2

min
2N2H2 , then α(s) is a bijection. Let s1 and s2 be such that α(s1) =728

α(s2) = i. Then using the above Equation 12 we get P(i, s1) ≥ ρ(i) − NH∆′

ηmin
and P(i, s2) ≥729

ρ(i)− NH∆′

ηmin
. We have:730

ρ(i) =
∑
s̃∈S

P(i, s̃) ≥ P(i, s1) + P(i, s2) ≥ 2ρ(i)− 2NH∆′

ηmin

This implies 2N∆′

ηmin
≥ ρ(i) but as ρ(i) = ρ(α(s1)) ≥ P(α(s1), s1) ≥

ηmin
NH (Equation 11), we get731

2NH∆′

ηmin
≥ ηmin

NH or ∆′ ≥
η2

min
2N2H2 . However, as we assume that ∆′ <

η2

min
2N2H2 , therefore, this is a732

contradiction. This implies α(s1) ̸= α(s2) for any two different states s1 and s2. Since we assume733

|N |= |S|, this implies α is a bijection.734

Fix s ∈ S and let i ̸= α(s). As α is a bijection, let s̃ = α−1(i), we can show that P(i, s) is small:735

P(i, s) ≤ ρ(i)− P(i, s̃) = ρ(α(s̃))− P(α(s̃), s̃) ≤ NH∆′

ηmin
(13)

where we use s ̸= s̃ and Equation 12.736

This allows us to show that P(α(s) | s) is high as follows:737

P(α(s) | s) = P(α(s), s)
ρ(s)

=
P(α(s), s)

P(α(s), s) +
∑N

i=1,i̸=α(s) P(i, s)

≥ P(α(s), s)
ρ(α(s)) + N2H∆′

ηmin

,

≥
ρ(α(s))− NH∆′

ηmin
ρ(α(s)) + N2H∆′

ηmin

= 1−

(
N2H∆′

ηmin
+ NH∆′

ηmin

)
ρ(α(s)) + N2H∆′

ηmin

≥ 1− 2N2H2∆′

ηminρ(α(s))

≥ 1− 2N3H2∆′

η2min
,

where the first inequality uses Equation 13 and ρ(α(s)) ≥ P(α(s), s), second inequality uses738

Equation 12, and the last step uses ρ(α(s)) ≥ P(α(s), s) ≥ ηmin
NH .739

The proof is completed by noting that:740

Px∼q(·|s)

(
ϕ̂(x) = α(s)

)
= Px∼ρ

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
= P(α(s) | s).

741
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Let A be a PAC RL algorithm for tabular MDPs. We assume that this algorithm’s sample complexity742

is given by nsamp(S,A,H, ϵ, δ) where S and A are the size of the state space and action space of743

the tabular MDP, H is the horizon, and (ϵ, δ) are the typical PAC RL hyperparameters denoting744

tolerance and failure probability. Formally, the algorithm A interacts with a tabular MDP M for745

nsamp(S,A,H, ϵ, δ) episodes and outputs a policy φ̂ : S × [H] → A such that with probability at746

least 1− δ we have:747

sup
φ∈Ψall

VM(φ)− VM(φ̂) ≤ ϵ,

where Ψall is the space of all policies of the type S × [H] → A.748

We assume that we are given knowledge of the desired (ϵ, δ) hyperparameters in the downstream RL749

task during the representation pre-training phase so we can use the right amount of data.750

Induced Finite MDP. The latent MDP inside a block MDP is a tabular MDP with state space S,751

action space A, horizon H , transition dynamics T , reward function R, and a start state distribution752

of µ. If we directly had access to this latent MDP, say via the true decoding function ϕ⋆, then we753

can apply the algorithm A and learn the optimal latent policy φ⋆ which we can couple with ϕ⋆754

and learn the optimal observation-based policy. Formally, we write this observation-based policy as755

φ ◦ ϕ⋆ : X × [H] → A given by φ(ϕ⋆(x), h). We dont have access to ϕ⋆, but we have access to756

ϕ̂ that with high probability for a given x outputs a state which is same as ϕ⋆(x) up to the learned757

α-bijection. We, therefore, define the induced MDP M as the finite MDP with state space Ŝ, action758

space A, transition function T̂ , reward function R̂ and start state distribution µ̂. These same as the759

latent Block MDP but where the true state s is replaced by α(s). It is this induced M that the tabular760

MDP algorithm A will see with high probability.761

Proposition 6 (PAC RL Bound). Let A be a PAC RL algorithm for tabular MDPs and nsamp is its762

sample complexity. Let ϕ̂ : X → [N ] be a decoder pre-trained using video data and α : S → [N ] is763

a bijection such that:764

∀s ∈ S, Px∼q(·|s)

(
ϕ̂(x) = α(s)

)
≥ 1− ϑ,

then let φ̂ be the policy returned by A on the tabular MDP induced by ϕ̂(x). Then we have with765

probability at least 1− δ − nsamp(S,A,H, ϵ, δ)Hϑ:766

sup
π∈Π

V (π)− V (φ ◦ ϕ̂) ≤ ϵ+ 2H2ϑ

Proof. The algorithm runs for nsamp(S,A,H, ϵ, δ) episodes. This implies the agent visits767

nsamp(S,A,H, ϵ, δ)H many latent states. If the decoder maps every such state s to the correct768

permutation α(s), then the tabular MDP algorithm is running as if it ran on the induced MDP M. The769

probability of failure is bounded by nsamp(S,A,H, ϵ, δ)Hϑ as all these failures are independent770

given the state. Further, the failure probability of the tabular MDP algorithm itself is δ. This leads to771

the total failure probability of δ + nsamp(S,A,H, ϵ, δ)Hϑ.772

Let Π be the set of observation-based policies we are competing with and which includes the optimal773

observation-based policy π⋆. We can write supπ∈Π V (π) = VM(φ
⋆) where we use the subscript M774

to denote that the latent policy is running in the induced MDP M. Further, for any latent policy φ we775

have V (φ ◦ α ◦ ϕ⋆) = VM(φ) as the decoder α ◦ ϕ⋆ : x 7→ α(ϕ⋆(x)) give me access to the true state776

of the induced MDP M. Then with probability at least 1− δ, we have:777

VM(φ
⋆)− VM(φ̂) ≤ ϵ

This allows us to bound the sub-optimality of the learned observation-based policy φ̂ ◦ ϕ̂ as:778

sup
π∈Π

V (π)− V (φ̂ ◦ ϕ̂) = V (φ⋆ ◦ α ◦ ϕ⋆)− V (φ̂ ◦ α ◦ ϕ⋆) + V (φ̂ ◦ α ◦ ϕ⋆)− V (φ̂ ◦ ϕ̂)

= VM(φ
⋆)− VM(φ̂) + V (φ̂ ◦ α ◦ ϕ⋆)− V (φ̂ ◦ ϕ̂)

≤ ϵ+ V (φ̂ ◦ α ◦ ϕ⋆)− V (φ̂ ◦ ϕ̂)
Here we use φ̂ ◦ α ◦ ϕ⋆ to denote an observation-based policy that takes action as φ̂(α(ϕ⋆(x)), h).779
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We bound V (φ̂ ◦ α ◦ ϕ⋆)− V (φ̂ ◦ ϕ̂) below. Let Eh = {ϕ̂(xh) = α(ϕ⋆(xh))} and E = ∩H
h=1Eh be780

two events. We have P(Eh) ≥ 1− ϑ. Further, using union bound we have P(Ec) = P(∪H
h=1Ec

h) ≤781 ∑H
h=1 P(Ec

h) ≤ Hϑ.782

We first prove an upper bound on V (φ̂ ◦ α ◦ ϕ⋆):783

V (φ̂ ◦ α ◦ ϕ⋆) = Eφ̂◦α◦ϕ⋆

[
H∑

h=1

rh

]

= Eφ̂◦α◦ϕ⋆

[
H∑

h=1

rh | E
]
Pφ̂◦α◦ϕ⋆(E) + Eφ̂◦α◦ϕ⋆

[
H∑

h=1

rh | Ec

]
Pφ̂◦α◦ϕ⋆(Ec)

≤ Eφ̂◦α◦ϕ⋆

[
H∑

h=1

rh | E
]
+H2ϑ

= Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
+H2ϑ

Here we have used the fact that value of any policy is in [0, H] since the horizon is H and the rewards784

are in [0, 1].785

We next prove a lower bound on V (φ̂ ◦ ϕ̂):786

V (φ̂ ◦ ϕ̂) = Eφ̂◦ϕ̂

[
H∑

h=1

rh

]

= Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
Pφ̂◦ϕ̂(E) + Eφ̂◦ϕ̂

[
H∑

h=1

rh | Ec

]
Pφ̂◦ϕ̂(Ec)

≥ Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
Pφ̂◦ϕ̂(E)

≥ Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
− Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
Hϑ

≥ Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
−H2ϑ

Combining the two upper bounds we get:787

V (φ̂ ◦ α ◦ ϕ⋆)− V (φ̂ ◦ ϕ̂) ≤ Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
+H2ϑ− Eφ̂◦ϕ̂

[
H∑

h=1

rh | E
]
+H2ϑ ≤ 2H2ϑ

Therefore, with probability at least 1− δ − nsamp(S,A,H, ϵ, δ)Hϑ, learn a policy φ̂ ◦ ϕ̂ such that:788

sup
π∈Π

V (π)− V (φ̂ ◦ ϕ̂) ≤ ϵ+ 2H2ϑ.

789

Theorem 7 (Wrapping up the proof.). Fix ϵ◦ > 0 and δ◦ ∈ (0, 1) and let A be any PAC RL algorithm790

for tabular MDPs with sample complexity nsamp(S,A,H, ϵ, δ). If n satisfies:791

n = O
({

N4H4

η4minβ
2
for

+
N6H8

ϵ2◦η
4
minβ

2
for

+
N6H6n2

samp(S,A,H, ϵ◦/2, δ◦/4)

δ2◦η
4
minβ

2
for

}
ln

( |F||Φ|
δ◦

))
,

then forward modeling learns a decoder ϕ̂ : X → N . Further, running A on the tabular MDP with792

induced by ϕ̂ with hyperparameters ϵ = ϵ◦/2, δ = δ◦/4, returns a latent policy φ̂. Then there exists793
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a bijective mapping α : S → [|S|] such that with probability at least 1− δ we have:794

∀s ∈ S, Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1− 4N3H2∆

η2minβfor
,

and795

V (π⋆)− V (φ̂ ◦ ϕ̂) ≤ ϵ◦
Further, the amount of online interactions in the downstream RL is given by796

nsamp(S,A,H, ϵ◦/2, δ◦/4) and doesn’t scale with ln|Φ|.797

Proof. We showed in Theorem 5 that we learn a ϕ̂ such that:798

Px∼q(·|s)

(
ϕ̂(x) = α(s) | ϕ⋆(x) = s

)
≥ 1− 4N3H2∆

η2minβfor
,

provided ∆ <
η2

minβfor
N2H2 .799

Let ϑ = 4N3H2∆
η2

minβfor
. Then from Proposition 6 we learn a φ̂ such that:800

V (π⋆)− V (φ̂ ◦ ϕ̂) ≤ ϵ+ 2H2ϑ,

with probability at least 1 − δ − nsamp(S,A,H, ϵ, δ)Hϑ. The failure probability δ −801

nsamp(S,A,H, ϵ, δ)Hϑ was when condition in Theorem 5 holds which holds with δ probability.802

Hence, total failure probability is:803

2δ + nsamp(S,A,H, ϵ, δ)Hϑ.

We set δ both in our representation learning analysis and in PAC RL to δ◦/4. We also set ϵ in the804

PAC RL algorithm to ϵ◦/2. This means the PAC RL algorithm runs for nsamp(S,A,H, ϵ◦/2, δ◦/4)805

episodes.806

We enforce ϑ ≤ δ◦
2nsamp(S,A,H,ϵ◦/2,δ◦/4)H

. Then the total failure probability becomes:807

2δ◦/4) + δ◦/4 + δ◦/2 ≤ δ◦

We also enforce 2H2ϑ ≤ ϵ◦/2. The sub-optimality of the PAC RL policy is given by:808

ϵ◦/2 + ϵ◦/2 ≤ ϵ◦

This gives us our derived PAC RL bound.809

We now accumulate all conditions:810

∆ =

√
2

n
ln

(
4|F||Φ|

δ◦

)
ϑ =

4N3H2∆

η2minβfor

∆ <
η2minβfor
N2H2

ϑ ≤ δ◦
2nsamp(S,A,H, ϵ◦/2, δ◦/4)H

2H2ϑ ≤ ϵ◦/2

This simplifies to811

∆ ≤
η2minβfor
N2H2

∆ ≤
δ◦η

2
minβfor

8N3H3nsamp(S,A,H, ϵ◦/2, δ◦/4)

∆ ≤
ϵ◦η

2
minβfor

16N3H4
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Or,812

n = O
({

N4H4

η4minβ
2
for

+
N6H8

ϵ2◦η
4
minβ

2
for

+
N6H6n2

samp(S,A,H, ϵ◦/2, δ◦/4)

δ2◦η
4
minβ

2
for

}
ln

( |F||Φ|
δ◦

))
This completes the proof.813

C.2 Upper Bound for the Temporal Contrastive Approach814

We first convert our video dataset D into a dataset suitable for contrastive learn-815

ing. We first split the datasets into ⌊n/2⌋ pairs of videos. For each video pair816 {(
x
(2l)
1 , x

(2l)
2 , · · · , x(2k)

H

)
,
(
x
(2l+1)
1 , x

(2l+1)
2 , · · · , x(2l+1)

H

)}
, we create a tuple (x, x′, k, z) where817

z ∈ {0, 1} as follows. As in forward modeling, we will either use a fixed value of k, or sample818

k ∈ Unf([K]). We denote this general distribution over k by ω ∈ ∆([K]) which is either point mass,819

or Unf([K]). We sample k ∼ ω and z ∼ Unf({0, 1}) and h ∈ Unf([H]). We set x = x
(2l)
h . If z = 1,820

then we set x′ = x
(2l)
h+k, otherwise, we sample h′ ∼ Unf({0, 1}) and select x′ = x

(2l)
h′ . This way, we821

collect a dataset Dcont of ⌊n/2⌋ tuples (x, k, x′, z). We view a tuple (x, k, x′, z) as a real observation822

pair when z = 1, and a fake observation pair when z = 0. Note that our sampling process leads to823

all data points being iid.824

We define the distribution Dcont(X, k,X ′, Z) as the distribution over (x, k, x′, z). We can express825

this distribution as:826

Dcont(X = x, k,X ′ = x′, Z = 1) =
ω(k)

2H

H∑
h=1

D(x = xh, x
′ = xh+k)

=
ω(k)

2
ρ(x)D(xk+1 = x′ | x1 = x)

Dcont(X = x,X ′ = x′, Z = 0) =
ω(k)

2H2

H∑
h=1

D(x = xh)

H∑
h′=1

D(x′ = xh′)

=
ω(k)

2
ρ(x)ρ(x′)

where we use the time homogeneity of D and definition of ρ. We will use a shorthand to denote827

D(xk+1 = x′ | x1 = x) as D(x′ | x, k) in this analysis. It is easy to verify that D(x′ | x, k) =828

D(x′ | ϕ⋆(x), k). The marginal distribution Dcont(x, k, x′) is given by:829

Dcont(x, k, x
′) =

ω(k)ρ(x)

2
(D(x′ | x, k) + ρ(x′)) (14)

Note that Dcont(X) is the same as ρ(X).830

We will use Dcont for any marginal and conditional distribution derived from Dcont(X, k,X ′, Z).831

We assume a model class G : X × [K] × ×[N ] → [0, 1] that we use for solving the prediction832

problem. We will also reuse the decoder class ϕ : X → [N ] that we defined earlier, and we will833

assume that N = |S|. This can be relaxed by doing clustering or working with a different induced834

MDP (e.g., see the clustering algorithm in Misra et al. [2020]). However, this is not the main point of835

the analysis.836

We define the expected risk minimizer of the squared loss problem below:837

ĝ, ϕ̂ = arg min
g∈G,ϕ∈Φ

1

⌊n/2⌋

⌊n/2⌋∑
i=1

(
g(ϕ(x(i)), k(i), x′(i))− z(i)

)2
(15)

We express the Bayes classifier of this problem below:838

Lemma 3 (Bayes Classifier). The Bayes classifier of the problem posed in Equation 15 is given by839

Dcont(z = 1 | x, k, x′) which satisfies:840

Dcont(z = 1 | x, k, x′) =
D(ϕ⋆(x′) | ϕ⋆(x), k)

D(ϕ⋆(x′) | ϕ⋆(x), k) + ρ(ϕ⋆(x′))
.
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Proof. We can express the Bayes classifier as:841

Dcont(z = 1 | x, k, x′) =
Dcont(x, k, x′, z = 1)

Dcont(x, k, x′, z = 1) +Dcont(x, k, x′, z = 0)

=
ω(k)/2ρ(x)D(x′ | x)

ω(k)/2ρ(x)D(x′ | x) + ω(k)/2ρ(x)ρ(x′)

=
D(x′ | x, k)

D(x′ | x, k) + ρ(x′)

=
D(x′ | ϕ⋆(x), k)

D(x′ | ϕ⋆(x), k) + ρ(x′)

=
q(x′ | ϕ⋆(x))D(ϕ⋆(x′) | ϕ⋆(x), k)

q(x′ | ϕ⋆(x))D(ϕ⋆(x′) | ϕ⋆(x), k) + q(x′ | ϕ⋆(x))ρ(ϕ⋆(x′))

=
D(ϕ⋆(x′) | ϕ⋆(x), k)

D(ϕ⋆(x′) | ϕ⋆(x), k) + ρ(ϕ⋆(x′))
.

842

Assumption 8 (Realizability). There exists g⋆ ∈ G and ϕ◦ ∈ Φ such that for all (x, k, x′) ∈843

supp Dcont(X, k,X ′), we have Dcont(z = 1 | x, k, x′) = g⋆(ϕ◦(x), k, x′).844

We will use the shorthand to denote g⋆(x, k, x′) = g⋆(ϕ◦(x), k, x′).845

As before, we start with typical square loss guarantees in the realizable setting.846

Theorem 8. Fix δ ∈ (0, 1). Under realizability (Assumption 8), the ERM solution of f̂ , ϕ̂ in Eq. (15)847

satisfies:848

E(x,k,x′)∼Dcont

[(
ĝ(ϕ̂(x), k, x′)− g⋆(x, k, x′)

)2]
≤ ∆2

cont =
2

n
ln

|G|.|Φ|
δ

For proof see Proposition 12 in Misra et al. [2020].849

We will prove a coupling result similar to the case for forward modeling. However, to do this, we850

need to define a coupling distribution:851

Dcoup(X1 = x1, X2 = x2, k,X
′ = x′) = ω(k)Dcont(X = x1)Dcont(X = x2)Dcont(X

′ = x′)

We will derive a useful importance ratio bound.852

Dcoup(x1, k, x
′)

Dcont(x1, k, x′)
=

2ρ(x1)ρ(x
′)

ρ(x1)D(x′ | x1, k) + ρ(x1)ρ(x′)
≤ 2 (16)

We now prove an analogous result to Proposition 4.853

Theorem 9 (Coupling for Temporal Contrastive Learning). With probability at least 1− δ we have:854

E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}
|g⋆(x1, k, x

′)− g⋆(x2, k, x
′)|
]
< 4∆cont(n, δ)

Proof. We start with triangle inequality:855

E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}
|g⋆(x1, k, x

′)− g⋆(x2, k, x
′)|
]

≤ E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

} ∣∣∣g⋆(x1, k, x
′)− ĝ(ϕ̂(x1), k, x

′)
∣∣∣]+

E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

} ∣∣∣ĝ(ϕ̂(x1), k, x
′)− g⋆(x2, k, x

′)
∣∣∣]
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We bound the first term as:856

E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

} ∣∣∣g⋆(x1, k, x
′)− ĝ(ϕ̂(x1), k, x

′)
∣∣∣]

≤
√

E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}]
︸ ︷︷ ︸

:=b

·
√
E(x1,x2,k,x′)∼Dcoup

[∣∣∣g⋆(x1, k, x′)− ĝ(ϕ̂(x1), k, x′)
∣∣∣2]

= b

√
E(x1,k,x′)∼Dcoup

[(
g⋆(x1, k, x′)− ĝ(ϕ̂(x1), k, x′)

)2]

= b

√
E(x1,k,x′)∼Dcont

[
Dcoup(x1, k, x′)

Dcont(x1, k, x′)

(
g⋆(x1, k, x′)− ĝ(ϕ̂(x1), k, x′)

)2]

≤ b

√
2E(x1,k,x′)∼Dcont

[(
g⋆(x1, k, x′)− ĝ(ϕ̂(x1), k, x′)

)2]
≤

√
2b∆cont,

where we use Cauchy-Schwartz’s inequality in the first step and Equation 16 in the second inequality.857

The second term is bounded as:858

E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

} ∣∣∣ĝ(ϕ̂(x1), k, x
′)− g⋆(x2, k, x

′)
∣∣∣]

= E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

} ∣∣∣ĝ(ϕ̂(x2), k, x
′)− g⋆(x2, k, x

′)
∣∣∣]

= E(x1,x2,k,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

} ∣∣∣ĝ(ϕ̂(x1), k, x
′)− g⋆(x1, k, x

′)
∣∣∣]

≤
√
2b∆cont,

where we use the coupling argument in the first step and then reduce it to the first term using859

symmetric of (x1, x2) in Dcoup. Combining the upper bounds of the two terms and using b ≤ 1 and860

2
√
2 < 4 completes the proof.861

Assumption 9 (Temporal Contrastive Margin). We assume that there exists a βtemp > 0 such that862

for any two different states s1 and s2:863

1

2
Ek∼ω,s′∼ρ [|g⋆(s1, k, s′)− g⋆(s2, k, s

′)|] ≥ βtemp

The factor of 1
2 is chosen for comparison with forward modeling as will become clear later at the end864

of the proof. As before, if k is fixed, the margin is given by865

β
(k)

temp :=
1

2
inf

s1 ̸=s2;s1,s2∈S
Es′∼ρ [|g⋆(s1, k, s′)− g⋆(s2, k, s

′)|]

and when k ∼ Unf([K]) the margin is given by866

β
(u)

temp :=
1

2
inf

s1 ̸=s2;s1,s2∈S
Ek∼Unf([K]),s′∼ρ [|g⋆(s1, k, s′)− g⋆(s2, k, s

′)|]

We directly have β
(u)

temp ≥ 1
K

∑K
k=1 β

(k)

temp.867

Lemma 4.

Px1,x2∼ρ

(
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

)
≤ 2∆cont(n, δ)

βtemp
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Proof. We start with the left-hand side in Theorem 9.868

E(x1,k,x2,x′)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}
|g⋆(x1, k, x

′)− g⋆(x2, k, x
′)|
]

= E(x1,x2)∼Dcoup

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}
Ek∼ω,x′∼ρ [|g⋆(x1, k, x

′)− g⋆(x2, k, x
′)|]
]

= E(x1,x2)∼ρ

[
1
{
ϕ̂(x1) = ϕ̂(x2)

}
Ek∼ω,s′∼ρ [|g⋆(x1, k, s

′)− g⋆(x2, k, s
′)|]
]

≥ 2βtempE(x1,x2)∼ρ

[
1
{
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

}]
= 2βtempP(x1,x2)∼ρ

[
ϕ̂(x1) = ϕ̂(x2) ∧ ϕ⋆(x1) ̸= ϕ⋆(x2)

]
,

where we use the definition of βtemp, the fact that marginal over Dcoup(X) is ρ, and that g⋆(x, k, x′)869

only depends on ϕ⋆(x′) and ϕ⋆(x) (Lemma 3). Combining with the inequality proved in Theorem 9,870

completes the proof.871

We have now reduced this analysis to an almost identical one to the forward analysis case (Proposi-872

tion 4). We can, therefore, use the same steps and derive identical bounds. All what changes is that873

βfor is replaced by βtemp and in ∆ we replace ln|F| with ln|G|. At this point, we can clarify that874

the factor of 1
2 was chosen in the definition of βtemp so that βfor can be replaced by βtemp rather875

than
βtemp

2 which will make it harder to compare margins, as we will do later.876

C.3 Proof of Lower Bound for Exogenous Block MDPs877

thm:exo_lower_bound. We present a hard instance using a family of exogenous block MDPs, with878

H = 2, A = {1, 2}, and a single binary endogenous factor and d− 1 exogenous binary factors for879

each level, where each endogenous and exogenous factor. We first fix an absolute constant p ∈ [0, 1].880

Each MDP Mi is indexed by i ∈ [d], and is specified as follows:881

• State space: The state is represented by xh := [sh1, sh2, . . . , shd], where the superscript882

denotes different factors. For MDP Mi, only the i-th factor shi is an endogenous state for883

all h, and the other factors are exogenous. Each factor has values of {0, 1}.884

• Transition: For the MDP instance Mi: it has885

1. For the i-th factor (endogenous factor), P(s2i | s1i, a) = [s2i = (s1i = a)]. That is,886

the endogenous states have deterministic dynamics. If s1i = a, then it transitions to887

s2i = 1, otherwise it transitions to s2i = 0.888

2. For the j-th factor with j ̸= i (exogenous factor), P(s2j | s1j) = (1 − p)(s2j =889

s1j) + p(s2j ̸= s1j) for any s2j and s1j. That is, the j-th factor has probability of890

1− p of transiting to the same state (i.e., s1j = 0 → s2j = 0 or s1j = 1 → s2j = 1),891

and probability of p of transiting to the different state (i.e., s1j = 0 → s2j = 1 or892

s1j = 1 → s2j = 0).893

Note that the MDP terminates at h = 2.894

• Initial state distribution and reward: The marginal distribution of s1j is uniformly895

distributed at random over {0, 1} for all j ∈ [d], and all factors are independent from each896

other. For MDP Mi, the agent only receive reward signal after taking action at h = 2, with897

R(s2i, a) = s2i. That is, it always reward 1 at s2i = 1 and reward 0 at s2i = 0 no matter898

which action it takes.899

• Data collection policy for video data: We assume that the data collection policy always900

pick action 0 with probability p and action 1 with probability 1− p for all states.901

Now we use the following two steps to establish the proof.902
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Uninformative video data for learning the state decoder Since video data only contains state903

information, from the MDP family construction above, we can easily verify that all MDP instances in904

such a family will have an identical video data distribution, regardless of the choice of constant p.905

This implies that the video data is uninformative for the agent to distinguish the MDP instance from906

the MDP family. Now, we assume Di is the video data from the instance Mi, and ϕi is the state907

decoder learned from an arbitrary algorithm A1 with Di. Then, for any arbitrary algorithm A2 that908

uses the state decoder ϕi in its execution, it is equivalent to such an A2 that uses the state decoder ϕj909

in its execution, where j can be selected arbitrarily from [d].910

State decoder requiring exponential length Without loss of generality, we further restrict the911

state decoder ϕ used in the execution of A2 for all MDP instance to be some ϕh : X → [L], where912

h ∈ {1, 2} and L ≤ 2d. Then we will argue that there must exists a k ∈ [d], such that913 ∑
x1,x̃1∈X

P (ϕ1(x1) = ϕ1(x̃1) ∨ (s1k ̸= s̃1k)) >
2d − L

d2d
, (17)

where x1 := [s11, s12, . . . , s1d] and x̃1 := [s̃11, s̃12, . . . , s̃1d]. Note that, Eq. (17) means there must914

be a probability of at least 2d−L/d2d that ϕ1 will incorrectly group two different s1k together.915

We now prove Eq. (17). Based on the construct above, we know that |X |= 2d, and each state in916

X has the same occupancy for x1 based on the defined initial state distribution (this holds for all917

instances in the MDP family, as we are now only talking about the initial state x1). Thus, we have918 ∑
x1,x̃1∈X

P [ϕ1(x1) = ϕ1(x̃1) ∨ (s11 = s̃11) ∨ (s12 = s̃12) ∨ · · · ∨ (s1d = s̃1d)] ≤
L

2d
, (18)

because we defined ϕ1 : X → [L], it means that such ϕ1 is only able to distinguish the number of L919

different states from X . Then, we obtain920 ∑
j∈[d]

∑
x1,x̃1∈X

P (ϕ1(x1) = ϕ1(x̃1) ∨ (s1j ̸= s̃1j)) (19)

=
∑

x1,x̃1∈X

P (ϕ1(x1) = ϕ1(x̃1)) (20)

−
∑

x1,x̃1∈X

P [ϕ1(x1) = ϕ1(x̃1) ∨ (s11 = s̃11) ∨ (s12 = s̃12) ∨ · · · ∨ (s1d = s̃1d)] (21)

=
2d − L

2d
. (by Eq. (18))

=⇒ max
j∈[d]

∑
x1,x̃1∈X

P (ϕ1(x1) = ϕ1(x̃1) ∨ (s1j ̸= s̃1j)) >
2d − L

d2d
. (22)

So this proves Eq. (17).921

From Eq. (17), we know that for the MDP instance Mk, ϕ1 will have probability at least 2d−L/2·d2d922

to mistake the endogenous state, which implies that for any policy that is represented using the state923

decoder ϕ, it must have sub-optimality at least 2d−L/2·d2d. Therefore, it is easy to verify that, for any924

ε > 0, we can simply pick d = 1/4ε, and obtain925

sub-optimality >
2d − L

2 · d2d ≥ ε, ∀L ≤ 2
1/4ε−1.

Then, any arbitrary algorithm A2 that uses the state decoder ϕ in its execution, where ϕh : X → [L]926

can be chosen arbitrarily for h ∈ {1, 2} and L ≤ 21/4ε−1, must have sub-optimality larger than ε.927

Additional characteristics of MDP family and video data Note that, by combining the arguments928

of uninformative video data and a state decoder requiring exponential length, we obtain impossible929

results. We now discuss the following:930

1. The margin condition defined in Assumption 3 regarding the constructed MDPs931
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2. The PAC learnability of the constructed MDPs932

3. The coverage condition of video data.933

For the defined margin condition of forward modeling, we have: for the MDP instance Mi with934

constant p, we can bound the forward margin as below (Pfor denotes the video distribution)935

∥Pfor(X2 | s1i = 0)− Pfor(X2 | s1i = 1)∥TV

=
1

2

∑
X2

|Pfor(X2 | s1i = 0)− Pfor(X2 | s1i = 1)|

=
1

2

∑
X2

|Pfor(s2i = 0 | s1i = 0)P(X2 | s2i = 0) + Pfor(s2i = 1 | s1i = 0)P(X2 | s2i = 1)

− Pfor(s2i = 0 | s1i = 1)P(X2 | s2i = 0) + Pfor(s2i = 1 | s1i = 1)P(X2 | s2i = 1)|

=
1

2

∑
X2

|(1− 2p) [P(X2 | s2i = 0)− P(X2 | s2i = 1)]| .

(a)
=

|1− 2p|
2

∑
X2

P(X2 | s2i = 0) +
|1− 2p|

2

∑
X2

P(X2 | s2i = 1)

= |1− 2p|,
where step (a) is because s2i is a part of X2, and then we know P(X2 | s2i = 0) and P(X2 | s2i = 1)936

cannot be nonzero simultaneously. So picking p ̸= 0.5 implies positive forward margin.937

For the temporal contrastive learning, it is easy to verify that |Pfor(z = 1 | s1i = 1, X2)− Pfor(z =938

1 | s1i = 1, X2)|= |1− 2p|, so picking p ̸= 0.5 also implies positive margin for temporal contrastive939

learning.940

As for the PAC learnability, since the latent dynamics of our constructed MDPs are deterministic,941

they are provably PAC learnable by Efroni et al. [2022].942

As for the coverage property of the video data, it is easy to verify943

max
π∈Π,x1∈X

Pπ(x1, a1)

Pfor(x1, a1)
= max

π∈Π,x2∈X

Pπ(x2)

Pfor(x2)
= max {1/p, 1/1−p} .

Therefore, we can simply pick p = 1/3 and obtain the desired MDP and video data properties. This944

completes the proof.945

Addition remark of Theorem 2 In the proof of Theorem 2, if we pick p = 0.5 for that hard946

instance, the constructed MDP family reduces to a block MDP without exogenous noise, but the947

margin becomes 0 for both forward modeling and temporal contrastive learning. Therefore, it implies948

that either the exogenous noise or zero forward margin could make the learnability of the problem949

impossible.950

C.4 Can we get efficient learning under additional assumptions?951

Our lower bound suggests that one can in general not learn efficient and correct representations with952

just video data. However, it may be possible in some cases to do so with an additional assumption.953

We highlight one example here and defer a proper formal analysis to future work. One path to success954

is when the gold decoder results in the best-in-class error. A domain where this can happen is when955

the endogenous state is more predictive of x′ than any other ln|S| bits of information in x. E.g., in956

a navigation domain, there can be many sources of noise in the background, but memorizing all of957

them can easily overwhelm the decoder’s model capacity. Instead focusing solely on modeling the958

agent’s state can simplify the task of predicting the future.959

Recently some approaches have also considered recovering latent actions from video data using an960

encoder-decoder approach [Ye et al., 2022]. In general, the lower bound in Theorem 2 applies to these961

methods and they do not provably work in the hard instances with exogenous noise. For example,962

the latent actions can capture exogenous noise instead of actions, if the former is more predictive of963

changes in the observations. However, in simpler cases such as 3D games, where the agent’s action is964
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typically most predictive of changes in observations, or in settings with no exogenous noise, one can965

expect these approaches to do well.966

C.5 Relation Between Margins967

We defined margins βfor for forward modeling and βtemp for temporal contrastive learning. The968

larger the values of these margins, the more easy it is to separate observations from different969

endogenous states. This can be directly inferred from the sample complexity bounds which scale970

inversely with these margins. In particular, both βfor and βtemp depend on the way we sample the971

multi-step variable k. We consider two special cases: one where k ∈ [K] is fixed, we instantiate these972

margins as β(k)

for and β
(k)

temp, and second where k is uniformly sampled from [K] and we instantiate973

those margins as β(u)

for and β
(u)

temp.974

A natural question is how these margins are related. The sample complexity bounds of forward975

modeling and temporal contrastive are almost identical except for the difference in margins (βfor vs976

βtemp) and the function classes (F vs G). If the function classes were of similar complexity, then977

having a larger margin will make it easier to learn the right representation.2978

Theorem 10 (Margin Relation). For any Block MDP and K ∈ N, the margins979

β
(k)

for, β
(u)

for, β
(k)
temp, β

(u)
temp > 0 are related as:980

1

K
β
(k)

for ≤ β
(u)

for
1

K
β
(k)
temp ≤ β

(u)
temp

η2min
4H2

β
(k)

for ≤ β
(k)
temp ≤ β

(k)

for
η2min
4H2

β
(u)

for ≤ β
(u)
temp ≤ β

(u)

for.

Proof. We first prove the first two relations. Fix any k ∈ [K] then,981

β
(u)

for = inf
s1 ̸=s2,s1,s2∈S

Ek′∼Unf([K])

[
∥Dpr(X

′ | s1, k′)−Dpr(X
′ | s2, k′)∥TV

]
,

≥ 1

K

K∑
k′=1

inf
s1 ̸=s2,s1,s2∈S

∥Dpr(X
′ | s1, k′)−Dpr(X

′ | s2, k′)∥TV ,

≥ 1

K
inf

s1 ̸=s2,s1,s2∈S
∥Dpr(X

′ | s1, k)−Dpr(X
′ | s2, k)∥TV ,

=
1

K
β
(k)

for.

Similarly,982

β
(u)

temp =
1

2
inf

s1 ̸=s2,s1,s2∈S
Ek′∼Unf([K]),s′∼ρ [|g⋆(s1, k′, s′)− g⋆(s2, k

′, s′)|] ,

≥ 1

2K

K∑
k′=1

inf
s1 ̸=s2,s1,s2∈S

Es′∼ρ [|g⋆(s1, k′, s′)− g⋆(s2, k
′, s′)|] ,

≥ 1

2K
inf

s1 ̸=s2,s1,s2∈S
Es′∼ρ [|g⋆(s1, k, s′)− g⋆(s2, k, s

′)|] ,

=
1

K
β
(k)

temp.

2This inference has to be made with a caveat that since we are comparing upper bounds, we cannot guarantee
this to hold.
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We now prove the next two relations. We will prove these bounds for a generic distribution ω ∈983

∆([K]) over k. Recall that ω is point-mass over k for β(k)

temp and Unf([K]) for β(u)

temp. We denote984

our generic margins as βfor and βtemp for k ∼ ω. We use a shorthand notation Wk(s, s
′) =985

ρ(s′)
Dpr(s′|s,k)+ρ(s′) for a given pair of states s, s′ and integer k ∈ [K]. It is easy to see that Wk(s, s

′) ≤ 1986

as Dpr(s
′ | s, k), ρ(s′) ∈ (0, 1]. Further, we have Wk(s, s

′) ≥ ρ(s′)
2 ≥ ηmin

2H where we use987

Dpr(s
′ | s, k), ρ(s′) ∈ (0, 1], and Equation 8.988

We have g⋆(s, k, s′) = Dcont(z = 1 | s, k, s′) = g⋆(s, k, s′) =
Dpr(s

′|s,k)
Dpr(s′|s,k)+ρ(s′) using the definition989

of Dcont in Lemma 3 and Assumption 8. We can use the shorthand Wk and the definition of g⋆ to990

show991

βtemp =
1

2
inf

s1 ̸=s2,s1,s2∈S
Ek∼ω,s′∼ρ [|g⋆(s1, k, s′)− g⋆(s2, k, s

′)|] ,

=
1

2
inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

ρ(s′) |g⋆(s1, k, s′)− g⋆(s2, k, s
′)| ,

=
1

2
inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

Wk(s1, s
′)Wk(s2, s

′) |Dpr(s
′ | s1, k)−Dpr(s

′ | s2, k)| .

(23)

As Wk(s1, s
′) ≤ 1 and Wk(s2, s

′) ≤ 1 we have992

βfor =
1

2
inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

Wk(s1, s
′)︸ ︷︷ ︸

≤1

Wk(s2, s
′)︸ ︷︷ ︸

≤1

|Dpr(s
′ | s1, k)−Dpr(s

′ | s2, k)| ,

≤ 1

2
inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

|Dpr(s
′ | s1, k)−Dpr(s

′ | s2, k)| ,

= inf
s1 ̸=s2,s1,s2∈S

Ek∼ω

[
∥Dpr(s

′ | s1, k)−Dpr(s
′ | s2, k)∥TV

]
= βfor.

This gives us β
(k)

temp ≤ β
(k)

for and β
(u)

temp ≤ β
(u)

for. Finally, we prove the lower bounds. Starting993

from Equation 23 and using Wk(s1, s
′) ≥ ηmin

2H and Wk(s2, s
′) ≤ ηmin

2H we get the following:994

βfor =
1

2
inf

s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

Wk(s1, s
′)︸ ︷︷ ︸

≥ηmin/2H

Wk(s2, s
′)︸ ︷︷ ︸

≥ηmin/2H

|Dpr(s
′ | s1, k)−Dpr(s

′ | s2, k)| ,

≥
η2min
4H2

· 1
2

inf
s1 ̸=s2,s1,s2∈S

K∑
k=1

ω(k)
∑
s′∈S

|Dpr(s
′ | s1, k)−Dpr(s

′ | s2, k)| ,

=
η2min
4H2

inf
s1 ̸=s2,s1,s2∈S

Ek∼ω

[
∥Dpr(s

′ | s1, k)−Dpr(s
′ | s2, k)∥TV

]
=

η2min
4H2

βfor.

This gives us β(k)

temp ≥
η2

min
4H2 β

(k)

for and β
(u)

temp ≥
η2

min
4H2 β

(u)

for which completes the proof.995

The main finding of the above theorem is that forward modeling has a higher margin than temporal996

contrastive learning. However, typically the function class used for forward modeling has a higher997

statistical complexity than those for temporal contrastive learning as the latter is solving a simpler998

binary classification problem than generating an observation.999
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C.6 Why temporal contrastive learning is more susceptible to exogenous noise than forward1000

modeling1001

Theorem 2 shows that in the presence of exogenous noise, no video-based representation learning1002

approach can be efficient in the worst case. However, this result only presents a worst-case analysis.1003

In this section, we show an instance-dependent analysis. The main finding is that the temporal1004

contrastive approach is very susceptible to even the smallest amount of exogenous noise, while1005

forward modeling is more robust to the presence of exogenous noise. However, both approaches fail1006

when there is a significant amount of exogenous noise, consistent with Theorem 2.1007

Problem Instance. We consider a Block MDP with exogenous noise with a state space of S =1008

{0, 1}, action space of A = {0, 1} and exogenous noise space of ξ = {0, 1}. We consider H = 11009

with a uniform distribution over s1 and ξ1, i.e., the start state s1 and the start exogenous noise variable1010

ξ1 are chosen uniformly from {0, 1}. The transition dynamics are deterministic and given as follows:1011

given action a1 ∈ {0, 1} and state s1 ∈ {0, 1}, we deterministically transition to s2 = 1 − s1 if1012

s1 = a1, otherwise, we remain in s2 = s1. The exogenous noise variable deterministically transitions1013

from ξ1 to ξ2 = 1 − ξ1. The reward function is given by R(s2, s1) = 1{s2 = s1}. We use the1014

indicator notation 1{E} to denote 1 if the condition E is true and 0 otherwise. The observation1015

space is given by X = {0, 1}m+2 where (m+ 2) is the dimension of observation space. Given the1016

endogenous state s and exogenous noise ξ, the environment generates an observation stochasticaly1017

as x = [ξ, v1, · · · , vl, w1, · · · , wm−l, s] where vi ∼ psamp(· | ξ) and wj ∼ psamp(· | s) for all1018

i ∈ [l] and j ∈ [m − l]. The distribution psamp(u | s) generates u = s with a probability 0.8 and1019

u = 1− s with a probability 0.2. The hyperparameter l is a fixed integer controlling what portion of1020

the observation is generated by the exogenous noise compared to the endogenous state. If l = 1, we1021

only have a small amount of exogenous noise, while if l = m− 1 we have the maximal amount of1022

exogenous noise. The state s and exogenous noise ξ are both decodable from the observation x. The1023

optimal policy achieves a return of 1 and takes action a1 = 1 if s1 = 0 and a1 = 0 if s1 = 1. As the1024

optimal policy depends on the value of s1, we must learn the latent state to realize the optimal policy.1025

Learning Setting. We assume a decoder class Φ = {ϕ⋆, ϕ⋆
ξ} consisting of the true decoder ϕ⋆1026

and the incorrect decoder ϕ⋆
ξ which maps observation to the exogenous noise ξ. Both decoders take1027

an observation and map it to a value in {0, 1}. We assume access to an arbitrarily large dataset D1028

consisting of tuples (x1, x2) collecting iid using a fixed data policy πdata. This policy takes action1029

a1 = 0 in s1 = 0 and action a1 = 1 in s1 = 1. Let D(x1, x2) be the data distribution induced by1030

πdata. We will use D to define other distributions induced by D(x1, x2), for example D(x2) or1031

D(s2). We also assume access to two model classes F : {0, 1} → ∆(X ) and G : {0, 1}2 → [0, 1].1032

We assume these model classes are finite and contain certain constructions that we define later.1033

Overview: As we increase the value of l, the amount of exogenous noise in the environment1034

increases. We will prove that irrespective of the value of l, temporal contrastive learning assigns1035

the same loss for both the correct decoder ϕ⋆ and the incorrect decoder ϕ⋆
ξ . In contrast, the forward1036

modeling approach is able to prefer ϕ⋆ over ϕ⋆
ξ when the noise is limited, specifically, when l < m/2.1037

This will establish that temporal contrastive is very susceptible to exogenous noise whereas forward1038

modeling is more robust. However, both approaches provably fail when there is l ≥ m/2.1039

As we have H = 1, we will denote x2, s2, ξ2 by x′, s′, ξ′ and x1, s1, ξ1 by x, s, ξ respectively.1040

Note that unless specified otherwise, s and ξ are the endogenous state and exogenous noise of the1041

observation x. Similarly, s′ and ξ′ are the endogenous state and exogenous noise of x′. We will also1042

use a shorthand q(x′) to denote the emission probability q(x′ | ϕ⋆
ξ(x

′), ϕ⋆(x′)) given its endogenous1043

state and exogenous noise. We first state the conditional data distribution D(x′ | x).1044

D(x′ | x) = q(x′)Tξ (ξ
′ | ξ)

∑
a∈A

T (s′ | s, a)πdata(a | s),

= q(x′)1 {ξ′ = 1− ξ}1 {s′ = 1− s} , (24)

where we use Tξ(ξ
′ | ξ) = 1 {ξ′ = 1− ξ} and

∑
a∈A T (s′ | s, a)πdata(a | s) = 1 {s′ = 1− s}1045

which follows from the definition of πdata. Note that D(x′ | x) only depends on x via s, ξ, therefore,1046

we can define D(x′ | x) = D(x′ | s, ξ).1047
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Let x̃ be an observation variable with endogenous state s̃ and exogenous noise ξ̃, i.e., s̃ = ϕ⋆(x̃) and1048

ξ̃ = ϕ⋆
ξ(x̃). We use this to derive the marginal data distribution ρ over x′ as follows:1049

ρ(x′) =
∑

s,ξ∈{0,1}

D(x′, s, ξ) =
∑

s,ξ∈{0,1}

D(x′ | s, ξ)µ(s)µξ(ξ),

=
q(x′)

4

∑
s,ξ∈{0,1}

1 {ξ′ = 1− ξ}1 {s′ = 1− s} ,

=
q(x′)

4
, (25)

where in the second step uses the fact that µ and µξ are uniform and Eq. (24). We are now ready to1050

prove our desired result.1051

Temporal contrastive learning cannot distinguish between good and bad decoder for all l ∈1052

[m − 1]. We first recall that temporal contrastive learning approach use the given observed data1053

(x1, x2) to compute a set of real and fake observation tuples. This is collected into a dataset (x, x′, z)1054

where z = 1 indicates that (x1 = x, x2 = x′) was observed in the dataset, and z = 0 indicates that1055

(x1 = x, x2 = x′) was not observed, or is an imposter. We sample z uniformly in {0, 1}. The fake1056

data is constructed by take x = x1 from one tuple and x′ = x2 from another observed tuple. We start1057

by computing the optimal Bayes classifier for the temporal contrastive learning approach using the1058

definition of Bayes classifier in Lemma 3.1059

Dcont(z = 1 | x, x′) =
D(x′ | x)

D(x′ | x) + ρ(x′)
=

1{s′ = 1− s}1{ξ′ = 1− ξ}
1{s′ = 1− s}1{ξ′ = 1− ξ}+ 1/4

,

where we use Lemma 3 in the first step and Eqs. (24) and (25) in the second step. Recall that z = 11060

denotes whether a given observation tuple (x, x′) is real rather than an imposter/false. Note that since1061

we have k = 1, as it is a H = 1 problem, we drop the notation k from all terms.1062

The marginal distribution over (x, x′) for the temporal contrastive is given by Eq. (14) which in our1063

case instantiates to:1064

Dcont(x, x
′) =

D(x)

2
{D(x′ | x) + ρ(x′)} ,

=
1

8
q(x′)q(x) {1{s′ = 1− s}1{ξ′ = 1− ξ}+ 1/4} , (26)

where we use Eqs. (24) and (25), and D(x) = q(x)µ(s)µξ(ξ) = q(x)/4.1065

Let g ∈ G be any classifier head. Given a decoder ϕ, we define g ◦ ϕ : (x, x′) 7→ g(ϕ(x), ϕ(x′)) as a1066

model for temporal contrastive learning, with an expected contrastive loss of:1067

ℓcont(g, ϕ
⋆)

= E(x,x′)∼Dcont,z∼Dcont(·|x,x′)

[
(z − g (ϕ⋆(x), ϕ⋆(x′)))

2
]

= E(x,x′)∼Dcont

[
Dcont(z = 1 | x, x′) (1− 2g (ϕ⋆(x), ϕ⋆(x′))) + g (ϕ⋆(x), ϕ⋆(x′))

2
]

=
1

8

∑
s,ξ,s′,ξ′

{
1{s′ = 1− s}1{ξ′ = 1− ξ}+ 1

4

}(
1{s′ = 1− s}1{ξ′ = 1− ξ}

1{s′ = 1− s}1{ξ′ = 1− ξ}+ 1
4

(1− g(s, s′)) + g(s, s′)2
)

Similarly, the expected temporal contrastive loss of the model g ◦ϕ⋆ with the bad decoder ϕ⋆
ξ is given1068

by:1069

ℓcont(g, ϕ
⋆
ξ)

= E(x,x′)∼Dcont,z∼Dcont(·|x,x′)

[(
z − g

(
ϕ⋆
ξ(x), ϕ

⋆
ξ(x

′)
))2]

=
1

8

∑
s,ξ,s′,ξ′

{
1{s′ = 1− s}1{ξ′ = 1− ξ}+ 1

4

}(
1{s′ = 1− s}1{ξ′ = 1− ξ}

1{s′ = 1− s}1{ξ′ = 1− ξ}+ 1
4

(1− g(ξ, ξ′)) + g(ξ, ξ′)2
)
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Note that by interchanging s with ξ and s′ with ξ′, we can show ℓcont(g, ϕ⋆
ξ) = ℓcont(g, ϕ⋆).1070

Therefore, infg∈G ℓcont(g, ϕ⋆
ξ) = infg∈G ℓcont(g, ϕ⋆). This implies that for any value of l, the1071

temporal contrastive loss assigns the same loss to the good decoder ϕ⋆ and the bad decoder ϕ⋆
ξ .1072

Hence, in practice, temporal contrastive cannot distinguish between the good and bad decoder and1073

may converge to the latter leading to poor downstream performance. This convergence to the bad1074

decoder may happen if it is easier to overfit to noise. For example, in our gridworld example, it1075

is possibly easier for the model to overfit to the predictable motion of noise than understand the1076

underlying dynamics of the agent. This is observed in Fig. 3 where the representation learned via1077

temporal contrastive tends to overfit to the noisy exogenous pixels and perform poorly on downstream1078

RL tasks (Fig. 2).1079

Forward modeling learns the good decoder if l < ⌊m/2⌋. We likewise analyze the expected1080

forward modeling loss of the good and bad decoder. For any f ∈ F , we have f(x′ | u) as the1081

generator head that acts on a given decoder’s output u ∈ {0, 1} and generates the next observation x′.1082

If we use the good decoder ϕ⋆, then we cannot predict the exogenous noise ξ or ξ′ which can be1083

either 0 or 1 with equal probability. This implies that for the l noisy bits v1, · · · , vl in x′, the best1084

prediction is that each one has an equal probability of taking 0 or 1. To see this, fix i ∈ [l] and recall1085

that P(vi = ξ′ | ξ′) = 0.8 and P(vi = 1− ξ′ | ξ′) = 0.2. As ξ′ has equal probability of taking value1086

0 or 1, therefore, P(vi = u) =
∑

ξ′∈{0,1} P(vi = u | ξ′)1/2 = 0.8+0.2
2 = 0.5. However, since we can1087

deterministically predict s′, therefore, we can predict the true distribution over wj for all j ∈ [m− l].1088

Let fgood be this generator head. Formally, we have:1089

fgood(x
′ | ϕ⋆(x)) = (1/2)︸ ︷︷ ︸

due to x′
1 = ξ′ · (1/2)l︸ ︷︷ ︸

due to v1:l ·
m+1∏
j=l+2

psamp(x′
j | 1− ϕ⋆(x))︸ ︷︷ ︸

due to w1:m−l ·1{x′
m+2 = 1− ϕ⋆(x)}︸ ︷︷ ︸

due to x′
m+2 = s′1090

The Bayes distribution is given by:1091

D(x′ | x)
= q (x′) · 1{ϕ⋆(x′) = 1− ϕ⋆(x)} · 1{ϕ⋆

ξ(x
′) = 1− ϕ⋆

ξ(x)}

= 1
{
x′
1 = 1− ϕ⋆

ξ(x)
}
·

l∏
i=1

psamp(x′
i+1 | 1− ϕ⋆

ξ(x)) ·
m+1∏
j=l+2

psamp(x′
j | 1− ϕ⋆(x))1

{
x′
m+2 = 1− ϕ⋆(x)

}
.
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As we are optimizing the log-loss, we look at the expected KL divergence ℓkl between the D(x′ | x)1092

and fgood(x
′ | ϕ⋆(x)) which gives:1093

ℓkl(fgood, ϕ
⋆)

= Ex

[∑
x′

D(x′ | x) ln D(x′ | x)
fgood(x′ | ϕ⋆(x))

]

= Ex

∑
x′

D(x′ | x) ln
1
{
x′
1 = 1− ϕ⋆

ξ(x)
}
·∏l

i=1 psamp(x′
i+1 | 1− ϕ⋆

ξ(x))

(1/2)l+1


= (l + 1) ln(2) + Ex

[∑
x′

D(x′ | x) ln
(
1
{
x′
1 = 1− ϕ⋆

ξ(x)
}
·

l∏
i=1

psamp(x′
i+1 | 1− ϕ⋆

ξ(x))

)]

= (l + 1) ln(2) + Ex

 l∑
i=1

∑
x′
i+1∈{0,1}

psamp(x′
i+1 | 1− ϕ⋆(x)) ln psamp(x′

i+1 | 1− ϕ⋆(x))


= (l + 1) ln(2)− lH(psamp),

where H(psamp) denotes the conditional entropy given by −1/2
∑

s∈{0,1}
∑

v∈{0,1} psamp(v |1094

s) ln psamp(v | s). As psamp(u | u) = 0.8 and psamp(1 − u | u) = 0.2, we have H(psamp) =1095

−0.8 ln(0.8)−0.2 ln(0.2) ≈ 0.500. Plugging this in, we get ℓkl(fgood, ϕ
⋆) = l ln(2)−0.5l+ln(2) =1096

ln(2) + 0.193l.1097

Finally, the analysis when we use the ϕ⋆
ξ decoder is identical to above. In this case, we can predict1098

ϕ⋆
ξ(x

′) and correctly predict the psamp distribution over all the l-noisy bits v1:l. However, for the1099

w1:m−l bits and the x′[m+ 2], our best bet is to predict a uniform distribution. We capture this by1100

the generator fbad which gives:1101

fbad(x
′ | ϕ⋆(x)) = (1/2)︸ ︷︷ ︸

due to x′
m+2 = s′ · (1/2)m−l︸ ︷︷ ︸

due to w1:m−l ·
l+1∏
i=2

psamp(x′
i | 1− ϕ⋆

ξ(x))︸ ︷︷ ︸
due to v1:l ·1{x′

1 = 1− ϕ⋆
ξ(x)}︸ ︷︷ ︸

due to x′
1 = ξ′1102

The expected KL loss ℓkl(fbad, ϕ
⋆
ξ) can be computed almost exactly as before and is equal to1103

ln(2) + 0.193(m − l). We can see that for ℓkl(fgood, ϕ
⋆) < ℓkl(fbad, ϕ

⋆
ξ) we must have ln(2) +1104

0.193l < ln(2) + 0.193(m− l), or equivalently, l < m/2. This completes the analysis.1105

D Additional Experimental Details1106

D.1 Details of Experimental Setup1107

All results are reported with mean and standard error computed over 3 seeds. All the code for this1108

work was run on A100, V100, P40 GPUs, with a compute time of approx. 12 hours for grid world1109

experiments and 6 hours for ViZDoom experiments. Data collection for gridworld was done using1110

a mixture of random walks, optimal trajectories, deviation from optimal trajectories, and walks to1111

randomly chosen goal positions. Data collection for Vizdoom was done via pretrained PPO policies1112

along with random walks for diversity in the observation space.1113
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Hyperparameter Value
batch size 128

learning rate 0.001
epochs 400

# of exogenous variables 10
exogenous pixel size 4

# of VQ heads 2
VQ codebook size 100

VQ codebook temperature 0
VQ codebook dimension 32
VQ bottleneck dimension 1024

Table 2: Hyperparameters used for experiments with the GridWorld and ViZDoom domains.

(a) No Noise (b) Only Observation Noise (c) Only Reward Noise (d) Both

Figure 7: RL experiments using different latent representations for the ViZDoom environment.

GridWorld Details. We consider navigation in a 12× 12 Minigrid environment [Chevalier-Boisvert1114

et al., 2023]. The agent is represented as a red triangle and can take three actions: move forward, turn1115

left, and turn right (Figure 3). The agent needs to reach a yellow key. The position of the agent and key1116

randomizes each episode. The agent only observes an area around itself (as an agent-centric-view).1117

Horizon H = 12, and the agent gets a reward of +1.0 for reaching the goal and -0.01 in other cases.1118

ViZDoom Defend The Center Details. We test with a ViZDoom environment called Defend the1119

Center [Wydmuch et al., 2018, Kempka et al., 2016], which is a first-person shooting game (Figure 5).1120

The map is a large circle. A player is spawned in the exact center. 5 monsters are spawned along the1121

wall. Monsters are killed after a single shot. After dying, each monster is respawned after some time.1122

The episode ends when the player dies. The reward scheme is as follows: +1 for killing a monsterand1123

-1 for death.1124

Hyperparameters. In Table 2, we report the hyperaparameter values used for experiments in this1125

work with the GridWorld and ViZDoom environments.1126

D.2 Results on an Additional Domain1127

ViZDoom Basic. We use an additional basic ViZDoom environment [Wydmuch et al., 2018, Kempka1128

et al., 2016], which is a first-person shooting game (Figure 8). The player needs to kill a monster1129

to win. The map of the environment is a rectangle with gray walls, ceiling, and floor. The player is1130

spawned along the longer wall in the center. A red, circular monster is spawned randomly somewhere1131

along the opposite wall. The player can take one of three actions at each time step (left, right, shoot).1132

One hit is enough to kill the monster. The episode finishes when the monster is killed or on timeout.1133

The reward scheme is as follows: +101 for shooting the enemy, -1 per time step, and -5 for missed1134

shots. Results for this environment are shown in Figure 7 and Figure 8 and further validate our1135

findings from theory and experiments.1136

D.3 Additional Ablations1137

Harder Exogenous Noise. Figure 6 showed the results when we increase the size of the exogenous1138

noise variables (diamond shapes overlayed on the image) in the gridworld domain while keeping the1139
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(m) Original (n) Forward Modeling (o) Autoencoder (p) Temporal Contrastive

Figure 8: Decoded image reconstructions from different latent representation learning methods in the
ViZDoom environment. We train a decoder on top of frozen representations trained with the three
video pre-training approaches.

number of exogenous variables fixed at 10. We also increase the number of exogenous noise variables1140

in the gridworld domain, while keeping their sizes fixed at 4 pixels and present the results in Figure 9.1141

Both results show significant degradation in the performance of video-based representation learning1142

methods whereas ACRO which uses trajectory data continues to perform well. This supports one of1143

our main theoretical results that exogenous noise poses a challenge for video-based representation1144

learning.1145

I.I.D. Noise in Gridworld. We evaluate iid noise in the gridworld domain. We use the diamond-1146

shaped exogenous noise that we used in Figure 2, however, at each time step, we randomly sample1147

the color and position of each diamond, independent of the agent’s history. Figure 10(a) shows the1148

result for forward modeling and Figure 10(b) shows the same for ACRO. We also ablate the number1149

of noisy diamonds. As expected, forward modeling and ACRO can learn a good policy while the1150

increase in the number of noisy diamonds (num noise var) only slightly decreases their performance.1151

I.I.D. Noise in the Basic ViZDoom environment. We evaluate the representation learning methods1152

on the basic ViZDoom domain but with independent and identically distributed (iid) noise. We add iid1153

Gaussian noise to each pixel sampled from a 0 mean Gaussian distribution with a standard deviation of1154

0.001. Based on theory, we expect temporal contrastive objectives to be substantially better at filtering1155

out Gaussian iid noise, which is validated experimentally for the basic ViZDoom Environment1156

(Figure 11(a)). Figure 11(b) refers to the basic ViZDoom result for convenient comparison.1157
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(a) Autoencoder (b) VQ-Autoencoder (c) Forward Modeling

(d) VQ-Forward Modeling (e) Temporal Contrastive (f) ACRO

Figure 9: Gridworld experiments with exogenous noise of size 4 and different the number of
exogenous noise variables. Several video-based representation learning methods struggle to learn as
the number of exogenous noise variables increases, whereas ACRO which uses trajectory data, still
performs well.

(a) Forward Modeling (b) ACRO

Figure 10: Experiments with iid noise for the Gridworld environment. ‘Num noise var’ denotes the
number of noisy diamonds constituting the exogenous noise.

Additional reconstructions. We show additional image reconstructions Figure 12 for the Grid-1158

World environment and in Figure 13 for the ViZDoom Defend the Center environment. We highlight1159

that important parts of the observation space are recovered successfully by the forward modeling1160

approach under varying levels of exogenous noise, whereas temporal contrastive learning often fails.1161

1162
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(a) I.I.D. Gaussian Noise (b) Exogenous Noise

Figure 11: Experiments with (a) Guassian iid noise for the ViZDoom environment and (b) exogenous
noise.

(i) Original (j) Forward Modeling (k) Autoencoder (l) Temporal Contrastive

Figure 12: Decoded image reconstructions from different latent representation learning methods in
the GridWorld environment. We train a decoder on top of frozen representations trained with the
three video pre-training approaches.
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(e) Original (f) Forward Modeling (g) Autoencoder (h) Temporal Contrastive

Figure 13: Decoded image reconstructions from different latent representation learning methods in
the ViZDoom Defend the Center environment. We train a decoder on top of frozen representations
trained with the three video pre-training approaches.
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