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Abstract
Encoder-decoder transformer architectures001
have become popular recently with the advent002
of T5 models. While they demonstrate003
impressive performance on benchmarks such004
as GLUE, it is not clearly evident if the005
proposed encoder-decoder architecture is the006
most efficient for fine-tuning on downstream007
discriminative tasks. In this work, we study008
fine-tuning pre-trained encoder-decoder009
models such as T5. Particularly, we propose010
EncT5 as a way to efficiently fine-tune011
pre-trained encoder-decoder T5 models for012
classification and regression tasks by using013
the encoder layers. Our experimental results014
show that EncT5 with less than half of the015
parameters of T5 performs similarly to T5016
models on GLUE benchmark. We believe our017
proposed approach can be easily applied to018
any pre-trained encoder-decoder model.019

1 Introduction020

Unsupervised pre-training on massive textual cor-021

pora such as C4 (Raffel et al., 2020) or mC4 (Xue022

et al., 2021b) has become one of the main drivers023

of recent advances in NLP (Devlin et al., 2019;024

Yang et al., 2019; Clark et al., 2020; Raffel et al.,025

2020). The steady progress can be attributed to026

the scaling law of Transformers (Vaswani et al.,027

2017) in language modeling along with more data028

and more compute (Kaplan et al., 2020). Such pre-029

trained models facilitate fine-tuning downstream030

tasks by reducing the reliance on large task-specific031

training data. This becomes more crucial with in-032

creased size of the models to billions of parameters,033

whose training from scratch can be data and com-034

pute heavy. The popularity of platforms such as TF035

Hub1 and HuggingFace (Wolf et al., 2020), which036

include various family of such pre-trained models,037

is an evidence.038

The introduction of T5 (Raffel et al., 2020), a039

unified framework which enables converting NLP040

1https://www.tensorflow.org/hub
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Figure 1: Illustration of the differences between T5 and
our proposed EncT5 when three examples are packed
into one. We represent input tokens with �; encoder
outputs with 4; decoder inputs with ©; decoder out-
puts as �.

tasks, both generative and discriminative, to text- 041

to-text, advanced the standardization of pre-trained 042

models. As our experiments in Section 2 demon- 043

strate, the decoder layers of the proposed encoder- 044

decoder architecture of T5 (Raffel et al., 2020), are 045

under-utilized when fine-tuning on downstream dis- 046

criminative tasks, such as classification and regres- 047

sion. Since decoder layers comprise more than half 048

of the parameters of the encoder-decoder model, a 049

more compute and parameter efficient approach is 050

desired when applying T5 encoder-decoder models 051

to discriminative tasks. 052

In this work, we study how to tailor T5 param- 053

eters to such classification or regression tasks to 054

improve both training and serving efficiency with 055

less number of parameters and minimal quality loss. 056

We propose EncT5, an encoder-only Transformer 057

architecture which reuses T5 encoder layers with 058
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non-intrusive code change. Our proposed approach059

preserves the pre-training of the encoder-decoder060

model, and can easily be applied to all T5 variants061

such as mT5 (Xue et al., 2021b) or ByT5 (Xue062

et al., 2021a).063

Our contributions are:064

• Study the effect of the decoder layers of T5065

encoder-decoder architecture in classification066

and regressions tasks.067

• Propose a simple approach (EncT5) to reuse068

the pre-trained encoder layers of the pre-069

trained T5 model for discriminative tasks.070

• Demonstrate the efficacy of EncT5 w.r.t T5071

across different model scale.072

To the best of our knowledge, this is the first073

thorough study of utilizing components of encoder-074

decoder models for classification and regression075

tasks.076

The rest of this article is as follows: Section 2077

discusses the text-to-text framework and the role078

of decoder layers in discriminative tasks. Section 3079

introduces EncT5. In Section 4 the experimental080

results are discussed. We conclude the paper in081

Section 5.082

2 Text-to-Text Transfer Transformer083

T5 (Raffel et al., 2020) is an encoder-decoder Trans-084

former pre-trained on the Colossal Clean Crawled085

Corpus (C4) dataset with span-corruption objective.086

One important benefit of such encoder-decoder ar-087

chitecture Figure 1a is that it can be applied to both088

generative tasks, such as summarization, as well089

as discriminative tasks such as natural language090

inference.091

While the existence of the decoder is imperative092

for generative tasks, the effectiveness and necessity093

of the decoder is not well-studied for discriminative094

tasks. In this section, we further explore the role of095

decoder.096

As Figure 1a shows, the decoder part of T5 does097

the following: 1) self-attend to decoder inputs, 2)098

cross-attend to encoder outputs followed by a fully099

connected network, and 3) make predictions from100

output vocabulary tokens.101

To perform classification and regression tasks in102

the text-to-text format, the target label or score is103

cast to a string, which is later tokenized.2 This indi-104

cates that 1) the decoder in self-attention becomes105

2A single word can be encoded to multiple tokens when

an identity function when there is only a single 106

target token, 2) cross-attention followed by a fully 107

connected feed-forward network is essentially an 108

attention pooling layer with non-linear transform 109

of the encoder outputs, and 3) at the decoder out- 110

put, only a few vocabulary tokens (class labels or 111

scores) are used. We can infer that this renders the 112

decoder parameters highly under-utilized for the 113

classification and regression tasks. 114

To validate our hypothesis, we begin with a 115

simple experiment by removing all decoder lay- 116

ers when loading pre-trained checkpoints except 117

the first decoder layer. We will refer to this re- 118

duced decoder stack as 1decT5. We observed that 119

T5.1.1 large performs closely on the MNLI task 120

compared 1decT5.1.1 large as shown in Figure 1b. 121

This observation hinted at under-utilization of de- 122

coder parameters at classification and regression 123

tasks. 124

3 EncT5 125

In order to facilitate re-using the pre-trained T5 126

models and their variants, we follow these criteria: 127

• Unobtrusive implementation - Use T5 mod- 128

ules as components since training techniques 129

such as model parallelism (Shazeer et al., 130

2018) has been optimized on it. For exam- 131

ple, convolution is not considered since it is 132

not part of the T5 module. Moreover, unobtru- 133

sive design can simplify checkpoint loading 134

logic. 135

• Re-usability of fine-tuning settings - Users of 136

T5 checkpoints should be able to perform the 137

fine-tuning stage with EncT5 with minimal 138

changes compared to T5 encoder-decoder. For 139

example, hyper parameters tuned on encoder- 140

decoder should work out of the box. 141

• Packing support - T5 and GPT3 (Brown et al., 142

2020) employ a training performance opti- 143

mization that packs multiple examples into 144

one sequence with attention masking to avoid 145

examples interact with each other. To make 146

sure EncT5 does not take longer to train, we 147

should support packing so that at every train- 148

ing step, the same data is used. With this guar- 149

antee, to improve latency, we simply need to 150

improve training step time. 151

using SentencePiece (Kudo and Richardson, 2018). For exam-
ple, ‘entailment‘ is encoded into 4 tokens with the default T5
vocabulary.
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Table 1: Results on the GLUE test set. Following the GLUE leaderboard, for tasks with multiple metrics (including
MNLI), the metrics are averaged first. We also follow Devlin et al. (2019) and excluded WNLI and AX. Results
with * is copied from T5 fine-tuning results (Raffel et al., 2020). It used mixed downstream tasks when pre-training.
The mixing strategy can result in performance gap between T5 and T5.1.1 checkpoints. We show the effectiveness
of pre-trained checkpoint with the results of EncT5.1.1-base trained from random initialization in the last row.

Dataset CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
GLUE

# of training data 8.5k 67k 3.6k 364k 5.7k 393k 105k 2.5k
Metrics Matthew Acc F1/Acc PCC/SCC F1/Acc Mis/Matched Acc Acc Avg
T5-small* 41.0 91.8 89.7/86.6 85.6/85.0 70.0/88.0 82.4/82.3 90.3 69.9 78.5
T5.1.1-small 30.7 90.8 85.7/80.6 74.8/75.4 69.0/88.7 83.6/82.3 85.2 56.4 72.9
1decT5.1.1-small 27.6 87.9 86.2/80.8 72.3/70.4 69.4/88.8 83.2/82.4 84.1 56.4 71.6
EncT5.1.1-small 32.5 91.2 87.0/81.6 74.9/73.6 69.4/88.7 83.6/82.2 89.0 59.1 74.0
T5-base* 51.1 95.2 90.7/87.5 89.4/88.6 72.6/89.4 87.1/86.2 93.7 80.1 83.2
T51.1-base 49.7 94.4 91.0/87.7 81.4/80.4 72.6/89.8 88.9/87.8 93.2 70.3 80.9
1decT5.1.1-base 23.7 90.0 85.6/80.5 77.4/76.1 71.3/89.3 86.2/84.6 89.8 62.4 73.9
EncT5.1.1-base 53.1 94.0 91.5/88.3 80.5/79.3 72.9/89.8 88.0/86.7 93.3 67.8 80.8
T5-large* 61.2 96.3 92.4/89.9 89.9/89.2 73.9/89.9 89.9/89.6 94.8 87.2 86.5
T5.1.1-large 54.2 96.7 91.4/88.3 84.3/83.0 72.7/89.8 90.4/90.3 95.3 83.9 84.4
1decT5.1.1-large 49.2 94.3 90.0/86.4 86.6/86.4 72.0/89.5 89.8/89.1 94.3 73.2 82.0
EncT5.1.1-large 52.1 96.2 90.7/87.2 86.6/85.6 72.9/89.9 90.2/89.6 95.6 75.7 83.2
T5-3B* 67.1 97.4 92.5/90.0 90.6/89.8 74.4/89.8 91.2/91.4 96.3 91.1 88.3
T5.1.1-xl 62.3 96.5 92.5/90.0 88.6/87.6 72.7/89.8 90.8/90.4 95.2 86.7 86.5
1decT5.1.1-xl 13.4 95.5 92.4/89.6 87.1/86.9 72.7/90.0 90.8/90.2 95.5 83.8 79.8
EncT5.1.1-xl 63.6 96.7 91.8/88.9 87.7/86.9 73.0/90.0 91.2/90.9 96.2 87.5 86.8
T5-11B* 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 92.2/91.9 96.9 92.8 89.8
T5.1.1-xxl 65.2 97.2 92.9/90.4 88.2/87.6 73.2/90.0 91.7/91.5 96.2 86.3 87.2
1decT5.1.1-xxl 18.6 85.3 86.6/81.7 88.5/88.3 70.5/89.1 91.2/90.8 89.1 84.6 77.6
EncT5.1.1-xxl 67.7 97.4 92.1/89.4 89.2/88.8 73.1/90.0 91.5/91.3 96.5 89.8 88.0
EncT5.1.1-base-rand 16.7 81.6 76.3/66.3 20.2/19.5 57.1/82.3 62.7/61.5 61.8 49.9 54.1

3.1 Architecture152

EncT5 is inspired by recent work on feeding latent153

arrays as inputs to Transformer blocks with parallel154

decoding (Carion et al., 2020; Jaegle et al., 2021).155

Extending from 1decT5, we randomly initialized156

the BOS (begin of sentence) token and replaced157

the vocabulary embedding with a class projection158

layer (single MLP) with the bias term which was159

removed in vocabulary projection in T5.160

We introduce a new component, to replace the161

decoder, which plays the following roles designed162

for classification.163

• A pooling layer to aggregate encoder outputs.164

• A projection layer to project the aggregated165

outputs to possible outcomes.166

Furthermore, we removed the Self-Attention167

module since it is an identity function in a single168

input scenario. An illustration of the architecture169

can be found in Figure 1b.170

3.2 Implementation Details171

Since the number of examples being packed is not172

known when packing is enabled, the target tokens173

need to be padded. To avoid the padding token to 174

be treated as a class, we introduced an extra class 175

to the projection layer. For example, for a classi- 176

fication task with n classes, the projection matrix 177

is W ∈ Rd×(n+1) where d is the dimension of the 178

pooled outputs. Note that the value of loss function 179

associated with the padded tokens is masked out so 180

the extra class introduced would not contribute to 181

computing gradients. The implementation aligns 182

with our goal of avoiding intrusive implementation 183

while observing 0 as the padding token as in T5. At 184

inference time, the padding class can be ignored. 185

4 Experiments 186

We conduct our experiments with the T5 1.1 check- 187

points3. The available models sizes are "small, 188

base, large, xl, and xxl". We choose the 1.1 check- 189

points instead of the 1.0 checkpoints for two rea- 190

sons. Firstly, the 1.1 checkpoints were pre-trained 191

on C4 only without mixing in the downstream tasks. 192

We believe such design choice leads to better gen- 193

3https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md#t511

3
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Table 2: Parameters and train time comparison on STS-
B.

params (M) train step/sec
T5.1.1-small 77 1x
1decT5.1.1-small 54 1.03x
EncT5.1.1-small 37 1.04x
T51.1-base 248 1x
1decT5.1.1-base 143 1.33x
EncT5.1.1-base 116 1.34x
T5.1.1-large 783 1x
1decT5.1.1-large 391 1.32x
EncT5.1.1-large 354 1.34x
T5.1.1-xl 2850 1x
1decT5.1.1-xl 1354 1.34x
EncT5.1.1-xl 1272 1.34x
T5.1.1-xxl 11135 1x
1decT5.1.1-xxl 5154 1.35x
EncT5.1.1-xxl 4955 1.36x

eralization of our experimental results. Secondly,194

the 1.1 architecture is used in other variants of T5195

such as mT5 (Xue et al., 2021b) and ByT5 (Xue196

et al., 2021a). We hope our findings can generalize197

to these variants as well.198

We compare EncT5 with T5 and 1decT5 on199

GLUE by training each task individually and fine-200

tune on all trainable weights.201

4.1 Hyperparameters202

The following setup is used across all our experi-203

ments. We used a global batch size of 2048 with204

max input length of 512 and max target length of205

62. Packing was enabled. Adafactor (Shazeer and206

Stern, 2018) was used as the optimizer with a con-207

stant learning rate set to 1e−3. Models were trained208

for 50k steps and the best checkpoint was selected209

on the validation set for each task. These hyperpa-210

rameters were suggested by the T5 paper (Raffel211

et al., 2020). Trainings were performed on 128212

Cloud TPU v3 chips.213

4.2 Checkpoints Loading214

Model and optimizer weights are loaded whenever215

possible (as T5 default practice), specifically we216

load the weights of embeddings, encoder, the cross-217

attention and feed-forward network of the first de-218

coder layer. Only the projection layer and task219

embedding are trained from scratch.220

4.3 Results on GLUE221

Table 1 demonstrates the performance of our pro-222

posed EncT5 model compared to encoder-decoder223

T5 and 1decT5. As it can be seen, 1decT5 while224

performing close to T5 on MNLI, under-performs 225

on average and in 34 out of 40 experiments in Ta- 226

ble 1. We specially see 1decT5 performing very 227

poorly on the CoLA task. Our hypothesis is that the 228

decoder weights from the first layer and the target 229

embedding weights after the last layer loaded from 230

the decoder of the pre-trained checkpoint are not 231

fully compatible. 232

EncT5 addresses this concern by randomly ini- 233

tializing the class projection. EncT5 outperforms 234

T5 in 25 out of 40 experiments in Table 1 . On av- 235

erage, EncT5 outperforms T5 on 3 out of 5 model 236

scales. For the rest of the experiments, EncT5 237

slightly under-performs T5. This indicates by prop- 238

erly choosing the projection layer, the encoder com- 239

ponent of T5 can achieve very competitive perfor- 240

mance compared to its full encoder-decoder variant, 241

while massively reducing the number of parame- 242

ters. 243

Similar observations can be made when compar- 244

ing EncT5 and 1decT5, where the former outper- 245

forms the latter on average on all model scales. 246

4.4 Efficiency 247

We show parameter savings and improvement on 248

training time in Table 2. When model scale goes 249

beyond large, EncT5 reduces parameters by half 250

and leads to more than 1.3x speed up. This allow 251

users of T5 checkpoints to use less computation 252

and memory to achieve similar results. Since clas- 253

sification tasks usually have short target tokens, we 254

may not see much latency saving for online serv- 255

ing. However, since the number of parameters is 256

reduced, it can enable larger batch sizes and reduce 257

model parallelism (if enabled) to increase through- 258

put during inference. 259

5 Conclusion and Future Work 260

In this work, we proposed EncT5, an encoder-only 261

architecture that provides efficiency gains when 262

fine-tuning from T5 checkpoints without suffer- 263

ing from performance drop. The removal of the 264

decoder reduces the number of parameters which 265

in turn improve inference latency by using larger 266

batch sizes. The throughput improvement bene- 267

fits student models that wish to distill from T5 268

since EncT5 can annotate more unsupervised data 269

given the same resources. Future research can ex- 270

plore utilizing task embeddings for span labeling 271

for question answering or multi-tasking settings. 272
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