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Abstract

The spatial arrangement of cells within tissues plays a pivotal role in shaping tissue
function. A critical spatial pattern is network motif as cell organization. Network
motifs can be represented as recurring significant interconnections in a spatial cell-
relation graph, i.e., the occurrences of isomorphic subgraphs in the graph, which is
computationally infeasible to have an optimal solution with high-order (>3 nodes)
subgraphs. We introduce Triangulation Network Motif Neural Network (TrimNN),
a neural network-based approach designed to estimate the prevalence of network
motifs of any order in a triangulated cell graph. TrimNN simplifies the intricate
task of occurrence regression by decomposing it into several binary present/absent
predictions on small graphs. TrimNN is trained using representative pairs of prede-
fined subgraphs and triangulated cell graphs to estimate overrepresented network
motifs. On typical spatial omics samples within thousands of cells in dozens of
cell types, TrimNN robustly infers high-order network motifs in seconds. TrimNN
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provides an accurate, efficient, and robust approach for quantifying network motifs,
which helps pave the way to disclose the biological mechanisms underlying cell
organization in multicellular differentiation, development, and disease progression.

1 Background

Deciphering the relationship between structure and function in tissues is the cornerstone of tis-
sue biology and pathology[1]. With advancements in spatial omics, such as spatially resolved
transcriptomics[2] and proteomics[3], researchers have access to an unprecedented resource to
explore how distinct cell types are organized to perform specialized roles at the cellular level[4].
However, identifying the building blocks of the cell organization and determining which spatial
cellular interconnection patterns are informative to tissue function remain challenging[5].

Network motifs as recurring significant interconnections represent network characteristics as conser-
vative patterns[6]. The studies of network motif have greatly enhanced the knowledge of network
functions in social networks[7] and biological networks[8]. We hypothesize network motifs can be
treated as building blocks of cell organization that invariantly across different samples, and they con-
nect with key functions in a biologically meaningful context. Currently, most existing network motif
analyses are limited to 1-3 orders[9]. However, in spatial omics studies, biologists have observed the
prevalence of high-order network motifs significantly correlated with patient survival in colorectal
cancer[10], brain tumor[11], and lung cancer[12].

The biological problem of identifying overrepresented network motifs can be modeled mathematically
by identifying the most overrepresented subgraphs. This problem usually consists of two sub-
problems: subgraph matching[13] and pattern growth[8]. It is proven that subgraph matching
is NP-complete[14], which makes it computationally infeasible to count high-order isomorphic
subgraphs in a polynomial time. Even though many methods adopted heuristic strategies such as
edge sampling (e.g., MFinder[15]), node sampling (e.g., FANMOD[16]), and global pruning (e.g.,
Ullmann[17], VF2[18]) to address this challenge, their practical utility remains limited due to the
scalability issue. Neural Subgraph Isomorphism Counting (NSIC)[19] is the first deep learning model
to predict subgraph occurrences, but its far-reaching goal on universal graphs and its limited accuracy
narrow its practical utility.

Here, we present Triangulation Network Motif Neural Network (TrimNN), a neural network-based
approach to estimate the prevalence of network motifs of any order in a graph. TrimNN aims to
address the subgraph matching problem in triangulated graphs after Delaunay triangulation derived
from spatial omics. TrimNN decomposes the occurrence regression challenge into several binary
classification problems modeled by the sub-TrimNN module. Inspired by NSIC, TrimNN is trained on
representative pairs of the predefined subgraphs and the triangulated cell graphs. TrimNN aggregates
the sub-TrimNN module’s results and outputs the subgraph’s relative abundance, which can be used
to estimate the prevalence of overrepresented network motifs.

Our major contribution is formulating and simplifying the subgraph matching challenge in the
context of spatial omics. Avoiding predicting the absolute occurrences of network motifs in the
universal graphs in the original setting, TrimNN decomposes the challenge to a serial binary clas-
sification problem in a well-defined set of biological meaningful triangulated graphs, where it
performs binary presence/absence predictions at a similar scale.TrimNN is publicly available at
https://github.com/yuyang-0825/TrimNN.

2 Methods

2.1 Problem setting and definition

Formally, we define the k-order subgraph with k nodes as Mk, the triangulated graph as G =
{V,E}. The biological problem of identifying the overrepresented network motifs can be modeled
mathematically in finding the most overrepresented subgraph M∗

k in G, where M∗
k ∈ Mk, and

Mk ∈ G. This challenge consists of a subgraph matching problem and a pattern growth problem
built on it. The whole workflow is shown in Figure 1.
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Figure 1: Flowchart of the motif identification problem and the TrimNN framework. In this figure, a
4-order subgraph is taken as an example.

The goal of TrimNN is the subgraph matching problem, which aims to define F (G,mk) ∈ N ,
estimating the relative occurrence of the given mk in G. The problem can be quasi-divided and
conquered by summarization of many sub-TrimNN problems. The goal of sub-TrimNN is to build
a reliable binary prediction model f(g,mk) ∈ [0, 1], where 0 presents mk is absent in g, and
1 represents presence. Here g ∈ G and g is in a similar scale of mk. With sub-TrimNN on
enclosed graphs of each node, TrimNN is the summarization of results from all sub-TrimNN in the
graph. Finally, F (G,mk) =

∑
v∈G f(g(v, hop),mk) , where g(v, hop) is the enclosed graph as the

neighborhoods of node v ∈ V with hop ∈ [1, 2, 3, . . . ], and g(v, hop) ∈ G. After we get a fast and
reliable F (G,mk) from TrimNN, we can use it in the problem of pattern growth. Using enumeration
or other searching processes, the final target top overrepresented set M∗

k has the maximum relative
abundance identified by F (G,mk), where F (G,M∗

k ) = max(F (G,Mk)).

2.2 TrimNN model architecture

We decompose the regression problem of TrimNN to many binary classification problems solved
by sub-TrimNN. The input of sub-TrimNN is a pair of subgraph mk and the triangulated graph g,
both of which can be extracted and learned by Graph Isomorphism Network (GIN)[20]. Then this
pair of representations are aligned in the interaction module, which consists of gated recurrent units
(GRU) with dynamic memory. After fully connected layers and activated by the sigmoid function,
sub-TrimNN outputs the binary predictions (presence/absence). The training process minimizes
the loss function on cross-entropy of known presence/absence relations. After trained sub-TrimNN
f(g,mk), TrimNN estimates the abundances of F (G,mk) by summerizting sub-TrimNN predictions
on each node’s enclosed graph.

2.3 Constructing the training set as pairs between subgraphs and triangulated graphs

We simulated the training set on known presence/absence relations of pairs between subgraphs and
triangulated graphs. 8 distinct subgraphs in various topologies were generated, including 3-order and
high-order subgraphs up to 9-order. Given the context of routine spatial omics for each network motif,
we constructed the corresponding triangulated graphs with varying node sizes of 16, 32, 64, and
128, and node types of 8, 16, and 32. To preserve the diversity, we generated 50 extended subgraphs
permutating node types for each subgraph, and generated corresponding 1,000 triangulated graphs

3



Figure 2: Comparison in scalability between TrimNN and competitors.

permutating node types. We controlled the proportion of positive to negative samples at 1:1 in data
generation and split the generated data into training, validation, and test sets in a ratio of 8:1:1.

3 Results

3.1 TrimNN accurately identifies whether the network motifs present in the triangulated
graph

We first tested the performance of TrimNN on a modified task of subgraph matching, which predicts
whether the network motif existed in the triangulated graph by sub-TrimNN. As a binary prediction
task, the performance is evaluated by precision, recall, F1 score, and MCC on the generated test set
varying size and node types. For NSIC regresses occurrence as integers, we treat NSIC’s prediction
on 0 as not existing in the graph, and any value equal or larger than one as existing in the graph.
We did not include VF2 here because it enumerates with huge computational cost. We observed
that TrimNN outperforms competitors’ bias in nearly all the scenarios (Table 1). Notably, we value
the near-perfect performance on recall criteria, indicating TrimNN is confident when it predicts the
network motif presented in the triangulated graph.

Table 1: Performances of TrimNN and NSIC on test data

Network motif Cell type Number of nodes
in the graph

TrimNN NSIC
Precision Recall F1 MCC Precision Recall F1 MCC

3-order

8 64 0.8499 0.9755 0.9084 0.8126 0.5018 0.9842 0.6647 0.0387
128 0.795 0.9381 0.8607 0.7075 0.503 0.9962 0.6685 0.0548

16 64 0.8988 0.9917 0.943 0.885 0.5008 0.9991 0.6671 0.0563
128 0.8399 0.9817 0.9053 0.8054 0.5016 1 0.668 0

32 64 0.9043 0.9945 0.9473 0.8938 0.5004 0.9999 0.667 0.0355
128 0.8485 0.9891 0.9134 0.8242 0.499 1 0.6658 0

4-order

8 64 0.8655 0.9688 0.9142 0.8241 0.5015 1 0.668 0.0553
128 0.7898 0.9332 0.8555 0.6984 0.4973 1 0.6642 0.0122

16 64 0.8936 0.9895 0.9391 0.8773 0.502 0.9992 0.6683 0.0878
128 0.8342 0.9781 0.9004 0.7963 0.5013 0.9994 0.6677 0.0697

32 64 0.9141 0.9958 0.9532 0.9061 0.4985 1 0.6653 0.007
128 0.8559 0.9892 0.9177 0.8331 0.4994 1 0.6661 0

3.2 TrimNN accurately identifies top overrepresented network motifs

Then we tested whether TrimNN identifies the correct overrepresented network motifs in the tri-
angulated graph as a pattern growth problem. As we only care about the biological meaningful
top overrepresented network motifs, we used criteria of Mean Average Recall at K (MAR@K) and
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Mean Squared error (MSE) to evaluate the performances. As in Section 3.1, we excluded VF2 for it
enumerates to generate exact results. The performances of TrimNN and NSIC are not shown due to
the page limit. We can see that TrimNN outperforms competitors in nearly all the scenarios again
with a large margin.

3.3 TrimNN is highly scalable in identifying high-order network motifs

We compared the computational time on triangulated graphs varying different node sizes. In the
experiments, the inquiry subgraph contains 9 nodes, both the subgraph and the triangulated graph
have 32 node types. All the experiments were performed on a workstation equipped with AMD
EPYC 7713 CPU and one NVIDIA A100 GPU. Figure 2 shows that both TrimNN (red line) and
NSIC (green line) exhibit linear scalability with increasing node sizes (black dot line), while TrimNN
continuously consumes even lower computational time when the graph size is in the scale of typical
spatial omics samples (>512 nodes). In contrast, the VF2 method (blue line) grows exponentially.
When the number of graph nodes exceeds 10k, VF2’s runtime surpasses 20k seconds, making it
unacceptable in most scenarios.

4 Discussion

The advent of spatial omics has revolutionized our capacity to explore the nuanced organization of
cells within tissues at the cellular level. Based on graph isomorphism network, TrimNN provides
an accurate, unbiased, efficient, and robust approach to quantify the network motifs as interpretable
building blocks of cell organization. In the future, the identified enriched network motifs will be
evaluated with downstream analysis using biological validations[21] from multiple independent data
sources.
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