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Figure 1: Examples of leading models on the Reasoning-Informed viSual Editing(RISE) bench-
mark. RISEBench contains complex and various tasks that pose challenges to current models.

Abstract

Large Multi-modality Models (LMMs) have made significant progress in visual
understanding and generation, but they still face challenges in General Visual
Editing, particularly in following complex instructions, preserving appearance
consistency, and supporting flexible input formats. To study this gap, we intro-
duce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual
Editing (RISE). RISEBench focuses on four key reasoning categories: Tempo-
ral, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases
for each category and propose an robust evaluation framework that assesses In-
struction Reasoning, Appearance Consistency, and Visual Plausibility with both
human judges and the LMM-as-a-judge approach. We conducted experiments
evaluating nine prominent visual editing models, comprising both open-source
and proprietary models. The evaluation results demonstrate that current mod-
els face significant challenges in reasoning-based editing tasks. Even the most
powerful model evaluated, GPT-image-1, achieves an accuracy of merely 28.8%.
RISEBench effectively highlights the limitations of contemporary editing mod-
els, provides valuable insights, and indicates potential future directions for the
field of reasoning-aware visual editing. Our code and data have been released at
https://github.com/PhoenixZ810/RISEBench.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.
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1 Introduction

Large Multi-Modality Models (LMMs) have achieved remarkable progress in both visual un-
derstanding [22, 1, 5, 38, 26] and visual generation [29, 31, 3]. Meanwhile, significant ef-
forts [37, 48, 40, 42, 20] have been dedicated to unifying these two tasks, with the goal of enhancing
overall performance through joint learning. Some open-source models have demonstrated decent
capability in either visual understanding or image generation; however, they still exhibit substantial
limitations in General Visual Editing (i.e., transforming an input image based on textual instructions).
Specifically, current open-source methods struggle with: (1) accurately following complex editing
instructions [34]; (2) preserving the original image’s appearance during visual editing [18]; and (3)
accommodating flexible input formats [40, 48] (e.g., supporting both single and multiple images with
natural language instructions). These limitations severely hinder their practical utility, making them
hardly worth rigorous evaluation in this task.

Recently, we observed that proprietary models such as GPT-image-1 [16] and Gemini-2.0-Flash* [38]
have made significant advancements over open-source counterparts (Fig. 1). Notably, these models
exhibit a remarkable capability in Reasoning-Informed viSual Editing (RISE) – a sophisticated ability
that enables models to make intelligent visual modifications based on contextual understanding and
logical reasoning. This advanced ability has exciting implications for various real-world applications,
such as context-aware image modification (e.g., adjusting lighting to match a scene’s time of day),
intelligent object insertion or removal with semantic consistency, and content adaptation based on
inferred user intent. However, traditional image editing models [17, 11, 4] that do not incorporate
multi-modal reasoning lack these capabilities entirely. While such a phenomenon is promising, we
found that there is no well-established benchmark for systematically evaluating RISE task, making it
difficult to quantitatively assess and further study this ability in existing models.

To this end, we introduce RISEBench, a focused, small-scale benchmark specifically designed to
evaluate reasoning-informed visual editing (RISE) capabilities. In this benchmark, we identify and
categorize key image editing challenges that require four fundamental types of reasoning: temporal
reasoning, causal reasoning, spatial reasoning, and logical reasoning. To ensure a comprehensive
evaluation, we manually curated a diverse set of high-quality test cases across the four categories:
85 for temporal reasoning, 90 for causal reasoning, 100 for spatial reasoning, and 85 for logical
reasoning, resulting in a total of 360 carefully human-annotated samples.

For evaluation, we decompose the quality of the edited output images into three key dimensions:
instruction reasoning, appearance consistency, and generation plausibility. Evaluations are
conducted using both human judges and an LMM-as-a-judge framework. For the latter, a rigorous
pipeline was developed to ensure the reliability and validity of the LMM’s assessments. Additionally,
we performed extensive experiments to quantify the correlation between the scores produced by the
LMM and human experts, which verifies the reliability and effectiveness of our proposed framework.

Using RISEBench, we conduct a systematic evaluation of state-of-the-art LMMs with visual editing
capabilities. Our results reveal that open-source visual editing models such as BAGEL [8], Step1X-
Edit [23], FLUX [19], EMU2 [35], and OmniGen [46] show limited reasoning capabilities, resulting
in notably low performance across most test cases. Proprietary models, such as Gemini-2.0-Flash
Series [38] and GPT-image-1, achieve significantly better overall performance. Notably, GPT-image-1
displays strong capabilities across temporal, causal, and spatial reasoning tasks. However, it still
struggles with logical reasoning, highlighting an area for future research.

In summary, our main contributions are as follows:

1. We propose the first dedicated benchmark for assessing Reasoning-Informed viSual Editing
(RISE), establishing a foundation for systematic assessment in this emerging area.
2. We define core categories of RISE challenges, design meaningful evaluation dimensions, and
present a robust, effective LMM-as-a-judge framework for scalable and automated assessment.
3. We conduct a comprehensive evaluation and analysis of 8 prominent visual editing models, offering
novel insights into their reasoning-driven visual editing capabilities and highlighting areas for future
improvement.

*The Gemini-2.0-Flash Series comprises two models: Gemini-2.0-Flash-Experimental-Image-Generation
(Gemini-2.0-Flash-Exp) and Gemini-2.0-Flash-Preview-Image-Generation (Gemini-2.0-Flash-Pre).
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2 Related Work

Image Editing with Diffusion Models. Editing images based on textual user instructions is a crucial
task in the field of image generation. With the advancement of large-scale diffusion models, the
performance of image editing tasks has significantly improved. For instance, some methods [7, 25,
50, 33], adopt training-free approaches to guide denoising according to editing instructions, such
as reversing noise on an image and guiding denoising with text [27], controlling attention maps
during diffusion steps [11], or blending the original and generated images [6]. Recently, other
works [4, 51, 49] have shifted to training-based methods, where pre-trained text-to-image diffusion
models are further fine-tuned using datasets comprising paired edited images to enhance editing
capabilities, yielding superior performance. However, due to the limited fine-grained semantic
understanding of diffusion models, image editing models based on diffusion are often insufficient
for handling complex, fine-grained editing instructions that require higher-order reasoning, thereby
restricting their application in more diverse scenarios.

Unified Large Multi-Modality Models. Large Multi-Modality Models (LMMs) extend the input
and output capabilities of large language models (LLMs) by incorporating visual information. Early
works primarily focused on visual understanding, which involves processing visual inputs, reasoning,
and generating textual outputs. Recently, a series of studies [34, 53, 9, 37, 40, 42, 45, 52, 48, 21]
have aimed to develop unified LMMs capable of simultaneously handling both textual and visual
inputs, enabling cross-modal generation and understanding. Initial approaches [34, 53, 9] often relied
on pre-trained diffusion decoders to generate outputs by regressing CLIP [30] image representations.
To further integrate understanding and generation, recent models such as Chameleon [37], Emu3 [40],
and SynerGen-VL [20] have adopted a unified next-token prediction paradigm by discretizing images.
Transfusion [52] and Show-o [48] demonstrated that bidirectional image diffusion could be integrated
with autoregressive text prediction within a single framework.

Text-to-Image Generation Evaluation. The comprehensive evaluation of text-to-image generation
is a long-standing problem. Early work mainly adopt the Fréchet inception distance (FID) [13] metric
to mesure the distance between the generated distribution and the target distribution. However, this
cannot measure the per-image alignment of image and the instruction. To better measure the semantic
alignment in text-to-image generation, a series of works [10, 15, 12, 44, 43] propose metrics based
on foundation models such as CLIP or object detectors. However, few works have focused on the
reasoning-based visual editing. Recent work [28] shares the similar motivation of measuring models’
world knowledge. However, they do not explicitly measure the models’ reasoning

3 RISEBENCH-360

Humans possess a deep, conceptual understanding of objects and scenes in the real world that goes
far beyond superficial attributes such as color and shape. For example, people can effortlessly reason
about: 1) Temporal evolution of objects (temporal reasoning), such as fruits rotting over time, iron
tools rusting, or children growing into adults; 2) Transformative changes due to external factors
(causal reasoning), like ice cream melting under sunlight or vehicles becoming damaged after
collisions; 3) Spatial configurations (spatial reasoning), including how shapes appear from different
viewing angles and how various components assemble into complete structures. 4) Additionally,
people can easily solve visual puzzle problems (logical reasoning) such as tic-tac-toe or mazes, and
concretely imagine their solutions.

However, these capabilities present significant challenges for most generative models, which strug-
gle to incorporate such reasoning into their visual outputs. To objectively assess current models’
performance on these tasks and clearly identify their limitations, we propose RISEBench, the first
benchmark specifically designed to evaluate reasoning-informed visual editing capabilities of image
generative models across these dimensions of human-like visual understanding.

3.1 Benchmark Construction

Among the broad spectrum of visual editing tasks, RISEBench targets four major problem categories
that require both deep visual understanding and precise reasoning, termed as Temporal, Causal,
Spatial, and Logical Reasoning. For each category, we curate a diverse set of high-quality, carefully
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Draw what they 
will look like after 
being kept in a 
daily environment 
for a year.

Draw what it 
will look like 5 
seconds later.

Temporal Reasoning Causal Reasoning

Spatial Reasoning Logical Reasoning

Draw what it will 
look like after 
being bitten by 
people.

Draw the 
consequence of 
capillary action.

Draw the top 
view.

Draw the objects 
arranging from left to 
right in order: red, 
orange, yellow, green, 
blue, and purple.

Generate an image 
assembling the 
components into a 
complete clock 
displaying 9:45. 

Complete the 
shape 
represented by 
the question 
mark.

This is a maze. 
Draw the path 
from the red dot 
to the green dot 
in blue.

Draw the final 
state of the lever.

Cut out six 

adjacent squares 

that form a valid 

unfolded dice net. 

Draw what it 
looked like 
three hours 
later.

This image is 
observed from the 
Northern 
Hemisphere.  Draw 
what it will look 
like 7 days later.

Draw what it 
will look like 
after 30 seconds 
in summer.

Draw what it 
looked like ten 
minutes ago at a 
temperature of 25 
degrees Celsius.

Draw what it will 
look after it has 
been shaken 
vigorously and 
then opened.

Draw what it will 
look like after the 
knot is untied.

RISE 
Bench

Draw what the 
scene will look like 
when the speaker 
plays strong, 
powerful music.

Draw what the 
iron nail looks 
like after being 
left in the beaker 
of copper sulfate.

Draw the image 
after the black car 
has moved 
forward towards 
the camera.

Draw the scene that 
shows the view from 
sitting on the red chair 
facing toward the 
bookshelf on the left 
side of the wall.

Draw the scene 
that the pink sofa 
and the oval 
coffee table is 
neatly arranged.

Draw the solution, 
ensuring that each 
row and each 
column contains 
the numbers 1, 2, 3 
and 4.

Move two 
matchsticks on the 
left side of the 
equation to make 
the equation true.

Figure 2: Overview of RISEBench. We present illustrative example questions from each of the four
problem categories, each demanding profound image understanding and reasoning capabilities.

designed test cases. Each instance comprises an input image and an instruction prompt, illustrating
reasoning-driven image transformations (see Fig. 2). The distribution of tasks is presented in Fig. 3.

Temporal Reasoning. Temporal reasoning tasks evaluate a model’s ability to understand and antici-
pate the evolution of objects or scenes over time. Beyond recognizing static attributes such as color,
shape, or size, a reasoning-capable generative model should capture how these properties change
through natural temporal progression. To construct such tasks systematically, we define several
key elements of temporal change, including scale, direction, and object. Based on representative
combinations of these dimensions, we derive four subcategories reflecting common temporal phenom-
ena: life progression, environmental cycles, material state change, and societal transformation. The
subcategories span diverse scenarios of temporal change, enabling the design of tasks that demand
fine-grained understanding of temporal dynamics and assess a model’s ability to perform temporally
grounded reasoning beyond superficial image manipulation.

Causal Reasoning. Causal reasoning is essential for evaluating a generative model’s ability to capture
real-world interaction dynamics. Unlike temporal reasoning, which concerns natural progression
over time, causal reasoning involves understanding how external forces or events directly induce
changes in an object’s state. This domain includes a range of phenomena: 1) Structural Deformation,
where external forces alter an object’s shape; 2) State Transition, such as phase changes (e.g., freeze)
triggered by manipulation or environmental shifts; 3) Chemical & Biological Transformations,
involving changes at the molecular or biological level; 4) Physical Manifestations, where observable
effects result from underlying physical laws activated by specific stimuli. These tasks require models
to exhibit implicit knowledge of material properties, physical principles, and typical cause-effect
relationships.

Spatial Reasoning. Spatial reasoning tasks assess a model’s ability to understand, manipulate, and
generate images that preserve accurate spatial relationships among objects in a scene. This requires
internalizing geometric principles, structural coherence, 3D reasoning, and perspective —- core
components of human-like visual understanding. We define five representative subcategories: 1)

4



Component Assembly tests whether disjoint parts can be combined into a coherent whole, requiring
spatial and structural integration; 2) Object Arrangement evaluates the sequencing and positioning of
objects based on attributes such as size, shape, or color; 3) Viewpoint Generation assesses the ability
to synthesize novel views from different angles, relying on latent 3D representations;
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Figure 3: Task Distribution of RISEBench.
RISEBench contains four main reasoning cat-
egories: Temporal, Causal, Spatial, and Logi-
cal. Each category includes various subtasks,
facilitating a comprehensive evaluation.

4) Structural reasoning challenges the model to com-
plete occluded or fragmented objects by inferring
missing parts; 5) Layout reasoning examines under-
standing and manipulation of spatial configurations
within a scene. Together, these tasks provide a com-
prehensive testbed for evaluating a model’s spatial
intelligence and its capacity for structure-aware, vi-
sually grounded generation.

Logical Reasoning. Unlike other categories that
focus on physical or commonsense understanding
in natural images, logical reasoning tasks evaluate a
model’s ability to perform structured, rule-based in-
ference grounded in visual input. These tasks require
interpreting visual elements and systematically apply-
ing formal rules — an area where current generative
models still struggle. To assess this capability, we
curate a diverse set of puzzles and logical challenges
across three primary subtasks: 1) Puzzle Solving,
including classic visual problems such as Sudoku,
mazes, and Tic-Tac-Toe; 2) Mathematical Deriva-
tion, involving tasks requiring computation, such as
shortest path finding and formula-based reasoning;
3) Pattern Prediction, where the model must infer and complete visual patterns based on implicit
rules. This category offers a broad spectrum of logic-based tasks with varying abstraction and
difficulty, providing a rigorous evaluation of a model’s visual-symbolic reasoning and its ability to
link perception with inference.

3.2 Evaluation Pipeline

Evaluating the quality of reasoning-informed visual editing remains a challenging task. To address
this, we first establish detailed scoring guidelines and conduct comprehensive human evaluations
along three key dimensions: 1. Instruction Reasoning, assessing whether the model correctly
interprets and follows the editing instruction; 2. Appearance Consistency, evaluating preservation
of relevant visual attributes from the original image; 3. Visual Plausibility, determining whether
the output is coherent, realistic, and physically or logically plausible within context. Since human
evaluation is resource-intensive and difficult to scale. To overcome these limitations, we further
adopt an LMM-as-a-Judge approach. Given their strong visual understanding and reasoning abilities,
state-of-the-art LMMs offer a promising alternative for automatic and human-aligned evaluation. We
develop a robust evaluation pipeline (Fig. 4) leveraging these models to produce scalable assessments.
In the following part, we detail each evaluation dimension:

Dimension 1: Instruction Reasoning. This dimension assesses the model’s ability to accurately
understand and execute the given instruction, with particular attention to both explicit directives and
implicit requirements embedded within the prompt. A high-quality response not only performs the
literal task specified but also captures the underlying reasoning or intended visual effect implied by
the instruction. To improve the accuracy of LMMs in assessing instruction reasoning scores, we
propose two evaluation methods. First, for samples with simple scenes that are easily describable
through comprehensive text, we annotate a reference text, which serves as the ground truth and is
used by the LMM to determine if the output image aligns with this description. For samples involving
more complex scenes or unique shapes that are difficult to describe in text, particularly in Logical
Reasoning and Spatial Reasoning tasks, we provide a reference image that fully matches the desired
output. The judging LMM then compares the output image with the reference image to assess whether
the instruction has been correctly executed. This approach expands the range of instruction types
and ensures that the LMM can provide an accurate judgment score, with further details illustrated
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Visual Plausibility 

Assess the overall visual 
realism and generation 
fidelity of the image. 
Consider the image’s 
clarity, natural 
appearance,  and compile

with physical plausibility and real-world 
constraints.

The image depicts a t-shirt with a colorful, 
splattered design. The fabric texture, folds, 
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and realism. The color splashes appear 
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or unrealistic elements.

Output Image

Prompt

Step-by-Step Evaluation

Judge & Final Score 5

Appearance Consistency

Evaluate how consistent Image 
B remains with Image A in all 
aspects except those explicitly 
changed by the instruction. You 
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Output Image
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3.   Output Image Comparison: -----------------
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Judge & Final Score
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Output Image
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output image aligns with the 
visual content described in the 
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Step-by-Step Evaluation
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2.   Reference Description: ------------------
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Figure 4: Evaluation metrics of RISEBench. RISEBench assesses the quality of generated images
along three key dimensions: Instruction Following, Appearance Consistency, and Visual Plausibility.
For each dimension, carefully crafted prompts are provided to the evaluator model (GPT-4.1 in this
study), which analyzes various inputs and returns scores for each corresponding sub-dimension.

in Fig. 4(left). A full score (e.g., 5) is reserved for outputs that satisfy both the literal placement and
the expected magnification, indicating robust instruction comprehension and reasoning.

Dimension 2: Appearance Consistency. Appearance consistency measures how well the visual
elements unrelated to the instruction are preserved between the input and output images. This is
particularly important in visual editing tasks, as it distinguishes between models that perform grounded
edits based on the original image (e.g., native generation models) and those that regenerate scenes
from scratch (e.g., cascade-based models). The LMM evaluates this metric by comparing the output
image with the input image in accordance with the given instruction, as illustrated in Fig. 4(middle).
For tasks involving temporal, causal, or spatial reasoning – where the input is typically a natural
image rich in visual complexity – appearance consistency is scored on a continuous scale from 1 to 5,
allowing for nuanced evaluation of how well the core scene is preserved post-editing. In contrast,
logical reasoning tasks often involve stylized or synthetic inputs with simple layouts. Given their
minimalistic structure, consistency in these cases is evaluated using a binary scheme: a score of 5
indicates full preservation of visual properties, while 1 reflects major deviations. This dimension
ensures that models not only generate correct content but also do so in a way that respects the visual
fidelity of the original input, which is essential for coherent and context-preserving visual editing.

Dimension 3: Visual Plausibility. The visual quality and realism of the generated image are critical
factors in evaluating the performance of generative models. This dimension assesses whether the
output is free from common generation artifacts such as blurriness, unnatural distortions, structural
incoherence, or violations of physical laws. A plausible image should not only align with the
instruction but also maintain visual integrity and realism consistent with how similar scenes would
appear in the real world. We prompt the LMM to assess whether there are any implausible elements
in the output image, as depicted in Fig. 4(right). The dimension only applies to tasks involving
temporal, causal, or spatial reasoning – where outputs are expected to resemble natural images –
visual plausibility is evaluated on a graded scale from 1 to 5, allowing for nuanced differentiation
between high-quality and flawed generations. This dimension ensures that, beyond correctness and
consistency, the generated images meet a basic threshold of visual fidelity and realism, which is
essential for practical deployment of generative models in real-world applications.

The evaluation details, such as the specific instructions provided to judges (human evaluators and
LMM-based assessors), carefully selected in-context examples, and the detailed configuration of the
LMM judgement, are provided in Appx. H.

During evaluation, all dimension scores are normalized to the range [1, 5]. A sample is considered
successfully solved only if it achieves scores of 5 on the three metrics, indicating full satisfaction of
all applicable evaluation dimensions. Accuracy is then defined as the percentage of samples that are
successfully solved out of the total number of test cases. The two complementary metrics offer both
fine-grained performance measurement and an interpretable success rate across tasks.
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Table 1: Overall performance on RISEBench-360. GPT-image-1 achieves the highest performance
with an accuracy of only 28.9%, followed by Gemini-2.0-Flash Series with the second-highest and
third-highest accuracy. The remaining models perform close to zero, highlighting the significant
challenges that remain in achieving robust reasoning-informed visual editing.

Models Temporal Causal Spatial Logical Overall
GPT-image-1 [16] 34.1% 32.2% 37.0% 10.6% 28.9%
Gemini-2.0-Flash-exp [38] 8.2% 15.5% 23.0% 4.7% 13.3%
Gemini-2.0-Flash-pre [38] 10.6% 13.3% 11% 2.3% 9.4%
BAGEL [8] 3.5% 4.4% 9.0% 5.9% 5.8%
Step1X-Edit [24] 0.0% 2.2% 2% 3.5% 1.9%
OmniGen [46] 1.2% 1.0% 0.0% 1.2% 0.8%
EMU2 [35] 1.2% 1.1% 0.0% 0.0% 0.5%
HiDream-Edit [14] 0.0% 0.0% 0.0% 0.0% 0.0%
FLUX.1-Canny [19] 0.0% 0.0% 0.0% 0.0% 0.0%

4 Experiments

To evaluate the performance of representative visual editing approaches, we selected a diverse set
of models encompassing various architectures and generation paradigms. Specifically, Flux1.0-
Canny [19] serves as a representative diffusion-based editing model; EMU2 [35], OmniGen [46]
and BAGEL [8] exemplify the auto-regressive generation paradigm; and Step1X-Edit [24] represents
a hybrid model that combines a LMM with a DiT-style diffusion architecture. We also include
four proprietary models: HiDream-Edit [14]. Gemini 2.0-Flash-Preview [38], Gemini 2.0-Flash-
Experimental [38], and GPT-image-1 [16]. For all of the proprietary models, we obtained their
outputs directly via their respective official API service.

4.1 Main Results (LMM-as-a-Judge)

We report the accuracy performance on a 100-point scale in Tab. 1, with representative output
examples shown in Fig. 6. All scores are assigned by the GPT-4.1 model, which serves as the judger
in our LMM-as-a-Judge evaluation pipeline.

Among the evaluated models, the recently released GPT-image-1 demonstrates the highest perfor-
mance on RISEBench. However, its accuracy of 28.9% remains relatively low, highlighting
persistent limitations in performing the complex visual reasoning required for these editing
tasks. Following GPT-image-1, Gemini-2.0-Flash-Experimental and Gemini-2.0-Flash-Preview rank
second and third, respectively. Gemini-2.0-Flash-Experimental achieves an average score of 13.3%,
while Gemini-2.0-Flash-Preview reaches an accuracy of 9.4%. Notably, although Gemini-2.0-Flash-
Preview exhibits superior image generation quality compared to Gemini-2.0-Flash-Experimental,
it appears to suffer a significant decline in spatial reasoning capabilities (accuracy dropping from
23.0% to 11.0%), resulting in a lower overall performance. In stark contrast, other models, including
Step1X, OmniGen, EMU2, FLUX.1-Canny, and HiDream, all exhibit significantly poor performance
on the RISEBench. Their accuracy scores are all close to 0%, indicating limited understanding of the
input images and a failure to generate semantically meaningful edits.

In temporal, causal, and spatial reasoning tasks, where input images typically depict natural scenes and
instructions often emphasize common knowledge, GPT-image-1 demonstrates strong performance,
with accuracies exceeding 30%. However, when confronted with logical reasoning tasks involving
complex logical puzzles and intricate instructions, GPT-image-1 encounters significant challenges,
achieving only an accuracy of 10.6%. This disparity underscores logical reasoning as a critical
bottleneck, representing a crucial avenue for future research in reasoning-guided visual generation.

To gain deeper insights into the strengths and limitations of each model, we analyze the average
performance across three evaluation dimensions for the evaluated models, as illustrated in Fig. 5.
The results indicate that GPT-image-1 achieves significantly leading performance across all three
evaluation metrics: Instruction Reasoning, Appearance Consistency, and Visual Plausibility. This
positions it as the most powerful model among those evaluated for reasoning-based editing tasks.
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Figure 5: Comparison across models on three evaluation sub-dimensions. GPT-image-1 demon-
strates superior performance, achieving the highest scores across all three evaluation metrics. Gemini-
2-Flash-Series also exhibits competitive performance on these criteria. In contrast, the performance
of many other evaluated models was considerably lower, indicating significant limitations in their
ability to follow instructions and maintain visual integrity.

The Gemini-2.0-Flash models (experimental and preview versions) exhibit a minor difference in
performance; both demonstrate relatively high scores across the three metrics, resulting in the second-
best overall performance. This suggests they possess some capability in understanding complex
instructions.

BAGEL also demonstrates a degree of understanding capability, as reflected by its performance in
Instruction Reasoning and Appearance Consistency, albeit with scores lower than those of the Gemini
Series. However, its Visual Plausibility score is notably low, ranking as the second lowest among
the evaluated models. This indicates a potential strength in semantic understanding coupled with
a weakness in the image generation process. In contrast, the other three models all lack sufficient
capability in the reasoning-informed visual editing task. Among these five models, HiDream-Edit
demonstrates the best performance in Instruction Reasoning; however, it also exhibits the lowest score
in Appearance Consistency, indicating an inability to maintain the characteristics of the main content.
Step1X achieves a score of 41.5 in Appearance Consistency but lacks the ability to understand
instructions, positioning it as a standard editing model. Both EMU2 and OmniGen demonstrate
similarly limited performance in Instruction Reasoning and Appearance Consistency. However,
OmniGen’s performance in Visual Plausibility is markedly poorer, exhibiting the lowest score among
the evaluated models. This suggests a notable weakness in OmniGen’s underlying image generation
capability Regarding FLUX.1-Canny, it shows poor performance in both understanding instructions
and maintaining appearance consistency, demonstrating significantly limited performance. The
complete score distributions are presented in Appx. D.

4.2 Analysis for Models

We exhibit several representative model outputs in Fig. 6 and observe several notable characteristics
of the evaluated models. First, GPT-image-1 demonstrates substantial robustness in visual editing
tasks. Beyond its proficient instruction comprehension, a critical attribute is its ability to preserve
the original image content even when faced with ambiguous or misunderstood instructions (Fig. 6,
Temporal [2], Spatial [1], Logical [1,2]). This behavior directly contributes to its superior performance
in terms of Appearance Consistency and Visual Plausibility.

In contrast, the Gemini-2.0-Flash Series exhibits a comparatively limited capacity for instruction
understanding relative to GPT-image-1. It frequently introduces artifacts by either adding extraneous
elements or omitting critical content during the editing process (Fig. 6, Temporal[1], Spatial[2]),
thereby diminishing image consistency. Moreover, when instructions are entirely misinterpreted,
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Causal Reasoning

Temporal Reasoning

Instruction: 
Draw what they will look like ten years later.

FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X

FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X

Instruction: 
Draw what it will look like 5 seconds later.

Instruction: 
Draw what the scene will look like when the 
speaker plays strong, powerful music.

Instruction: 
Draw what they will look like when fully inflated.

Spatial Reasoning

Instruction: 
Draw the left view.

FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X

Instruction: 
Draw the scene where the grey mineral water bottle 
is moved to the right of the white mineral water 
bottle and both are put into the blue-grey.

Logical Reasoning

Instruction: 
Draw a clear red line path from a red-and-white 
spotted mushroom house to a round mud pit.

FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X FLUX.1-Canny GPT-image-1Gemini-2.0-PreHiDreamStep1X

Instruction: 
Draw what it will look like after the question 
mark is replaced with the correct answer.

1 2

1 2

1 2

1 2

Figure 6: Examples of several different models’ outputs on RISEBench-360. The analyzed models
demonstrate distinct characteristics in their responses. Specifically, GPT-image-1 exhibits instances of
instruction misunderstanding, while Gemini sometimes struggles with maintaining image consistency.
Other models generally show limited ability to comprehend and execute complex instructions.

Gemini-2.0-Flash-preview tends to generate chaotic or severely distorted reconstructions (Fig. 6,
Spatial[1], Logical[2]), leading to significantly degraded output quality.

Regarding the remaining models, HiDream-Edit displays a weak understanding of certain instructions
but often yields unconventional or anomalous image reconstructions. Step1X-Edit and Flux.1-Canny
appear largely restricted to processing instructions featuring explicit, concrete nouns, exhibiting
minimal to negligible broader reasoning capabilities.

4.3 Validity of LMM-as-a-Judge

To assess the validity of using LMMs as evaluators, we analyze the correlation between LMM-based
assessments and human expert judgments. We conduct the user study involving six human experts,
who independently score the randomly sampled 100 outputs of two models (Gemini-2.0-Flash-
Experimental and GPT-image-1) based on criteria aligned with those used in LMM-based evaluations.
We analyzed the human expert scores corresponding to each score assigned by LMM-as-a-judge (on
a scale of 1–5). For each assigned model score, we report the proportion of samples, mean, standard
deviation (Std.), mean error, and Mean Absolute Error (MAE) of the corresponding human scores.
Furthermore, we computed the overall MAE between the complete sets of scores provided by human
experts and those assigned by LMM. These results are presented in Tab. 2.
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Table 2: Correlation between human and model-based judgments. For each score level assigned
by the model(1-5), we report the distribution of the corresponding human expert scores, along with
their proportion, mean, standard deviation (Std.), and Mean Absolute Error (MAE). The overall
MAE of the complete sets is also presented. Reas., Cons. and Plau. denote Instruction Reasoning,
Appearance Consistency and Visual Plausibility respectively.

Model Proportion Human Mean Human Std. Mean Error MAE
Score Reas. Cons. Plau. Reas. Cons. Plau. Reas. Cons. Plau. Reas. Cons. Plau. Reas. Cons. Plau.

1 27% 1% 0% 1.1 2.6 - 0.1 0.0 - 0.1 1.6 - 0.1 1.6 -
2 11% 5% 0% 2.2 3.3 - 1.0 0.6 - 0.2 1.3 - 0.1 1.3 -
3 10% 13% 12% 3.6 3.6 4.1 1.2 0.5 0.7 0.6 0.6 1.1 1.2 0.7 1.2
4 13% 9% 9% 4.6 4.3 4.6 0.5 0.4 0.2 0.6 0.3 0.6 0.8 0.4 0.6
5 39% 61% 79% 4.7 4.7 4.8 0.4 0.4 0.3 -0.3 -0.3 -0.2 0.3 0.3 0.2

Overall - - - - - - - - - - - - 0.5 0.7 0.4

The distribution indicates that the scores assigned by human experts are closely aligned with those
predicted by the model, demonstrating a strong overall consistency. The MAE is consistently low
across the evaluation dimensions. For the three primary evaluation criteria—Instruction Reason-
ing, Appearance Consistency, and Visual Plausibility—the observed MAEs were 0.5, 0.7, and 0.4
respectively, which are notably low relative to the 1-5 scoring scale, with each MAE falling below 1.

Leveraging the robust design of our evaluation pipeline, our LMM-as-a-Judge pipeline demonstrates
effectiveness in identifying both high-quality outputs and significant failures. Specifically, the LMM-
Judge assigns the max score (5) to a substantial proportion of outputs across all three evaluation
metrics. For this subset of outputs rated 5 by LMM, the corresponding mean scores assigned by human
experts were notably high (4.7, 4.7, and 4.8). Furthermore, MAE between LMM and the human
scores for these outputs is low (only 0.3, 0.3, and 0.2). These findings collectively indicate strong
agreement between LMM and human for outputs considered successful. Besides, LMM also exhibits
proficiency in identifying outputs that critically fail to adhere to instructions. Specifically, the model
assigned a Reasoning score of 1 to 27% of the samples. For this subset, the corresponding human
expert mean score is 1.1, resulting in an MAE of merely 0.1. This demonstrates excellent agreement
between the LMM and human in pinpointing outputs with significant reasoning deficiencies.

When the model assigns intermediate scores (specifically 2, 3), the alignment with human judgments
tends to decrease. This reduced agreement is primarily attributable to the subjective nature of the
scoring criteria, which inherently leads to greater variability and potential disagreements when
evaluating the same sample, even among human experts. More specifically, for the Appearance
Consistency and Visual Plausibility metrics, human experts demonstrated a tendency to assign higher
scores compared to the model. This discrepancy may stem from the model’s potentially more
meticulous examination of the generated images, allowing it to identify subtle inconsistencies or
deviations from the original content that human evaluators might overlook.

5 Conclusion

In this paper, we introduced RISEBench – the first dedicated benchmark for evaluating the Reasoning-
Informed Visual Editing (RISE) capabilities of multimodal models. RISEBench targets four core
types of reasoning: temporal, causal, spatial, and logical, and provides a structured evaluation
framework that takes into account instruction reasoning, appearance consistency, and generation
plausibility. Through extensive experiments, we observed that GPT-image-1 significantly outperform
its open-source and proprietary counterparts. However, even the most advanced models continue to
exhibit notable shortcomings in logical reasoning tasks, highlighting a key area for future research
and model development.
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A Comparison across models on three evaluation sub-dimensions

Table 3: Comparison across models on three evaluation sub-dimensions.

Model Instruction Reasoning Appearance Consistency Visual Plausibility
Gemini-2.5-Flash-Image[38] 61.2 86.0 91.3
GPT-Image-1[16] 62.8 80.2 94.9
GPT-Image-1-mini[16] 54.1 71.5 93.7
Gemini-2.0-Flash-exp[38] 48.9 68.2 82.7
BAGEL (w/ CoT)[8] 45.9 73.8 80.1
Seedream-4.0[32] 58.9 67.4 91.2
Gemini-2.0-Flash-pre[38] 49.9 68.4 84.9
Qwen-Image-Edit[41] 37.2 66.4 86.9
BAGEL[8] 36.5 53.5 73.0
FLUX.1-Kontext-Dev[2] 26.0 71.6 85.2
Ovis-U1[39] 33.9 52.7 72.9
HiDream-Edit[14] 30.3 12.6 74.9
Step1X-Edit[24] 25.1 41.5 73.5
EMU2[34] 22.6 38.2 78.3
OmniGen[46] 22.0 32.6 55.3
FLUX.1-Canny[19] 20.2 13.1 77.5

Comparison of models across three evaluation sub-dimensions is shown in Table 3.

B Data Source of RISEBench

Input images for the RISEBench dataset are primarily sourced from the following categories:

1. Images generated by image generation models.
2. Images rendered from 3D environments utilizing software(Blender).
3. Images derived from existing datasets and benchmarks [47, 36].
4. Images collected from the internet under permissive licenses.

C Performance across Subtasks

Table 4: Detail performance across subtasks within the four prominent categories. GPT-4o-Image
shows great capability in common scenarios, but it still struggles with complex tasks like Chemical,
Biology and Physics tasks. Besides, while GPT-4o-Image exhibits relatively strong performance on
the Mathematical Derivation subtask, its capability is notably diminished, approaching near-zero
effectiveness, in subtasks like Pattern Prediction and Puzzle Solving.

Subtask/Model GPT-4o-Image Gemini-Pre Gemini-Exp BAGEL Step-1X OmniGen HiDream EMU2 FLUX.1
Temporal Reasoning

Life Progression 52.6 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0
Material Progression 32.6 15.2 6.5 4.3 0.0 0.0 0.0 0.0 0.0
Environmental Cycles 30.7 15.4 15.3 7.7 0.0 7.6 0.0 0.0 0.0
Societal Transformation 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 0.0

Causal Reasoning
Structural Deformation 41.7 13.9 13.9 5.5 0.0 0.0 0.0 0.0 0.0
State Transition 36.0 20.0 20.0 4.0 0.0 0.0 0.0 0.0 0.0
Chem&Bio Transform 12.5 6.3 12.5 0.0 6.2 0.0 0.0 0.0 0.0
Physics Manifestation 23.0 7.7 15.4 0.0 0.0 0.0 0.0 0.0 0.0

Spatial Reasoning
Component Assembly 56.5 26.1 26.1 13.0 0.0 0.0 0.0 0.0 0.0
Object Arrangement 25.0 8.3 8.3 0.0 0.0 0.0 0.0 0.0 0.0
Viewpoint Generation 44.4 11.1 44.4 11.1 3.7 0.0 0.0 0.0 0.0
Structural Inference 26.6 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Layout Reasoning 21.7 0.0 17.4 13.0 4.3 0.0 0.0 0.0 0.0

Logical Reasoning
Pattern Prediction 3.22 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0
Mathematical Derivation 35.7 0.0 21.4 14.3 0.0 0.0 0.0 0.0 0.0
Puzzle Solving 7.5 5 2.5 7.5 0.0 2.5 0.0 0.0 0.0

The performance of the eight evaluated models across the subtasks within the four prominent cat-
egories is presented in Tab. 4. Analysis of this table reveals distinct patterns in model capabilities.
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GPT-4o-Image, considered as the leading visual editing model, demonstrates strong proficiency in
tasks requiring instruction understanding and execution within common scenarios, such as Life Pro-
gression, Structural Deformation, and Viewpoint Generation. However, its performance significantly
declines when faced with less common or more complex scenarios, including Chemistry & Biology
Transformation, Societal Transformation, and Physics Manifestation, as shown in Fig. 7. In these
cases, the model struggles to produce consistently accurate edits. Furthermore, examining the Logical
Reasoning category, which generally demands a higher level of complex understanding, reveals
nuanced performance: While GPT-4o-Image exhibits relatively strong performance on the Mathe-
matical Derivation subtask, its capability is notably diminished, approaching near-zero effectiveness,
in subtasks like Pattern Prediction and Puzzle Solving. These findings, particularly the struggles
in complex or domain-specific scenarios and certain logical reasoning tasks, further underscore the
current limitations of state-of-the-art visual-editing models.

Draw what it will look like after fermentation.

Draw what is seen after putting a drop of iodine solution(typically brownish) on the cut surface.

Figure 7: GPT-4o-Image’s Understanding Capabilities in different Tasks. While GPT-4o-Image
can effectively handle tasks in common scenarios, its performance declines significantly on tasks
necessitating deeper or more difficult understanding.

D Score Distribution of Model Outputs

The score distribution of the eight evaluated models on the RISEBench benchmark is illustrated in
Fig. 8. Analysis of these distributions reveals that GPT-4o-Image and the Gemini-Series models con-
sistently achieve a high proportion of favorable scores across all three evaluation metrics: Instruction
Reasoning, Appearance Consistency, and Visual Plausibility. In contrast, the performance of other
models is notably weaker, particularly concerning instruction reasoning and appearance consistency,
where they exhibit a low proportion of high scores. Furthermore, OmniGen specifically demonstrates
significant difficulties in maintaining the visual plausibility of the generated images. This inability
compromises the quality of its outputs and contributes to its comparatively lower overall performance
on the benchmark.

E Interactive Interface for Human Annotators

A view of the user interface (UI) employed for human annotation is shown in Fig. 9.

F Limitations

As this is the first benchmark evaluating reasoning-informed image editing capabilities, our work is
still in its initial stages. The categories of tasks included may not be exhaustive, and the dataset size,
comprising only 360 questions, is not substantial.
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GPT-4o-Image

Gemini-2.0-Flash-Experimental

Gemini-2.0-Flash-Preview

Step1X-Edit

HiDream-Edit

OmniGen

EMU2

Flux.1-Canny

Figure 8: The score distribution of the model being tested.
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Figure 9: Interactive Interface provided for Human Annotators.

G Detailed Outputs of All Evaluated Models

The outputs of all evaluated models on our RISEBench benchmark are presented below for compre-
hensive comparison.

H Prompt for Judgement

We exhibit all our prompts for GPT-4o judger across different metrics and dimensions here.
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Figure 10: Logical Reasoning Outputs – Part 1.
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Figure 11: Logical Reasoning Outputs – Part 2.
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Figure 12: Spatial Reasoning Outputs – Part 1.
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Figure 13: Spatial Reasoning Outputs – Part 2.
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Figure 14: Temporal Reasoning Outputs – Part 1.
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Figure 15: Temporal Reasoning Outputs – Part 2.

24



Figure 16: Causal Reasoning Outputs – Part 1.
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Figure 17: Causal Reasoning Outputs – Part 2.
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Prompt for Appearance Consistency on Temporal and Causal Reasoning

You are a highly skilled image evaluator. You will receive two images (an original image
and a modified image) along with a specific modification instruction. The second image is
known to have been altered based on this instruction, starting from the first image. Your task
is to evaluate whether the two images maintain consistency in aspects not related to the given
instruction.
Task Evaluate the consistency between the images according to the following scale (1 to 5):
- 5 (Perfect Consistency): Apart from changes explicitly required by the instruction, all other
details (e.g., personal features, clothing, background, layout, colors, positions of objects) are
completely identical between the two images.
- 4 (Minor Differences): Apart from changes explicitly required by the instruction, the second
image is mostly consistent with the original image but contains a minor discrepancy (such as
a missing minor personal feature, accessory, or tattoo).
- 3 (Noticeable Differences): Apart from changes explicitly required by the instruction, the
second image has one significant difference from the original (such as a noticeable alteration
in a person’s appearance like hair or skin color, or a significant change in background
environment).
- 2 (Significant Differences): Apart from changes explicitly required by the instruction, the
second image has two or more significant differences or multiple noticeable inconsistencies
(such as simultaneous changes in both personal appearance and background environment).
- 1 (Severe Differences): Apart from changes explicitly required by the instruction, nearly
all key details (e.g., gender, major appearance features, background environment, or scene
layout) significantly differ from the original image, clearly deviating from the original.
Example:
Original image: A blond, white-skinned man with a tattoo on his right shoulder, furniture in
the background. Instruction: "Show him after gaining fifty pounds."
- Score 5: A heavier blond, white-skinned man, tattoo on right shoulder intact, identical
furniture and layout.
- Score 4: A heavier blond, white-skinned man, missing the tattoo on his right shoulder,
identical furniture and layout.
- Score 3: A heavier man with black hair instead of blond (change in hair color), or original
blond man but with a grassy background instead of furniture.
- Score 2: A heavier man with black hair (hair color changed), and the background changed
to grass.
- Score 1: A heavier black-haired woman, and background changed to grass.
Note: When assigning scores, only consider details unrelated to the instruction. Changes
explicitly requested by the instruction should NOT be regarded as inconsistencies.
Input
Instruction: {instruct}
Output Format
Provide a detailed, step-by-step explanation of your scoring process. Conclude clearly with
the final score, formatted as:
Final Score: 1-5

Figure 18: Prompt for evaluating Appearance Consistency in Temporal Reasoning and Causal
Reasoning.
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Prompt for Instruction Reasoning on Temporal and Causal Reasoning tasks.

You are an expert image evaluator. For each task, you will be provided with:
1. An instruction describing how an image should be modified.
2. A ground-truth textual description that represents the intended result of the modification.
3. An output image generated by an assistant.
Your task is to assess the output image based on the following evaluation dimension:
Evaluation Dimension: Alignment Between Image and Reference Description Assess how ac-
curately the output image aligns with the visual content described in the reference description,
considering the context of the instruction.
Scoring Criteria: - 5: The image completely matches the description, accurately reflecting
every detail and degree.
- 4: The image mostly matches the description, with minor discrepancies.
- 3: The image partially matches the description but contains differences or lacks some details.
- 2: The image contains noticeable difference. Important details are missed or clearly
inaccurate.
- 1: The image fails to follow the instruction and does not correspond to the description at all.
Example Instruction: Draw what it will look like after it is broken. Description: An egg is
completely broken, with eggshell scattered around and egg white and yolk clearly spilling
out.
- 5: Completely broken egg, clearly scattered eggshells, visible egg white and yolk spilling
out.
- 4: Broken egg, eggshell present but not fully scattered, clearly visible egg white and yolk
spilling out.
- 3: Broken egg with scattered eggshell, but egg white and yolk not spilled or still within
eggshell.
- 2: Only scattered eggshell visible, without clear egg white or yolk.
- 1: Egg is intact, not broken.
Input Instruction instruct GroundTruth Description: reference
Output Format
Provide a detailed, step-by-step explanation of your scoring process. Conclude clearly with
the final score, formatted as:
Final Score: X

Figure 19: Prompt for evaluating Instruction Reasoning on Temporal and Causal Reasoning
tasks.
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Prompt for visual plausibility on Temporal and Causal Reasoning tasks.

You are an expert image evaluator. For each task, you will be provided with an output image
generated by an assistant.
Your task is to independently assess the image along the following dimension and assign an
integer score from 1 to 5:
Evaluation Dimension: Realism and Generation Quality
Assess the overall visual realism and generation fidelity of the image. Consider the im-
age’s clarity, natural appearance, and compliance with physical plausibility and real-world
constraints.
Scoring Guidelines:
- 5 The image is sharp, visually coherent, and all elements appear highly realistic and
physically plausible.
- 4 The image is clear, with most elements appearing realistic; minor details may show slight
unreality.
- 3 The image is mostly clear, but some significant elements appear unrealistic or physically
implausible.
- 2 The image is noticeably blurry or contains major unrealistic components or visual distor-
tions.
- 1 The image is extremely blurry, incoherent, or severely unrealistic; realism is nearly absent.
Output Format
After the evaluation, conclude clearly with the final score, formatted as:
Final Score: X

Figure 20: Prompt for evaluating Visual Plausibility on Temporal and Causal Reasoning tasks.
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Prompt for evaluating Appearance Consistency on Spatial Reasoning task.

You are a precise and analytical image consistency evaluator.
You will be given: - Image A: the original image. - Image B: a modified version of Image A. -
Instruction: a directive describing the intended modification to Image A to produce Image B.
Your task is to evaluate how consistent Image B remains with Image A in all aspects *except*
those explicitly changed by the instruction. You must ignore the instructed changes and only
assess unintended differences.
Evaluation Scale (1 to 5):
- 5 Perfect Consistency All elements not related to the instruction are visually identical
between Image A and Image B (e.g., style, background, object positions, colors, shapes). No
unintended change is present.
- 4 Minor Difference One small unintended change is present (e.g., a slight color variation or
minor object shape shift), but overall the image remains highly consistent.
- 3 Noticeable Difference One major or a few minor unintended changes are present (e.g., an
object’s shape, color, or background differs noticeably, or style has shifted slightly).
- 2 Significant Inconsistency Two or more significant differences unrelated to the instruction
(e.g., changes in both object details and background or style), reducing overall fidelity.
- 1 Severe Inconsistency Major unintended changes dominate the image (e.g., altered visual
style, scene layout, or appearance), clearly breaking consistency with Image A.
Note: - To receive a score of 5, the modified image must be visually identical to the original
in every unaffected aspect—symbols, patterns, background, texture, color, category, layout,
and style must all match exactly.
- If the background in the original is vague (e.g., plain white or composed of parts), and the
background in Image B is also similar vague, you may disregard background consistency.
- If a blue diamond shape appears in the bottom-left corner of Image 2, ignore it; it is a
watermark.
Example
Original image: “A silver-framed clock with a white face. Three hands (hour, minute, second)
are disassembled and lie beside it.” Instruction: “Assemble the clock to show 9:45.”
Scoring Criteria: - Score 5: Frame, face, and hand shapes exactly as original.
- Score 4: One hand differs slightly in shape or thickness.
- Score 3: All hands identical, differing from original specs, or some other things(like text,
furniture in the background) is added.
- Score 2: Frame color or face differs, and hand shapes are wrong.
- Score 1: Frame, face, and hand appearance all significantly altered, background is totally
different.
Input Instruction: instruct
Output Format After evaluation, conclude with:
Final Score: 1-5

Figure 21: Prompt for evaluating Appearance Consistency on Spatial Reasoning task.
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Prompt for evaluating Instruction Reasoning on Spatial Reasoning task.

You are an expert image evaluator. For each task, you will be provided with:
1. An instruction describing how an image should be modified. 2. A ground-truth textual
description that represents the intended result of the modification. 3. An output image
generated by an assistant.
Your task is to assess the output image based on the following evaluation dimension:
Evaluation Dimension: Alignment Between Image and Reference Description Assess how ac-
curately the output image aligns with the visual content described in the reference description,
considering the context of the instruction.
Scoring Criteria: - 5: The image completely matches the description, accurately reflecting
every detail and degree.
- 4: The image mostly matches the description, with minor discrepancies.
- 3: The image partially matches the description but contains differences or lacks some details.
- 2: The image contains noticeable difference. Important details are missed or clearly
inaccurate.
- 1: The image fails to follow the instruction and is entirely unrelated to the description.
Input Instruction instruct GroundTruth Description: reference
Output Format
Conclude clearly with the final score, formatted as:
Final Score: X

Figure 22: Prompt for evaluating Instruction Reasoning on Spatial Reasoning task.

Prompt for evaluating Visual Plausibility on Spatial Reasoning task.

You are a highly skilled image evaluator. Given an image, your task is to assess and determine
its clarity and distortion, and then provide a score (an integer between 1 and 5) based on the
following criteria:
Task Requirements:
Determine whether the image has blurriness, distortion, visual defects, or physical inaccura-
cies.
Assign an appropriate score to the image based on the above criteria, considering its overall
quality and detail integrity.
Scoring Criteria:
- 5 points: The image is very clear, with complete details, and no noticeable distortion or
blurriness. All elements conform to physical laws.
- 4 points: The image is clear, with only minor blurriness, and no noticeable distortion.
- 3 points: The image has areas with clarity issues, such as slight blurriness or distortion.
Some elements are physically incorrect.
- 2 points: The image has noticeable blurriness or distortion, with significant detail loss, or
lacks physical accuracy.
- 1 point: The image is severely blurry or distorted, making it difficult to recognize its content,
with serious degradation in visual quality, almost unusable.
Output Format
Provide a clear conclusion with the final score, formatted as follows:
Final Score: 1-5
where X represents the score.

Figure 23: Prompt for evaluating Visual Plausibility on Spatial Reasoning task.
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Prompt for evaluating Logical Reasoning Tasks with reference text answer.

You are a highly skilled image evaluator. Given an image with logical problem, you will
receive:
1. Image 1: The original image. 2. Image 2: A generated image from an assistant model. 3.
Problem Description 4. Reference Answer
Your task is to determine whether Image 2 correctly match the reference answer. Evaluate
Image 2 based on the following metrics, each scored as either 0 or 1:
1. Logical Correctness (0/1)
- Assess whether the content of Image 2 logically matches the reference answer.
- For example, given Image 1 is a teacher with "1+1=?" on the blackboard, and the problem is
"Replace the question mark with the correct answer", if Image 2 replaces the question mark
with "2", then the score is 1; other is 0.
2. Appearance Consistency (0/1)
Determine whether the style, environment, arrangement of Image 2 are consistent with Image
1.
- Consider factors such as color scheme, line/font style, background setting, etc. If Image 2’s
appearance fully aligns with Image 1, score 1; otherwise, score 0.
- If the only difference is the actual problem solution (not the style or setting) or slightly
lighter/darker color, still assign a score of 1.
- If Image 2 is created by directly adding a pattern to Image 1, still assign a score of 1.
- If in Image 1, the nodes and edges form an irregular quadrilateral with varying edge lengths
and angles but form a square-like arrangement with equal edge lengths and right angles in
Image 2, the score is 0.
Inputs Problem Description: instruct Reference Answer: reference
Output You should provide a step-by-step explanation of how you arrived at each score and
conclude with the total scores for all three requirements in the format:
Final Score: X,Y
where X and Y are the scores for the two metrics (Logical Correctness and Appearance
Consistency), respectively.

Figure 24: Prompt for evaluating Logical Reasoning Tasks with reference text answer.
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Prompt for evaluating Logical Reasoning Tasks with reference image answer.

You are a highly skilled image evaluator. Given a logical problem, you will receive:
1. Image 1: A reference ground-truth image that correctly solves the problem. 2. Image 2: A
generated image from an assistant model.
Your task is to determine whether Image 2 correctly solves the problem, using Image 1 as the
reference answer. Evaluate Image 2 based on the following metrics, each scored as either 0
or 1:
1. Logical Correctness (0/1)
Assess whether the content of Image 2 logically equal to Image 1.
Examples
- In a tic-tac-toe problem, if the positions of the marks in Image 2 are exactly the same as in
Image 1, score 1; otherwise, score 0.
- If the problem is to , only if Image 2 is completely identical to Image 1(reference answer) in
terms of shape, color, arrangement pattern, and pattern orientation, score 1; otherwise, score
0.
- If Image 1 only contains 1 gt answer but Image 2 contains several answers, score 0.
2. Appearance Consistency (0/1)
Determine whether the style and environment of Image 2 are consistent with Image 1.
- Consider factors such as color scheme, line style, background setting, etc. If Image 2’s
appearance fully aligns with Image 1, score 1; otherwise, score 0.
- If the only difference is the actual problem solution(such as Image 1 with red line as solution
and Image 2 with blue line as solution) or slightly lighter/darker color, still assign a score of
1.
- If Image 2 is created by directly adding a pattern to Image 1, still assign a score of 1.
If a blue diamond shape appears in the bottom-left corner of Image 2, ignore it; it is a
watermark.
Problem Description instruct
Output You should provide a step-by-step explanation of how you arrived at each score and
conclude with the total scores for all three requirements in the format:
Final Score: X,Y
where X and Y are the scores for the two metrics (Logical Correctness and Appearance
Consistency), respectively.

Figure 25: Prompt for evaluating Logical Reasoning Tasks with reference image answer.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not have theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully disclose all the information needed to reproduce the main
experimental results
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This paper does not contain error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: This paper does not include model training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform in every respect with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the impacts in Section 4.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code, data and models used in the paper are all properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented and the documen-
tation is provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We give the screenshot of the interactive interface for human experts in
Appendix D. All human experts are authors of this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: This paper does not have such risk. The human experts are all authors of this
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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